Чем опасны перегрузки электросетей и как избегать их? Негативные явления в электросети - их влияние на нагрузку и способы борьбы Тока при возникновении перегрузки электрической.

Перегрузкой называется такое явление, когда по электрическим проводам и электрическим приборам идет ток больше допустимого. Опасность перегрузки объясняется тепловым действием тока. При двукратной и большей перегрузке сгораемая изоляция проводников воспламеняется. При небольших перегрузках происходит быстрое старение изоляции и срок ее диэлектрических свойств сокращается.

Так, перегрузка проводов на 25% сокращает срок службы их примерно до 3-5 месяцев вместо 20 лет, а перегрузка на 50% приводит в негодность провода в течение нескольких часов.

Основными причинами перегрузки являются:

  • несоответствие сечения проводников рабочему току (например, когда электропроводка к звонку выполняется телефонным проводом);
  • параллельное включение в сеть не предусмотренных расчетом токоприемников без увеличения сечения проводников (например, подключение удлинителя с 3-4 розетками в одну рабочую);
  • попадание на проводники токов утечки, молнии;
  • повышение температуры окружающей среды.

Кроме того, при перегрузке электросети приборы и аппараты, подключенные к ней, постоянно испытывают нехватку тока, что может привести к их аварийному выходу из строя. В связи с этим, обратите внимание на паспортные данные электроприборов: силу тока и напряжение. Желательно, чтобы напряжение питания электроприборов отклонялось на максимально допустимую величину от 220 В (например, от 90 до 260 В).

Коротким замыканием называется всякое замыкание между проводами, или между проводом и землей. Причиной возникновениякороткого замыкания является нарушение изоляции в электрических проводах и кабелях, которое вызывается: перенапряжениями; старением изоляции; механическими повреждениями изоляции.

Переходным сопротивлениемназывается сопротивление, возникающее в местах перехода тока с одного провода на другой или с провода на какой-либо электроаппарат при наличии плохого контакта в местах соединений и оконцеваний (при скрутке, например). При прохождении тока в таких местах за единицу времени выделяется большое количество теплоты. Если нагретые контакты соприкасаются с горючими материалами, то возможно их воспламенение, а при наличии взрывоопасных смесей взрыв. В этом и заключается опасность ПС, которая усугубляется тем, что места с наличием переходных сопротивлений трудно обнаружить, а защитные аппараты сетей и установок, даже правильно выбранные, не могут предупредить возникновение пожара, так как электрический ток в цепи не возрастает, а нагрев участка с ПС происходит только вследствие увеличения сопротивления.

Искрение и электродуга - результат прохождения тока через воздух. Искрение наблюдается при размыкании электрических цепей под нагрузкой (например, когда вынимается электровилка из электророзетки), при пробое изоляции между проводниками, а также во всех случаях при наличии плохих контактов в местах соединения и оконцевания проводов и кабелей. Под действием электрического поля воздух между контактами ионизируется и, при достаточной величине напряжения, происходит разряд, сопровождающийся свечением воздуха и треском (тлеющий разряд). С увеличением напряжения тлеющий разряд переходит в искровой, а при достаточной мощности искровой разряд может быть в виде электрической дуги. Искры и электродуги при наличии в помещении горючих веществ или взрывоопасных смесей могут быть причиной пожара и взрыва.

В данной статье будут рассмотрены общие принципы функционирования электросети, негативные процессы, происходящие на линиях электроснабжения и различные методы защиты оконечного оборудования.

Единая энергосистема

Почти все электростанции России объединены в единую федеральную энергосистему, которая является источником электрической энергии для большинства потребителей. Важнейшим и обязательным компонентом любой электростанции является трехфазный турбогенератор переменного тока. Три силовые обмотки генератора индуцируют линейное напряжение. Обмотки симметрично расположены по окружности генератора. Ротор генератора вращается со скоростью 3000 оборотов в минуту, а линейные напряжения сдвинуты относительно друг друга по фазе. Фазовый сдвиг постоянен и равен 120 градусам. Частота переменного тока на выходе генератора зависит скорости вращения ротора, и в номинале составляет 50 Гц.

