Атомарный кислород: полезные свойства. Что такое атомарный кислород? Лариса конева - лечение перекисью водорода

Введение

1. Исследования воздействия атомарного кислорода в верхней атмосфере Земли на материалы

1.1 Атомарный кислород в верхней атмосфере Земли

1.2 Изучение воздействия атомарного кислорода на материалы в натурных и лабораторных условиях

1.3 Процесс химического распыления полимеров АК

1.4 Изменение свойств полимерных материалов при воздействии атомарного кислорода

1.5 Методы защиты полимерных материалов от разрушения плазменными потоками

2. Методика исследования воздействия атомарного кислорода на полимеры

2.1 Описание методики расчетов

2.2 Магнитоплазмодинамический ускоритель кислородной плазмы НИИЯФ МГУ

3. Результаты расчетов

3.1 Описание и сопоставление полученных данных с экспериментальными расчетами

3.2 Исследование роли распределения наполнителя в приповерхностном слое композита

3.3 Анализ защитных свойств наполнителя на основе данных по ослаблению потока АК

3.4 Исследование роли распределения наполнителя в объеме композита

Заключение

Введение

В интервале высот от 200-700 км атомарный кислород (АК) является основным компонентом верхней атмосферы Земли, воздействие которого приводит к сильному разрушению материалов внешних поверхностей космических аппаратов. При этом АК усиливает свою окислительную способность за счет дополнительной кинетической энергии атомов кислорода (около 5 эВ), вызванной орбитальной скоростью космического аппарата (КА) на орбите Земли. Эрозия материалов вызывается из-за влияния набегающего потока АК, в результате этого воздействия ухудшаются такие параметры как: механические, оптические, электрические и тепловые. Больше всего такому разрушающему воздействию подвергаются полимерные материалы, т.к. после химического взаимодействия кислорода образуются устойчивые летучие окислы, десорбирующиеся с поверхности КА. Для полимерных материалов (ПМ) толщина уносимого с поверхности слоя может достигать нескольких десятков и даже сотен микрометров в год .

Повышение стойкости полимеров к воздействию АК может быть достигнуто путем введения наночастиц в приповерхностные слои, устойчивых к воздействию потока АК . К перспективным, функциональным и конструкционным материалам КА относят полимерные нанокомпозиты, которые имеют улучшенные механические, термические, радиационные и оптические характеристики. Долгий срок службы, безопасное функционирование КА зависит от стойкости используемых конструкционных и функциональных материалов к влиянию атомарного кислорода. Несмотря на все проведенные исследования и большой объем накопленных экспериментальных данных по изучению воздействия потока атомарного кислорода на полимерные материалы КА на сегодняшний день нет единой модели воздействия потока АК. Поиск и исследование материалов, стойких к эффектам AK в условиях долгого нахождения космических аппаратов на околоземной орбите, развитие новых материалов с лучшими особенностями и прогнозирование долгосрочной стабильности свойств КА есть главные задачи для создателей космической техники.

Актуальность темы выпускной квалификационной работы определяется тем, что решение вышеуказанных задач невозможно без дальнейших исследований процесса эрозии, не получая новые качественные и количественные данные по потере массы, изменениям рельефа поверхности и физико-механических свойств полимерных материалов при действии потока АК.химический распыление космический лабораторный

Целью моей работы явилось изучение и получение новых данных, сопоставление их с экспериментальными данными по влиянию воздействия потоков АК на полимерные материалы и выяснению их степени согласия с результатами расчетов.

Чтобы достичь поставленную цель были решены следующие задачи:

Изучены по литературным данным явления химического распыления материалов, определены параметры, характеризующие интенсивность процесса химического распыления;

Изучены методики математического моделирования процесса химического распыления полимеров атомарным кислородом и лабораторного исследования этого явления;

Проведено компьютерное моделирование процесса эрозии поверхности типичных полимеров и композитов на их основе под действием атомарного кислорода;

Проведен лабораторный эксперимент по химическому распылению полимерного композита атомарным кислородом;

Сопоставлены расчетные и экспериментальные данные, проанализированы полученные результаты, сделаны практические выводы.

В данной работе для исследования количественных характеристик процесса эрозии полимерных материалов под действием АК использовалась математическая модель, созданная в НИИЯФ МГУ на основе экспериментальных данных .

Часть результатов данной выпускной квалификационной работы были опубликованы в сборниках и представлены на двух конференциях таких как: XVIII Межвузовской школы молодых специалистов "Концентрированные потоки энергии в космической технике, электронике, экологии и медицине" и ежегодной межвузовской научно-технической конференции студентов, аспирантов и молодых специалистов имени Е.В. Арменского.

1. Исследования воздействия атомарного кислорода в верхней атмосфере Земли на материалы

1 Атомарный кислород в верхней атмосфере Земли

Космические аппараты на околоземной орбите оказываются под влиянием целого комплекса факторов пространства, таких как: высокий вакуум, термоциклирование, потоков электронов и ионов высокой энергии, холодной и горячей космической плазмы, солнечного электромагнитного излучения, твердых частиц моделируемого происхождения . Наибольшее влияние оказывает воздействие набегающего потока АК в верхней атмосфере Земли.

Атомарный кислород является основным компонентом атмосферы Земли в интервале высот от 300 до 500 км, его доля составляет ~ 80%. Доля молекул азота составляет ~ 20%, доля ионов кислорода ~ 0.01%.

До 100 км состав атмосферы слегка изменяется из-за ее турбулентного перемешивания, средняя масса молекул остается приблизительно постоянной: m = 4,83∙10-26 кг (М = 28,97). Начиная со 100 км, атмосфера начинает меняться, в частности, процесс диссоциации молекул О2 становится существенным, т.е. содержания атомарного кислорода увеличивается, а также происходит обогащение атмосферы легкими газами гелия, а на больших высотах - водорода из-за диффузионного разделения газов в гравитационном поле Земли (рис. 1. a, в).

Рис. 1 Распределение концентрации атмосферных составляющих

С высоты 100 км начинаются изменения состава атмосферы Земли, потому что происходит процесс увеличения содержания атомарного кислорода и начинается обогащение атмосферы легкими газами, таких как гелий, а набольших высотах - водород, за счет диффузионнoго разделения газов в гравитационном поле Земли (рис.1 а, б) . В формировании высотных распределений нейтральных и заряженных частиц верхней атмосферы большую роль играют также разнообразные ионно-молекулярные реакции, протекающие в газовой фазе.

Таблица 1 - Энергия ионизации, диссоциации и возбуждения основных атмосферных составляющих

Атом или молекулаEi, эВλi, нмEd, эВλd, нмВозбужденное состояниеEex, эВNO9.251345.292.34O210.081035.08244O2(1Δg) O2(b1Σ+g) O2(A3Σ+u)0,98 1,63 4,34H13.5991--O13.6191--O(1D) O(1S)1,96 4,17 N 14.54 85 - -N(2D) N(2P)2,39 3,56H215.41804.48277N215.58797.371.68Ar15.7579--He24.5850--

Процессы диссоциации и ионизации атмосферных составляющих происходят главным образом под действием коротковолнового электромагнитного излучения Солнца. В табл. 1 приведены значения энергии ионизации Ei и диссоциации Ed наиболее важных атмосферных составляющих с указанием соответствующих этим энергиям длин волн солнечного излучения λi и λd. Там же приведены значения энергии возбуждения Eex различных состояний для молекул O2 и атомов O и N.

Ниже можно посмотреть данные о распределении энергии в солнечном спектре, которые показаны в таблице 2. в которой для разных спектральных интервалов приведены абсолютные и относительные значения плотности потока энергии, а также значения энергии квантов излучения, определяемые соотношением ε [эВ] = 1240/λ [нм] (1 эВ = 1,610−19 Дж).

Таблица 2 - Энергетическое распределение плотности потока в диапазоне солнечного света

Интервал длин волн, нмПлотность потока энергии Дж∙м-2∙с-1Доля от общего потока %Энергия квантов эВУльтрафиолетовый свет 10-400 10-225 225-300 300-400 126 0.4 16 109 9.0 0.03 1.2 7.8 124-3.1 124-5.5 5.5-4.1 4.1-3.1Видимый свет 400-700 400-500 500-600 600-760 644 201 193 250 46.1 14.4 13.8 17.9 3.1-1.6 3.1-2.5 2.5-2.1 2.1-1.6Инфракрасное свет 760-5000 760-1000 1000-3000 3000-5000 619 241 357 21 44.4 17.3 25.6 1.5 1.6-0.2 1.6-1.2 1.2-0.4 0.4-0.2

Суммарная энергетическая плотность потока солнечного света в районе Земли делает 1,4103 Джс-1м-2. Такое значение называют солнечным постоянным. Приблизительно 9% энергии в солнечном спектре являются долей ультрафиолетовой радиации (УФ) с длиной волны λ = 10-400 нм. Остаточная энергия разделяет приблизительно одинаково между видимым (400-760 нм) и инфракрасными пределами спектра (760-5000нм). Плотность потока солнечного света в области рентгена (0,1-10 нм) является очень маленьким ~ 510-4 Джс-1м-2 и сильно зависит на уровне солнечной активности.

В видимых и инфракрасных областях диапазон Солнца близко к радиационному спектру абсолютно черного тела с температурой 6000 К. Эта температура соответствует температуре видимой поверхности Солнца, фотосферы. В ультрафиолетовом и областях рентгена диапазон Солнца описан другой регулярностью, когда радиация этих областей прибывает из хромосферы (T ~ 104 K) расположенный по фотосфере и короне (T ~ 106 K), Внешний конверт Солнца. В коротковолновой части диапазона Солнца на непрерывном спектре много отдельных линий, самой интенсивной из которых является линия водорода , наложены (λ = 121,6 нм). С шириной этой линии приблизительно 0,1 нм это соответствует плотности потока излучения ~ 510-3 Джм-2с-1. Интенсивность излучения в линии Lβ (λ = 102,6 нм) примерно в 100 раз меньше. Показанные на рис. 1, высотные распределения концентрации составляющих атмосферы соответствуют среднему уровню солнечной и геомагнитной активности.

Распределение концентрации атомарного кислорода по высоте показано в таблице. 3 .

Таблица 3 - Высотное распределение концентрации

Высота км2004006008001000n0, м-37.1∙10152.5∙10141.4∙10139.9∙10118.3∙1010

Границы высотного диапазона и концентрация АК в ее пределах сильно зависят от уровня солнечной активности. Зависимость концентрации атомарного кислорода на высоте для среднего числа, минимальные и максимальные уровни даны на рисунке. 2, и на рисунке. 3 видны изменения годового флюенса атомарного кислорода с высотой 400 км во время цикла солнечной активности .

Рис. 2 Зависимость концентрации АК от высоты для различных уровней солнечной активности

Рис. 3 Изменение годового флюенса потока АК в течение цикла солнечной активности

Расчетный годовой флюенс атомарного кислорода для ОС Мир показаны в таблице 4 (350 км; 51,6o) на 1995-1999 .

