Какой будет медицина будущего. Удивительные медицинские технологии будущего, которые уже изобретены За какой медициной стоит будущее

В середине июня 2019 года консалтинговая компания Accenture выпустила исследование Digital Health Tech Vision, посвящённое использованию технологий в здравоохранении. По мнению экспертов, больницы и другие медицинские учреждения должны готовить себя к использованию блокчейна , искусственного интеллекта , дополненной реальности и квантовых вычислений .

К середине 2019 года эти технологии, которые в Accenture объединяют аббревиатурой DARQ (с англ. distributed ledger technology, AI, augmented reality и quantum computing), находятся на ранней стадии развития в медицинском секторе, однако в дальнейшем они смогут трансформировать здравоохранение .

2018: Как изменится здравоохранение к 2030 году: 5 технотрендов

В отчете компании Aruba (входит в HPE), вышедшем в апреле 2018 года, утверждается, что в течение 10 лет, по мере того как организации здравоохранения будут менять подход к оказанию услуг пациентам, внедряя технологии Интернета вещей , процедура медицинского осмотра изменится таким образом, что пациенты будут больше взаимодействовать с датчиками, камерами и роботизированным оборудованием, а не с врачами и медсестрами.

Отчет «Создание больницы 2030 года» (`Building the Hospital of 2030`) содержит результаты опроса высшего руководства организаций здравоохранения и футурологов. Он демонстрирует высокую вероятность и необходимость создания интеллектуальных рабочих пространств в области здравоохранения, которые будут включать в себя мобильные устройства, облачные технологии и технологии Интернета вещей. Кроме того, в отчете описывается, как эти изменения отразятся на обслуживании пациентов и повышении уровня клинической медицины.

В исследовании высказываются пять основных предположений по поводу того, как изменится здравоохранение к 2030 году.

1. Самодиагностика. Специальные мобильные приложения, носимые устройства и инструменты позволят видеть результат диагностики, следить за состоянием своего здоровья и даже самостоятельно делать снимки. Таким образом, пациенты получат возможность проводить диагностику широкого спектра заболеваний в домашних условиях без посещения больниц или поликлиник.

2. Автоматизированная больница. В приемных отделениях будут использоваться технологии обработки изображений и датчики, определяющие частоту сердечных сокращений, температуру тела и частоту дыхания, когда пациент входит в учреждение, а также устройства, которые смогут измерить кровяное давление и сделать ЭКГ в течение 10 секунд. Благодаря этому можно будет автоматически определять очередность оказания медицинской помощи и даже в тот же момент ставить диагноз.

3. Увеличение свободного времени медицинских работников вдвое. Врачи и медсестры, которым сейчас приходится тратить до 70% времени на административные процессы, смогут быстро анализировать снимки и истории болезни на мобильных устройствах. Благодаря этому у них появится значительно больше времени, которое они смогут уделять уходу за пациентами.

4. Хранилища цифровых данных. Цифровые карты пациентов будут интегрированы в устройства, что позволит автоматически обновлять информацию о состоянии здоровья и плане лечения. Таким образом медицинский персонал, сможет оперативно получать более полные данные в реальном времени для принятия оптимальных решений.

5. Принятие искусственного интеллекта. Искусственный интеллект (ИИ) будет играть все более важную роль в диагностике и лечении, а поддержка новых технологий со стороны общества вырастет. Люди будут охотнее соглашаться на автоматизированное обследование, при условии, что услуги будут разрабатываться и внедряться с учетом интересов пациентов, им разъяснят преимущества, а согласие на процедуру будет предварительно запрошено.

Профессор Университетского колледжа Лондона д-р Хью Монтгомери (Hugh Montgomery) рассказывает о возможностях повышения уровня медицинского обслуживания с помощью искусственного интеллекта:


Маниш Джунеджа (Maneesh Juneja), футуролог, занимающийся прогнозами в области цифровой медицины, делится мнением о перспективах самостоятельного медицинского ухода:

«Предположим, через 10 лет у вас будет выявлен диабет или повышенное артериальное давление. После этого вы сможете контролировать прием лекарств, и вам не нужно будет так часто посещать медицинские учреждения для корректировки плана лечения. Система будет удаленно анализировать ваше состояние в реальном времени, определять отклонения от режима питания или курса лечения и отправлять вам цифровые уведомления на умные часы или очки дополненной реальности ».