Напряжение между линейными проводами трехфазной системы переменного тока называется линейным. Напряжение между нейтралью и любым из линейных проводов называется фазным. Оно в корень из трех раз меньше линейного. Именно такое напряжение (фазное 220 В) подается в жилой сектор. Линейное напряжение 380 В используется для питания мощного промышленного оборудования. Генератор выдает напряжение в несколько десятков киловольт. Для передачи электроэнергии, с целью уменьшения потерь, напряжение повышают на трансформаторных подстанциях и подают в Линии Электропередачи (далее ЛЭП). Напряжение в ЛЭП составляет от 35 кВ для линий малой протяженности, до 1200 кВ на линиях протяженностью свыше 1000 км. Напряжение повышают с целью уменьшения потерь, которые напрямую зависят от силы тока. С другой стороны, напряжение ограничивается возможностью изоляции воздуха для ЛЭП и диэлектрика кабеля для кабельных линий. Достигнув крупного потребителя (завод, населенный пункт) электроэнергия опять попадает на трансформаторную подстанцию, где трансформируется в 6–10 кВ, которые уже пригодны для передачи по подземным кабелям. У каждого многоквартирного жилого дома, или административного здания стоит трансформаторная подстанция, которая выдает на выходе предназначенные для потребителя 380 В линейного напряжения и, соответственно, 220 В фазного. В подстанцию типично заводят два или три высоковольтных кабеля, что позволяет оперативно восстановить электроснабжение, в случае повреждений на высоковольтном участке трассы. В зависимости от вида подстанции, это может происходить автоматически, полуавтоматически - по команде диспетчера с центрального пульта, и вручную - приезжает аварийка и электрик переключает рубильник. Подстанция также может выполнять функцию регулятора напряжения, переключая обмотки трансформатора, в зависимости от нагрузки. В России на подстанциях применяют схему с заземленной нейтралью, то есть нейтральный (часто называемый нулевым) провод заземлен. По зданию разводка кабеля происходит пофазно, как с целью распараллеливания нагрузки, так и с целью удешевления оборудования (счетчиков, автоматов защиты). Подстанция в сельской местности и для небольших домов представляет собой обычно трансформаторную будку или просто трансформатор внешнего исполнения. Именно поэтому, на исправление аварии в таком месте отводятся сутки. Автоматической регулировки напряжения такие подстанции не имеют, и выдают номинал обычно в часы минимальных нагрузок, в остальное время занижая напряжение.

Нормы качества для электросетей

Документом, устанавливающим нормы качества электроэнергии в России, является ГОСТ 13109-97 принятый 1 Января 1999г. В частности, в нем установлены следующие "нормы качества электрической энергии в системах электроснабжения общего назначения ".

Таким образом, даже при нормальном функционировании электросети использование устройств ИБП для компьютерной техники является обязательным, как для защиты целостности данных, так и для обеспечения исправности оборудования. С точки зрения электроснабжения, все потребители делятся на три категории. Для наиболее массовой категории наших читателей, проживающих в домах с числом квартир более восьми или работающих в офисных зданиях с числом сотрудников более 50 актуальна вторая категория. Это означает максимальное время устранения аварии один час и надежность 0,9999. Третья категория характеризуется временем устранения аварии 24 часа и надежностью 0,9973. Первая категория требует надежности 1 и временем устранения аварии 0.

Виды негативных воздействий в электросети

Все негативные воздействия в электросети делятся на провалы и перенапряжения.

Импульсные провалы обычно вызываются перегрузкой оконечных линий. Включение мощного потребителя, такого как кондиционер, холодильник, сварочный аппарат, вызывает кратковременную (до 1-2 с) просадку питающего напряжения на 10–20%. Короткое замыкание в соседнем офисе или квартире может вызвать импульсный провал, в случае, если вы подключены к одной фазе. Импульсные провалы не компенсируются подстанцией и могут вызывать сбои и перезагрузки компьютерной и другой насыщенной электроникой техники.

Постоянный провал, то есть постоянно или циклично низкое напряжение обычно вызвано перегрузкой линии от подстанции до потребителя, плохим состоянием трансформатора подстанции или соединительных кабелей. Низкое напряжение негативно отражается на работе такого оборудования как кондиционеры, лазерные принтеры и копиры, микроволновые печи.

Полный провал (блекаут), это пропадание напряжения в сети. Пропадание до одного полупериода (10 мс) должно по стандарту выдерживать любое оборудование без нарушения работоспособности. На подстанциях старого образца переключения регулятора напряжения или резерва могут достигать нескольких секунд. Подобный провал выглядит как "свет мигнул". В подобной ситуации все незащищенное компьютерное оборудование "перезагрузится" или "зависнет".