Таблица 4 - Годовые значения флюенса

Год19951996199719981999Годовой флюенс 10 22 см-21.461.220.910.670.80

1.2 Процесс химического распыления полимеров АК

Распыление материалов может происходить за счет двух процессов - физического распыления и химического распыления. Физическое распыление материалов - процесс почти упругого выбивания атома с поверхности мишени, где происходит квазипарное взаимодействие. В результате некоторые атомы вещества приобретают энергию, превышающую энергию связи поверхностных атомов и покидают мишень, это явление пороговое. Особенностью физического распыления является наличие энергетического порога, ниже которого разрушение материалов практически отсутствует. В нашей работе мы будем изучать химическое распыление полимеров. Это процесс травления, эрозии материалов, который возникает, если налетающие атомы взаимодействуют с атомами мишени сообразованием на поверхности летучих соединений, которые могут десорбироваться с поверхности, приводя к потере массы материала .

На рис. 4 представлены результаты лабораторных измерений коэффициентов распыления ионами кислорода с энергиями 20−150 эВ углерода (две верхние кривые) и нержавеющей стали (нижние кривые), а также данные о распылении углерода (графита), полученные на космическом корабле Space Shuttle (светлый кружок).

Коэффициент распыления, атом/ион

Рис. 4 Энергетические зависимости коэффициентов распыления графита и нержавеющей стали ионами кислорода

Заметно, что для углерода коэффициент распыления значительно больше по сравнению со сталью, причем его снижение при энергиях ионов меньше 50 эВ незначительно, поскольку при малых энергиях падающих ионов действует механизм химического распыления углерода.

Для количественной характеристики потерь массы материалов за счет химического распыления обычно используют массовый Rm и объемный Rv коэффициенты распыления, т.е. эрозии, которые равны отношению удельных потерь массы или объема к флюенсу атомов кислорода с размерностями г/атом О или см3/атом О. Использование таких коэффициентов особенно удобно при изучении процессов воздействия атомарного кислорода на полимерные и композиционные материалы, для которых часто бывает трудно определить массу и состав отдельных фрагментов, удаляемых с поверхности. Часто оба коэффициентов эрозии обозначаются через R без подстрочных индексов с указанием соответствующей размерности. На данный момент накоплен большой объем экспериментальных данных по воздействию атомарного кислорода на различные материалы, в особенности на полимеры, которые, как уже отмечалось, в наибольшей степени подвержены химическому распылению. Несмотря на это, пока не разработаны общепринятые модели механизмов разрушения полимеров атомами кислорода с энергиями ~5−10 эВ. Согласно современным представлениям взаимодействие быстрого атома кислорода с поверхностью идет по трем каналам. Часть атомов с вероятностью 0,1− 0,5 проникает внутрь материала и химически взаимодействует с ним, другая часть образует молекулы O2, покидающие поверхность, а третья часть претерпевает неупругое рассеяние. Два последних процесса не приводят к уносу массы материала.

В настоящее время рассматриваются две основные схемы, по которым происходит химическое распыление полимера быстрыми атомами кислорода.

Многостадийный процесс, включающий несколько последовательных и параллельных стадий: прилипание атома к поверхности, его термализацию, диффузию в объем материала, и реакции с молекулами полимера в термализованном состоянии. В этой схеме цепи реакций для быстрых и тепловых атомов кислорода не отличаются, а возрастание скорости разрушения полимера приросте энергии атомов обусловлено увеличением коэффициента прилипания атомов к поверхности.

Прямые реакции быстрых атомов кислорода с молекулами полимера при первичном соударении с поверхностью. Продукты таких реакций затем вступают во вторичные реакции с образованием на конечной стадии простых газообразных окислов углерода и водорода. При этом увеличение энергии бомбардирующих поверхность атомов кислорода приводит как к возрастанию сечений реакций, так и к возникновению дополнительных цепей реакций.

захват атома H атомом O с образованием OH и углеводородного радикала (эта реакция имеет низкий энергетический порог и может идти при тепловых энергиях атомов O).;

отщепление атома H с присоединением атома O к углеводородной цепи;

разрыв углеродных связей C = C.

Две последние реакции имеют высокий энергетический порог(~2 эВ) и могут идти только при взаимодействии с быстрыми атомами O. Для них суммарное сечение реакции при энергии атомов кислорода 5 эВ выше, чем сечение реакции образования OH.

Таким образом, повышение энергии атомов кислорода открывает в дополнение к обычным для тепловых атомов реакциям отрыва атомов Н с образованием ОН новые каналы реакций с более высокими энергетическими порогами. Рассмотренные схемы взаимодействия атомарного кислорода с полимерами были в определенной степени подтверждены результатами численного моделирования процессов взаимодействия атомарного кислорода с поверхностью, проводившегося с использованием методов классической и квантовой механики.

Результаты моделирования показали, что в потоке частиц, идущих от поверхности полимера, содержатся не упруго рассеянные атомы O (около 35%), продукты разрыва С−Н связей (40%) и продукты разрыва C−C связей (2−3%). Процентное содержание продуктов взаимодействия атомарного кислорода с полимером в значительной степени зависит от энергии разрыва связей в полимерных звеньях, значения которой для различных связей приведены в табл. 5. В этой таблице также даны значения длин волн солнечного излучения, соответствующие указанным энергиям разрыва связей.

Таблица 5 - Энергии связей и характеристические длины волн разрыва полимерных связей

Вид связиС - HCF2-FC=CC=OSi-OЭнергия связи эВ3.3-4.35.267.58.5Характеристическая длина волны мкм0.28-0.360.230.20.150.14

Следует отметить, что фторированные полимеры, т. е. содержащие в своем составе атомы фтора F, обладают достаточно сильными С−F - связями. Кроме того, им присуща специфическая конструкция полимерной цепи, экранирующая атомы C от непосредственного воздействия атомов кислорода. В результате, как показали исследования, скорость их эрозии под действием атомарного кислорода более чем в 50 раз меньше, чем для полиимидов и полиэтиленов.

Для описания зависимости коэффициента эрозии R от энергии атомов кислорода при химическом распылении полимеров предложена функция вида = 10−24AEn со следующими значениями параметров, которые зависят от вида распыляемого полимера:= 0,8−1,7; n = 0,6−1,0.1

На основании анализа экспериментальных данных о химическом распылении полимерных пленок определена функциональная зависимость коэффициента эрозии от состава распыляемого полимера:

R ~ γM / ρ, γ = N / (NC - NCO),

где N - количество всех атомов в единичном повторяющемся полимерном звене; NC - количество атомов углерода в звене; NCO- количество атомов С, которое может быть извлечено из звена внутри молекулярными атомами кислорода в виде СО либо СО2; M - средний молекулярный вес звена; ρ - плотность полимера.

Как уже отмечалось выше, разрушение полимерных материалов может наряду с атомарным кислородом вызываться коротковолновым солнечным излучением. Эффективность этого процесса, как и эффективность химического распыления атомарным кислородом, зависит от состава и структуры полимеров. Данные лабораторных исследований показывают, что для некоторых полимеров эрозия под действием ультрафиолетового излучения может быть сопоставима с эрозией, вызываемой атомарно кислородом. Вместе с тем, до настоящего времени нет общепринятых представлений о возможности возникновения синергетических эффектов при одновременном воздействии на полимеры атомарного кислорода и ультрафиолетового излучения, т.е. о возможности усиления или ослабления результирующего эффекта при комбинированном воздействии. Неоднозначность получаемых экспериментальных данных и теоретических оценок объясняется в значительной степени тем, что кванты коротковолнового излучения могут вызывать как разрыв полимерных цепей, так и их сшивание.

Удельные потери массы, гм-2

Длительность экспозиции, сутки

Рис. 5. Зависимость удельных потерь массы углепластика от продолжительности полета

При прогнозировании стойкости полимерных материалов в реальных условиях космического полета следует учитывать, что поверхность исследуемого материала может быть загрязнена продуктами собственной внешней атмосферы КА, что препятствует контакту материала с атомарным кислородом и приводит к изменению коэффициента эрозии. Этим эффектом может быть объяснено наблюдавшееся в эксперименте на борту орбитальной станции «Салют-6» уменьшение скорости распыления образца углепластика в течение полета (рис. 5).

1.3 Изучение воздействия атомарного кислорода на материалы в натурных и лабораторных условиях

При испытаниях в натурных условиях образцы подвергаются воздействию не только АК, но и многих других ФКП. Скорее точно и в полном объеме имитировать космическую среду в лабораториях при имитации стендов задача практически неосуществима. Поэтому при сравнении результатов естественных и лабораторных экспериментов бывают расхождения . Чтобы увеличить достоверность результатов стендовых испытаний и возможность их сопоставления с полетными данными проводятся работы, как по улучшению имитационных стендов, так и по проведению специальных серий естественных экспериментов, посвященных на изучение влияния, отдельных по ФКП, том числе атомарного кислорода.

В наземных испытаниях имитация воздействия АК осуществляется несколькими методами:

метод молекулярных пучков (стандартное обобщенное название направленных свободномолекулярных потоков атомов, молекул, кластеров);

метод ионных и плазменных потоков .

Теперь высокоскоростные молекулярные пучки с энергией выше 1 эВ могут быть получены газодинамическим и электрофизическим методами. В газодинамических методах нагретый газ под давлением через сопло проходит в вакууме в виде сверхзвукового потока. Для нагрева используются различные формы разряда в кислородсодержащем газе в поле сопла.

Электрофизические методы можно отнести к таким методам, которые основаны на ускорении в электромагнитных полях газа в состоянии ионизации с последующей нейтрализацией ионов в атомах, из которых образуется молекула высокоскоростного сгустка. В отличие от газодинамического метода здесь нет ограничений скорости частиц. Напротив, сложность заключается в получении пучков с низкой скоростью.

Широко был принят способ получения молекулярного пучка перезарядкой положительно ионизованных атомов и вывода заряженных частиц из потока . Однако пока не удается получить необходимый поток частиц и длительность непрерывного воздействия методами молекулярных пучков.

Для того чтобы получить результаты, которые соответствуют натурному воздействию, при изучении воздействия набегающего потока АК на материалы низкоорбитальных КА, нужно чтобы имитационные установки имели следующие параметры пучков атомов кислорода и связанные с ним факторы космического пространства :

энергия атомов кислорода должна быть ~ 5-12 эВ;

плотность потока атомов j = 1015 -1018 при / см2 ∙ с;

плотность атомов (при непрерывном облучении) - Ф ~ 1022 -1023 ат / см2;

состав пучка O (> 90%), 02, 0+, N2 +, 02 *;

наличие ВУФ и УФ с интенсивностью Pk ≥ 70 (мкВт / см2;

термоциклический материал в пределах диапазона: 80 ° C

Лабораторные установки могут отличаться в условиях моделирования от фактических массовыми и энергетическими спектрами, наличием ВУФ или УФ подсветки, плотностью потока, вакуумом и температурными условиями на поверхности. Молекулярный кислород и ионы включаются в состав пучков.