Согласно отчету Aruba, такие возможности совсем не относятся к научной фантастике. Подобное развитие технологий сможет сыграть решающую роль в улучшении ухода за населением преклонного возраста (по данным ООН, к 2030 году количество людей в мире в возрасте от 60 лет вырастет на 56%) и существенно повысить потребность в более качественных медицинских услугах.


Создатели отчета отмечают, что организации здравоохранения уже делают первые шаги по внедрению цифровых технологий, осознавая потребность в модернизации. Согласно исследованию Aruba, около двух третей медучреждений (64%) начали подключать приборы для контроля за состоянием пациентов к своей сети, а 41% организаций - устройства диагностической визуализации и рентгеновские аппараты. Эти активности являются этапами реализации стратегии Интернета вещей, которая предполагает объединение в сеть миллионов медицинских, носимых и мобильных устройств, эффективно обменивающихся актуальной информацией и обеспечивающих более качественное медицинское обслуживание.

Однако этот подход по состоянию на 2018 год сопряжен с определенными рисками. 89% организаций здравоохранения, которые реализуют стратегию Интернета вещей, столкнулись с утечками данных. В связи с распространением огромного количества новых устройств в ближайшие 10 лет основной проблемой для организаций станет сохранение пристального внимания ко всем устройствам, подключенным к сети и обменивающимся медицинскими данными, для контроля за выполнением строгих правил безопасности.

Очевидно, что общество движется вперёд семимильными шагами, что способствует развитию медицинских технологий. Если мы попытаемся заглянуть в ближайшее будущее, перед нами предстанет мир новых и продвинутых технологий, которые ещё вчера сложно было даже вообразить.

1. Конструктор ДНК

ДНК служит идеальным носителем, который способен содержать огромное количество информации. Структура ДНК постоянно развивается и изменяется, а её молекулы часто называют строительными блоками живых организмов.

Для исследователей Гарвардского университета эта фраза имеет гораздо больше смысла, чем для простого человека - учёные действительно используют ДНК в качестве строительных блоков для разработки различных структур и систем.

Используя этот метод, учёные закодировали в одной молекуле ДНК 284 страницы книги. Они смогли записать эту информацию благодаря переводу данных сначала в двоичный код, а затем переведя цифры от единицы до нуля в четверичную систему счисления ДНК - A, T, G и C. В результате оказалось, что эти данные могут быть легко считаны, хотя этот процесс пока занимает довольно много времени. Но это пока.

2. Приборы поддержания жизнедеятельности

Такие приборы, как кардиостимуляторы, регулирующие ритм сердца, использует около 700 000 человек в мире. Минусом является то, что они могут служить всего около семи лет, а после этого оборудование подлежит замене. Это не просто сложная, но и дорогостоящая хирургическая процедура. Учёные из университета штата Мичиган решили эту проблему раз и навсегда - они разработали совершенно новый кардиостимулятор, работающий за счёт сокращения сердечной мышцы.

После проведения экспериментов и тестов доктор Амин Карами заявил, что все они дали положительные результаты. По его словам, следующим этапом в испытании нового прибора должна стать имплантация аппарата в живое человеческое сердце. Если технология сработает и покажет положительный результат, она сможет произвести революцию не только в медицинской сфере, но и в промышленной. Этот механизм настолько чувствителен, что может производить электроэнергию при любой частоте пульса.

3. Лечение церебральных нарушений

Мозг - чувствительный орган, повреждение которого может иметь долгосрочные последствия. Для людей с черепно-мозговой травмой комплексная реабилитация, пожалуй - единственная надежда вернуться к нормальной жизни. Но теперь есть альтернативный метод.

Ваш язык связан с ЦНС посредством тысячи нервных окончаний, некоторые из которых ведут прямо к нейронам мозга. Портативные нейростимуляторы (PoNS) стимулируют определённые нервные области языка и посредством этого аппарата мозг получает сигналы для восстановления повреждённых зон. Пациенты, пользующиеся системой, показали значительное улучшение буквально через неделю.