Перенапряжения постоянные - завышенное или циклично завышенное напряжение. Обычно является следствием так называемого "перекоса фаз" - неравномерной нагрузки на разные фазы трансформатора подстанции. В этом случае на нагруженной фазе происходит постоянный провал, а на двух других постоянное перенапряжение. Перенапряжение сильно сокращает срок службы самого разного оборудования, начиная от лампочек накаливания… Вероятность выхода из строя сложного оборудования при включении значительно увеличивается. Самое неприятное постоянное перенапряжение - отгорание нейтрального провода, нуля. В этом случае напряжение на оборудовании может достигать 380 В, и это практически гарантирует выход его из строя.

Временное перенапряжение бывает импульсным и высокочастотным.

Импульсное перенапряжение может происходить при замыкании фазовых жил силового кабеля друг на друга и на нейтраль, при обрыве нейтрали, при пробое высоковольтной части трансформатора подстанции на низковольтную (до 10 кВ), при попадании молнии в кабель, подстанцию или рядом с ними. Наиболее опасны импульсные перенапряжения для электронной аппаратуры.

В нижеприведенную таблицу сведены все виды негативных воздействий в электросети и технические методы борьбы с ними.

Вид негативного воздействия Следствие негативного воздействия Рекомендуемые меры защиты
Импульсный провал напряжения Нарушение в работе оборудования содержащего микропроцессоры. Потеря данных в компьютерных системах. Качественные блоки питания. Онлайн ИБП
Постоянный провал (занижение) напряжения Перегрузка оборудования содержащего электромоторы. Неэффективность электрического отопления и освещения. Автотрансформаторные регуляторы напряжения. Импульсные блоки питания.
Пропадание напряжения Выключение оборудования. Потеря данных в компьютерных системах. Батарейные ИБП любого типа, для предотвращения потерь данных. Автономные генераторы, при необходимости обеспечения бесперебойности работы оборудования.
Завышенное напряжение Перегрузка оборудования. Увеличение вероятности выхода из строя. Автотрансформаторные регуляторы напряжения. Сетевые фильтры с автоматом защиты от перенапряжения.
Импульсные перенапряжения Нарушение в работе оборудования содержащего микропроцессоры. Потеря данных в компьютерных системах. Выход оборудования из строя. Сетевые фильтры с автоматом защиты от перенапряжения.
Высокочастотные перенапряжения. Нарушения в работе высокочувствительной измерительной и звукозаписывающей аппаратуры. Сетевые фильтры с ФНЧ. Развязывающие трансформаторы.
Перекос фаз (разница фазного напряжения) Перегрузка трехфазного оборудования. Выравнивания нагрузки по фазам. Содержание в исправности силовой кабельной сети.
Отклонение частоты сети Нарушение работы оборудования с синхронными двигателями и изделий зависящих от частоты сети. Онлайн ИБП. Замена устаревшего оборудования.

Следует отметить, что современные качественные ИБП имеют в своем составе сетевой фильтр и ограничитель напряжения. Время реакции и переключения на батарею достаточно мало для обеспечения надежной бесперебойной работы любых электронных устройств. Использование отдельных стабилизаторов может быть оправданно при большом количестве оборудования, так как цена стабилизатора на 10 КВт примерно равна цене ИБП на 1КВт. Использование отдельного сетевого фильтра гораздо менее оправданно. ИБП не предназначены для систем, требующих непрерывного функционирования. Если мощность такого оборудования превышает 1 КВт, оптимальным решением будет использование автономного дизельного генератора.

Возникновение перегрузки сети способно привести как к небольшим пустяковым проблемам, в числе которых может быть, например, мерцание светотехники в квартире или слабые перебои в работе электрических устройств, так и к очень серьезным — возгоранию электросети в частности и всего помещения в целом. Последствия такого исхода печальны, особенно учитывая, что от данного явления избавиться достаточно просто. В статье рассмотрены различные причины перегрузки электросети, а также методы защиты от этой неприятности.

Причины и решения

Главными тремя причинами перегрузки электрической сети назовем:

  • излишняя нагрузка на конкретное питающее ответвление электросети;
  • использование электроприборов, реальная мощность которых превышает номинал ввиду поломки электрической начинки;
  • несвоевременная замена электропроводки ввиду ее физического износа.

