Возрастные особенности нервной системы презентация. Возрастная физиология

Cлайд 1

Cлайд 2

Cлайд 3

Артерии и микроциркуляторное русло После рождения ребенка о мере увеличения возраста окружность, диаметр, толщина стенок артерий и их длина увеличиваются. Изменяются также уровень отхождения артериальных ветвей от магистральных артерий и даже тип их ветвления. Диаметр левой венечной артерии больше диаметра правой венечной артерии у людей всех возрастных групп. Наболее существенные различия в диаметре этих артерий отмечаются у новорожденных и детей 10-14 лет.

Cлайд 4

Длина артерий возрастает пропорционально росту тела и конечностей. Артерии, кровоснабжающие мозг, наиболее интенсивно развиваются до 3-4-летнего возраста, по темпам превосходя другие сосуды. Наиболее быстро растет в длину передняя мозговая артерия. С возрастом удлиняются также артерии, кровоснабжающие внутренние органы, и артерии верхних и нижних конечностей. Так, у новорожденных детей грудного возраста нижняя брыжеечная артерия имеет длину 5-6 см, а у взрослых - 16-17 см.

Cлайд 5

Формирование, рост, тканевая дифференцировка сосудов внутриорганного кровеносного русла (мелких артерий и вен) в различных органах человека протекают в онтогенезе неравномерно. Стенки артериального отдела внутриорганных сосудов, в отличие от венозного, к моменту рождения имеют три оболочки: наружную, среднюю и внутреннюю. После рождения увеличиваются длина внутриорганных сосудов, их диаметр, количество межсосудистых анастомозов, число сосудов на единицу объема органа. Наиболее интенсивно протекает этот процесс на первом году жизни в период от 8 до 12 лет.

Cлайд 6

Вены большого круга кровообращения С возрастом увеличиваются диаметр вен, площадь их поперечного сечения и длина. Так, например, верхняя полая вена в связи с высоким положением сердца у детей короткая. На первом году жизни ребенка, у детей 8-12 лет и у подростков длина и площадь поперечного сечения верхней полой вены возрастают. У людей зрелого возраста эти показатели почти не изменяются, а у пожилых и стариков в связи со старческими изменениями структуры стенок этой вены наблюдается увеличение ее диаметра.

Cлайд 7

После рождения меняется топография поверхностных вен тела и конечностей. Так, у новорожденных имеются густые подкожные венозные сплетения, на их фоне крупные вены не контурируются. К 1-2 годам жизни из этих сплетений отчетливо выделяются бо лее крупные большая и малая подкожные вены ноги, а на верх ней конечности - латеральная и медиальная подкожные вены руки. Быстро увеличивается диаметр поверхностных вен ноги от периода новорожденности до 2 лет: диаметр большой подкожной вены - почти в 2 раза, диаметр малой подкожной вены - в 2,5 раза.

Cлайд 8

Движение крови по сосудам Кровь непрерывно движется по замкнутой сосудистой системе в определенном направлении благодаря ритмичным сокращениям сердца, этого живого мышечного насоса, перекачивающего кровь из вен в артерии. У здорового человека количество притекающей к сердцу крови равно количеству оттекающей. Скорость тока крови по артериям, капиллярам, венам различная и зависит от ширины просвета этих сосудов. По капиллярам большого круга кровообращения кровь течет медленно со скоростью 0,5 мм 1 с. Медленное движение крови по капиллярам способствует обменным процессам между кровью и прилежащими к капилляра тканями. Эти обменные процессы совершаются на огромной площади - 6300 м2. Такова общая поверхность стенок капилляров в теле человека.

Cлайд 9

Давление крови в сосудах Кровяным давлением называют давление, которое оказывает кровь на стенки кровеносных сосудов. Зависит кровяное давление от силы, с которой кровь выбрасывался в аорту при систоле желудочков, и от сопротивления мелких сосудов (артериол, капилляров) току крови. Важнейшее условие тока крови по сосудам - различное давление в венах и артериях (давление крови в аорте 120, а в венах – 3-8 мм рт. ст.). Кровь из области большего давления движется в область меньшего давления.

