Костные наушники. Наушники с костной проводимостью звука - Что это? Bluetooth наушники с костной проводимостью

Опыт использования необычных беспроводных Aftershokz Trekz Titanium, заточенных под спорт и прочую активность.

Это самые безопасные наушники в мире. Почему? Да потому что их не нужно втыкать в уши , чтобы слушать музыку.

Aftershokz Trekz Titanium передают звук через лицевые кости прямо к внутреннему уху. Таким образом и музыку слышно неожиданно хорошо, и уши открыты – слышно всё, что происходит вокруг. Очень необычные ощущения.

Наушники не для ушей

Тот факт, что человеческие кости являются хорошим проводником звуковых волн было известно достаточно давно; эта особенность организма уже несколько веков является альтернативой восприятия звука, если у человека имеются проблемы с обычным слухом.

Яркий пример – великий композитор Бетховен, который страдал глухотой и мог воспринимать музыку исключительно прикладывая к голове разные устройства, которые превращали звуковые волны в вибрации.

До недавнего времени технология передачи звука с помощью черепных костей использовалась только в медицинских целях: с помощью специальных приборов пациенты с деформированным слухом могли воспринимать звуки и мелодии не хуже здоровых людей.

Из медицины эта технология перекочевала и в потребительскую сферу – компания Aftershokz просто порвала краундфандинговую площадку Indiegogo, за один день собрав необходимую сумму на производство своих наушников с технологией передачи звука через лицевые кости.

Пользователей привлёк дизайн – эти наушники не боятся пота, влаги и грязи. В составе этих наушников есть титан – скорее небо упадёт на землю, чем ты сломаешь этот аксессуар.

Ты можешь слушать музыку, говорить через них по телефону и даже общаться с голосовым помощником – но в то же время ты слышишь всё, что происходит вокруг тебя. И уши не устают (как у меня после любых «затычек» ), потому что наушники не втыкаются в уши, а прижимаются к черепу рядом с ушами.

Я взял Aftershokz Trekz Titanium в недавнее путешествие в Нью-Йорк и провёл в них большую часть времени (точнее, 6 часов из 10 ) на борту самолёта. Могу с уверенностью сказать, что даже после нескольких часов нет совершенно никакого дискомфорта: такой уровень удобства действительно могут повторить далеко не каждые наушники.

Звук

Восприятие звука через кости немного другое, нежели традиционное, через уши. Поначалу ощущается некая вибрация, но буквально через несколько минут привыкаешь к ней и перестаёшь замечать.

Качество звука, прошедшего через кости, слегка теряет изначальную чёткость и становится более усреднённым, из-за эффекта «рассеивания». Поэтому я не ждал чего-то сверхъестественного, а про басы даже и не смел мечтать. Будет играть что-нибудь, да и ладно, думал я.

Однако, подключив их к iPhone, был приятно удивлён.

Первым делом включил специально скачанный новый Live-альбом великолепного Gary Clark Jr. и при первых звуках бас-гитары натурально потерял челюсть. Уж слишком качественно и глубоко всё звучит.

Aftershokz Trekz titanium звучат ничуть не хуже тех же Power Beats 2 , и уж точно намного лучше многих спортивных наушников. Проверено.

Создатели запихали в маленький корпус Aftershokz Trekz кучу разных технологий с внушительными названиями: например, за качество звука и отличные басы отвечает технология PremiumPitch, которая предотвращает рассеивание звука и «прокачивает» низкие частоты.

Дослушав Кларка Младшего и подобрав челюсть, пробежался по другим жанрам – фанк, рок, металл; всё звучит очень хорошо, только рок всё-таки воспринимается чуть плосковато, хотя всё равно лучше, чем в EarPods, определённо.

Необычно удобно

Aftershokz Trekz – необычные беспроводные наушники. В мире портативного звука это одна из немногих новинок за последние месяцы, которая меня реально удивила и порадовала как качеством материалов (титановый каркас можно крутить и гнуть как угодно – они реально неубиваемые ), так и богатством звукопередачи столь необычным способом, через лицевые кости.