Благодаря своему современному состоянию ионные пучки могут позволить получить пучки низкоэнергетических ионов (до ~ 10 эВ) и атомов кислорода с достаточно низкой интенсивностью (не больше 1012 см-2 ∙ с-1), величина, которая ограничена эффектом пространственного заряда ионов. Увеличить концентрацию ионов можно с использованием ускоренных потоков плазмы. Такой принцип был применен в стендах моделирования института ядерной физики. Там, где с 1965 г. изучалось влияние ионосферной плазмы кислорода, создаваемой емкостным высокочастотным разрядом с внешними электродами (f ~ 50MTu) на широкий класс космических материалов (терморегулирующие покрытия, полимерные материалы) . Однако этот метод не позволил полностью воспроизвести условия взаимодействия атомарного кислорода с материалами внешней поверхности космического аппарата при работе на низких околоземных орбитах (300-500 км) . Следующий этап в развитии имитационной техники эффектов потоков ионосферных плазменных частиц на материал внешней поверхности космического аппарата было создание сотрудниками института ядерной физики ускорителя кислородной плазмы и испытательного стенда на его основе . На стенде все еще ведутся исследования влияния потоков плазмы в широком диапазоне энергий на материалы космической техники, имитирующие воздействие ионосферных космических факторов Земли и влияние искусственных плазменных струй электродвигателей. Для правильной интерпретации и данных имитационных испытаний необходимо тщательно и регулярно проверять лабораторные условия, чистоту и параметры кислородной плазмы. Основным материалом для использования является полиимид.

Данные, полученные в естественных и лабораторных испытаниях, показали, что полимерные материалы наиболее восприимчивы к деструктивному эффекту АК. Для них толщина слоя, уносимого с поверхности, может достигать нескольких десятков и даже сотен микрометров в год .

1.4 Изменение свойств полимерных материалов при воздействии атомарного кислорода

Распыление полимеров сопровождается не только потерей массы материала, но и приводит к изменению физико-механических свойств полимеров, определяемых поверхностным слоем.

Воздействие кислорода увеличивает шероховатость поверхности, с характерной структурой, напоминающей ковровое покрытие. В зарубежной литературе эта морфология поверхности называлась (carpet-like).

Образование таких структур наблюдалось в натурных и лабораторных экспериментах . В результате полномасштабных экспериментов, проведенных на ОС Мир , было обнаружено появление упорядоченной поверхностной структуры полимерных пленок, что привело к возникновению анизотропии оптических свойств. Светопропускание наружных полиимидных пленок после экспозиции в течение 42 месяцев упало более чем в 20 раз из-за резкого увеличения рассеяния света, а диаграммы яркости приобрели анизотропный характер .

На рис. 8а представлена электронная микрофотография поверхности политетрафторэтилена после экспозиции на КА LDEF, а на рис. 8б - микрофотография поверхности полиимида после экспозиции в потоке атомарного кислорода на имитационной установке НИИЯФ МГУ.

Рис. 8 Структура поверхности полимеров после воздействия атомарного кислорода в натурных (а) и лабораторных (б) условиях

В ряде естественных экспериментов на ОС Мир наблюдалась резкая потеря прочности аримидных нитей и тканей аримида, подверженных встречному течению АК. Так, в специальном эксперименте СТРАХОВКА с изделиями из материалов на основе аримидных тканей, сшитых аримидными нитями, аримидные нити швов после 10 лет воздействия с потерей массы 15% были разрушены без применения нагрузки, когда фрагменты, которые они соединяли, были разделены. В аримидной ткани потеря веса составляла 17%, при этом растягивающая нагрузка уменьшалась в 2,2-2,3 раза, а относительное удлинение при разрыве - на 17-20%.

1.5 Методы защиты полимерных материалов от разрушения плазменными потоками

Увеличение срока службы космических аппаратов является первостепенной задачей разработчиков космических технологий. Для этого необходимо, среди прочего, обеспечить долгосрочную стабильность эксплуатационных свойств материалов наружной поверхности космического аппарата и, в первую очередь, наиболее подверженных разрушению полимерных материалов .

Защита полимерных материалов осуществляется в двух направлениях: нанесение тонких (~ 1 мкм) защитных пленок, устойчивых к АК, как неорганических, так и полимерных, и модификация материала или его поверхностного слоя для улучшения эрозионной стойкости.

Применение тонких защитных пленок осуществляется тремя основными методами :

физическое осаждение из паровой фазы в вакууме (PVD): Al, Si, Ge, Ni, Cr, A12O3, SiO2 и т.п., с использованием термического испарения, электронных пучков, магнетронного и ионного распыления;

плазменно-химическое осаждение из паровой фазы (PESVD): SiO *, SiO2, SiN, SiON;

нанесение плазмы: Al, Al / In / Zr.

Пленочные покрытия могут снизить потерю веса полимерных материалов в 10-100 раз.

Оксиды и нитриды химически инертны по отношению к АК, поэтому их распыление пренебрежимо мало. Влияние АК на нитриды бора и кремния вызывает их поверхностное превращение в пленку оксидов на глубине около 5 нм, что предотвращает окисление нижележащих слоев . Высокое сопротивление показывают покрытия на основе Si - коэффициент распыления уменьшается, как правило, более чем на два порядка .

Эффективность различных защитных покрытий на основе кремния иллюстрируется рис. 9, на котором приведены полученные на имитационном стенде НИИЯФ МГУ зависимости потерь массы образцов полиимидной пленки, покрытых SiO2 и силиконовым лаком, от флюенса атомов кислорода . Благодаря использованию защитных покрытий скорость эрозии пленки снижается в 200−800 раз.

Рис. 9. Зависимости потерь массы образцов незащищенной полиимидной пленки и с различными защитными покрытиями от флюенса атомов кислорода

Однако, листовые покрытия ненадежны - они легко расслаиваются и разрываются во время термоциклирования, повреждены во время операции и производства . Модификация поверхностного слоя полимера выполнена внедрением ионов (A1, B, F) или химическая насыщенность атомами Si, P или F на глубине в нескольких микронах .

Внедрение ионов с энергией 10-30 кэВ создает слой 10-15 миллимикронов толщиной, обогащенный получением сплава добавки в материалах графита или полимерном. В химической насыщенности радикалы, содержащие Si, P или F, введены в слой полимерной структуры на глубине к 1 мкм. Благодаря введению в поверхностный слой некоторых химических элементов материал получает способность под влиянием акционерного общества, чтобы сформировать защитную пленку с энергонезависимыми окисями на поверхности.

Оба метода модификации поверхностного слоя приводят к уменьшению коэффициента дисперсии полимера под влиянием акционерного общества на двух заказах или больше.

Синтез новых полимерных материалов направлен к включению в их структуру химических элементов, например Si, P способный, чтобы реагировать с акционерным обществом с формированием защитного слоя от энергонезависимых окислов.

2. Методика исследования воздействия атомарного кислорода на полимеры

1 Описание методики расчетов

В данной работе проводилось математическое моделирование формирования рельефа на поверхности космического аппарата и глубины проникновения атомарного потока в полимер.

Для проведения расчетов использовалась двумерная модель материала с разделением его расчетной сеткой на ячейки равного размера . С помощью этой модели исследовались образцы полимеров с устойчивым к воздействию АК наполнителем (рис. 10) и полимер без наполнителя.

Рис.10. Расчетная двумерная модель, полимера с защитным наполнителем.

Модель содержит два типа ячеек: состоящие из полимера, которые могут удаляться под действием АК, и ячейки защитного наполнителя. Расчеты проводились с использованием метода Монте-Карло в приближении крупных частиц, что позволяет уменьшить объем выполняемых расчетов. В этом приближении одной частице соответствует ~ 107 атомов кислорода. Предполагается, что поперечный размер ячейки материала составляет 1 мкм. Количество атомов кислорода в одной увеличенной частице и вероятность взаимодействия частиц с материалами были выбраны на основе результатов лабораторных экспериментов по распылению полимеров потоком АК . В общем случае в модели взаимодействия потока АК с мишенью учитывались процессы зеркального и диффузного рассеяния атомов кислорода на ячейках, каждый из которых характеризуется своей вероятностью. При диффузном рассеянии атомов предполагалось согласно , что они теряют в каждом акте взаимодействия около трети исходной энергии. Рассматриваемая модель позволяет проводить расчеты для любых значений углов падения атомов на мишень. Основные параметры модели представлены в табл. 6.

Метод Монте-Карло понят как числовые методы решения математических задач моделированием случайных значений . В случае применения этого метода для моделирования процессов взаимодействия радиации с веществом, используя генератор случайных чисел, играются параметры процессов взаимодействия. В начале каждого события исходная точка, начальная энергия и три компонента импульса частицы установлены или воспроизведены.

(2.1)

где - оптовое поперечное сечение взаимодействия для одного атома, - оптовое поперечное сечение взаимодействия для всех атомов вещества. Тогда есть пункт, в котором частица после того, как бесплатный пробег и потери мощности частицы в этом объеме вычислены. Происхождение отношения разделов возможных реакций, энергий всех продуктов реакции и направления, для кого они взлетают, играется. Так же есть вычисление вторичных частиц и следующих событий.

В моделировании использовались следующие допущения:

увеличенные частицы не взаимодействуют с защитным покрытием, если частица попадает на покрытие, она оставляет расчет;

Рассмотрели такие каналы взаимодействия частиц с веществом:

химическая реакция с формированием изменчивых окисей, приводящих к удалению полимерной клетки из модели;

зеркальное отражение частиц от поверхности полимера, в которой энергии частицы после того, как не изменяется отражение;

рассеивание распространения частиц, которое сопровождается потерей частицы конкретной доли энергии в каждом случае рассеивания.

Блок схема алгоритма расчета взаимодействия увеличенной атомной частицы кислорода с моделью показана на рис. 11.

Рисунок 11. Блок-схема алгоритма расчета

2.2 Магнитоплазмодинамический ускоритель кислородной плазмы НИИЯФ МГУ

На стенде проводятся исследования воздействия на материалы внешних поверхностей КА потоков плазмы в широком энергетическом диапазоне, моделирующих как натурные ионосферные условия, так и воздействие искусственных плазменных струй электроракетных двигателей.

Схема ускорителя показана на рис. 12 . Анод 1, промежуточный электрод 2 (ПЭ), полый катод 3 внутри соленоида 4. Пластообразующий газ (кислород) подается в анодную полость, а инертный газ (аргон или ксенон) пропускается через полый катод. Полость ПЭ эвакуируется через вакуумную линию 5. Эта схема позволяет увеличить долговечность катода и всего источника, а также из-за разрядки сжатия, уменьшить содержание примесей электродных материалов в потоке плазмы до 4.10-6 .