Cлайд 10

Из-за ритмичной работы сердца давление крови в артериях колеблется. При систоле желудочков и выбросе крови в аорту давление в артериях повышается, а при диастоле понижается. Наибольшее давление при систоле желудочков называют систолическим давлением, самое низкое давление при диастоле - диастолическим давлением. У взрослых здоровых людей максимальное (систолическое) давление равно 110-120 мм рт. ст., а минимальное (диастолическое) - 70-80 мм рт. ст.

Cлайд 11

У детей из-за большой эластичности стенок артерий давление крови ниже, чем у взрослых людей. В пожилом и старческом возрасте при уменьшении эластичности стенок сосудов давление повышается. Разность между максимальным и минимальным давлением называется пульсовым давлением. Его величина в норме составляет 40- 50 мм рт. ст.

Cлайд 12

Пульс Пульс - это ритмичные колебания стенок артерий при про хождении по ним крови. Колебания эти возникают благодаря со кращениям сердца (60-70 ударов в 1 мин). При систоле левого желудочка кровь с силой выбрасывается в аорту и растягивает ее стенки. При диастоле стенки аорты, обладающие эластичностью, упругостью, возвращаются в исходное положение. Эти растяжения и сокращения стенок аорты и вызывают их ритмичные колебания. Пульс определяется чаще всего на лучевой артерии в нижних отделах предплечья, ближе к кисти, или на тыльной артерии стопы на уровне голеностопного сустава.

Cлайд 13

Движение крови по венам По венам кровь возвращается к сердцу. Движение крови по венам обеспечивается уже не силой сердечных сокращений, а другими факторами. Давление крови, создаваемое сердцем, в начальных отделах вен низкое, всего 10-15 мм рт. ст. Поэтому движению крови по тонкостенным венам в сторону сердца способствуют: 1) сокращение близлежащих к венам скелетных мышц, которые сдавливают вены и этим проталкивают кровь к сердцу; 2) наличие у вен клапанов, кото рые препятствуют обратному току крови и пропускают ее только в сторону сердца; 3) отрицательное при дыхательных движениях давление в грудной полости, что оказывает присасывающее дей ствие и помогает движению крови по венам к сердцу.

Cлайд 14

Регуляция функций сердечно-сосудистой системы Работа сердца, тонус стенок кровеносных сосудов и поддержание постоянства кровяного давления регулируются вегетативной нервной системой, неподконтрольной нашему сознанию. В стенках аорты, сонных и других артерий, крупных вен имеются чувствительные нервные окончания - барорецепторы, воспринимающие давление крови, и хеморецепторы, улавливающие изменения состава крови. Кровеносные сосуды в здоровом организме находятся в несколько напряженном состоянии, которое называют сосудистым тонусом.

Cлайд 15

Нервные импульсы о состоянии сосудов, их тонуса поступают по сердечным нервам в сосудодвигательный центр, расположенный в продолговатом мозге. Сосудодвигательные центры имеются в сером веществе спинного мозга. Все эти центры контролируются из соответствующих отделов гипоталамуса (промежуточногомозга). При понижении давления крови в сосудах импульсы из сосудодвигательных центров усиливают сокращения сердца, повыша ют тонус сосудистых стенок, сосуды суживаются, и давление крови в них выравнивается. При повышении давления сила и частота сердечных сокращений уменьшаются, тонус сосудов также уменьшается, сосуды расширяются, и давление нормализуется. Благодаря рефлекторным механизмам осуществляется саморегуляция сосудистого тонуса и уровня давления крови в сосудах.