Возможно, некорректно сравнивать их с «вкладышами» той же ценовой категории (в пределах 8-9 тыс. рублей ), потому что Aftershokz Trekz точно превосходят по степени удобства и комфорта использования любые наушники , которые у тебя были за всю жизнь. Да, заявляю вот так безапелляционно, потому что опробовал их сам.

Тип наушников: беспроводные
Тип крепления: затылочная дужка
Тип динамиков: датчики-преобразователи костной проводимости звука
Режим звука: стерео
Диапазон: 20 Гц – 20 кГц
Максимальное звуковое давление: 100 дБ
Встроенный микрофон: есть
Чувствительность микрофона: 41 дБ
Тип подключения: Bluetooth v. 4.1 (обратно совместим с Bluetooth 3.0)
Радиус действия: до 10 метров
Цвет: серый, салатовый, синий
Вес: 36 г
Защита: Наушники защищены от влаги, пота, от капель воды и от пыли – по стандарту IP55. Плавать и нырять в наушниках AfterShokz Trekz Titanium нельзя.

Есть и минус, куда без него: наушники достаточно громкие для окружающих. То есть, если слушать музыку на 50% громкости, стоящий рядом человек без труда расслышит и музыку и слова. Это может доставлять присутствующим некий дискомфорт.

Но это несущественный минус – всё-таки это в первую очередь спортивные наушники , так что во время пробежки или в спортзале никто не будет прислушиваться к тому, что у тебя там играет.

Однако, если использовать наушники в качестве разговорной гарнитуры, очередная технология LeakSlayer превращает для окружающих речь твоего собеседника в чуть слышное бормотание – расслышать что-либо практически невозможно.

Одного заряда наушников хватает примерно на 6 часов беспрерывной работы. Зарядка аккумулятора занимает 1,5 часа. Aftershokz Trekz выпускаются в нескольких цветовых решениях , от классического серого до ярко-салатового. Есть из чего выбрать.

Я с удовольствием использовал эти наушники, и не нашёл явных недоработок и изъянов. Их смело можно рекомендовать как спортсменам для тренировок, так и велосипедистам или даже водителям за рулём, которые жить не могут без разговоров по телефону.

Воздушные звуковые волны от источника звука, распространяясь, по наружному слуховому проходу достигают барабанной перепонки и вызывают ее колебания, которые через систему слуховых косточек передаются на овальное окно. Смещение стремени в полость лестницы преддверия вызывает колебания перилимфы, которые через геликотрему передаются перилимфе барабанной лестницы, и происходит смещение мембраны круглого окна в сторону барабанной полости среднего уха (рис. 56).

Рис. 56. Схема распространения звуковых колебаний в улитке:

1 - наружное ухо, 2 - среднее ухо, 3 - улитка

Упругость мембраны круглого окна позволяет перилимфе смещаться между овальным и круглым окнами при воздействии звуковых волн. Колебания перилимфы верхнего канала улитки через тонкую вестибулярную мембрану передаются на эндолимфу улиткового протока. В результате перемещений перилимфы и эндолимфы приводится в движение основная мембрана с расположенным на ней кортиевым органом, что вызывает колебание волосковых клеток . Волоски этих клеток, касаясь покровной мембраны,деформируются , что является причиной возникновения возбуждения (потенциала действия) в рецепторных слуховых клетках. Таким образом, во внутреннем ухе происходит преобразование физической энергии звуковых колебаний в возбуждение слуховых клеток, возникающие нервные импульсы по волокнам слухового нерва и проводящим нервным путям поступают в подкорковые отделы, а затем – в слуховую сенсорную зону коры головного мозга. Экспериментально установлено, что в улитке при звуковом раздражении возникают переменные электрические токи, которые по своему ритму и величине полностью повторяют частоту и силу звуковых колебаний. Улитка как бы играет роль микрофона, преобразующего механические колебания в электрические потенциалы.


4. Слуховые косточки. Строение и участие в формировании слуха.

СЛУХОВЫЕ КОСТОЧКИ - комплекс из мелких косточек в среднем ухе. Находятся в барабанной полости три маленькие слуховые косточки - молоточек, наковальня и стремя. Колебания барабанной перепонки (в барабанной полости) улавливаются молоточком, усиливаютсядвижениями наковальни и передаются на стремечко,

которое соединено с овальным окном в УЛИТКЕ внутреннего уха.