Излишняя нагрузка

К первому случаю можно отнести ситуацию, когда из-за включения нескольких приборов в одну розетку начинаются проблемы. Если не обратить на них внимание, последствия будут очень печальны (минимум как на фото ниже).

Итак, приводим конкретный пример: есть у нас розетка на два гнезда и мы в нее желаем подключить одновременно стиральную машину и микроволновую печь. В сумме они потребляют, допустим, 3,5 киловатта. Включаем оба прибора, раздается щелчок в коридоре — погас свет. Сработал автоматический выключатель. Мы подходим к нему и читаем — 10 ампер. Это означает, что данный автомат отсекает нагрузку свыше этого предела, а в переводе на мощность (амперы умножаем на стандартное напряжение сети 220 вольт) это составляет 2,2 киловатта. Тут уже можно совершить страшную ошибку — заменить автомат на другой, с пределом уже 16 ампер и выше. Снова включив два мощных прибора в розетку, мы ощущаем неприятный запах паленой электропроводки (это потенциально является причиной пожара, потому-то ошибка и страшная). Выключаем, смотрим на розетку, а на ней тоже выгравировано 10 ампер. И снова мы бежим в строительный магазин за новой, более стойкой к перегрузке розетке, на 16 ампер. Уж она-то точно выдержит мощность в 3500 ватт.

Вот только установив ее на место старой ситуация не улучшилась — мы все еще задыхаемся от пластмассового амбре. Как же так? Уже и автомат поменян, и розетка. Подводит теперь провод. Правда, подводит не он нас, а мы его. Провод — тоже элемент электросети, и при строительстве был, также как и автомат с розеткой, уложен с расчетом нагрузки на силу тока в 10 ампер.

Чтобы заменить провод, придется туго — это уже очень кропотливая работа, заключающаяся в демонтаже отделки стен в местах, где он проложен. Потому мы вынуждены с болью в сердце признать — приборы придется включать по отдельности, а деньги на более мощную электротехнику потрачены зря. Правда, не совсем зря. Мы таки купим мощный провод сечением на 2,5 квадратных миллиметра и проведем его от щитка с новым автоматом через к свежей 16-амперной розетке. Вот только внешний вид будет безнадежно испорчен.

Мораль такова — чтобы обеспечить защиту от перегрузки электросети, нужно убедиться, что абсолютно все ее элементы не подвергались нагрузкам свыше их номинала на конкретном участке.

Для этого еще на этапе строительства или капитального ремонта необходимо тщательно спланировать, какое количество электроприборов будет использовано, как они будут расположены и какую мощность станут потреблять. Подобрать согласно имеющимся в свободном доступе таблицам необходимую электротехнику, причем взять с запасом. Например, нам хватило бы провода 3×2,5 мм2, а мы переплатим и возьмем 3×4 мм2, более мощную розетку и подберем нужный автомат — и тогда проблем с проводкой не будет многие десятилетия — добиться перегрузки такой электросети будет крайне сложно. О том, мы рассказывали в отдельной статье. Также рекомендуем изучить информацию о том, что является не менее эффективным методом защиты от перегрузки электросети в квартире и доме.

Неисправность электроприбора

Разберемся, что это такое и чем грозит. По сути — частный случай перегрузки электрической сети, только здесь номинально все по науке, а по факту мощность прибора превышена. Это может произойти по ряду причин, перечислять их не имеет смысла. Защита от ситуации одна — либо (сочетает в себе функции автомата и УЗО). Если при прочих равных у вас — прибор нужно отремонтировать или заменить.

Несвоевременная замена проводки

Тут тоже все ясно. Вот как возникает проблема — старые провода в местах контактов, изгибов и движения постепенно изламываются и стираются. В этих зонах сечение токоведущей части резко уменьшается, а вместе с ней становится меньше пропускная способность. Особенно касается алюминия, которым забиты все старые квартиры. Чтобы обеспечить защиту от возгорания, поражения электрическим током и короткого замыкания и, конечно, банальной перегрузки электросети капитальный ремонт проводки порой необходим. О том, мы подробно рассказывали в отдельной статье.

Заключение

Благодаря статье читатель выяснил, как защититься от перегрузки в электросети. Но напоследок есть еще один верный метод защиты — обратиться за помощью к опытному электрику и периодически диагностировать сеть на наличие неисправностей, даже если она относительно новая. Не брезгуйте и не жалейте денег — это жизнь и здоровье как ваша, так и ваших соседей.

