Координаты центра тяжести трапеции формула. Координаты центра тяжести некоторых однородных тел

Лекция 4. Центр тяжести.

В данной лекции рассматриваются следующие вопросы

1. Центр тяжести твердого тела.

2. Координаты центров тяжести неоднородных тел.

3. Координаты центров тяжести однородных тел.

4. Способы определения координат центров тяжести.

5. Центры тяжести некоторых однородных тел.

Изучение данных вопросов необходимо в дальнейшем для изучения динамики движении тел с учетом трения скольжения и трения качения, динамики движения центра масс механической системы, кинетических моментов, для решения задач в дисциплине «Сопротивление материалов».

Приведение параллельных сил.

После того как было рассмотрено приведение к центру плоской системы и произвольной пространственной системы сил, мы опять возвращаемся к рассмотрению частного случая системы параллельных сил.

Приведение двух параллельных сил.

В ходе рассмотрения такой системы сил возможны три следующих случая приведения.

1. Система двух коллинеарных сил. Рассмотрим систему двух параллельных и направленных в одну сторону сил P и Q , приложенных в точках А и В . Будем считать, что силы перпендикулярны к этому отрезку (рис.1,а ).

С , принадлежащую отрезку АВ и удовлетворяющую условию:

АС /СВ = Q /P .(1)

Главный вектор системы R C = P + Q по модулюравен сумме этих сил:R C = P + Q .

С с учетом (1) равен нулю: M C = P АС - Q СВ = 0.

Таким образом, в результате приведения мы получили: R C ≠ 0, M C = 0. Это означает, что главный вектор эквивалентен равнодействующей, проходящей через центр приведения, то есть:

Равнодействующая коллинеарных сил равна по модулю их сумме, а ее линия действия делит отрезок, соединяющий точки их приложения, обратно пропорционально модулям этих сил внутренним образом.

Отметим, что положение точки С не изменится, если силы Р и Q повернуть на угол α . Точка С , обладающая таким свойством называется центром параллельных сил .

2. Система двух антиколлинеарных и не равных по модулю сил. Пусть силы P и Q , приложенные в точках А и В , параллельны, направлены в противоположные стороны и по модулю не равны (рис.1,б ).

Выберем в качестве центра приведения точку С , удовлетворяющую по-прежнему соотношению (1) и лежащую на той же прямой, но за пределами отрезка АВ .

Главный вектор этой системыR C = P + Q по модулю теперь будет равен разности модулей векторов:R C = Q - P .

Главный момент относительно центра С по-прежнему равен нулю: M C = P АС - Q СВ = 0, поэтому

Равнодействующая антиколлинеарных и не равных по модулю сил равна их разности, направлена в сторону большей силы, а ее линия действия делит отрезок, соединяющий точки их приложения, обратно пропорционально модулям этих сил внешнимобразом.

Рис.1

3. Система двух антиколлинеарных и равных по модулю сил. Возьмем за исходный предыдущий случай приведения. Зафиксируем силу Р , а силу Q устремим по модулю к силеР .

Тогда при Q Р в формуле (1) отношение АС /СВ 1. Это означает, чтоАС СВ , то есть расстояние АС →∞ .

При этом модуль главного вектора R C 0, а модуль главного момента не зависит от положения центра приведения и остается равным первоначальному значению:

M C = P АС - Q СВ = P ∙ ( АС - СВ ) = P А B .

Итак, в пределе мы получили систему сил, для которой R C = 0, M C 0, а центр приведения удален в бесконечность, которую нельзя заменить равнодействующей. В этой системе нетрудно узнать пару сил, поэтому пара сил равнодействующей не имеет .

Центр системыпараллельных сил.

Рассмотрим систему n сил P i , приложенных в точках A i (x i , y i , z i )и параллельных оси Ov c ортом l (рис.2).

Если заранее исключить случай системы, эквивалентной паре сил, нетрудно на основании предыдущего параграфа доказать существование ее равнодействующей R .

Определим координаты центра C (x c , y c , z c ) параллельных сил, то есть координаты точки приложения равнодействующейэтой системы.