1.Молоточек снабжен округлой головкой, которая при посредстве шейки, соединяется с рукояткой.

2. Наковальня, имеет тело, и два расходящихся отростка, из которых один более короткий, направлен назад и упирается в ямку, а другой - длинный отросток, идет параллельно рукоятке молоточка медиально и кзади от нее и на своем конце имеет небольшое овальное утолщение, сочленяющееся со стременем.

3. Стремя, по своей форме оправдывает свое название и состоит из маленькой головки, несущей сочленовную поверхность для наковальни и двух ножек: передней, более прямой, и задней, более изогнутой, которые соединяются с овальной пластинкой, вставленной в окно преддверия. В местах сочленений слуховых косточек между собой образуются два настоящих сустава с ограниченной подвижностью. Пластинка стремени соединяется с краями при посредстве соединительной ткани.

Слуховые косточки укреплены, кроме того, еще несколькими отдельными связками. В целом все три слуховые косточки представляют более или менее подвижную цепь, идущую поперек барабанной полости от барабанной перепонки к лабиринту. Подвижность косточек постепенно уменьшается в направлении от молоточка к стремечку, что предохраняет спиральный орган, расположенный во внутреннем ухе, от чрезмерных сотрясений и резких звуков.

Цепь косточек выполняет две функции:

1) костную проводимость звука

2) механическую передачу звуковых колебаний к овальному окну преддверия.


5. Строение внутреннего уха. Звуковой и вестибулярный анализатор. Анатомия, физиология. Ототопика.

Внутреннее ухо, или лабиринт, располагается в толще пирамиды височной кости между барабанной полостью и внутренним слуховым проходом, через который выходит из лабиринта.

Костный лабиринт состоит из: вестибулярный лабиринта, костного лабиринта, перепончатого лабиринта, улитки; преддверия; полукружных каналов.

У современного человека улитка находится впереди, а полукружные каналы сзади, между ними расположена полость неправильной формы - преддверие. Внутри костного лабиринта находится перепончатый лабиринт, который имеет точно такие же три части, но меньших размеров, а между стенками обоих лабиринтов находится небольшая щель, заполненная прозрачной жидкостью - перилимфой.

Улитка. Каждая часть внутреннего уха выполняет определенную функцию. Улитка является органом слуха: звуковые колебания, которые из наружного слухового прохода через среднее ухо попадают во внутренний слуховой проход, в виде вибрации передаются жидкости, заполняющей улитку. Внутри улитки находится основная мембрана (нижняя перепончатая стенка), на которой расположен Кортиев орган - скопление разнообразных опорных клеток и особых сенсорно-эпителиальных волосковых клеток, которые через колебания перилимфы воспринимают слуховые раздражения в диапазоне 16-20000 колебаний в секунду, преобразуют их и передают на нервные окончания VIII пары черепных нервов - преддверно-улиткового нерва; дальше нервный импульс поступает в корковый слуховой центр головного мозга.

Преддверие и полукружные каналы - органы чувства равновесия и положения тела в пространстве. Расположены в трёх взаимно перпендикулярных плоскостях и заполнены полупрозрачной студенистой жидкостью; внутри каналов находятся чувствительные волоски, погруженные в жидкость, и при малейшем перемещении тела или головы в пространстве жидкость в этих каналах смещается, надавливая на волоски и порождая импульсы в окончаниях вестибулярного нерва - в мозг мгновенно поступает информация об изменении положения тела. Работа вестибулярного аппарата позволяет человеку точно ориентироваться в пространстве при самых сложных движениях - например, прыгнув в воду с трамплина и при этом несколько раз перевернувшись в воздухе, в воде ныряльщик мгновенно узнаёт, где находится верх, а где - низ.

Различают костный и перепончатый лабиринты, причем последний лежит внутри первого. Костный лабиринт, представляет ряд мелких сообщающихся между собой полостей, стенки которых состоят из компактной кости. В нем различают три отдела: преддверие, полукружные каналы и улитку; улитка лежит спереди, медиально и несколько книзу от преддверия, а полукружные каналы - кзади, латерально и кверху от него.