Cлайд 16

В регуляции сосудистого тонуса (и, соответственно, давления крови в сосудах) участвуют также гуморальные механизмы. Изменения в химическом составе крови влияют на возбудимость и проводимость нервных импульсов в сердце, на силу и частоту сердечных сокращений. При всплеске эмоций (радость, страх, гнев) в кровь выбрасываются гормоны надпочечников (адреналин и норадреналин), усиливающие работу сердца и суживающие сосуды. Гормон гипофиза вазопрессин также суживает сосуды. Сосудорасширяющее действие оказывают ацетилхолин, гистамин и другие биологически активные вещества. В экстремальных ситуациях, например при больших кровопотерях, тонус сосудов поддерживается выбросом крови из так называемых кровяных депо (кожа, печень и др.). В то же время при потере более 30 % крови биологические механизмы не в состоя нии обеспечить непрерывный ток крови, и организм может погибнуть. краткое содержание других презентаций

«Периферический отдел нервной системы» - Вегетативные рефлексы. Симпатическая иннервация. Вегетативный отдел нервной системы. Метасимпатическая нервная система. Висцеральные афференты. Принцип деятельности вегетативного отдела. Симпатический отдел нервной системы. Роль парасимпатической иннервации. Физиология и этология животных. Периферический соматический отдел нервной системы. Особенности. Влияния вегетативной иннервации. Парасимпатическая иннервация.

«Автономная вегетативная нервная система» - Возбуждение симпатической системы. Отросток первой клетки (преганглионарный) оканчивается в нервном узле. Эффекты парасимпатической системы. Постганглионарные нейроны. Функции, не нужные для преодоления внезапной нагрузки. Вегетативные нервные узлы располагаются за пределами ЦНС. За что отвечает соматическая часть нервной системы. Центральная и периферическая части. Симпатическая НС. Симпатический, парасимпатический и метасимпатический отделы.

«Биология «Нервная система»» - Крупный нейрон. Двигательные нервные окончания. Тельце Фатера. Нейрон состоит из тела (сомы) и отростков. Механорецепторы. Тельца Руффини. Структурные элементы нервной системы. Общие принципы организации нервной системы. Цель работы. Тактильные рецепторы. Особенности организации нервных окончаний. Нервные окончания. Нервная система. Концевые колбы Краузе. Синаптические нервные окончания. Эпидермис.

«Центральная нервная система» - Кора больших полушарий головного мозга. Рефлексы, осуществляемые с участием центров спинного мозга. Тонические рефлексы. Средний мозг. Продолговатый мозг и варолиев мост. Чувствительные нейроны располагаются в 3 и 4 слоях коры. Физиологическая роль центральной нервной системы. Стато-кинетические рефлексы. Центральная нервная система (ЦНС) – это головной и спинной мозг. У животных исследуется ряд рефлексов.

«Особенности высшей нервной деятельности человека» - Собака ест из миски. Функции мозга. Виды торможения психической деятельности. Высшие отделы нервной системы. Особенности высшей нервной деятельности человека. Условия выработки условных рефлексов. Выработка условного рефлекса. Инсайт. Основные характеристики условного рефлекса. Собака начинает есть. Фистула для сбора слюны. Классификация условных рефлексов. Выделяется слюна. Условные рефлексы. Особенности высшей нервной деятельности.

«Вегетативный отдел нервной системы» - Мезенцефальный отдел. Парасимпатотонические кризы. Симпатическая часть вегетативной нервной системы. Сакральный отдел. Рефлекторный нервный путь слюноотделения. Вегетативная нервная система. Бульбарный отдел. Фармакологические пробы. Дермографизм. Ортоклиностатический рефлекс. Функции внутренних органов. Пиломоторный рефлекс. Проба с пилокарпином. Болезнь Рейно. Симпатотонические кризы. Слюноотделение.

Подобные документы

    Морфологические особенности строения и функций нервной системы у новорожденного. Анатомо-физиологическое состояние спинного мозга, слуха и зрения ребенка. Рефлексы и восприятия окружающей среды новорожденным. Анатомия спинного и головного мозга.

    реферат, добавлен 15.12.2016

    Эмбриогенез центральной нервной системы (ЦНС). Развитие переднего мозга. Внутриутробное формирование нервной системы. Головной мозг у детей после рождения, его структурно-морфологическая незрелость. Функциональная особенность ЦНС у детей раннего возраста.