С металлической жилой провода, при идеальных условиях эксплуатации, может быть и правда ничего не сделается. Однако, в реальных условиях, проводник подвержен окислению, ухудшению контакта и разогреву в месте плохого контакта… Кроме того, плохие контакты образуются и из-за ослабления затяжки винтовых соединений проводов.

А вот с изоляцией проводов - еще сложнее. Старение изоляции становится причиной выхода провода из строя и может сопровождаться различными неприятностями – от короткого замыкания, до пожара.

В чем выражается старение изоляции электропроводки?

Прежде всего, в уменьшении эластичности и механической прочности её материала. Изоляция становится хрупкой и ломкой. Достаточно небольшого воздействия, и ее целостность нарушается. После чего, может произойти электрический пробой изоляции и замыкание. А при том, что раньше в качестве изоляционных материалов использовали, в основном, горючие материалы, то при аварийном нагреве токопроводящих жил проводов и наличии пожароопасной среды, возникает пожар.

Причины старения изоляции электропроводки

Одной из главных причин преждевременного старения изоляции является тепловое старение, вызванное повышением температуры проводника. Естественно, что провод нагревается не просто так, а при перегрузках электросети, вызванных длительным превышением тока, допустимого для данного сечения проводника. Причем, срок службы изоляции при повышении температуры проводника от нормальной всего на 8 градусов - снижается в 2 раза!

Причины перегрузки электросети

Есть несколько причин возникновения перегрузки электросети и электропроводки, среди которых можно выделить:
- неправильный расчет сечения проводника;

Подключение дополнительных потребителей, мощность которых превышает допустимые проектные значения;

Механические перегрузки на валу электродвигателей бытовых электроприборов;

Длительные отклонения напряжения электросети от номинального значения.

Недостаточная электрическая мощность, подведенная к внутренней электросети.

Как избежать перегрузки электросети?

Если при расчете или монтаже электропроводки допущена ошибка и сечение проводника меньше требуемого, то исправить положение можно лишь полной заменой такой проводки или прокладкой новых линий от электрического щита к наиболее нагруженным розеткам, проводом необходимого сечения.

Эксплуатация дополнительных энергоемких потребителей, суммарный потребляемый ток которых превышает значение токовой уставки вводного автоматического выключателя может производится только с использованием устройств автоматики, например, оптимизатора нагрузки на электросеть OEL-820.

Необходимо исключить работу двигателей с механической перегрузкой вала. Например, поставить сетчатый фильтр на всасывающий патрубок погружного насоса, чтобы в него не попадал песок, вовремя очищать от пыли мешок пылесоса, не перегружать миксер, мясорубку, электродрель и т.д.

Если напряжение в доме ниже или выше нормы – нужно использовать стабилизатор напряжения. Однако, следует учитывать, что при низком напряжении на входе стабилизатор увеличивает его на выходе за счет увеличения потребляемого тока, что также может привести к перегрузке проводки.

При недостаточной выделенной или подведенной мощности следует докупить недостающие киловатты у энергетиков, внеся соответствующие изменения в договор и проект.

Самое бюджетное и легкое решение - «виртуальное» повышение мощности электросети без покупки дополнительной мощности. Т.е. применение устройства лимитирования потребляемой мощности с помощью управления неприоритетной нагрузкой. Для бытового использования лучше всего подойдет оптимизатор нагрузки на электросеть OEL-820. Это единственный на рынке бытовой прибор, предназначенный для эффективного снижения потребляемой мощности и подключаемый без помощи специалиста. Включил в розетку - и забыл о проблеме!

Короткое замыкание (КЗ) – это возникновение электрического контакта между разными фазами, фазой и нулевым рабочим или защитным проводом. В сети с глухозаземленной нейтралью коротким замыканием можно считать контакт между фазным проводником и землей.

Причинами короткого замыкания могут быть :

  • ухудшение или повреждение изоляции;
  • попадание посторонних предметов, проводящих электрический ток, на токоведущие части;
  • механические повреждения или разрушения электрических машин и аппаратов;
  • ошибки работников при монтаже или обслуживании электрооборудования;
  • аварийные режимы работы сети, связанные с возникновением в ней перенапряжений или резких бросков тока.