Воспользуемся с этой целью теоремой Вариньона, на основании которой:

M 0 (R ) = Σ M 0 (P i ).

Рис.2

Вектор-момент силы можно представить в виде векторного произведения, поэтому:

М 0 (R ) = r c × R = Σ М 0i (P i ) = Σ (r i × P i ).

Учитывая, что R = R v l , а P i = P vi l и воспользовавшись свойствами векторного произведения, получим:

r c × R v l = Σ (r i × P vi l ),

r c R v × l = Σ (r i P vi × l ) = Σ (r i P vi ) × l ,

или:

[ r c R v - Σ (r i P vi )] × l = 0.

Последнее выражение справедливо только в том случае, если выражение в квадратных скобках равно нулю. Поэтому, опуская индекс v и учитывая, что равнодействующая R = Σ P i , отсюда получим:

r c = (Σ P i r i )/(Σ P i ).

Проектируя последнее векторное равенство на оси координат, получим искомое выражение координат центра параллельных сил :

x c = (Σ P i x i )/(Σ P i );

y c = (Σ P i y i )/(Σ P i );(2)

z c = (Σ P i z i )/(Σ P i ).

Центр тяжести тел.

Координаты центров тяжести однородного тела.

Рассмотрим твердое тело весом P и объемом V в системе координат Oxyz , где оси x и y связаны с поверхностью земли, а ось z направлена в зенит.

Если разбить тело на элементарные части объемом ∆ V i , то на каждую его часть будет действовать сила притяжения P i , направленная к центру Земли. Предположим, что размеры тела значительно меньше размеров Земли, тогда систему сил, приложенных к элементарным частям тела можно считать не сходящейся, а параллельной (рис.3), и к ней применимы все выводы предыдущей главы.

Рис.3

Определение . Центром тяжести твердого тела называется центр параллельных сил тяжести элементарных частей этого тела.

Напомним, что удельным весом элементарной части тела называется отношение ее веса ∆ P i к объему ∆ V i : γ i = ∆ P i / ∆ V i . Для однородного тела эта величина является постоянной: γ i = γ = P / V .

Подставляя в (2) ∆ P i = γ i ∙∆ V i вместо P i , учитывая последнее замечание и сокращая числитель и знаменатель на g , получим выражения координат центра тяжести однородного тела :

x c = (Σ ∆ V i x i )/(Σ ∆ V i );

y c = (Σ ∆ V i y i )/(Σ ∆ V i );(3)

z c = (Σ ∆ V i z i )/(Σ ∆ V i ).

При определении центра тяжести полезны несколько теорем.

1) Если однородное тело имеет плоскость симметрии, то центр тяжести его находится в этой плоско­сти.

Если оси х и у расположить в этой плоскости симметрии, то для каждой точки с координатами . И координата по (3), бу­дет равна нулю, т.к. в сумме все члены имеющие противоположные знаки, попарно уничтожаются. Значит центр тяжести расположен в плоскости симметрии.

2) Если однородное тело имеет ось симметрии, то центр тяжести тела находится на этой оси.

Действительно, в этом случае, если ось z провести по оси симмет­рии, для каждой точки с координатами можно отыскать точку с координатами и координаты и , вычисленные по фор­мулам (3), окажутся равными нулю.

Аналогично доказывается и третья теорема.

3) Если однородное тело имеет центр симметрии, то центр тя­жести тела находится в этой точке.

И ещё несколько замечаний.

Первое. Если тело можно разделить на части, у которых известны вес и положение центра тяжести, то незачем рассматривать каждую точку, а в формулах (3) P i – определять как вес соответствующей части и – как координаты её центра тяжести.

Второе. Если тело однородное, то вес отдельной части его , где - удельный вес материала, из которого сделано тело, а V i - объём этой части тела. И формулы (3) примут более удобный вид. Например,

И аналогично, где - объём всего тела.

Третье замечание. Пусть тело имеет вид тонкой пластинки площадью F и толщиной t , лежащей в плоскости Oxy . Подставляя в (3) V i = t ∆ F i , получим координаты центра тяжести однородной пластинки :

x c = (Σ ∆ F i x i ) / (Σ ∆ F i );

y c = (Σ ∆ F i y i ) / (Σ ∆ F i ).

z c = (Σ ∆ F i z i ) / (Σ ∆ F i ).