Рис.12 Магнитоплазмодинамический ускоритель кислородной плазмы НИИЯФ МГУ: 1 - анод; 2 - ферромагнитный промежуточный электрод; 3 - полый термокатод; 4 - соленоид; 5 - патрубок дополнительной вакуумной откачки; 6 - отклоняющий электромагнит

Образовавшаяся в разрядном промежутке кислородная плазма ускоряется, когда электрическое поле, возникающее в расходящемся магнитном поле соленоида, втекает в вакуум. Средняя энергия ионов в потоке регулируется в диапазоне 20-80 эВ с изменением режимов электроснабжения и газоснабжения. В этом случае плотность потока ионов и нейтральных частиц кислорода на поверхности образца площадью 10 см2 составляет (1-5) 1016 см-2с-1, что соответствует эффективному (приведенному к энергии 5 эВ в полиимидный эквивалент) - (0,6-8) 1017 см-2с-1.

Для формирования нейтрального пучка и атомов кислорода молекул, образованных из выходного потока заряженных частиц плазмы вдоль магнитных силовых линий соленоида, изогнутый отклоняющий электромагнит 6. Энергия нейтральных частиц в сформированной таким образом молекулярной пучок уменьшается до 5−10 эВ при плотности потока 1014 см-2 с-1.

Энергетическое распределение ионной компоненты измеряется трехсеточным анализатором тормозящего поля, ее интенсивность - двойным зондом, а массовый состав - монопольным масс-спектрометром МХ-7305. Среднемассовые параметры молекулярного пучка определяются по величинам потоков энергии и импульса термисторным болометром и крутильными весами. Вакуумная система стенда выполнена с дифференциальной откачкой диффузионными насосами на полифениловом эфире с быстротой действия 2 и 1 м3с−1. Рабочий вакуум составляет (0,5−2)10−2 Па при расходах кислорода 0,2−0,5 см3с−1 и Ar или Xe - 0,1−0,2 см3⋅с−1.

3. Результаты расчетов

3.1 Описание и сопоставление полученных данных с экспериментальными расчетами

Результаты лабораторного моделирования эрозии полиимида в области дефектов в защитном покрытии показаны на рис. 13 флюенс F = 1,3∙1020 атом / см2. Облучение приводит к появлению полости со сглаженным профилем. Поток АК падал на образец под углом 90 градусов

Рис.13 Профиль каверны в полимере при флюенсе атомов кислорода F=1,3∙1020 атом/см2

Результат, показанный на рисунке 1, соответствует случаю «широкого дефекта» - глубина полости намного меньше ширины дефекта защитного покрытия. Количество атомов кислорода, соответствующее одной увеличенной частице, рассчитывается из коэффициента эрозии полимера. Для полиимида коэффициент эрозии λ составляет 3∙1024 см3 / атом . Число увеличенных частиц, необходимых для воспроизведения профиля во время математического моделирования в случае, когда каждая агрегированная частица удаляет одну ячейку полимера, вычисляется по формуле :

M = FλW2 / Wd (3.1)

где F (атомы / см2) - поток AK, λ (см3 / атом) - коэффициент эрозии, W (ячейки), Wd (см) - ширина дефекта в защитном покрытии. Например, для моделирования профиля, показанного на рисунке 3, с размером ячейки 0,1 мкм требуется M0 ≈ 12,000 агрегатов. При использовании математической модели с однократным или многократным рассеянием количество увеличенных частиц M1, необходимых для воспроизведения экспериментального профиля, отличается от уменьшенного значения M0. Сравнение результатов расчета и эксперимента позволяет определить количество увеличенных частиц M1, необходимых для моделирования конкретного флюенса с выбранными параметрами математической модели.

Появление каверны, образующейся в полимере, когда поток AK падает (флюенс F = 1,6 · 1020 атом / см2) под углом 30 градусов к нормали, показан на рис. 14 . На рисунке показана характерная слоистая структура полимера, которая вызывает различия в профилях полости в разных сечениях

Рисунок 14 Поперечный срез каверны в полиимиде с защитным покрытием после облучения потоком АК с флюенсом F=1,6∙1020 атом/см2 при угле падения 30 градусов

В данном разделе представлены результаты математического моделирования процесса эрозии при наличии многократного зеркального или диффузионнго рассеяния. Для наилучшего выбора параметров рассеяния частиц АК в математической модели была проведена серия расчетов с различными коэффициентами рассеяния. Использованные величины вероятностей многократного зеркального и диффузного рассеяний представлены в таблице 7.

Таблица 7 - Параметры рассеяния в математической модели.

ВариантабвгдЗеркальный (REFL)1.00.70.50.30Диффузный (DIFR)00.30.50.71.0

Результаты, показанные на рис. 3.1 были получены при многократном рассеянии с уменьшением энергии частиц после каждого события диффузного рассеяния вплоть до теплового (~ 0,025 эВ). После каждого события диффузионного рассеяния вероятность химической реакции частицы с полимером уменьшалась в соответствии с параметрами модели, показанными в таблицах 6 и 7. На рисунке 15 показаны результаты математического моделирования эрозии полимера с защитным покрытием. Поперечные размеры образца 100 мкм, толщина защитного слоя 1 мкм, диаметр отверстия в защитном слое 10 мкм, размер ячеек 0,5 мкм. Угол падения увеличенных частиц АК составляет 70 градусов. Количество увеличенных частиц в каждом случае выбиралось таким образом, чтобы глубина полости при нормальном падении АК соответствовала экспериментальным данным, полученным при флюенсе F = 1,3 · 1020 атом / см2.

На рис. 15 показаны полученные расчетные профили материалов для угла падения атомов кислорода 70 градусов с защитным покрытием.

Рисунок 15 Результаты моделирования процесса эрозии полимера с защитным покрытием при многократном рассеянии частиц.

На основе сравнения экспериментальных (рис.13,14) и расчетных данных для дальнейших расчетов были выбраны следующие параметры модели: вероятность зеркального отражения R = 0,3; Вероятность диффузного рассеяния D = 0,7, сравнивая экспериментальные и рассчитанные профили, можно сказать, что, используя отношение ширины дефекта в защитном покрытии и глубину каверны, образованной в полимере, прикладная математическая модель описывает Эрозии полимера достаточно хорошо. Необходимо подчеркнуть, что представленная математическая модель и результаты, полученные с ее помощью, соответствуют случаю "широкого дефекта". Чтобы расширить модель на случай "узкого дефекта", дополняющие экспериментальные данные о раскалывании полимерных потоков образцов акционерного общества с большим флюенсом необходимы.

Полимерные соединения являются также склонными разрушительный эффект акционерного общества. Роль защитного материала выполнена в этом случае сложными частицами наполнителя. При изготовлении полимерных соединений во многих случаях эффект соединения наночастиц в круглых конгломератах с диаметром ~ 0 1-5 микронов, которые хорошо видимы после существенной гравюры потоком акционерного общества это, очевидно, Показанное на рисунке. 16 хорошо видно, что полученные сферические микрочастицы защищают области полимера под ними от назревания атомарного кислорода.

Рисунок. 16. Структура модифицированного полиимида после воздействия потока АК

3.2 Исследование роли распределения наполнителя в приповерхностном слое композита

В данном разделе исследовались композит с наполнителем в приповерхностном слое и размер частиц наполнителя. Модели отличаются размером частиц наполнителя, но при этом общее количество материала наполнителя оставалось одинаковым. Таким образом изучили роль равномерности распределения наполнителя, рассчитали такие величины как: 1) площадь удаленных ячеек полимера при различных углах падения частиц АК и диаметрах частиц наполнителя, 2) уменьшение потока АК по мере проникновения в толщу материала.

Пример расчетов профилей композита после воздействия потока АК показан на рис.17. Здесь и далее черным цветом показан материал наполнителя композита, белым - растравленные участки полимера.

Рис.17 Результаты моделирования процесса эрозии полимерных композитов с различными диаметром частиц наполнителя при многократном рассеянии: а - 3.0 мкм; б - 3.56 мкм.

Как мы видим, в этом случае характер повреждения приповерхностных слоев материалов очень похож на то, что мы видели в эксперименте, который показан на рисунке 16. Под частицами наполнителя полимерных композитов различного диаметра устойчивых к воздействию атомарного кислорода видно не разрушенные звенья полимерных материалов, которые защищены от процесса эрозии. В промежутках, где нет защитных частиц наполнителя, мы видим растравленные участки полимера. Можно сказать, что под защитной частицей сохраняются не разрушенные полимеры, а между частицами разрушаются. Графики зависимости площади выбитых ячеек полимера от угла падения при многократном рассеивании и при однократном рассеивании частиц АК показаны на рис. 18.

Рис.18 Зависимости площади выбитых ячеек полимера от угла падения: а - для многократного рассеивания; б - для однократного рассеивания.

Устойчивые к воздействию АК наполнителей полимерных композитов, значительно уменьшают потерю массы материала под воздействием атомарного кислорода, в то время как эффективность процесса эрозии уменьшается с уменьшением размера частиц наполнителя и повышением однородности их распределения в полимерной матрице.

Графики зависимости площади растравленных ячеек полимера от угла падения частиц АК при однократном и многократном рассеянии имеют схожий вид. Уменьшение угла падения частиц АК относительно нормали приводит к уменьшению количества растравленного полимера. Это можно объяснить тем, что при уменьшении угла падения АК большая часть частиц АК выбывает из расчета в результате взаимодействия с защитным наполнителем. Влияние на устойчивость полимера к АК зависит от распределения частиц наполнителя, то есть чем больше диаметр частиц наполнителя, тем больше площадь удаленных ячеек полимера

3.3 Анализ защитных свойств наполнителя на основе данных по ослаблению потока АК

По мере проникновения атомов кислорода в толщу мишени происходит уменьшение величины их потока за счет взаимодействия с материалом. На рис 19 приведены зависимости, характеризующие уменьшение потока АК на разных глубинах от поверхности мишени для полимерного материала без наполнителя и с наполнителем различного диаметра. Уменьшение потока происходит за счет взаимодействия АК с ячейками полимера и наполнителя, а также за счет рассеяния и отражения АК в обратном направлении. В данном случае расчет произведен для нормального падения атомов кислорода на мишень с многократным рассеянием АК на полимере.

Рис.19 Зависимости уменьшения потока АК на разных глубинах от поверхности мишени для полимерного материала без наполнителя и с наполнителем различного диаметра.

Для модели композита с частицами наполнителя диаметром 3.56 мкм проведен аналогичный расчет при различных углах падения потока АК на поверхность (рис 20). Частицы защитного наполнителя расположены на глубине 0 - 10 мкм. На графиках, показанных на рис. 20, этой области соответствует более быстрое уменьшение относительного потока АК. С увеличением угла падения АК на мишень растет эффективная суммарная площадь частиц наполнителя, что приводит к более быстрому уменьшению относительного потока АК.