Со временем изоляция стареет и теряет свои свойства . Это относится в равной степени и к кабелям, и к обмоткам электродвигателей, и к изоляторам. Этому свойству подвержены и изоляционные поверхности: корпуса автоматических выключателей, предохранителей. На ухудшение свойств изоляторов влияет среда, в которой они работают: степень загрязненности, наличие влаги, пыли, агрессивных газов. Стоит появиться небольшому токопроводящему участку, и он начинает греться и разрастаться, пока ток через него не достигнет критической величины. Он лавинообразно возрастет, разогреет и обуглит поверхность, по которой протекает. С этого момента участок с ослабленной изоляцией становится местом короткого замыкания.

Примером посторонних предметов на токоведущих частях являются деревья, падающие на провода линий электропередач. Сами они создают контакт между землей и фазными проводниками, дополнительно обрываются провода или замыкаются между собой.

Износ подшипников электродвигателей тоже может привести к короткому замыканию. Ротор при вращении цепляет своими обмотками за внутренние детали или обмотку статора. Изоляция повреждается и возникает КЗ. Кабели, проложенные в земле, неизбежно подвергаются механическим деформациям. Над ними проезжает транспорт, а при смене времен года подвижки грунта испытывают их на прочность.

Невнимательность, неаккуратность, несоблюдение правил безопасности тоже могут привести к КЗ. При этом дополнительно наносится вред здоровью работников.

Перенапряжения сами по себе не являются причинами КЗ. Они лишь ускоряют их возникновение на участках с пониженной изоляцией, где рано или поздно замыкание все равно бы произошло.

Расчет и измерение токов короткого замыкания

При коротком замыкании вся мощность электрической сети сосредотачивается на маленьком участке. Если бы кабели, провода и коммутационные аппараты не имели бы собственных сопротивлений, ток КЗ достигал бы огромных величин. Но на самом деле он ограничивается суммарным сопротивлением линии от источника питания (трансформатора на подстанции, генераторов энергосистемы) до точки КЗ.

При проектировании электроустановок величину этого тока обязательно рассчитывают. Для этого используются данные о сопротивлениях (активных и реактивных) всего электрооборудования, установленного на пути КЗ. Ток считается для самой удаленной от источника точки, чтобы проверить, отключит ли его защита.

В эксплуатации или после монтажа ток КЗ измеряют специальными приборами: измерителями петли фаза-нуль . Делается это для того, чтобы удостовериться в правильности расчетов или в местах, для которых этот расчет выполнить невозможно.

  • вместо модульных выключателей с характеристикой «С» (кратность отсечки 5-10) применяют «В» (кратность 3-5);
  • увеличивают сечение питающих кабелей.

Действие короткого замыкания на электрооборудование

Короткое замыкание – аварийный режим работы для электрической сети. При возникновении он оказывает на электрооборудование одновременно два действия:

  • электродинамическое;
  • термическое.

Согласно законам физики, при прохождении тока по двум проводникам, расположенным рядом, они взаимодействуют друг с другом. В зависимости от направления тока они либо притягиваются, либо отталкиваются. С увеличением тока и уменьшением расстояния сила взаимодействия увеличивается.

На этом принципе и происходит электродинамическое воздействие тока КЗ на шины, провода, обмотки электрических машин. На подстанциях и других энергообъектах, где значения токов замыкания достигают десятков и сотен тысяч ампер, после КЗ оборудование может прийти в полную негодность из-за механических разрушений. При этом само КЗ может произойти где-то в стороне.

Термическое воздействие основано на нагревании проводников при прохождении по ним электрического тока. При этом температура иногда повышается настолько, что провода или шины расплавляются.

В бытовых условиях ярче выражено термическое воздействие КЗ, динамическое можно не учитывать из-за небольших значений токов.

Перегрузка сети

Это тоже аварийный режим работы. Все электрооборудование рассчитано на номинальный ток, превышение которого недопустимо. Иначе контактные системы коммутационных аппаратов, жилы кабелей и проводов начинают нагреваться. Перегрев приводит к расплавлению или обугливанию изоляции, которое вскоре приводит к пожару или короткому замыканию.


Причинами перегрузки является :

  • подключение нагрузки к групповой линии, превышающей ту, на которую рассчитан ее кабель и автоматический выключатель. Это либо связано с подключением мощного электроприемника или превышением суммарной мощности группы электроприемников.
  • неисправности, возникающие в одном из электроприемников. Например, витковое замыкание в электродвигателе, частичный выход из строя нагревательного элемента в калорифере.


gastroguru © 2017