Кроме черепно-мозговых травм система PoNS может быть использована для лечения таких заболеваний, как болезнь Паркинсона, алкоголизм, инсульт, рассеянный склероз и пр.

4. Напечатанные кости

При помощи 3D-принтера исследователи из университета штата Вашингтон создали искусственный материал, обладающий свойствами кости. Эта «модель» может быть пересажена в человеческое тело, пока срастается настоящая кость, а затем она расщепляется и выводится, не причиняя вреда организму.

Главной проблемой был выбор материала для создания кости. Спустя время учёные создали формулу, в которую вошёл цинк, кремний, фосфат и кальций. Смесь опробовали и пришли к выводу, что с добавлением стволовых клеток она будет работать гораздо эффективней.

Для исследования использовали принтер ProMetal 3D. Работает он почти так же, как обычный принтер. В него нужно просто засыпать смесь и распечатать нужную кость.

Основным преимуществом этой технологии является то, что теперь, при правильном сочетании составляющих биологического материала, можно получить любые ткани, даже настоящие органы, с помощью принтера.

5. Пыльца как способ вакцинации

Цветочная пыльца является одним из наиболее распространенных аллергенов в мире. Её структура настолько жёсткая и устойчивая к влаге, что попадая в организм, она без труда пробирается в пищеварительную систему человека. Когда-то же самое происходит при пероральной вакцинации, в организме усваивается далеко не всё количество введённого вещества, так как на него воздействуют соки пищеварительного тракта.

Учёные из Техасского университета решили изучить свойства цветочной пыльцы и разработать вакцину с её использованием. Глава исследования Харвиндер Гилл преодолел основной недостаток использования пыльцы - он удалил с её поверхности все аллергены. Эта технология может оставить далеко позади инъекционный метод вакцинации и стать поворотным событием в медицине.

6. Электронное нижнее бельё

Несмотря на то, что это звучит забавно, нижнее бельё может спасти тысячи жизней. У пациентов, лежащих в коме или без сознания на протяжении нескольких недель и месяцев, могут появиться пролежни - омертвелые ткани, возникающие в результате постоянного давления. Пролежни даже могут иметь смертельные последствия - примерно 60 000 человек ежегодно умирают от инфекций из-за них.

Канадский учёный Шон Дюкелоу смог разработать электронные трусы под названием «Smart-E-Pants». В белье находятся специальные устройства, которые каждые десять минут посылают электрический импульс, заставляя мышцы сокращаться. Эффект от приспособления такой же, как если бы пациент самостоятельно упражнялся. Посредством воздействия на мышцы, электронное нижнее бельё может навсегда решить эту проблему.

7. Клетки мозга из мочи

Китайские биологи из Института Биомедицины и Здоровья в Гуанчжоу, используя человеческую урину, смогли создать стволовые клетки. Основным преимуществом метода является то, что клетки, созданные из мочи, не провоцируют раковых заболеваний, в то время, как эмбриональные стволовые клетки, применяемые в медицине сегодня, к сожалению, имеют такой побочный эффект - после их пересадки нередко начинают развиваться опухоли. Трансплантация клеток на основе урины не приводила ни к каким нежелательным новообразованиям.

Исследователи считают, что этот метод более доступен и практичен для создания стволовых клеток. Нейроны, полученные из мочи, могут использоваться для лечения дегенеративных заболеваний нервной системы.

8. Гель, имитирующий живые клетки

Множество медицинских исследований посвящены попыткам воссоздания человеческих тканей на основе различных материалов. В будущем, при успешном развитии этой технологии, можно обеспечить здоровую жизнь всему человечеству: если, например, один из органов перестал функционировать, его можно вырастить в лабораторных условиях и заменить.

Сейчас учёные разрабатывают гель, имитирующий деятельность живых клеток. Материал формируется в пучки шириной 7,5 миллиардных частей метра, для сравнения, это примерно в четыре раза шире двойной спирали ДНК. Как известно, клетки имеют собственный тип скелета - цитоскелет, состоящий из белков. Синтетический гель заменяет повреждённые ткани в каркасе клетки, останавливая распространения инфекций и бактерий.