Рис. 20 Зависимости уменьшения потока АК на разных глубинах при различных углах падения на поверхность.

4 Исследование роли распределения наполнителя в объеме композита

В этом разделе мы исследовали, как влияет распределение наполнителя по объему композита. Сделали несколько моделей, которые различаются диаметрами частиц наполнителя и порядком их расположения. Для осуществления расчетов брали диаметр частиц наполнителя, который равен 3.0 мкм моделей 6,7 и 3.56 мкм моделей 8, 9. Существуют два варианта расположения частиц наполнителя - равномерный, где расположение частиц наполнителя имеют шахматный порядок и неравномерный, где частицы друг под другом. Пример расчетов результата воздействия потока АК на композиты с различным расположением частиц наполнителя в объеме показан на рис.21.

Рис.21 Результаты моделирования процесса эрозии композитов с различным расположением частиц наполнителя в объеме композита: а, б - диаметр частиц наполнителя 3.0 мкм; в, г-3.56 мкм.

На рисунке 21 профили б и г более устойчивы к воздействию потока АК это связано с тем, что у них расположение частиц наполнителя равномерное, т.е. имеют шахматный порядок. А профили а и в менее устойчивы к воздействию потока, т.к. имеют неравномерное распределение расположения частиц наполнителя, которые расположены друг под другом. При равномерном расположении частиц наполнителя видно, что растравленных участков полимера намного меньше, чем при неравномерном расположении частиц. Далее рассчитали зависимость удаленных ячеек полимера от угла падения частиц АК при различных распределениях наполнителя по объему композита, которую можно посмотреть на рис. 22.

Рис.22 Зависимости площади выбитых ячеек от угла падения: а - модель 6,7 D= 3.0 мкм; б - модель 8, 9 D= 3.56 мкм

На рисунке 22 а, б графики равномерного распределения частиц наполнителя для моделей 6 и 9 наиболее устойчивые к воздействию атомарного кислорода, т.к. при одинаковых углах падений частиц АК площадь выбитых ячеек намного меньше, чем у неравномерного распределения частиц наполнителя моделей 7 и 8.

Модель 6

Модель 8

Рис.23. Зависимость площади удаленных ячеек полимера от количества укрупненных частиц атомарного кислорода с учетом отражения АК от частиц наполнителя композита при равномерном и неравномерном распределении наполнителя, диаметр наполнителя модели 6, 7 равен 4.6 мкм, модели 8,9 равен 3.24 мкм.

На рис. 23 зависимость площади удаленных ячеек полимера от количества укрупненных частиц атомарного кислорода модели 6, показывает с какой «скоростью» происходит растравливание полимера при различных углах падения частиц кислорода и при разной равномерности распределения наполнителя. Видно, что при 90 градусов зависимость практически линейная, то есть с увеличением количества частиц АК в расчете будет происходить дальнейшее разрушение материала. При других углах падения скорость растравливания постепенно уменьшается с ростом количества частиц АК. А для самого равномерного распределения (модель 9) даже при 90 градусах полимер хорошо защищен, т.е. медленно разрушается.

Заключение

Таким образом, можно сделать следующие выводы:

Изучили по литературным данным явления химического распыления материалов, определили параметры, характеризующие интенсивность процесса химического распыления;

Изучили методики математического моделирования процесса химического распыления полимеров атомарным кислородом и лабораторного исследования этого явления;

Провели компьютерное моделирование процесса эрозии поверхности типичных полимеров и композитов на их основе под действием атомарного кислорода;

Провели лабораторный эксперимент по химическому распылению полимерного композита атомарным кислородом;

Сопоставили расчетные и экспериментальные данные, проанализировали полученные результаты, сделали практические выводы.

Представьте себе бесценную картину, которая была испорчена разрушительным пожаром. Прекрасные краски, кропотливо нанесенные во множестве оттенков, скрылись под слоями черной копоти. Казалось бы, шедевр безвозвратно утрачен.

Научное волшебство

Но не стоит отчаиваться. Картина помещается в вакуумную камеру, внутри которой создается невидимая мощная субстанция, называемая атомарным кислородом. В течение нескольких часов или дней медленно, но верно налет уходит, и цвета начинают появляться вновь. Покрытая свежим слоем прозрачного лака, картина возвращается в былой славе.

Может показаться, что это волшебство, но это наука. Метод, разработанный учеными в Гленновском исследовательском центре (ГИЦ) НАСА, использует атомарный кислород для сохранения и восстановления произведений искусства, которым иначе был бы нанесен непоправимый ущерб. Вещество также способно полностью стерилизовать хирургические имплантаты, предназначенные для человеческого тела, что значительно снижает риск воспаления. Для пациентов с сахарным диабетом оно может улучшить устройство мониторинга глюкозы, для которого потребуется лишь часть крови, ранее необходимой для тестирования, чтобы больные могли контролировать свое состояние. Субстанция может текстурировать поверхность полимеров для лучшей адгезии костных клеток, что открывает новые возможности в медицине.

И это мощное вещество может быть получено прямо из воздуха.

Атомарный и молекулярный кислород

Кислород существует в нескольких различных формах. Газ, который мы вдыхаем, называется О 2 , то есть он состоит из двух атомов. Есть еще атомарный которого - O (один атом). Третья форма данного химического элемента - О 3 . Это озон, который, например, встречается в верхних слоях атмосферы Земли.

Атомарный кислород в природных условиях на поверхности Земли длительное время существовать не может. Он обладает чрезвычайно высокой реакционной способностью. Например, атомарный кислород в воде образует Но в космосе, где есть большое количество ультрафиолетового излучения, молекулы О 2 более легко распадаются, образуя атомарную форму. Атмосфера на низкой околоземной орбите на 96 % состоит из атомарного кислорода. На заре полетов космических челноков НАСА его наличие вызывало проблемы.

Вред во благо

По словам Брюса Бэнкса, старшего физика «Альфапорта», занимающегося исследованиями космической среды в филиале Гленновского центра, после первых нескольких полетов шаттла материалы его конструкции выглядели так, как будто были покрыты изморозью (они подверглись сильной эрозии и текстурированию). Атомарный кислород вступает в реакцию с органическими материалами обшивки космических аппаратов, постепенно повреждая их.

ГИЦ занялся расследованием причин причинения ущерба. В результате исследователи не только создали методы защиты космических аппаратов от атомарного кислорода, они также нашли способ использовать потенциальную разрушительную силу этого химического элемента для улучшения жизни на Земле.

Эрозия в космосе

Когда космический корабль находится на низкой околоземной орбите (куда выводятся пилотируемые аппараты и где базируется МКС), атомарный кислород, образующийся из остаточной атмосферы, может реагировать с поверхностью космических аппаратов, в результате чего они повреждаются. При разработке системы электроснабжения станции были опасения, что батареи солнечных элементов, сделанные из полимеров, подвергнутся быстрому разрушению из-за действия этого активного окислителя.

Гибкое стекло

НАСА нашло решение. Группа ученых из Гленновского исследовательского центра разработала тонкопленочное покрытие для солнечных батарей, которое было невосприимчивым к действию агрессивного элемента. Диоксид кремния, или стекло, уже окислен, поэтому он не может быть поврежден атомарным кислородом. Исследователи создали покрытие из прозрачного кремниевого стекла, настолько тонкого, что оно стало гибким. Этот защитный слой крепко сцеплен с полимером панели и защищает ее от эрозии, не ухудшая при этом каких-либо ее тепловых свойств. Покрытие до сих пор успешно защищает солнечные батареи Международной космической станции, а также использовалось для предохранения фотоэлементов станции «Мир».

По словам Бэнкса, солнечные батареи успешно выдержали более чем десятилетнее пребывание в космосе.

Укрощение силы

Проведя сотни тестов, которые были частью разработки покрытия, устойчивого к атомарному кислороду, группа ученых из Гленновского исследовательского центра приобрела опыт в понимании того, как действует это химическое вещество. Эксперты увидели другие возможности применения агрессивного элемента.

По словам Бэнкса, группе стало известно об изменении химии поверхности, об эрозии органических материалов. Свойства атомарного кислорода таковы, что он способен удалить любую органику, углеводород, который не так просто реагирует с обычными химическими веществами.

Исследователи обнаружили множество способов его использования. Они узнали, что атомарный кислород превращает поверхности силиконов в стекло, что может быть полезно при создании компонентов с герметичным уплотнением без их прилипания друг к другу. Данный процесс разрабатывался для герметизации Международной космической станции. Кроме того, ученые обнаружили, что атомарный кислород может восстанавливать и сохранять поврежденные произведения искусства, улучшать материалы конструкций летательных аппаратов, а также приносить пользу людям, так как может быть использован во множестве биомедицинских применений.

Камеры и портативные устройства

Существуют различные способы воздействия атомарного кислорода на поверхность. Чаще всего используются вакуумные камеры. По размеру они варьируются от коробки для обуви до установки 1,2 х 1,8 х 0,9 м. С помощью микроволнового или радиочастотного излучения молекулы O 2 разбиваются до состояния атомарного кислорода. В камеру помещают образец полимера, уровень эрозии которого свидетельствует о концентрации действующего вещества внутри установки.

Другим способом нанесения вещества является портативное устройство, позволяющее направить узкий поток окислителя на конкретную цель. Возможно создание батареи таких потоков, способных покрыть большую площадь обрабатываемой поверхности.

По мере проведения дальнейших исследований все большее число отраслей промышленности проявляет заинтересованность в использовании атомарного кислорода. НАСА организовало множество партнерских, совместных и дочерних предприятий, которые в большинстве случаев стали успешными в различных коммерческих областях.

Атомарный кислород для организма

Исследование сфер применения данного химического элемента не ограничивается космическим пространством. Атомарный кислород, полезные свойства которого определены, но еще больше их предстоит изучить, нашел множество медицинских применений.

Он используется для текстурирования поверхности полимеров и делает их способными срастаться с костью. Полимеры обычно отталкивают клетки костной ткани, но химически активный элемент создает фактуру, усиливающую адгезию. Это обуславливает еще одну пользу, которую приносит атомарный кислород, - лечение заболеваний опорно-двигательной системы.

Данный окислитель также может использоваться для удаления биологически активных загрязнений с хирургических имплантатов. Даже при современной практике стерилизации с поверхности имплантатов бывает сложно убрать все остатки бактериальных клеток, называемые эндотоксинами. Эти вещества органические, но не живые, поэтому стерилизация не способна их удалить. Эндотоксины могут вызвать послеимплантационное воспаление, которое является одной из основных причин болевых ощущений и потенциальных осложнений у пациентов с установленным имплантатом.

Атомарный кислород, полезные свойства которого позволяют очистить протез и удалить все следы органических материалов, значительно снижает риск послеоперационного воспаления. Это приводит к улучшению результатов операций и уменьшению боли у пациентов.