где – координаты центра тяжести отдельных пластин; – общая площадь тела.

Четвёртое замечание. Для тела в виде тонкого криволинейного стержня длиной L с площадью поперечного сечения a элементарный объем V i = a ∙∆ L i , поэтому координаты центра тяжести тонкого криволинейного стержня будут равны:

x c = (Σ ∆ L i x i )/(Σ ∆ L i );

y c = (Σ ∆ L i y i )/(Σ ∆ L i );(4)

z c = (Σ ∆ L i z i )/(Σ ∆ L i ).

где – координаты центра тяжести i -го участка; .

Отметим, что согласно определению центр тя­жести - это точка геометрическая; она может лежать и вне преде­лов данного тела (например, для кольца).

Примечание.

В этом разделе курса мы не делаем разницы между силой притяжения, силой тяжести и весом тела. В действительности сила тяжести представляет собой разность между силой притяжения Земли и центробежной силой, вызванной ее вращением.

Координаты центров тяжести неоднородных тел.

Координаты центра тяжести неоднородного твердого тела (рис.4) в выбранной системе отсчета определяются следующим образом:

Рис.4

где - вес единицы объема тела (удельный вес)

-вес всего тела.

неоднородную поверхность (рис.5), то координаты центра тяжести в выбранной системе отсчета определяются следующим образом:

Рис.5

где - вес единицыплощади тела,

-вес всего тела.

Если твердое тело представляет собой неоднородную линию (рис.6), то координаты центра тяжести в выбранной системе отсчета определяются следующим образом:

Рис.6

где - вес единицыдлины тела,

Вес всего тела.

Способы определения координат центра тяжести.

Исходя из полученных выше общих формул,можно указать конкретные способы определения координат центров тяжести тел .

1. Симметрия. Если однородное тело имеет плоскость, ось или центр симметрии (рис.7), то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.

Рис.7

2. Разбиение. Тело разбивается на конечное число частей (рис.8), для каждой из которых положение центра тяжести и площадь известны.

Рис.8

S =S 1 +S 2 .

3. Метод отрицательных площадей. Частный случай способа разбиения (рис.9). Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны. Тело в виде пластинки с вырезом представляют комбинацией сплошной пластинки(без выреза) с площадью S 1 и площади вырезанной части S 2 .

Рис.9

S = S 1 - S 2 .

4. Метод группировки. Является хорошим дополнением двух последних методов. После разбиения фигуры на составные элементы часть их бывает удобно объединить вновь, чтобы затем упростить решение путем учета симметрии этой группы.

Центры тяжести некоторых одно­родных тел.

1) Центр тяжести дуги окруж­ности. Рассмотрим дугу АВ радиуса R с центральным углом . В силу сим­метрии центр тяжести этой дуги лежит на оси Ox (рис. 10).

Рис.10

Найдем координату по формуле . Для этого выделим на дуге АВ элемент ММ длиною , положение которого определяется углом . Координата х элемента ММ’ будет . Подставляя эти значения х и dl и имея в виду, что интеграл должен быть распространен на всю длину дуги, получим:

где L - длина дуги АВ , равная .

Отсюда окончательно нахо­дим, что центр тяжести дуги окружности лежит на ее оси симметрии на расстоянии от центра О , равном

где угол измеряется в радианах.

2) Центр тяжести площади тре­угольника. Рассмотрим треугольник, лежащий в плоскости Oxy , координаты вершин которого известны: A i (x i ,y i ), (i = 1,2,3). Разбивая треугольник на узкие полоски, параллельные стороне А 1 А 2 , придем к выводу, что центр тяжести треугольника должен принадлежать медиане А 3 М 3 (рис.11) .

Рис.11

Разбивая треугольник на полоски, параллельные стороне А 2 А 3 , можно убедиться, что он должен лежать на медиане А 1 М 1 . Таким образом, центр тяжести треугольника лежит в точке пересечения его медиан , которая, как известно, отделяет от каждой медианы третью часть, считая от соответствующей стороны.