9. Магнитная левитация

Ткани искусственного лёгкого были выращены благодаря магнитной левитации. Несмотря на то, что это звучит фантастически, группа учёных под руководством Глуко Соуза в 2010-м году наглядно продемонстрировала, что это возможно. Исследователи поставили цель в лабораторных условиях создать бронхиолу. Для эксперимента использовались крохотные магниты, вводившиеся в клетки.

В результате были получены самые реалистичные синтетически-выращенные ткани лёгкого. Ткань, выращенная благодаря магнитной левитации, может стать прорывом в медицине. Сейчас работа над совершенствованием технологии продолжается.

10. Гель от кровотечений

Небольшая группа учёных потрясла мир науки инновационным открытием: Джо Ландолино и Исаак Миллер смогли создать гель, останавливающий кровотечения любой сложности. Гель работает, герметично закупоривая рану.

Гель от кровотечений создаёт легко усваиваемую синтетическую ткань, которая помогает клеткам срастись. В одном из экспериментов учёные использовали кусок свинины с подведённой трубкой с кровью. Они разрезали мясо, а когда из «раны» потекла жидкость, нанесли на разрез гель, и «кровотечение» прекратилось в течение нескольких секунд. В следующем тесте Ландолино применял гель на сонной артерии крысы. Эксперимент прошёл так же успешно.

Если эту разработку в скором будущем начнут использовать в хирургической медицине, она могла бы сохранить жизнь многим людям.

«Распечатайте мне печень, пожалуйста! Из обычных клеток, для возраста 25 лет. Сердце пока не надо…»

Такая она, медицина будущего. С напечатанными на 3D принтерах органами, гуляющими по сосудам наноботами, зубами из пробирки и прочими странными штуками. А ведь когда-то мы просто мечтали победить все болезни!

Увы, в этом сегменте похвастаться нечем. От СПИДа, рака и даже обычного гриппа по-прежнему умирают люди. Может быть, медицина движется совершенно не в том направлении?

Нанороботы вместо лекарств

dailytechinfo.org

Ученые прогнозируют, что в будущем не будет никаких инъекций и таблеток. Вместо них достаточно будет выпить «гремучую смесь» из нанороботов или приклеить к руке специальный пластырь. Разговор с патологическими клетками будет коротким: нанороботы найдут их в организме и успешно уничтожат. В перспективе — даже изменение структуры ДНК, что поможет предотвратить мутации.

В теории все это звучит очень вкусно и оптимистично. Однако так ли это на самом деле? Таблетки пьют все, от нанороботов же большинство людей может отказаться – например, из религиозных соображений.

Второй камень преткновения – наноробот должен работать не просто хорошо, а идеально. Представь, какой монстр может родиться, если при изменении ДНК что-то пойдет не так?

Киборги – почти люди?


asmo.ru

Приставка «почти» не дает покоя ни автору этой статьи, ни тем, кто смотрел хотя бы одну часть «Терминатора». Медицина активно работает в данном направлении – уже сегодня многие люди имеют стимуляторы в сердце. Не исключено, что в будущем можно будет заменить высокотехнологичными протезами целые органы.

Впрочем, создание киборга – предприятие сомнительное. Учитывая тот факт, что большая часть нашей планеты уже сегодня перенаселена, а цифра в 7 млрд. продолжает расти, идея создать «нового человека» вдобавок к миллиардам других видится как минимум странной. Конечно, если киборг не будет нуждаться в пище и зарплате, кто-то в этом бренном мире только выиграет. Но чем все закончилось в «Терминаторе», вы прекрасно помните!

Биопечать органов на принтере


innotech.kiev.ua

Биопечать – пусть и новое, но уже успевшее показать свое «Я» направление в медицине. Оно развивается параллельно с аддитивными технологиями.

Если в двух словах, то ученые всего мира пытаются создать принтер, на котором можно будет напечатать человеческие органы: почки, печень и даже сердце. Костные и хрящевые импланты принтеры уже печатают, так что перспектива у данного направления действительно есть.