Облегчение для больных диабетом

Технология также используется в датчиках глюкозы и других медико-биологических мониторах. В них применяются акриловые оптические волокна, текстурированные атомарным кислородом. Такая обработка позволяет волокнам отфильтровывать красные кровяные тельца, обеспечивая сыворотке крови более эффективный контакт с компонентом химического зондирования монитора.

По словам Шарона Миллера, инженера-электрика в отделении космической среды и экспериментов Гленновского исследовательского центра НАСА, это делает тест более точным, и при этом для замера уровня сахара в крови тестируемого требуется намного меньший объем крови. Можно сделать укол практически на любом участке тела и получить достаточное количество крови, чтобы установить уровень сахара.

Еще один способ получить атомарный кислород - перекись водорода. Она является гораздо более сильным окислителем, чем молекулярный. Это объясняется тем, с какой легкостью разлагается перекись. Атомарный кислород, образующийся при этом, действует намного энергичнее молекулярного. Этим и обуславливается практическое разрушение молекул красящих веществ и микроорганизмов.

Реставрация

Когда произведения искусства подвергаются опасности необратимого повреждения, для удаления органических загрязнений может быть использован атомарный кислород, который оставит в сохранности материал картины. Процесс удаляет все органические материалы, такие как углерод или сажа, но, как правило, не действует на краску. Пигменты в основном имеют неорганическое происхождение и уже окислены, а это означает, что кислород их не повредит. также могут быть сохранены при тщательном отсчете времени воздействия. Полотно находится в полной безопасности, так как атомарный кислород контактирует только с поверхностью картины.

Произведения искусства помещаются в вакуумную камеру, в которой образуется данный окислитель. В зависимости от степени повреждения картина может оставаться там от 20 до 400 часов. Для специальной обработки поврежденного участка, нуждающегося в реставрации, также может быть использован поток атомарного кислорода. Это исключает необходимость размещать художественные работы в вакуумной камере.

Копоть и помада - не проблема

Музеи, галереи и церкви начали обращаться в ГИЦ, чтобы сохранить и восстановить свои произведения искусства. Исследовательский центр продемонстрировал способность реставрировать поврежденную картину Джексона Поллака, снять губную помаду с полотна и сохранить поврежденные дымом холсты церкви Святого Станислава в Кливленде. Команда Гленновского исследовательского центра использовала атомарный кислород для восстановления фрагмента, считавшегося утраченным, - многовековой давности итальянской копии картины Рафаэля «Мадонна в кресле», принадлежащей епископальной церкви Св. Альбана в Кливленде.

По словам Бэнкса, данный химический элемент очень эффективен. В художественной реставрации он работает отлично. Правда, это не то, что можно приобрести в бутылке, но зато намного эффективнее.

Изучение будущего

НАСА на возмездной основе работало со множеством сторон, заинтересованных в атомарном кислороде. Гленновский исследовательский центр обслуживал частных лиц, чьи бесценные произведения искусства были повреждены в результате домашних пожаров, а также корпорации, искавшие возможности применения этого вещества в биомедицинских приложениях, такие как LightPointe Medical из Иден-Прери, Компания обнаружила множество применений атомарного кислорода и собирается отыскать еще больше.

По словам Бэнкса, осталось немало неисследованных областей. Было открыто значительное количество применений для космической техники, но, вероятно, еще большее их число таится вне космических технологий.

Космос на службе у человека

Группа ученых надеется продолжить изучение способов использования атомарного кислорода, а также уже найденных перспективных направлений. Многие технологии были запатентованы, и команда ГИЦ надеется, что компании будут лицензировать и коммерциализировать некоторые из них, что принесет еще больше пользы человечеству.

При определенных условиях атомарный кислород может причинить повреждения. Благодаря исследователям НАСА, это вещество в настоящее время вносит положительный вклад в и жизнь на Земле. Будь то сохранение бесценных произведений искусства или оздоровление людей, атомарный кислород является сильнейшим средством. Работа с ним вознаграждается сторицей, а ее результаты становятся видны незамедлительно.

Из книги профессора Неумывакина И.П. «Перекись водорода. Мифы и реальность»

В настоящее время доказано, что из-за загазованности, задымленности воздуха, особенно наших городов, в том числе из-за неразумного поведения человека (курение и т. п.) кислорода в атмосфере содержится почти на 20% меньше, что является настоящей опасностью, вставшей в полный рост перед человечеством. Почему возникает вялость, чувство усталости, сонливости, депрессии? Да потому что организм недополучает кислород. Вот почему в настоящее время все большую популярность приобретают кислородные коктейли, как бы восполняющие эту недостачу. Однако кроме временного эффекта это ничего не дает. Что же остается человеку делать?

Кислород является окислителем для сжигания поступающих в организм веществ. Что происходит в организме, в частности в легких, при обмене газов? Кровь, проходя через легкие, насыщается кислородом. При этом сложное образование — гемоглобин — переходит в оксигемоглобин, который вместе с питательными веществами разносится по всему организму. Кровь при этом становится ярко-красной. Вобрав в себя все отработанные продукты обмена веществ, кровь уже напоминает сточные воды. В легких, в присутствии большого количества кислорода, продукты распада сжигаются, а излишняя углекислота удаляется.
Когда организм зашлакован при различных болезнях легких, курении и т. п. (при которых вместо оксигемоглобина образуется карбоксигемоглобин, фактически блокирующий весь дыхательный процесс), кровь не только не очищается и не подпитывается необходимым кислородом, но и возвращается в таком виде к тканям, и так задыхающимся от недостатка кислорода. Круг замыкается, и где произойдет поломка системы — дело случая.

С другой стороны, чем ближе к Природе пища (растительная), подвергнутая лишь незначительной термической обработке, тем больше находится в ней кислорода, освобождаемого при биохимических реакциях. Хорошо питаться — это не значит переедать и все продукты сваливать в кучу. В жареных, консервированных продуктах кислорода вообще нет, такой продукт становится «мертвым», а потому для его обработки требуется еще большее количество кислорода. Но это только одна сторона проблемы. Работа нашего организма начинается с его структурной единицы — клетки, где есть все необходимое для жизнедеятельности: переработки и потребления продуктов, превращения веществ в энергию, выделения отработанных веществ.
Так как клеткам практически всегда не хватает кислорода, человек начинает глубоко дышать, но излишек атмосферного кислорода — это не благо, а причина образования тех же свободных радикалов. Возбужденные от недостатка кислорода атомы клеток, вступая в биохимические реакции со свободным молекулярным кислородом, как раз способствуют образованию свободных радикалов.
Свободные радикалы всегда имеются в организме, и их роль заключается в том, чтобы поедать патологические клетки, но так как они очень прожорливы, то при увеличении их количества они начинают поедать и здоровые. При глубоком дыхании в организме кислорода становится больше, чем надо, и он, выдавливая из крови углекислоту, не только нарушает равновесие в сторону ее уменьшения, что приводит к спазму сосудов — основе любого заболевания, но и образованию еще большего количества свободных радикалов, в свою очередь усугубляющих состояние организма. Следует иметь в виду тот факт, что во вдыхаемом табачном дыме свободных радикалов очень много, а в выдыхаемом — их почти нет. Куда они делись? Не в этом ли кроется одна из причин искусственного старения организма?

Именно для этого в организме существует еще одна система, связанная с кислородом, — это перекись водорода , образуемая клетками иммунной системы, которая при разложении выделяет атомарный кислород и воду.
Атомарный кислород как раз является одним из самых сильных антиоксидантов, устраняющих кислородное голодание тканей, но и, что не менее важно, уничтожает любую патогенную микрофлору (вирусы, грибы, бактерии и т. п.), а также излишних свободных радикалов.
Углекислота — это второй по значимости после кислорода важнейший регулятор и субстрат жизни. Углекислота стимулирует дыхание, способствует расширению сосудов мозга, сердца, мышц и других органов, участвует в поддержании необходимой кислотности крови, влияет на интенсивность самого газообмена, повышает резервные возможности организма и иммунной системы.

На первый взгляд кажется, что мы дышим правильно, но это не так. На самом деле у нас разрегулирован механизм кислородообеспечения клеток из-за нарушения соотношения кислорода и углекислого газа на уровне клеток. Дело в том, что по закону Вериго, при нехватке в организме углекислого газа, кислород с гемоглобином образуют прочную связь, что препятствует отдаче кислорода тканям.

Известно, что только 25%кислорода поступает в клетки, а остальной возвращается обратно в легкие по венам. Почему так происходит? Проблема в углекислом газе, который в организме образуется в огромном количестве (0,4-4 л в минуту) как один из конечных продуктов окисления(наряду с водой) питательных веществ. Причем, чем больше человек испытывает физических нагрузок, тем больше производится углекислого газа. На фоне относительной обездвиженности, постоянных стрессов обмен веществ замедляется, что вызывает снижение выработки углекислоты. Волшебство углекислого газа заключается в том, что при постоянной физиологической концентрации в клетках он способствует расширению капилляров, при этом кислорода больше поступает в межклеточное пространство и потом путем диффузии в клетки. Следует обратить ваше внимание на то, что каждая клетка имеет свой генетический код, в котором расписана вся программа ее деятельности и рабочие функции. И если клетке создать нормальные условия снабжения кислородом, водой, питанием, то она будет работать заложенное Природой время. Фокус заключается в том, что дышать надо реже и неглубоко и на выдохе делать больше задержек, тем самым способствуя поддержанию количества углекислого газа в клетках на физиологическом уровне, снятию спазма с капилляров и нормализации обменных процессов в тканях. Надо запомнить и такое важное обстоятельство: чем больше кислорода поступает в организм, в кровь, тем хуже для последнего из-за опасности образования перекисных соединений. Природа хорошо придумала, дав нам избыток кислорода, но с ним обращаться надо осторожно, ибо избыток кислорода — это увеличение количества свободных радикалов.

Например, в легких кислорода должно содержаться столько же, сколько его находится на высоте 3000 м над уровнем моря. Это оптимальная величина, превышение которой ведет к патологии. Почему, например, горцы живут долго? Конечно, экологически чистая еда, размеренный образ жизни, постоянная работа на свежем воздухе, чистая свежая вода — все это важно. Но главное в том, что на высоте до 3 км над уровнем моря, где находятся горные селения, процент содержания в воздухе кислорода сравнительно снижен. Так вот, именно при умеренной гипоксии (нехватке кислорода) организм начинает экономно его расходовать, клетки находятся в режиме ожидания и обходятся жестким лимитом при нормальной концентрации углекислого газа. Давно ведь замечено, что пребывание в горах значительно улучшает состояние больных, особенно с легочными заболеваниями.