В частности, для медианы А 1 М 1 получим, учитывая, что координаты точки М 1 - это среднее арифметическое координат вершин А 2 иА 3 :

x c = x 1 + (2/3) ∙ (x М 1 - x 1 ) = x 1 + (2/3) ∙ [(x 2 + x 3 )/2 - x 1 ] = (x 1 + x 2 + x 3 )/3.

Таким образом, координаты центра тяжести треугольника представляют собой среднее арифметическое из координат его вершин:

x c =(1/3) Σ x i ; y c =(1/3) Σ y i .

3) Центр тяжести площади кругового сектора. Рассмотрим сектор круга радиуса R с центральным углом 2 α , расположенный симметрично относительно оси Ox (рис.12) .

Очевидно, что y c = 0, а расстояние от центра круга, из которого вырезан этот сектор, до его центра тяжести можно определить по формуле:

Рис.12

Проще всего этот интеграл вычислить, разбивая область интегрирования на элементарные секторы с углом d φ . С точностью до бесконечно малых первого порядка такой сектор можно заменить треугольником с основанием, равным R × d φ и высотой R . Площадь такого треугольника dF =(1/2)R 2 d φ , а его центр тяжести находится на расстоянии 2/3R от вершины, поэтому в (5) положим x = (2/3)R ∙ cosφ . Подставляя в (5) F = α R 2 , получим:

С помощью последней формулы вычислим, в частности, расстояние до центра тяжести полукруга .

Подставляя в (2) α = π /2, получим: x c = (4 R )/(3 π ) ≅ 0,4 R .

Пример 1. Определим центр тяжести однородного тела, изображён­ного на рис. 13.

Рис.13

Решение. Тело однородное, состоящее из двух частей, имеющих симметричную форму. Координаты центров тяжести их:

Объёмы их:

Поэтому координаты центра тяжести тела

Пример 2. Найдем центр тяжести пластины, согнутой под прямым углом. Размеры – на чертеже (рис.14).

Рис.14

Решение. Координаты центров тяжести:

0.

Площади:

Поэтому:

Пример 3. У квадратного листа см вырезано квадратное отверстие см (рис.15). Найдем центр тяжести листа. Пример 4. Найти положение центра тяжести пластинки, представленной на рис. 16. Размеры даны в сантиметрах.

Рис.16

Решение. Разделим пластинку на фигуры (рис. 17), центры тяжести которых известны.

Площади этих фигур и координаты их центров тяжести:

1) прямоугольник со сторонами 30 и 40 см, S 1 =30 40=1200 см 2 ; х 1 =15 см; у 1 =20 см.

2) прямоугольный треугольник с основанием 50 см и высотой 40 см; S 2 =0,5 50 40= 1000 см 2 ; х 2 =30+50/3=46,7 см;у 2 = 40/3 =13,3 см;

3) половина круга окружности радиуса r = 20 см; S 3 =0,5 ∙π∙ 20 2 =628 см 2 ; х 3 =4 R /3 π =8,5 см; у

Решение. Напомним, что в физике плотность тела ρ и его удельный вес g связаны соотношением: γ = ρ g , где g - ускорение свободного падения. Чтобы найти массу такого однородного тела, нужно плотность умножить на его объем.

Рис.19

Термин «линейная» или «погонная» плотность означает, что для определения массы стержня фермы нужно погонную плотность умножить на длину этого стержня.

Для решения задачи можно воспользоваться методом разбиения. Представив заданную ферму в виде суммы 6 отдельных стержней, получим:

где L i длина i -го стержня фермы, а x i , y i - координаты его центра тяжести.

Решение этой задачи можно упростить, если сгруппировать 5 последних стержней фермы. Нетрудно видеть, что они образуют фигуру, имеющую центр симметрии, расположенный посредине четвертого стержня, где и находится центр тяжести этой группы стержней.

Таким образом, заданную ферму можно представить комбинацией всего двух групп стержней.