Для печати используются стволовые клетки, которые наносятся на макет. Наибольших успехов в данном сегменте смогла достичь компания Organovo, напечатавшая печеночную ткань. Биопринтинг не стоит на месте – в ближайшие пять лет планируется серьёзное освоение рынка трансплантологии.

Люди забудут о лечении зубов


medbooking.com

Британские специалисты внедряют технологию, позволяющую выращивать зубы… прямо во рту у пациента. Они изготавливают зачаток зуба с помощью эпителия десны пациента и стволовых клеток мышей. Зуб формируется в пробирке, после чего его перемещают в полость рта. Здесь зуб имплантируется и растет дальше до нужных размеров.

В случае успешной реализации проекта зубы действительно будут выращивать, как огурцы на даче.

Умерших еще можно спасти?


voobsheto.net

В завершение – еще одно достижение медицины настоящего и перспективного будущего. Американца Сэма Парниа успели окрестить «врачом от Бога». Реаниматолог делает невозможное – возвращает людей к жизни даже спустя 3 часа после клинической смерти. Способ «воскрешения» заключается в немедленном охлаждении тела человека. После этого всю его кровь прогоняют через особый прибор ЕСМО, насыщающий кровь кислородом.

Данный метод работает лишь в 30% случаев смерти, но он позволил спасти уже несколько человек. Единственный недостаток – огромные затраты на возвращение к жизни каждого из пациентов.

Резюмируя все озвученное выше, отметим: медицина будущего обладает колоссальными перспективами и возможностями. Какие-то методы активно внедряются сегодня, другие только тестируются. Однако по большому счету хочется одного – чтобы люди были здоровы и счастливы. А для этого вовсе не обязательно иметь железное сердце и печень с 3D-принтера!

Медицина будущего: что день грядущий нам готовит? обновлено: Апрель 20, 2019 автором: Татьяна Гребцова

Мы все мечтали о телепатии, читая фантастические книги, и неизвестно, будут ли наши мечты когда-либо реализованы. Но уже сейчас есть технологии, которые позволяют тяжело больным людям, использовать силу мысли там, где они не могут справиться в силу своей немощи. Например, компания Emotiv разработала EPOC Neuroheadset - систему, позволяющую человеку управлять компьютером, отдавая ему мысленные команды. Это устройство имеет большой потенциал для создания новых возможностей для пациентов, которые вследствие болезни не могут двигаться. Оно может позволить им управлять электронным инвалидным креслом, виртуальной клавиатурой и делать много что еще.

Компании Philips и Accenture начали разработку устройства для считывания электроэнцефалограммы (ЭЭГ) для того, что люди с ограниченной подвижностью с помощью мысленных команд могли манипулировать вещами, до которых невозможно дотянуться. Такая возможность очень нужна парализованным людям, которые не могут владеть своими руками. В частности, устройство должно помогать делать простые вещи: включать свет и телевизор, может даже управлять курсором мышки. Какие возможности ожидают эти технологии, можно только предполагать, а предполагать можно многое.

Словно паук из пластика и стали робот нависает над верхней частью туловища пациента: длинные иглы проникают сквозь кожу и через них вводятся камеры, зажимы и скальпели. С их помощью на экране монитора хирург может удалить простату, прооперировать сердечные клапаны или отсечь фаллопиеву трубу. Даже раны он может зашить с помощью специального джойстика и ножных педалей.

Интерфейс «человек-машина»

Сцена из рекламного ролика производителя медицинских роботов кажется захватывающей и устрашающей. Но к этому пора бы уже привыкнуть. Подобные устройства уже около 15 лет применяются в операционных - только в Германии, по данным производителя, их установлено более 60 штук. Поэтому больший интерес представляет другой участник процесса: врач-хирург. На видео ему достаётся лишь второстепенная роль. И даже если пока он управляет набором инструментов на мониторе с помощью специальных манипуляторов и ножных педалей, послание в целом ясно: и операционные залы не обходятся без автоматизации. Рано или поздно машина заменит человека, которой ей сейчас управляет.