В настоящее время большинство исследователей считают, что при любом заболевании возникают нарушения в дыхании тканей и, в первую очередь, за счет глубины и частоты вдохов и избытка парциального давления поступающего кислорода, что снижает концентрацию углекислоты. В результате этого процесса включается мощный внутренний замок, возникает спазм, который только на короткое время снимается спазмолитиками. Действительно эффективной же в этом случае будет просто задержка дыхания, что уменьшит поступление кислорода, и тем самым снизит вымывание углекислоты, с увеличением концентрации которой до нормального уровня снимется спазм и восстановится окислительно-восстановительный процесс. В каждом заболевшем органе, как правило, находят парез нервного волокна и спазм сосудов, то есть болезней без нарушения кровоснабжения не существует. С этого начинается самоотравление клетки из-за недостаточного поступления кислорода, питательных веществ и малого оттока продуктов обмена, или, иначе, любое нарушение работы капилляров — первопричина многих заболеваний. Вот почему нормальное соотношение концентрации кислорода и углекислоты играет такую большую роль: с уменьшением глубины и частоты дыхания нормализуется количество углекислоты в организме, тем самым снимается спазм с сосудов, раскрепощаются и начинают работать клетки, уменьшается количество потребляемой пищи, так как улучшается процесс ее переработки на клеточном уровне.

Роль перекиси водорода в организме

Из многочисленной почты приведу одно письмо.
Уважаемый Иван Павлович!
Вас беспокоят из областной клинической больницы г. N. Один наш пациент страдает низкодифференцированной аденокарциномой IV стадии. Лежал вМосковском онкологическом центре, где проводилось соответствующее лечение и откуда был выписан с прогнозом срока жизни один месяц, о чем было сказано родным. У нас в клинике больному проведено два курса эн-долимфатического введения фторурацила и рондолейкина. В комплекс этого лечения мы ввели рекомендованный Вами метод внутривенного введения перекиси водорода в концентрации 0,003% в сочетании с ультрафиолетовым облучением крови. Перекись водорода вводили в количестве 200.0 физиологического раствора ежедневно№10 и проводили облучение крови с помощью аппарата «Изольда», так как разработанного Вами устройства «Гелиос-1» у нас нет.После проведенного нами лечения прошло уже 11месяцев, пациент жив, работает. Нас удивил и заинтересовал данный случай. К сожалению, нам встречались публикации о применении перекиси водорода в онкологии, но только в популярной литературе и в Ваших статьях-интервью в газете «ЗОЖ». Если воможно, не могли бы Вы сообщить более подробную информацию о применении перекиси водорода. Есть ли на эту тему медицинские статьи?

Уважаемые коллеги! Должен вас огорчить: официальная медицина делает все, чтобы не видеть и не слышать, что есть какие-то альтернативные методы и средства лечения, в том числе онкологических больных. Ведь тогда пришлось бы отказаться от многих узаконенных, но не просто бесперспективных, а и вредных методов лечения, какими в случае с онкологией являются, например, химио- и радиотерапия.

Следует отметить, что три четверти клеток иммунной системы находится в желудочно-кишечном тракте, а одна четверть — в подкожной клетчатке, где расположена лимфатическая система. Многие из вас знают, что клетка снабжается кровью, куда питание поступает из кишечной системы — этого сложного механизма по переработке и синтезу необходимых организму веществ, а также удалению отходов. Но мало кто знает: если кишечник загрязнен (что бывает практически у всех больных, да и не только), то загрязняется и кровь, а следовательно, и клетки всего организма. При этом клетки иммунной системы, «задыхаясь» в этой загрязненной среде, не только не могут избавить организм от недоокисленных токсических продуктов, но и произвести в необходимом количестве перекись водорода для защиты от патогенной микрофлоры.

Так что же происходит в желудочно-кишечном тракте(ЖКТ), от которого в полном смысле слова зависит вся наша жизнь? Для того чтобы в целом проверить, как работает ЖКТ, существует простая проба:
примите 1-2 cm. ложки свекольного сока (пусть он предварительно отстоится 1,5-2часа; если после этого урина окрасится в бурачный цвет, это означает, что ваш кишечник и печень перестали выполнять свои детоксикационные функции, и продукты распада — токсины —попадают в кровь, в почки, отравляя организм в целом .

Мой более чем двадцатипятилетний опыт в народном целительстве позволяет сделать вывод, что организм — это совершенная саморегулирующаяся энергоинформационная система, в которой все взаимосвязано и взаимозависимо, а запас прочности всегда больше любого повреждающего фактора. Основополагающей причиной практически всех заболеваний является нарушение в работе желудочно-кишечного тракта, ибо это сложное «производство» по дроблению, переработке, синтезу, всасыванию необходимых организму веществ и удалению продуктов метаболизма. И в каждом его цехе (рот, желудок и т. д.) процесс переработки пищи должен быть доведен до конца.
Итак, подытожим.

Желудочно-кишечный тракт — это место дислокации:

3/4 всех элементов иммунной системы, ответственной за «наведение порядка» в организме;
более 20 собственных гормонов, от которых зависит работа всей гормональной системы;
брюшной «мозг», регулирующий всю сложную работу ЖКТ и взаимосвязь с головным мозгом;
более 500 видов микробов, перерабатывающих, синтезирующих биологически активные вещества и разрушающих вредные.
Таким образом, ЖКТ — своего рода корневая система, от функционального состояния которой зависит любой процесс, происходящий в организме.

Зашлакованность организма — это:

Консервированная, рафинированная, жареная пища, копчености, сладости, для переработки которых требуется очень много кислорода, из-за чего организм постоянно испытывает кислородное голодание (например, раковые опухоли развиваются только в бескислородной среде);
плохо пережеванная пища, разбавленная вовремя или после еды любой жидкостью (первое блюдо — еда); снижение концентрации пищеварительных соков желудка, печени, поджелудочной железы не позволяет им переварить пищу до конца, в результате чего она вначале гниет, закисляется, а потом защелачивается, что также является причиной заболеваний.
Нарушение работы ЖКТ— это:
ослабление иммунной, гормональной, ферментативной систем;
замена нормальной микрофлоры на патологическую (дисбактериоз, колит, запор и т. п.);
изменение электролитного баланса (витаминов, микро- и макроэлементов), что приводит к нарушению обменных процессов (артрит, остеохондроз) и кровообращения (атеросклероз, инфаркт, инсульт и т. д.);
смещение и сдавливание всех органов грудной, брюшной и тазовой областей, что приводит к нарушению их функционирования;
застойные явления в любом отделе толстого кишечника, что приводит к патологическим процессам в проецируемом на нем органе.

Не нормализовав режим питания, не очистив организм от шлаков, особенно толстый кишечники печень, вылечить любое заболевание невозможно.
Благодаря очистке организма от шлаков и последующему разумному отношению к своему здоровью, мы приводим все органы в резонанс с заложенной Природой частотой. Тем самым восстанавливается эндоэкологическое состояние, или, иначе,— нарушенный баланс в энергоинформационных связях как внутри организма, так и с внешней средой. Иного пути нет.

Теперь поговорим непосредственно об этой удивительной особенности работы иммунной системы, заложенной в наш организм, как одно из сильнейших средств борьбы с различной патогенной средой, характер которой не имеет значения, — об образовании клетками иммунной системы, лейкоцитами и гранулоцитами (разновидность тех же лейкоцитов), перекиси водорода.
В организме перекись водорода образуется этими клетками из воды и кислорода:
2Н2О+О2=2Н2О2
Разлагаясь, перекись водорода образует воду и атомарный кислород:
Н2О2=Н2О+"О".
Однако на первой стадии разложения перекиси водорода выделяется атомарный кислород, который является «ударным» звеном кислорода во всех биохимических и энергетических процессах.

Именно атомарный кислород определяет все необходимые жизненные параметры организма, а точнее, поддерживает иммунную систему на уровне комплексного управления всеми процессами для создания должного физиологического режима в организме, что и делает его здоровым. При сбое этого механизма (при недостатке кислорода, а его, как вы уже знаете, всегда не хватает), особенно при недостатке аллотропного (других видов, в частности, той же перекиси водорода) кислорода и возникают различные заболевания, вплоть до гибели организма. В таких случаях хорошим подспорьем для восстановления баланса активного кислорода и стимуляции окислительных процессов и собственного его выделения и является перекись водорода — это чудодейственное средство, придуманное Природой в качестве защиты организма, даже когда мы ему чего-то недодаем или просто не задумываемся, как там внутри работает сложнейший механизм, обеспечивающий наше существование.

В человеческом организме перекись водорода разлагается на воду и атомарный кислород, чему способствует особый фермент – каталаза.

Кроме того, перекись водорода, будучи мощным окислителем, играет значительную роль в процессе очистки самих клеток от токсинов и шлаков.

Влияние H 2 O 2 на реакции в организме

Она также принимает участие в обменных процессах, причем участие весьма многогранное, и мы рассмотрим его подробно:

  • прежде всего, разумеется, речь идет о насыщении тканей кислородом;
  • не менее важна и утилизация клетками белков, жиров, углеводов и минеральных солей, необходимых для их жизнедеятельности.
  • перекись водорода способствует образованию некоторых жизненно важных витаминов, в том числе, витамина С;
  • свойство перекиси водорода разлагаться с выделением тепла определяет ее роль в поддержании терморегуляции, а химические особенности обуславливают регуляторное влияние на процессы выработки и перераспределения в организме энзимов, то есть на его гормональные функции;
  • известно, что перекись необходима для доставки кальция клеткам головного мозга;
  • а исследованиями самого последнего времени установлено, что присутствие перекиси водорода способствует переходу сахара из плазмы крови в клетки без помощи инсулина. Это очень перспективное направление при разработке новых методов лечения больных сахарным диабетом.

Окисляющие свойства перекиси водорода

Наконец, огромную роль играет еще одно свойство перекиси водорода: ее способность окислять токсические вещества – как попавшие в организм извне, так и продукты жизнедеятельности самого организма.

Последнее свойство доктор Ч. Фарр, один из ведущих западных специалистов по перекиси водорода, называет «окислительной детоксикацией». По его же утверждению, перекись окисляет и те жиры, которые отлагаются на стенках кровеносных сосудов, а значит, играет важную роль в борьбе с атеросклерозом.

А также воздействие на систему крови. Клетки белой крови, в частности лейкоциты и гранулоциты, самостоятельно вырабатывают перекись водорода: они используют ее способность выделять атомарный кислород, как свое самое мощное оружие в борьбе с любой инфекцией (их часто так и называют: «клетки – киллеры»).

Образование перекиси водорода клетками крови

Клетки крови вырабатывают перекись из воды и кислорода:

2Н 2 О+О 2 =2Н 2 О 2 ,

а затем при обратном процессе:

2Н 2 О 2 = 2Н 2 О+"О"

получают столько окислителя (кислорода), сколько необходимо для уничтожения любой болезнетворной микрофлоры, будь-то вирусы, грибки или бактерии.

Насыщение тканей кислородом играет важную роль при лечении онкологических заболеваний. Это связано с тем, что, как доказано исследованиями, раковые клетки не способны развиваться и гибнут в обогащенной кислородом среде. Дефицит кислорода в тканях организма является необходимым условием для опухолевого роста.