Первая группа состоит из первого стержня,для нее L 1 = 4 м, x 1 = 0 м, y 1 = 2 м. Вторая группа стержней состоит из пяти стержней, для нее L 2 = 20 м, x 2 = 3 м, y 2 = 2 м.

Координаты центра тяжести фермы находим по формуле:

x c = (L 1 x 1 + L 2 x 2 )/(L 1 + L 2 ) = (4∙0 + 20∙3)/24 = 5/2 м;

y c = (L 1 y 1 + L 2 y 2 )/(L 1 + L 2 ) = (4∙2 + 20∙2)/24 = 2 м.

Отметим, что центр С лежит на прямой, соединяющей С 1 и С 2 и делит отрезок С 1 С 2 в отношении: С 1 С /СС 2 = (x c - x 1 )/(x 2 - x c ) = L 2 / L 1 = 2,5/0,5.

Вопросы для самопроверки

- Что называется центром параллельных сил?

- Как определяются координаты центра параллельных сил?

- Как определить центр параллельных сил, равнодействующая которых равна нулю?

- Каким свойством обладает центр параллельных сил?

- По каким формулам вычисляются координаты центра параллельных сил?

- Что называется центром тяжести тела?

- Почему силы притяжения Земле, действующие на точку тела, можно принять за систему параллельных сил?

- Запишите формулу для определения положения центра тяжести неоднородных и однородных тел, формулу для определения положения центра тяжести плоских сечений?

- Запишите формулу для определения положения центра тяжести простых геометрических фигур: прямоугольника, треугольника, трапеции и половины круга?

- Что называют статическим моментом площади?

- Приведите пример тела, центр тяжести которого расположен вне тела.

- Как используются свойства симметрии при определении центров тяжести тел?

- В чем состоит сущность способа отрицательных весов?

- Где расположен центр тяжести дуги окружности?

- Каким графическим построением можно найти центр тяжести треугольника?

- Запишите формулу, определяющую центр тяжести кругового сектора.

- Используя формулы, определяющие центры тяжести треугольника и кругового сектора, выведите аналогичную формулу для кругового сегмента.

- По каким формулам вычисляются координаты центров тяжести однородных тел, плоских фигур и линий?

- Что называется статическим моментом площади плоской фигуры относительно оси, как он вычисляется и какую размерность имеет?

- Как определить положение центра тяжести площади, если известно положение центров тяжести отдельных ее частей?

- Какими вспомогательными теоремами пользуются при определении положения центра тяжести?

Центры тяжести некоторых простейших геометрических фигур

Для определения центров тяжести тел часто встречающейся формы (треугольника, дуги окружности, сектора, сегмента) удобно использовать справочные данные (см. табл.).


Координаты центра тяжести некоторых однородных тел

Наименование фигуры Рисунок
Дуга окружности : центр тяжести дуги однородной окружности находится на оси симметрии (координата у c R – радиус окружности.
Однородный круговой сектор у c = 0). где α – половина центрального угла; R – радиус окружности.
Сегмент : центр тяжести расположен на оси симметрии (координата у c = 0). где α – половина центрального угла; R – радиус окружности.
Полукруг :
Треугольник : центр тяжести однородного треугольника находится в точке пересечения его медиан. где x1, y1, x2, y2, x3, y3 – координаты вершин треугольника
Конус : центр тяжести однородного кругового конуса лежит на его высоте и отстоит на расстояние 1/4 высоты от основания конуса.
Полусфера : центр тяжести лежит на оси симметрии.
Трапеция: - площадь фигуры.
– площадь фигуры;

Под центром тяжести автомобиля предполагается условная точка, в которой сосредоточивается весь его вес. Местоположение центра тяжести оказывает существенное влияние на управляемость и устойчивость транспортного средства, это всегда должен учитывать водитель. Местоположение центра тяжести по высоте зависит от веса и характера груза. Допустим, если легковой автомобиль перевозит груз, расположенный только в кузове, то его центр тяжести будет гораздо ниже, чем при перевозке груза на багажнике, который находится над крышей. Однако, вне зависимости от характера груза и его размещения, центр тяжести груженой машины будет всегда выше, чем у негруженой. Ввиду этого, существующее мнение у многих водителей о хорошей устойчивости нагруженного автомобиля (а тем более уменьшении вероятности опрокидывания) – не верное.