    презентация, добавлен 09.03.2017

    Понятие нервной системы. Общая характеристика этапов развития нервной системы по триместрам беременности: развитие головного и спинного мозга, вестибулярного анализатора, организация и миелинизация структур. Развитие ликвора и кровеносной системы мозга.

    реферат, добавлен 20.10.2012

    Эмбриональное развитие нервной системы. Лечение грыжи спинного мозга. Дефекты развития головного и спинного мозга, черепа и позвоночника. Этиология пороков развития нервной системы, требующие хирургической коррекции. Спинномозговые грыжи, их клиника.

    доклад, добавлен 13.11.2019

    Кровоснабжение спинного мозга. Анатомо-функциональная классификация нервной системы. Функции центральной нервной системы. Топографические взаимоотношения сегментов спинного мозга с позвоночным столбом. Схема источников кровоснабжения спинного мозга.

    реферат, добавлен 14.10.2009

    Иерархическая структура нервной системы. Строение спинного и головного мозга, двигательных зон коры головного мозга. Области мозга, имеющие отношение к психике и контролирующие органы чувств человека. Схема функциональной системы по П.К. Анохину.

    презентация, добавлен 29.10.2015

    Оценка информативности ведущих клинических синдромов при изолированных формах врожденных пороков развития центральной нервной системы для ранней их диагностики. Соматическая характеристика детей и подростков с пороками центральной нервной системы.

    Возникновение центральной нервной системы. Особенности безусловных и условных рефлексов. Высшая нервная деятельность в раннем и дошкольном периодах развития (от рождения до 7 лет). Изменение высшей нервной деятельности у детей в процессе учебных занятий.

    реферат, добавлен 19.09.2011

    Характеристика отделов центральной нервной системы. Внутреннее и внешнее строение спинного и головного мозга, их функции и особенности развития. Главные аспекты физиологии отделов головного мозга и проводящих путей. Биоэлектрическая активность мозга.

    реферат, добавлен 22.04.2010

    Структура и функции нервной системы. Типы нейронов. Внутреннее строение спинного мозга. Липиды центральной и периферической нервной системы. Изучение особенностей обмена в нервной ткани. Гипоксия и окислительный стресс. Свойства нейроспецифичных белков.

возрастные особенности нервной системы и высшей нервной деятельности

План

1. Развитие центральной нервной системы в процессе онтогенеза. 1

2. Основные этапы развития высшей нервной деятельности. 6

3. Возрастные особенности психофизиологических функций. 9

1. Развитие центральной нервной системы в процессе онтогенеза

Нервная система координирует и регулирует деятельность всех органов и систем, обеспечивая функционирование организма как единого целого; осуществляет адаптацию организма к изменениям окружающей обстановки, поддерживает постоянство его внутренней среды.

Топографически нервную систему человека подразделяют на центральную и периферическую. К центральной нервной системе относят спинной и головной мозг. Периферическую нервную систему составляют спинномозговые и черепные нервы, их корешки, ветви, нервные окончания, сплетения и узлы, лежащие во всех отделах тела человека. Согласно анатомо-функциональной классификации, нервную систему условно подразделяют на соматическую и вегетативную. Соматическая нервная система обеспечивает иннервацию тела – кожи, скелетных мышц. Вегетативная нервная система регулирует обменные процессы во всех органах и тканях, а также рост и размножение, иннервирует все внутренние органы, железы, гладкую мускулатуру органов, сердце.

Нервная система развивается из эктодермы, через стадии нервной полоски и мозгового желобка с последующим образованием нервной трубки. Из ее каудальной части развивается спинной мозг, из ростральной части формируется сначала 3-х, а затем 5-ти мозговых пузырей, из которых в дальнейшем развиваются конечный, промежуточный, средний, задний и продолговатый мозг. Такая дифференцировка центральной нервной системы происходит на третьей-четвертой неделе эмбрионального развития.