Преддверие , образующее среднюю часть лабиринта, - небольшая, приблизительно овальной формы полость, сообщающаяся сзади пятью отверстиями с полукружными каналами, а спереди - более широким отверстием с каналом улитки. На латеральной стенке преддверия, обращенной к барабанной полости, имеется отверстие, занятое пластинкой стремени. Другое отверстие, затянутое находится у начала улитки. Посредством гребешка, проходящего на внутренней поверхности медиальной стенкипреддверия, полость последнего делится на два углубления, из которых заднее, соединяющееся с полукружными каналами. Под задним концом гребешка на нижней стенке преддверия находится небольшая ямка, соответствующая началу перепончатого хода улитки.

Костные полукружные каналы , - три дугообразных костных хода, располагающихся в трех взаимно перпендикулярных плоскостях. Передний полукружный канал, расположен вертикально под прямым углом к оси пирамиды височной кости, задний полукружный канал, также вертикальный, располагается почти параллельно задней поверхности пирамиды, а латеральный канал, лежит горизонтально, вдаваясь в сторону барабанной полости. У каждого канала две ножки, которые, однако, открываются в преддверии только пятью отверстиями, так как соседние концы переднего и заднего каналов соединяются в одну общую ножку. Одна из ножек каждого канала перед своим впадением в преддверие образует расширение, называемое ампулой.

Перепончатый лабиринт, лежит внутри костного и повторяет более или менее точно его очертания. Он содержит в себе периферические отделы анализаторов слуха и гравитации. Стенкиего образованы тонкой полупрозрачной соединительнотканной перепонкой. Внутри перепончатый лабиринт наполнен прозрачной жидкостью - эндолимфой.Т.К.перепончатый лабиринт несколько меньше костного, то между стенками того и другого остается промежуток - перилимфатическое пространство, наполненное перилимфой. В преддверии костного лабиринта заложены две части перепончатого лабиринта: эллиптический мешочек и сферический мешочек. Перепончатый лабиринт в области полукружных протоков подвешен на плотной стенке костного лабиринта сложной системой нитей и мембран. Этим предотвращается смещение перепончатого лабиринта при значительных движениях. Ни перилимфатическое, ни эндолимфатическое пространства «не закрыты намертво» от окружающей среды. Перилимфатическое пространство имеет связь со средним ухом через окна улитки и преддверия, которые эластичны и податливы. Эндолимфатическое пространство связано через эндолимфатический проток с эндолимфатическим мешочком, лежащим в полости черепа; он является эластичным резервуаром, который сообщается с внутренним пространством полукружных протоков и остальным лабиринтом.

Технология костной проводимости позволяет доставлять аудио сигналы, минуя традиционный канал, через кости черепа напрямую к внутреннему уху.

Технология далеко не нова, но адекватное (немедицинское) применение получила совсем недавно, в основном в виде , ориентированных на занятия активными видами спорта, а также (в ряде случаев) для людей с некоторыми нарушениями слуха.

Скорее всего, со способами передачи звука знакомы многие из нас:

Воздушная проводимость звука

Костная проводимость звука

Для абсолютно здорового человека доступны «обе версии», но в ряде случаев одна из них может стать единственной возможностью слышать. Если говорить о медицинском назначении приборов с костной проводимостью, то они адресованы пациентам с так называемой кондуктивной тугоухостью, при которой поражены структуры внешнего уха и среднего. Либо, например, людям с таким заболеванием, как микротия — отсутствие ушных раковин.

Случаев кондуктивной тугоухости по сравнению с нейросенсорной (поражение структур внутреннего уха) примерно 30 процентов против 70-ти, что отчасти обусловлено и развитием плода в утробе. Внутреннее ухо начинает развиваться у зародыша на четвертой неделе беременности и почти неделю беззащитно, так что подавляющее большинство случае глухоты врожденной связано с повреждением внутреннего уха, а не внешнего.

При костной проводимости звука звуковые волны декодируются и трансформируются в вибрации, которые отправляются в обход внешнего уха к внутреннему, вызывая колебания улитки.