Высота центра тяжести машины влияет на перераспределение нормальных реакций по колесам при разгоне и торможении, а также при наклонах машины, что будет отражаться на сцепной массе и, соответственно, на максимальной тяговой силе.

Местоположение центра тяжести автомобиля имеет большое значение. Оно характеризует устойчивость машины против опрокидывания. Это в наглядно отображается в автобусах со стоящими пассажирами, а также в большей степени актуально для автомобилей (автопоездов), которые перевозят высокогабаритные грузы, автомобилей-фургонов и специальных транспортных машин (автовышки, автокраны и т.д.).

Центр тяжести дуги окружности

Дуга имеет ось симметрии. Центр тяжести лежит на этой оси, т.е. y C = 0 .

dl – элемент дуги, dl = Rdφ , R – радиус окружности, x = Rcosφ , L = 2αR ,

Следовательно:

x C = R(sinα/α) .

Центр тяжести кругового сектора

Сектор радиуса R с центральным углом 2α имеет ось симметрии Ox , на которой находится центр тяжести.

Разбиваем сектор на элементарные секторы, которые можно считать треугольниками. Центры тяжести элементарных секторов располагаются на дуге окружности радиуса (2/3)R .

Центр тяжести сектора совпадает с центром тяжести дуги AB :

Полукруг :

37. Кинематика. Кинематика точки. Способы задания движения точки.

Кинематика – раздел механики, в котором изучаются движение материальных тел с геометрической точки зрения, без учета массы и действующих на них сил. Способы задания движения точки: 1) естественный, 2) координатный, 3) векторный.

Кинема́тика точки - раздел кинематики, изучающий математическое описание движения материпльных точек. Основной задачей кинематики является описание движения при помощи математического аппарата без выяснения причин, вызывающих это движение.

Естественный сп . указывается траектория точки, закон ее движения по этой траектории, начало и направление отсчета дуговой координаты: s=f(t) – закон движения точки. При прямолинейном движении: х=f(t).

Координатный сп . положение точки в пространстве определяется тремя координатами, изменения которых определяют закон движения точки: x=f 1 (t), y=f 2 (t), z=f 3 (t).

Если движение в плоскости, то два уравнения движения. Уравнения движения описывают уравнение траектории в параметрической форме. Исключив из уравнений параметр t, получаем уравнение траектории в обычном виде:f(x,y)=0 (для плоск-ти).

Векторный сп . положение точки определяется ее радиус-вектором, проведенным из какого-либо центра. Кривая, которая вычерчивается концом какого-либо вектора, назыв. годографом этого вектора. Т.е. траектория – годограф радиус-вектора.

38.Связь между координатным и векторным, координатным и естественным способами задания движения точки.

СВЯЗЬ ВЕКТОРНОГО СПОСОБА С КООРДИНАТНЫМ И ЕСТЕСТВЕННЫМ выражается соотношениями:

где - орт касательной к траектории в данной точке, направленный в сторону отсчета расстояний, - орт нормали к траектории в данной точке, направленный в сторону центра кривизны (см. рис. 3).

СВЯЗЬ КООРДИНАТНОГО СПОСОБА С ЕСТЕСТВЕННЫМ . Уравнение траектории f(x, y)=z; f 1 (x, z)=y получается из уравнений движения в координатной форме посредством исключения времени t. Дополнительным анализом значений, которые могут принимать координаты точки, определяется тот участок кривой , который является траекторией. Например, если движение точки задано уравнениями: x=sin t; y=sin 2 t=x 2 , то траекторией точки является тот участок параболы у=х 2 , для которого -1≤x≤+1, 0≤x≤1. Начало и направление отсчета расстояний выбираются произвольно, этим в дальнейшем определяется знак скорости и величина и знак начального расстояния s 0 .

Закон движения определяется зависимостью:

знак + или - определяется в зависимости от принятого направления отсчета расстояний.