В дальнейшем объем головного мозга увеличивается более интенсивно, чем спинного, и к моменту рождения составляет в среднем 400 г. Причем у девочек масса головного мозга несколько ниже, чем у мальчиков. Количество нейронов к моменту рождения соответствует уровню взрослого человека, но количество ветвлений аксонов, дендритов и синаптических контактов значительно возрастает после рождения.

Наиболее интенсивно масса головного мозга увеличивается первые 2 года после рождения. Затем темпы его развития немного снижаются, но продолжают оставаться высокими до 6-7 лет. Окончательное созревание головного мозга заканчивается к 17-20 годам. К этому возрасту, его масса у мужчин в среднем составляет 1400 г, а у женщин – 1250 г. Развитие головного мозга идет гетерохронно. Прежде всего, созревают те нервные структуры, от которых зависит нормальная жизнедеятельность организма на данном возрастном этапе. Функциональной полноценности достигают, прежде всего, стволовые, подкорковые и корковые структуры, регулирующие вегетативные функции организма. Эти отделы приближаются по своему развитию к мозгу взрослого человека уже в возрасте 2-4 лет.

Спинной мозг . В течение первых трех месяцев внутриутробной жизни спинной мозг занимает позвоночный канал на всю его длину. В дальнейшем позвоночник растет быстрее, чем спинной мозг. Поэтому нижний конец спинного мозга поднимается в позвоночном канале. У новорожденного ребенка нижний конец спинного мозга находится на уровне III поясничного позвонка, у взрослого человека – на уровне II поясничного позвонка.

Спинной мозг новорожденного имеет длину 14 см. К 2 годам длина спинного мозга достигает 20 см, а к 10 годам, по сравнению с периодом новорожденности, удваивается. Быстрее всего растут грудные сегменты спинного мозга. Масса спинного мозга у новорожденного составляет около 5,5 г, у детей 1-го года – около 10 г. К 3 годам масса спинного мозга превышает 13 г, к 7 годам равна примерно 19 г. У новорожденного центральный канал шире, чем у взрослого. Уменьшение его просвета происходит главным образом в течение 1-2 годов, а также в более поздние возрастные периоды, когда наблюдается увеличение массы серого и белого вещества. Объем белого вещества спинного мозга возрастает быстро, особенно за счет собственных пучков сегментарного аппарата, формирование которого происходит в более ранние сроки по сравнению со сроками формирования проводящих путей.

Продолговатый мозг . К моменту рождения он вполне развит как в анатомическом, так и функциональном отношении. Его масса достигает 8 г у новорожденного. Продолговатый мозг занимает более горизонтальное, чем у взрослых, положение и отличается степенью миелинизации ядер и путей, размерами клеток и их расположением. По мере развития плода размеры нервных клеток продолговатого мозга увеличиваются, а размеры ядра с ростом клетки относительно уменьшаются. Нервные клетки новорожденного имеют длинные отростки, в их цитоплазме содержится тигроидное вещество. Ядра продолговатого мозга формируются рано. С их развитием связано становление в онтогенезе регуляторных механизмов дыхания, сердечно-сосудистой, пищеварительной и др. систем.

Мозжечок . В эмбриональном периоде развития сначала формируется древняя часть мозжечка – червь, а затем – его полушария. На 4-5-м месяце внутриутробного развития разрастаются поверхностные отделы мозжечка, образуются борозды и извилины. Наиболее интенсивно мозжечок растет в первый год жизни, особенно с 5-го по 11-й месяц, когда ребенок учится сидеть и ходить. У годовалого ребенка масса мозжечка увеличивается в 4 раза и в среднем составляет 95 г. После этого наступает период медленного роста мозжечка, к 3 годам размеры мозжечка приближаются к его размерам у взрослого. У 15-летнего ребенка масса мозжечка – 150 г. Кроме того, быстрое развитие мозжечка происходит и в период полового созревания.