Самым громким историческим примером использования возможностей данной технологии является творчества Бетховена, который последние годы жизни мог воспринимать музыку исключительно прикладывая к костям черепа разные проводящие устройства.


Слуховые приборы Бетховена

Костная проводимость не сразу появилась на потребительском рынке, и вначале на нее смотрели исключительно как на медицинскую необходимость. Появились некоторые образцы слуховых аппаратов, самыми известными из которых долгое время были BAHA. Особенность их, правда, в том, что они — имплантируемые.

В середине 20 века ученые-стоматологи обнаружили, что регенерация кости лучше всего происходит вокруг титана, и с того момента титановые импланты стали применять и в стоматологии, и, в частности, в костных слуховых аппаратах. Вкратце, процесс вживления представлял собою растянутую на полгода многоэтапную процедуру с «врезанием» титанового штифта в череп, а затем закрепления еще двух элементов.


Несколько слов о безопасности

Так как до недавнего времени технология костной проводимости не воспринималась в отрыве от медицины, то по пришествии на потребительский рынок она была воспринята как нечто «опасное». Специфика передачи звука колебаниями воплощается в слабой вибрации, которая поначалу заметна, в связи с чем возникают вопросы, насколько это может быть опасно для мозга?

На самом деле прослушивание музыки костью безопаснее, нежели традиционным методом. Наши барабанные перепонки гораздо чувствительнее наших костей, и любое воздействие на них — ухудшает со временем слух. Прослушивание же музыки в наушниках традиционных еще сильнее приближает неотвратимое-возрастное.

При использовании наушников или гарнитур с ушные раковины остаются открытыми, и звук идет в обход, через кость, сразу к уху внутреннему. Если бы это было так критически опасно, то скорее всего еще в раннем детстве нам бы «разнесло головы» мощью собственного же детского плача: да, звуки нашего голоса мы воспринимаем костью. Закройте уши, скажите пару фраз, слышите себя? Это, кстати, объясняет разницу в восприятии, когда мы слышим себя на записи.

Применение

На потребительский рынок технология пришла не сразу, проделав путь по самым разным нишам. Костная проводимость звука была широко востребована в армии и в дальнейшем — охранной отрасли, когда необходимо было, например, контролировать происходящее вокруг, параллельно получая команды.

Затем, разумеется, медицина и здравоохранение, где возможности костной проводимости стали для некоторых пациентов единственным шансом слышать звуки.

Разные виды спорта, в том числе, на воде и под водой, куда, кстати, одними из первых принесли эту технологию инженеры Casio. Понятное дело, когда ты погружаешься с аквалангом, тебе необходимо поддерживать связь с внешним миром хотя бы по соображениям безопасности.

И сегодня — это также с одной стороны спорт и спортивные «хобби», особенно, велопрогулки, пробежки. А также, например, использование гарнитур костной проводимости за рулем, что позволяет комфортно общаться по телефону и следить за дорогой.

сегодня наушники с костной проводимостью называют, безопасными для спортсменов, особенно для велосипедистов: наушники не закрывают уши, и поэтому человек может слышать окружающие звуки, сигналы автомобилей и т. п.

Это подкрепляется международными статистиками о количествах ДТП с участием велотранспорта. В частности:

За 2013й год в Великобритании произошло 19 438 ДТП с участием велосипеда;

В США за 2012й год погибло свыше 700 велосипедистов;

В этом плане, выход на рынок потребительской электроники устройств воспроизведения звука с помощью костной проводимости явился настоящим прорывом в безопасноти занятий активными видами спорта, ведь смещение наушников выше ушей и увеличение громкости не давали такого восприятия, и плюс ко всему, в наушниках есть микрофон, так что многие просто используют их как средство связи.


Необходимо отметить и момент небольшого неудобства, или привычки. Судя по отзывам, многие указывают, что определенная вибрация, которая логична для устройств костной проводимости, многим не давала покоя какое-то время, но к этому очень быстро привыкали.