Разумеется, уже довольно давно существуют прототипы, которые могут выполнять определенные хирургические действия без вмешательства человека. Они используют фотоснимки и рентгенограммы, ультразвук и множество других сенсорных данных, чтобы на основании трёхмерной функциональной модели пациента разрабатывать и реализовывать стратегии операций. Первые исследовательские группы уже работают над разработкой нанороботов, которые перемещаются по кровеносной системе, охотятся на раковые клетки или поддерживают иммунную систему.

В последние годы медицина показала поразительное количество подобных сенсационных достижений. Тем не менее, самые большие успехи ещё впереди. Ведь процессы, начавшиеся 200 лет назад как ответ на вызовы промышленной революции, достигли своего расцвета в информационном веке. После того, как медицина объявила человека «ремонтируемым устройством», благодаря новейшим технологиям человек становится информацией и тем самым - частью алгоритмической революции. Если техника и медицина станут единым целым, это может расширить границы человеческого существования. Медицина, если угодно, обещает нам светлое будущее.

Индивидуальные человеческие «запчасти»


Браслет Ava собирает данные о менструальном цикле женщины, чтобы на их основании определить дни, благоприятные для зачатия

Совместное развитие высоких технологий и медицины можно свести к пяти основным процессам: алгоритмическая диагностика и профилактика заболеваний, автоматизация медицинских услуг, миниатюризация и мобилизация лабораторий, индивидуализация медицины и массовое индивидуальное производство человеческих органов.

Объединяет все эти разработки то, что они становятся возможными благодаря достижениям в области алгоритмических данных и обработки сигналов, стабильному, быстрому и повсеместному подключению к Интернету, а также огромным успехам в сфере компьютеризированных медицинских исследований. Однако эти, не только медицинские вехи, не имели бы никакого значения без нового представления о человеке в цифровой форме, а именно - концепции организма как комплексной, принципиально поддающейся управлению системе.

Следствия этой новейшей разработки, как описывает медицинский футурист и писатель Берталан Меско, являются весьма практичными: инструменты диагностики становятся всё точнее и всё чаще пациенты применяют их вместо врачей. Лечение всё чаще может быть направлено на ситуации отдельных пациентов, иногда даже на уровне ДНК. В конце концов, всё больше крупных операций и большинство мелких «планируются» компьютерами и выполняются роботами.

Компоненты для них, а также персонализированные лекарства изготавливаются в лабораториях. В целом изменяются традиционные отношения между пациентом, врачом, лабораторией и машиной: медицина становится индивидуальной, более точной и более сложной. Этот принцип осуществляется вплоть до общественного уровня, где огромные массивы данных о состоянии здоровья большого числа индивидов объединяются в своего рода модель медицинского прогноза для всего населения.

Тренд № 1: алгоритмы лучше лечат

Искусственный интеллект распознаёт рак кожи
Система профилактики рака кожи с применением смартфона действует благодаря распознаванию изображений. Она обнаруживает хаотическое разрастание тканей на фото родимого пятна.

Человеческое тело слишком сложно, чтобы понимать его как целое. Гораздо легче определить неполадки в системе, например, с помощью алгоритмов для распознавания образов. Нарушение сердечного ритма, хаотический рост клеток кожи или изменение голоса могут свидетельствовать о возникшей проблеме. Путём обучения машины в медицине можно отличить норму от отклонения. Это обещает успех, прежде всего, в мобильной профилактике болезней благодаря самим пациентам.

Так, в настоящее время разрабатывается несколько приложений, которые с помощью алгоритмов распознавания изображений могут идентифицировать проблемные родимые пятна, и они уже выполняют это точнее, чем когда-либо мог делать человек. Для этого не требуется даже очень хорошая камера или дорогой смартфон.

Этот метод является универсальным, независимо от того, используются ли визуальные данные, тоны сердца, особенности речи или абстрактные наборы данных. Путём сбора данных алгоритм учится отличать желательные образцы от нежелательных и затем с поразительной точностью находит их в новых данных.