Серое и белое вещество мозжечка развивается неодинаково. У ребенка рост серого вещества осуществляется относительно медленнее, чем белого. Так, от периода новорожденности до 7 лет количество серого вещества увеличивается приблизительно в 2 раза, а белого – почти в 5 раз. Из ядер мозжечка раньше других формируется зубчатое ядро. Начиная от периода внутриутробного развития и до первых лет жизни детей, ядерные образования выражены лучше, чем нервные волокна.

Клеточное строение коры мозжечка у новорожденного значительно отличается от взрослого. Ее клетки во всех слоях отличаются по форме, размерам и количеству отростков. У новорожденного еще не полностью сформированы клетки Пуркинье, в них не развито тигроидное вещество, ядро почти полностью занимает клетку, ядрышко имеет неправильную форму, дендриты клеток слаборазвиты. Формирование этих клеток идет бурно после рождения и заканчивается к 3-5 неделям жизни. Клеточные слои коры мозжечка у новорожденного значительно тоньше, чем у взрослого. К концу 2-го года жизни их размеры достигают нижней границы величины у взрослого. Полное формирование клеточных структур мозжечка осуществляется к 7-8 годам.

Мост . У новорожденного расположен выше, чем у взрослого, а к 5 годам располагается на том же уровне, что и у зрелого организма. Развитие моста связано с формированием ножек мозжечка и установлением связей мозжечка с другими отделами центральной нервной системы. Внутреннее строение моста у ребенка не имеет отличительных особенностей по сравнению с взрослым человеком. Ядра расположенных в нем нервов к периоду рождения уже сформированы.

Средний мозг . Его форма и строение почти не отличаются от взрослого. Ядро глазодвигательного нерва хорошо развито. Хорошо развито красное ядро, его крупноклеточная часть, обеспечивающая передачу импульсов из мозжечка к мотонейронам спинного мозга, развивается раньше, чем мелкоклеточная, через которую передается возбуждение от мозжечка к подкорковым образованиям мозга и к коре больших полушарий.

У новорожденного черная субстанция представляет собой хорошо выраженное образование, клетки которого дифференцированы. Но значительная часть клеток черной субстанции не имеет характерного пигмента (меланина), который появляется с 6 месяцев жизни и максимального развития достигает к 16 годам. Развитие пигментации находится в прямой связи с совершенствованием функций черной субстанции.

Промежуточный мозг . Отдельные формации промежуточного мозга имеют свои темпы развития. Закладка зрительного бугра осуществляется к 2 месяцам внутриутробного развития. На 3-м месяце разграничивается таламус и гипоталамус. На 4-5-м месяце между ядрами таламуса проявляются светлые прослойки развивающихся нервных волокон. В это время клетки еще слабо дифференцированы. В 6 месяцев становятся хорошо видными клетки ретикулярной формации зрительного бугра. Другие ядра зрительного бугра начинают формироваться с 6 месяцев внутриутробной жизни, к 9 месяцам они хорошо выражены. С возрастом происходит их дальнейшая дифференциация. Усиленный рост зрительного бугра осуществляется в 4-летнем возрасте, а размеров взрослого он достигает к 13 годам жизни.

В эмбриональном периоде развития закладывается подбугорная область, но в первые месяцы внутриутробного развития ядра гипоталамуса не дифференцированы. Только на 4-5-м месяце происходит накопление клеточных элементов будущих ядер, на 8-м месяце они хорошо выражены.

Ядра гипоталамуса созревают в разное время, в основном к 2-3 годам. К моменту рождения структуры серого бугра еще полностью не дифференцированы, что приводит к несовершенству теплорегуляции у новорожденных и детей первого года жизни. Дифференциация клеточных элементов серого бугра заканчивается позднее всего – к 13-17 годам.