Как итог, отметим еще раз, что основное визуальное отличие потребительских гарнитур с технологией костной передачи звука заключается в том, что они не закрывают ушные раковины, позволяя тем самым слышать то, что происходит во внешнем мире, при этом беспрепятственно общаясь по телефону или прослушивая музыку.

Несмотря на то, что технология костной проводимости звука известна издавна, для многих это - по-прежнему «диковинка», вызывающая целый ряд вопросов. Ответим на некоторые из них.

Спорт . Широко известны модели спортивных наушников и гарнитур с использованием данной технологии, так как это позволяет спортсменам слушать музыку, говорить по телефону, но при этом контролируя окружающую обстановку, так как ушные раковины остаются открытыми и способными воспринимать внешние звуки !

Военная отрасль . По той же причине устройства на базе технологии костной передачи звука используются среди военных, так как это позволяет им общаться, передавать друг другу сообщения, не теряя контроль над ситуацией, оставаясь восприимчивыми к звукам внешнего мира.

Дайвинг . Применение технологий костной передачи звука в «подводном мире» во многом обусловлено свойствами костюма, которые не предполагает возможности погружать с иными средствами связи. Впервые об этом додумались еще в 1996 году, о чем есть соответствующий патент . И среди наиболее известных пионерских устройств такого характера можно привести в пример разработки Casio .

Также технология применяется в различных «бытовых» сферах, на прогулках, во время поездок на велосипеде или в автомобиле в качестве гарнитуры.

Безопасно ли это

В обычной жизни мы постоянно сталкиваемся с технологией костной проводимости, когда что-то произносим: именно костная проводимость звука позволяет нам слышать звук собственного голоса, и, кстати, как более «восприимчивая» к низким частотам она и делает так, что на записи наш голос кажется нам выше.

Второй голос в пользу этой технологии - ее широкое применение в медицине. Учитывая же и факт, что барабанные перепонки более чувствительный орган, то использование устройств костной проводимости, например, наушников, еще более безопасно для слуха, нежели использование обычных наушников.

Единственный временный дискомфорт, который может ощутить человек - легкая вибрация, к которой быстро привыкаешь. Это основа технологии: звук через кость передается с помощью вибрации.

Открытые уши

Еще одно ключевое отличие от других способов передачи звука - открытые уши. Так как барабанные перепонки не участвуют в процессе восприятия, то раковины остаются открытыми, и данная технология людям без дефектов слуха позволяет слышать и внешние звуки, и музыку/телефонный разговор!

Наушники

Самый известный пример «бытового» использования технологии костной проводимости - наушники, и среди них первыми и самыми лучшими остаются модели и .


История компании говорит о том, что они не сразу вышли на широкую аудиторию пользователей, долгое время до того сотрудничая с военными. Наушники обладают выдающимися для такого класса устройств характеристиками и постоянно модернизируются.

Технические характеристики Aftershokz:

  • Тип динамиков: преобразователи для костной проводимости
  • Частотный диапазон: 20 Гц – 20 кГц
  • Чувствительность динамиков: 100 ±3 дБ
  • Чувствительность микрофона: -40 ±3 дБ
  • Версия Bluetooth: 2.1 +EDR
  • Совместимые профили: A2DP, AVRCP, HSP, HFP
  • Диапазон связи: 10 м
  • Тип батареи: литий-ионная
  • Время работы: 6 часов
  • Режим ожидания: 10 дней
  • Время зарядки: 2 часа
  • Цвет: черный
  • Вес: 41 грамм

Могут ли навредить слуху

Любые наушники могут навредить слуху на высокой громкости. Рисков с наушниками, которые работают на базе костной проводимости сильно меньше, так как не затрагиваются напрямую самые чувствительные органы слуха.

Можно ли прислонить обычные наушники к черепу и слушать звук

Нет, так не выйдет. Все наушники с технологией костной проводимости работают по особому принципу, когда звук передается с помощью вибрации, именно поэтому даже у проводных наушников есть дополнительный источник питания, встроенный аккумулятор.

Заменяют ли наушники слуховой аппарат

Наушники не усиливают звук, поэтому заменить слуховой аппарат они не могут, однако в ряде случаев нарушения воздушной проводимости звука, например, возрастных, такие наушники могут помочь отчетливей различать услышанное.