Благодаря тому, что этот подход настолько хорошо зарекомендовал себя, он в настоящее время также испытывается для раннего определения болезни Паркинсона и шизофрении на основании коротких записей речи. Тем не менее, он также может применяться для анализа существующих массивов данных с целью поиска ранее неизвестных закономерностей, независимо от того, идёт ли речь об нераспознанных симптомах, скрытых взаимодействиях или даже мошенничестве с рецептами.

Впрочем, у алгоритмов уже появляются противники: поскольку алгоритмы находят связи, не улавливаемые ни одним человеком, они становятся непонятными (см. блок Проблема «черного ящика»).

Тренд № 2: роботы-хирурги и наномедицина


Робот-«оригами», созданный в Массачусетском институте, разворачивается в желудке или кишечнике; управление и перемещение осуществляется с помощью внешнего магнитного поля

Компьютеры уже довольно давно оказывают помощь при планировании хирургических вмешательств, а запрограммированные роботы, такие, как хирургическая система da Vinci, ассистируют людям-хирургам, обеспечивая выверенное перемещение инструментов. Их потенциал увеличивается вместе с точностью конфигурации их моделей пациентов.

Благодаря новым методам распознавания изображений они теперь настолько точны и современны, что роботы могут проводить операции частично или полностью автоматически. Так, например, робот Smart Tissue Autonomous Robot (STAR) под наблюдением сшивает мягкие ткани с миллиметровой точностью. Свои выходные данные он получает от системы флуоресценции и передачи изображений в 3D, а также датчика давления.

В будущем медицинские наноботы будут выглядеть следующим образом: действующие подобно рою устройства размером с клетку, которые самостоятельно выполняют «профилактические работы» в организме, например, помогают при наращивании костей или отмечают клетки опухоли для иммунной системы. При этом наномедицина будет использовать механизмы тела: наноботы плывут в жидкостях организма к своей цели, как мини-«бродяги» прикрепляются к аутогенным клеткам или располагаются и формируют ткань вокруг органов, нуждающихся в помощи.

Тренд № 3: Из приёмной - в гостиную

Роботы-сиделки оказывают помощь при уходе за пожилыми и больными людьми; их человекоподобный внешний вид создаёт доверительную атмосферу

Основой для медицины будущего представляются новые объёмы данных, в которые также вносят свою долю и сами пациенты, благодаря новым инструментам диагностики и своей инициативе к самостоятельным измерениям. В этом случае смартфон может внезапно сообщить: лучше сходи к врачу, твоё сердце вытворяет странные вещи! Традиционные места медицинского приёма и в самом деле меняются: диагностика производится рядом с пациентом или незаметно по его профилю данных в вычислительном центре.

Кроме того, существует также целый комплекс биодатчиков и мини-лабораторий, которые могут выполнять сложные исследования без профессиональных знаний своих пользователей. Так, например, пациенты с маниакально-депрессивным психозом, к примеру, должны измерять содержание лития в крови с помощью хемосенсоров, а мужчины, желающие иметь детей, - качество спермы.

В виде проглоченной нанопроволоки подобные микро-лаборатории могли бы исследовать весь кишечник на биомаркеры раковых опухолей и, при их наличии, отправить уведомление на смартфон (и согласовать дату посещения проктолога). Благодаря объединению устройств в единую сеть медицинский персонал может управлять всё большим числом операций дистанционно, в том числе с помощью хирургических роботов. Подобные массивы данных смещают фокус с лечения на профилактику. Но они влекут за собой новые требования к защите данных и риски конфиденциальности.


Из 3D-принтера появляются на свет не только «запчасти» для людей, но и «обновления»: более прочные, более эластичные

Проблема «черного ящика»

На машинное обучение возлагаются большие медицинские надежды: с помощью этого метода в массивах данных с высокой степенью надёжности могут определяться известные образцы, например, нетипичное разрастание тканей, изменения речи или неблагоприятные особенности. Однако этот метод рискован! Распознавание образцов, в отличие от традиционных методов, едва ли является убедительным для людей.