Скорость точки – это кинематическая мера ее движения, равная производной по времени от радиус-вектора этой точки в рассматриваемой системе отсчета. Вектор скорости направлен по касательной к траектории точки в сторону движения

Вектор скорости (v) - это расстояние, которое тело проходит в определенном направлении за единицу времени. Обратите внимание, что определение вектора скорости очень похоже на определение скорости, за исключением одного важного различия: скорость тела не указывает направление движения, а вектор скорости тела указывает и скорость, и направление движения. Следовательно, необходимы две переменные, которые описывают вектор скорости тела: скорость и направление. Физические величины, у которых есть значение и направление, называют векторными величинами.

Вектор скорости тела может время от времени изменяться. Если или его скорость, или направление изменяются, скорость тела также меняется. Постоянный вектор скорости подразумевает неизменную скорость и неизменное направление, тогда как термин «постоянная скорость» подразумевает только неизменное значение, не принимая во внимание направление. Термин «вектор скорости» часто используется попеременно с термином «скорость». Они оба выражают расстояние, которое тело проходит в единицу времени

Ускорение точки – это мера изменения ее скорости, равная производной по времени от скорости этой точки или второй производной от радиус-вектора точки по времени. Ускорение характеризует изменение вектора скорости по величине и направлению и направлено в сторону вогнутости траектории.

Вектор ускорения

это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

где – вектор ускорения .

Направление вектора ускорения совпадает с направлением изменения скорости Δ = - 0 (здесь 0 – это начальная скорость, то есть скорость, с которой тело начало ускоряться).

В момент времени t1 (см. рис 1.8) тело имеет скорость 0 . В момент времени t2 тело имеет скорость . Согласно правилу вычитания векторов найдём вектор изменения скорости Δ = - 0 . Тогда определить ускорение можно так:

Математическая техника вычисления центра масс относится к области курсов математики; там подобные задачи служат хорошими примерами по интегральному исчислению. Но, даже умея интегрировать, полезно знать некоторые трюки для вычисления положения центра масс. Один из таких трюков основан на использовании так называемой теоремы Паппа, которая работает следующим образом. Если мы возьмем какую-то замкнутую фигуру и образуем твердое тело, вращая эту фигуру в пространстве так, чтобы каждая точка двигалась перпендикулярно к плоскости фигуры, то объем образующегося при этом тела равен произведению площади фигуры на расстояние, пройденное ее центром тяжести! Разумеется, эта теорема верна и в том случае, когда плоская фигура движется по прямой линии, перпендикулярной к ее площади, однако если мы движем ее по окружности или какой-то другой

кривой, то при этом получается гораздо более интересное тело. При движении по кривому пути внутренняя часть фигуры продвигается меньше, чем внешняя и эти эффекты компенсируют друг друга. Так что если мы хотим определить; центр масс плоской фигуры с однородной плотностью, то нужно помнить, что объем, образуемый вращением ее относительно оси, равен расстоянию, которое проходит центр масс, умноженному на площадь фигуры.
Например, если нам нужно найти центр масс прямоугольного треугольника с основанием D и высотой H (фиг. 19.2), то это делается следующим образом. Вообразите себе ось, проходящую вдоль H, и поверните треугольник на 360° вокруг этой оси. Это дает нам конус. Расстояние, которое проходит х-координата центра масс, равно 2πx, а площадь области, которая двигалась, т. е. площадь треугольника, равна l/2 HD. Произведение расстояния, пройденного центром масс, на площадь треугольника равно объему конуса, т. е. 1/3 πD 2 H. Таким образом, (2πх) (1/2HD) = 1/3D 2 H, или x= D/З. Совершенно аналогично вращением вокруг второго катета или просто по соображениям симметрии находим, что у = H/3. Вообще центр масс любого одноро дного треугольника находится в точке пересечения трех его медиан (линий, соединяющих вершину треугольника с серединой противоположной стороны), которая отстоит от основания на расстоянии, равном 1/3 длины каждой медианы.
Как это увидеть? Рассеките треугольник линиями, параллельными основанию, на множество полосок. Заметьте теперь, что медиана делит каждую по лоску пополам, следовательно, центр масс должен лежать на медиане.
Возьмем теперь более сложную фигуру. Предположим, что требуется найти положение центра масс однородного полукруга, т. е. круга, разрезанного пополам. Где будет находиться центр масс в этом случае? Для полного круга центр масс расположен в геометрическом центре, но для полукруга найти его положение труднее. Пусть r - радиус круга, а х - расстояние центра масс от прямолинейной границы полукруга. Вращая его вокруг этого края как вокруг оси, мы получаем шар. При этом центр масс проходит расстояние 2πх, а площадь полукруга равна 1/2πr 2 (половине площади круга). Так как объем шара равен, конечно, 4πг 3 /3, то отсюда находим