Уже не одну статью я посвятил замечательному явлению костной звукопроводимости, а точнее технологии, использующей этот феномен. Об истории и сути явления можно почитать здесь, а подробные обзоры и - наушников от Aftershokz - ещё больше проливают свет на происходящее. Казалось бы, что ещё можно добавить? Я восторжено люблю «bone conduction», считаю её полезной и удобной фичей и всячески рекомендую читателям с ней ознакомиться. Однако, как и всё новое и незнакомое, костная проводимость будоражит мысли людей (и мои в том числе): не вредно ли? Не опасно? Не лишусь ли я слуха через пару лет использования таких наушников?

Присущая человеческому существу ксенофобия ядовито шепчет: «ещё как опасно! Того и гляди, уши отвалятся!». А интуиция вкупе со здравым смыслом подсказывают, что волноваться не о чем. Тем не менее, современная наука не водит дружбы с абстрактным «здравым смыслом», требуя аргументации и доказательной базы. Вопрос осложняется тем, что какого-либо научного исследования, посвящённого костной проводимости, мне найти не удалось. Поэтому всё что нам остаётся сейчас - попытаться разобраться в вопросе самостоятельно.

Физика

Для начала следует разоблачить следующее утверждение, которое часто можно видеть в некоторых авторских текстах: «в отличие от обычных наушников, посылающих звуковую волну в ушной канал, устройство с технологией костной проводимости (далее КП) транслирует звук через кости посредством вибрации». Ничего глупее выдать, наверное, нельзя, когда говоришь о звуке: просто потому, что звук в узком смысле - это и есть звуковая волна, и никаким другим образом он не может быть доставлен к внутреннему уху.

Я поясню. Звуковая волна - это физическое возмущение в виде колебаний атомов вещества. Неважно, какого вещества: воздуха, воды, бетонной стены (привет соседу-пианисту) или кости черепа. Звуковая волна, прежде чем достичь ушной раковины, может пройти долгий путь, «пробравшись» сквозь жидкости и твёрдые тела. Те есть, с физической точки зрения нет никакой разницы, передаются ли колебания в разреженных атомах воздуха или в плотной среде кристалла алмаза. Здесь имеет место быть одно и то же явление под названием «звуковая волна», и никакие «вибрации» нельзя ей противопоставить.

Через твёрдые тела звук проходит даже быстре, чем по воздуху

Корректнее было бы саму волну сравнить с вибрацией или колебанием, но это лишь вопрос терминов. Резюмирую: обычно звуковая волна проходит к внутреннему уху через воздушное пространство в ушном канале и твёрдые тела в виде барабанной перепонки и костей среднего уха - то есть просто меняется вещество, по которому транслируется звук.

Костная проводимость - это упрощённая «доставка» звука к улитке через скуловые кости. Эти кости менее чувствительны, чем, например, наковальня и стремечко (кости среднего уха), и в том числе поэтому, звук, «полученный» благодаря КП, не такой отчётливый и явный.

Путаница же с «вибрацией» возникает, потому что в наушниках с технологией костной звукопроводимости на низких частотах отчётливо ощущаются физические колебания. Причины тому следующие: во-первых, чаши устройства плотно прилегают к вискам (если приложить диафрагмы обычных наушников к коже, вибрацию тоже можно ощутить), и во-вторых, такие гаджеты оснащены пьезоэлектрическими излучателями.

Как раз от «ощутимой вибрации» проиводители стараются избавиться (в почти получилось) как от неприятного (не более того) эффекта. Что же касается типа излучателя, здесь мы это рассматривать не будем, поскольку слабые электромагнитные поля практически безвредны для организма, да и присутствуют во всех типах наушников.

Медицина

Когда речь заходит о вреде здоровью, медстуденты знают: полностью доказать, что феномен безвреден, невозможно - можно доказать, что он причиняет вред. Поэтому за отсутствием научной исследовательской базы будем плясать от обратного.