По некоторым данным, вирус СПИДа становится нежизнеспособен и гибнет при достаточно высоких уровнях кислорода в крови больного.

Строение молекулы перекиси водорода

Перекись водорода по своей химической формуле отличается от воды лишь одним лишним атомом кислорода. Несмотря на такое, казалось бы, незначительное отличие в строении молекул, свойства перекиси водорода сильно отличаются от свойств воды. Связь между атомами кислорода в перекиси водорода крайне неустойчива, поэтому молекула ее непрочна. Хотелось бы отметить что 100% чистая перекись водорода разлагается на воду и кислород со взрывом. Закипает перекись водорода при температуре 67 градусов С, замерзает при 0,5 градусов С. Она легко отдает свой лишний атом кислорода по сравнению с водой. Поэтому перекись водорода является очень сильным окислителем. Самым простой способ получения перекиси водорода – это соединение пероксида бария (ВаО2) с разбавленной серной кислотой (Н2SO4). В результате такого взаимодействия образуется перекись водорода и нерастворимая в воде соль.

Перекись водорода имеет не только искусственное происхождение, которое получают в лабораториях. Она встречается и в окружающей нас природе. Она образуется из атмосферного озона, содержится в дождевой воде, снеге, горном воздухе, продуктах растительного происхождения. При озонировании воды образуется пероксид водорода и кислород. Перекись водорода убивает патогенную микрофлору. Поэтому озонирование воды применяют с целью очистки ее от бактерий и нежелательных микроорганизмов.

Перекись водорода свойства

3% раствор перекиси водорода

Лечебные свойства перекиси водорода исследуются уже много десятилетий, но результаты таких исследований публикуются в узкопрофильных журналах. Поэтому многие врачи не знают о таких исследованиях, не говоря уже о широкой публике.

Перекись водорода при попадании в кровь человека разлагается на воду и атомарный кислород. Атомарный кислород – промежуточная стадия образования обычного молекулярного кислорода. Такой, вновь образовавшийся атомарный кислород используется в окислительно-восстановительных реакциях, которые требуют меньшего расхода энергии. Человек с воздухом вдыхает молекулярный кислород, а в результате внутренних химических реакций образуется некоторое количество атомарного кислорода.

Свободные радикалы в организме

Среди ученых долгие годы не утихают споры о том вредны или полезные свободные радикалы для организма человека. Напомню, что свободными радикалами называются соединения, которые имеют один неспаренный электрон. Благодаря такому строению они стремятся утянуть такой электрон от окружающих молекул с целью выровнять суммарный заряд. Таким образом, они могут вызвать вызывают цепную реакцию разрушения молекул, из которых состоят клеточные стенки, что в конечном итоге приводит к гибели клетки. С первого раза вырисовывается печальная картина гибели клеток. С другой стороны в здоровом организме существует баланс между окислителями и веществами, которые препятствуют такому окислению. Вещества, которые препятствуют окислению, называются антиоксидантами. Антиоксиданты нейтрализуют агрессивность окислителей, таким образом, защищая клетку от гибели. Кажущаяся на первый взгляд негативная роль свободных радикалов нивелируется тем, что они уничтожают главным образом не здоровые, а ослабленные клетки, а также клетки чуждые нашему организму. Также стоить отметить, что свободные радикалы принимают участие в синтезе жизненно важных соединений.

В организме человека при насыщении крови кислородом с помощью перекиси водорода происходит активизация антиокислительных процессов. Таким образом, организм пытается защититься от избытка кислорода, вырабатывая при этом естественные собственные антиоксиданты . Клетки организма начинают защищать сами себя, а избыточный кислород расходуется на борьбу с микробами и болезнетворными клетками.

Хотелось бы отметить еще одну особенность перекиси водорода. При попадании ее в кровь образовавшийся атомарный кислород разрушает липидные соединения, которые отложились на стенках кровеносных сосудов. Известно, что такие липидные соединения являются причиной многих заболеваний сердечнососудистой системы. Оторвавшаяся от стенки сосуда липидная бляшка может закупорить кровеносный сосуд.

Лейкоциты и граиулоциты вырабатывают перекись водорода. Атомарный кислород, образующийся при разложении перекиси водорода, является сильнейшим окислителем, который уничтожает грибки, вирусы, бактерии. При загрязненном кишечнике загрязняется кровь и клетки всего организма. Клетки иммунной системы из-за загрязнения организма не могут в достаточном количестве произвести перекись водорода для защиты от патогенной микрофлоры.

В организме человека, перекись водорода образуется из воды и кислорода, а при разложении ее выделяется атомарный кислород. Именно такой, атомарный кислород, дает жизнь организму, поддерживает иммунную систему на уровне комплексного управления всеми жизненно важными процессами. При недостатке атомарного кислорода возникают различные заболевания.

Как передвигается эритроцит по капилляру?

эритроциты эритроциты в капиллярах

Железо в крови человека всегда двухвалентно. Молекула эритроцита имеет отрицательный заряд. Эритроцит имеет диаметр, который в 2-3 раза превосходит диаметр капилляра. Несмотря на такой большой размер, эритроцит передвигается по капилляру. Как это происходит? Все дело в том, что под давлением крови эритроциты выстраиваются столбиком в капилляре и имеют форму двояковогнутой линзы. В пространстве между ними в легких находится жировоздушная смесь, а в клетках кислородно-жировая пленка. При создании давления в капиллярных сосудах между эритроцитами происходит взрыв (вспышка) как в двигателе внутреннего сгорания. В этом случае свечой служит атом железа, который переходит из двухвалентного состояния в трехвалентное. Далее следует отметить, что в состав одной молекулы гемоглобина водит четыре атома железа, а в составе всего эритроцита (не молекулы) атомов железа насчитывается около 400 миллионов. Теперь можно представить себе какова сила взрыва. Это все происходит в очень маленьком пространстве на атомарном уровне и не приносит вреда. В данном случае на эритроцит, как на движущуюся в электромагнитном поле заряженную частицу, действует сила Лоренца, которая закручивает его и заставляет капилляры расширяться. При этом эритроцит протискивается в узкое отверстие капилляра. Величина этой силы зависит от заряда эритроцита и мощности магнитного поля. За счет этой силы улучшаются обменные процессы в тканях. В легких происходит стерилизация воздуха, выделяется вода, происходит выброс тепловой и электронной энергии. Также при этом освобождаются участки в мембранах клеток, куда устремляется натрий, протаскивая за собой воду с растворенными в ней веществами и кислород.

При глубоком дыхании в организме человека кислорода становиться больше. Он начинает выдавливать из крови углекислоту, что в конечном итоге приводит к образованию еще большего количества свободных радикалов, которые разрушают клетки. Для предотвращения этого в организме человека существует защитная система, которая через иммунную систему клеток вырабатывает перекись водорода. Перекись водорода при разложении выделяет атомарный кислород и воду. Атомарный кислород – сильнейший антиоксидант.

Следует заметить, что только четверть кислорода поступает в клетки, остальная же часть кислорода возвращается в легкие по венам. Такое происходит из-за углекислого газа, который вырабатывается в организме человека в больших количествах. При увеличении физических нагрузок пропорционально возрастает и количество углекислого газа. Главная особенность углекислого газа заключается в том, что при определенной концентрации в клетках он способствует расширению капилляров, при этом кислорода поступает больше в клетки.

Учеными отмечено, что оптимальное количество кислорода в легких человека должно быть таким, какое в природе встречается на высоте 3 км над уровнем моря. На такой высоте процент содержания кислорода в воздухе сравнительно снижен. При умеренной нехватке кислорода организм человека начинает экономно его расходовать.

Понимая сущность основы соотношения углекислого газа и кислорода, мы можем научиться использовать перекись водорода при лечении от многих заболеваний . Когда мы вводим в организм недостающее количество перекиси водорода, тем самым мы вводим дополнительное горючее, стимулируя обменные процессы.

Очень сильны окислительные свойства перекиси водорода. Если в 1 литр воды влить 15 мл перекиси водорода то количество микроорганизмов в ней уменьшиться в 1000 раз, включая возбудителей холеры, брюшного тифа и спор сибирской язвы.

Лечение перекисью водорода

Внутрь принимают натощак и перед едой 3 раза в день 50 мг воды с 1 каплей перекиси. Ежедневно добавляют по одной капле доведя количество их до 10 на десятый день. Следует отметить, что внутрь принимать перекись водорода следует только на голодный желудок. В желудочно-кишечном тракте человека мало фермента каталазы, поэтому нужно постепенно приучать организм к приему перекиси, доведя дозу до 10 капель.

Для полоскания рта нужно развести 1-2 ч. ложки раствора 3% перекиси водорода на 50 мл воды. Неразведенный раствор 3% перекиси водорода применяют для компрессов.

При гриппе, простуде закапывают в нос из расчета 15 капель на столовую ложку воды по одной пипетке в каждую ноздрю.

Грибок, поражающий кожу пальцев ног, легко вылечить при помощи перекиси водорода. Устраняются такие неприятные симптомы, как зуд, пот, неприятный запах. Ватные тампоны, смоченные перекисью водорода, нужно перед сном вставить между всеми пальцами ног. Одеть тонкие носки, желательно шерстяные или хлопчатобумажные (не синтетические). Эту процедуру нужно повторять 2-3 дня. В жаркое летнее время грибок на ногах появляется редко, но во время осенних или весенних дождей, при ношении закрытой обуви, симптомы могут возобновиться. Чтобы предотвратить глубокое проникновение грибка в кожу, где он может укорениться, протирайте кожу перекисью после снятия обуви.

Противопоказаний для внутреннего применения не наблюдалось, но вводить внутривенно и внутриартериально (капельница) нельзя при таких болезнях, как: афибригенемия, копиляротоксикоз, тромбоцитопеническая пурпура, гемофелия, гемометилические анемии, ДВС — синдром. Также противопоказанием являются хронические запоры.

Официальная медицина на сегодняшний день рекомендует использовать перекись водорода только лишь для наружного применения. Для лечения различных заболеваний официальная медицина предлагает очень большой ассортимент различных препаратов, которые в большинстве случаев на первый взгляд снимают симптомы заболеваний, но с другой стороны становятся причиной возникновения других заболеваний, да и такие синтетические препараты стоят немалых денег.

В заключение хотелось бы отметить, что, на мой взгляд, перекись водорода является универсальным вспомогательным средством лечения очень многих заболеваний. После ознакомления с этой статьей Вы сами можете решить каким методом воспользоваться для лечения той или иной болезни. При лечении перекисью водорода четко придерживайтесь рекомендуемых доз и не пытайтесь ускорить процесс, чтобы не ухудшить состояние своего здоровья.

Будьте здоровы и жизнерадостны!

лечение перекисью водорода



gastroguru © 2017