или

Существует еще другая теорема Паппа, которая фактически является частным случаем сформулированной выше теоремы, а потому тоже справедлива. Предположим, что вместо твердого полукруга мы взяли полуокружность, например кусок проволоки в виде полуокружности с однородной плотностью, и хотим найти ее центр масс. Оказывается, что площадь, которая «заметается» плоской кривой при ее движении, аналогичном вышеописанному, равна расстоянию, пройденному центром масс, умноженному на длину этой кривой. (Кривую можно рассматривать как очень узкую полоску и применять к ней предыдущую теорему.)

Центр тяжести треугольника. Воспользуемся способом разбиения и разделим треугольник АВС на элементарные полоски, проведя линии, параллельные стороне АС треугольника. Каждую такую полоску можно принять за прямоугольник; центры тяжести этих прямоугольников находятся в их серединах, т.е. на медиане BD треугольника. Следовательно, центр тяжести треугольника должен лежать на этой же медиане BD .

Разбивая теперь треугольник на элементарные полоски линиями, параллельными стороне АВ , заключаем, что центр тяжести треугольника должен быть расположен на медиане ЕС .

Следовательно, центр тяжести треугольника находится в точке пересечения его медиан . Эта точка, как известно, делит каждую из медиан на отрезки в отношении , т.е .

Центр тяжести трапеции. Аналогично предыдущему, разобьем трапецию ABCD на элементарные полоски, параллельные основаниям ВС и АD . Центры тяжести полосок расположатся на прямой KL , соединяющей середины оснований трапеции. Следовательно, и центр тяжести трапеции лежит на этой прямой. Для того, чтобы найти его расстояние от нижнего основания, разобьем трапецию на треугольники АВС и АСD . Для этих треугольников соответственно имеем , , , .

Используя формулу (8.20), получаем

.

Центр тяжести дуги окружности. Рассмотрим дугу АDВ окружности радиуса с центральным углом . Поместим начало координат в центре окружности и направим ось перпендикулярно хорде АВ .

Так как вследствие симметрии фигуры относительно оси центр тяжести будет лежать на этой оси , т.е. , то остается только найти абсциссу центра тяжести ; для этого воспользуемся формулой (8.18).

Согласно рис. имеем , , и, следовательно,

, (8.22) где – половина центрального угла в радианах.

В частности, для дуги полуокружности будем иметь

Центр тяжести кругового сектора. Для определения положения центра тяжести кругового сектора разобьем его на элементарные секторы, как показано на рис. Каждый элементарный сектор можно принять за равнобедренный треугольник с высотой, равной . Но высота в равнобедренном треугольнике является также и его медианой; следовательно, центр тяжести каждого элементарного треугольника лежит на расстоянии от начала координат О . Соответственно геометрическим местом центров тяжести всех элементарных треугольников является дуга окружности радиусом .



Это означает, что центр тяжести площади кругового сектора можно искать как центр тяжести материальной линии, по которой непрерывно и равномерно распределен вес этого сектора. Применив формулу (8.22), получим координату центра тяжести площади сектора

, (8.23) где – половина центрального угла в радианах. В частности, для сектора в виде полукруга получим

Задача 8.3. Пластина получена из квадрата, сторона которого равна , после того, как из него была вырезана часть, составляющая четверть круга радиуса с центром в вершине А квадрата. Определить центр тяжести пластины.

или, подставляя соответствующие величины,

.

Приведем без вывода формулы, определяющие положения центров тяжести некоторых простейших однородных тел.



gastroguru © 2017