Мы знаем, что технология костной проводимости звука пришла в потребительский сегмент из медицины (первыми её позаимствовали военные). В широком смысле ничего не изменилось с начала XX века - КП успешно используют в слуховых аппаратах для людей с индуктивной глухотой или тугоухостью (в случаях когда повреждена, например, барабанная перепонка, а внутреннее ухо здорово). Мединженеры применяют даже более «агрессивное» (чем у наушников) вторжение в организм: такие аппараты представляют собой титановый штифт, вкручивающийся в височную кость наподобие болта (остеоигтегрированный имплантат).

Зачем нужен имплант? Таким образом достигается более плотное взаимодействие источника звука с костями черепа. Я перечитал всё, что можно было найти об истории развития таких аппаратов, и не нашёл ни единого случая ухудшения слуха после их вживления. На заре развития этого направления в мединженерии было немало проблем во время интеграции самих имплантов: нередко организм «отказывался» их принимать. Однако, как я и сказал, слух (как и что-либо другое) у пациентов не нарушался.

У пионера и лидера в производстве слуховых аппаратов с КП - компании Baha более ста тысяч пациентов, носящих в данный момент костные импланты. Среди побочных эффектов хирургического вмешательства и последующего использования устройств с КП называют: раздражение кожи вокруг штифта, возникновение гематомы из-за неаккуратной интеграции, отмирание частиц кожи и, как самое опасное, занесение инфекции или нанесение травмы при неудачной операции. Как видим, все неприятности связаны исключительно с хирургическим вживлением импланта.

Во-вторых, аппараты с КП назначаются не только людям с хронической индуктивной тугоухостью, но и как временная мера при ослаблении слуха от инфекций. То есть, даже люди с «целыми» ушами носят такие аппараты во время болезни среднего уха, а по выздоровлении возвращаются к обычному способу восприятия звука. Никаких ухудшений слуха у них также не возникает.

И наконец, мой самый любимый аргумент - дети. Слуховые аппараты с КП назначаются и вживляются детям так же успешно, как и взрослым людям - а мы знаем, что детский слух (это справедливо для всех млекопитающих) гораздо чувствительнее «окрепшего» слуха взрослого дядьки. Противопоказаны импланты лишь больным синдромом Дауна (не только детям) и малышам, у которых толщина черепа ещё не достигла 2,5 мм.

Что же делать, если слух нарушен у маленького ребёнка? Малышам назначают - барабанная дробь - слуховые аппараты с КП без вживления импланта (то есть устройства, технически аналогичные потребительским КП-наушникам). Детские аппараты крепятся к мягкому бандажу: это нужно для того, чтобы излучатели плотнее прилегали к вискам ребёнка. Такие аппараты делает и Baha и, например, компания Oticon. Как видим, даже самым маленьким КП не противопоказана. А ограничения в данном случае полностью соответствуют классическому предостережению: не слушайте громко музыку - так повредить слух можно хоть с КП, хоть без неё.

Голоса в голове

Главные доказательства я уже привёл, поэтому несущественные аспекты, вроде «мы слышим собственный голос через кости черепа постоянно» оставим для другой темы (хотя не без них, конечно). Подведу итог:

  1. Физически костная и «ушная» звукопроводимости не отличаются. При КП звуковые волны проходят через кости черепа таким же образом, как и при трансляции через кости среднего уха.
  2. Слуховые аппараты с технологией КП успешно применяются для помощи людям с нарушениями внутреннего уха. Никаких ухудшений слуха при этом не выявлено.
  3. Слуховые устройства с КП назначаются также людям с временными инфекционными заболеваниями. Впоследствии импланты им удаляют, то есть при лечении учитывается, что человек вернётся к естественному способу восприятия звука.
  4. Детям тоже успешно вживляют штифты. Самые маленькие пациенты (с тонкими костями черепа) носят аппараты с КП без вживления импланта.

Для научной дискуссии эти аргументы, вероятно, нуждались бы в более обширном изложении (во много раз вревосходящем формат популярной статьи), но для вашего (и моего) успокоения, как мне кажется, этого вполне достаточно. Если вы несогласны, буду рад увидеть комментарии к материалу.

И не забывайте заходить на наш Telegram-канал: именно там мы впервые публикуем всё самое интересное - не менее интересное, чем технология костной проводимости!



gastroguru © 2017