Статистически верные, но совершенно бессмысленные взаимосвязи возникают вследствие искаженных данных подготовки алгоритма или большого разнообразия данных. Таким образом, дело доходит до фатальных ошибочных диагнозов, причины которых остаются необъяснимыми. Поэтому исследователи данных (например, Рич Каруана) предостерегают от слепой уверенности в алгоритмических «черных ящиках». Вместо этого необходимо выбирать традиционные методы, даже если они являются менее точными. И ещё: компании оберегают «чёрные ящики» от независимого контроля и тем самым монополизируют знания. Здоровье не должно становиться тайной.

Тренд № 4: биологические имплантаты из 3D-принтера

Пластиковые протезы из 3D-принтера - это только начало: не только печатные оригиналы становятся более сложными и бионическими (например, модель ноги козы, смоделированная командой исследователей). Материалы также становятся более интеллектуальными: новые протезы экономят энергию, передают сигналы обратной связи усилий в нервную систему и даже могут перемещаться с помощью мускульных импульсов.

3D-печать также увеличивает производство биоматериалов. Так, некоторые исследовательские группы представили методы изготовления полностью совместимой человеческой кожи: с помощью одного из них кожу «печатают» непосредственно на рану, которая ранее была измерена с помощью лазера. Другие послойно наносят в кюветы кожные структуры, которые в дальнейшем могут свободно использоваться. Преимущества аддитивной печати: с помощью подобных методов могут также создаваться сложные 3D-структуры из различных материалов, например, целые органы.

Тренд № 5: Индивидуальное лечение


По массе
Сети фастфуда используют высокие технологии для того, чтобы тайком сделать свою еду более полезной. Это могло бы помочь людям, мало заботящимся о здоровье, питаться лучше

Эти четыре разработки встречаются в супер-тенденции персонализированной медицины: вместо диагностики и терапии, направленных на помощь как можно большему числу людей, развиваются методы индивидуального лечения и производятся медикаменты для отдельных пациентов.

Например, при лечении рака лёгких это уже осуществляется с помощью т. н. «таблеточной терапии»: при этом с помощью генетического исследования определяется, существует ли определённая мутация клеток в опухоли, а затем на неё воздействуют специально подобранными медикаментами с меньшим числом побочных эффектов.

Персонализированная медицина пока находится в начале своего пути. Однако на горизонте уже ждёт генетика. В конечном итоге, благодаря новейшему методу редактирования генома CRISPR/Cas, который отличается низкими затратами и пригодностью для использования в массовом порядке, будет применяться индивидуальное вмешательство в генетический материал пациентов и возбудителей болезней.

Актуальная тема дискуссии: фармацевтическая промышленность находится в лихорадочном поиске новых биомаркеров, в том числе молекулярных следов данных или даже таких, из которых могут развиваться опасные болезни, протекающие без симптомов.

Будущее для всех

Соединённые
проводами
Космонавты на борту
МКС постоянно соби-
рают собственные
медицинские данные
и испытывают опера-
ции с использовани-
ем электронных ме-
тодов для оказания
первой помощи в
космосе

Современная медицина всегда была и историей технического успеха. В наши дни, когда всё больше стираются границы между биологией и технологиями, это могло бы означать новый порядок вещей для человека: считаются ли в этом случае болезнями пороки, ранее оцениваемые как природные? Если машины «заболевают», можете ли вы подхватить от них вирусы?

При этом не стоит забывать: величайшие открытия медицины никогда не привлекали всеобщее внимание. Искусство врачевания всегда расцветало именно в тот момент, когда могло принести наибольшую пользу человечеству, то есть тогда, когда оно становилось дешевле, проще, доступнее и универсальнее. И, возможно, это является одной из главных задач медицины будущего: обеспечить возможность исцеления всем, а не только избранным, с огромными затратами и невероятными методами.

Медицина будущего должна оцениваться по результату, а не по внешнему воздействию, поскольку её задачей является лечение болезней, а не празднование сногсшибательных успехов или упование технологическими новациями.

ФОТО: Universidad Carlos III de Madrid; Thomas Splettstoesser/wwwscistylecom/Wikipedia/CC BY-SA 4.0; dpa/Picture Alliance/AP Photos/Eric Risberg; Northwestern University; NASA; Fraunhofer IPA; Melanie Gonick/MIT



gastroguru © 2017