Кора больших полушарий . До 4-го месяца развития плода поверхность больших полушарий гладкая и на ней отмечается лишь вдавливание будущей боковой борозды, которая окончательно формируется только ко времени рождения. Наружный корковый слой растет быстрее внутреннего, что приводит к образованию складок и борозд. К 5 месяцам внутриутробного развития образуются основные борозды: боковая, центральная, мозолистая, теменно-затылочная и шпорная. Вторичные борозды появляются после 6 месяцев. К моменту рождения первичные и вторичные борозды хорошо выражены, и кора больших полушарий имеет такой же тип строения, как и у взрослого. Но развитие формы и величины борозд и извилин, формирование мелких новых борозд и извилин продолжается и после рождения.

К моменту рождения кора больших полушарий имеет такое же количество нервных клеток (14-16 млрд.), как и у взрослого. Но нервные клетки новорожденного незрелы по строению, имеют простую веретенообразную форму и очень небольшое количество отростков. Серое вещество коры больших полушарий плохо дифференцировано от белого. Кора больших полушарий относительно тоньше, корковые слои слабо дифференцированы, а корковые центры недостаточно сформированы. После рождения кора больших полушарий развивается быстро. Соотношение серого и белого вещества к 4 месяцам приближается к соотношению у взрослого.

К 9 месяцам становятся более отчетливыми первые три слоя коры, а к году общая структура мозга приближается к зрелому состоянию. Расположение слоев коры, дифференцирование нервных клеток в основном завершается к 3 годам. В младшем школьном возрасте и в период полового созревания продолжающееся развитие головного мозга характеризуется увеличением количества ассоциативных волокон и образованием новых нервных связей. В этот период масса мозга увеличивается незначительно.

В развитии коры больших полушарий сохраняется общий принцип: сначала формируются филогенетически более старые структуры, а затем более молодые. На 5-м месяце, раньше других появляются ядра, регулирующие двигательную активность. На 6-м месяце появляется ядро кожного и зрительного анализатора. Позже других развиваются филогенетически новые области: лобная и нижнетеменная (на 7-м месяце), затем височно-теменная и теменно-затылочная. Причем филогенетически более молодые отделы коры больших полушарий с возрастом относительно увеличиваются, а более старые, наоборот, уменьшаются.

Презентация на тему: Нервная система – система управления (регуляции) функций в организме











































1 из 42

Презентация на тему: Нервная система – система управления (регуляции) функций в организме

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

№ слайда 3

Описание слайда:

Рефлекторный принцип регуляции функций (рефлекторная теория) Узловой момент развития рефлекторной теории – классический труд И.М.Сеченова (1863) «Рефлексы головного мозга». Основной тезис: Все виды сознательной и бессознательной жизни человека представляют собой рефлекторные реакции.

№ слайда 4

Описание слайда:

Рефлекс, рефлекторная дуга, рецептивное поле Рефлекс - универсальная форма взаимодействия организма и среды, реакция организма, возникающая на раздражение рецепторов и осуществляемая с участием нервной системы. В естественных условиях рефлекторная реакция происходит при пороговом, надпороговом раздражении входа рефлекторной дуги – рецептивного поля данного рефлекса. Рецептивное поле – определенный участок воспринимающей чувствительной поверхности организма с расположенными здесь рецепторными клетками, раздражение которых инициирует, запускает рефлекторную реакцию. Рецептивные поля разных рефлексов имеют разную локализацию. Рецепторы специализированы для оптимального восприятия адекватных раздражителей. Структурная основа рефлекса – рефлекторная дуга. Рефлекс (<лат. reflexus отраженный). Термин ввел И. Прохаска. Идея отраженного функционирования принадлежит Р. Декарту.

№ слайда 5

Описание слайда:

Рефлекторная дуга Рефлекторная дуга – последовательно соединенная цепочка нейронов, обеспечивающая осуществление реакции (ответа) на раздражение. Рефлекторная дуга состоит из: Афферентного (А); Центрального (Ц,В); Эфферентного (Э) звеньев. Звенья связаны синапсами (с). В зависимости от сложности структуры рефлекторной дуги различают рефлексы: Моносинаптические (А→с ¦Э); Полисинаптические (А→с ¦В→с ¦Э).

№ слайда 6

Описание слайда:

Рефлекторное кольцо Обратная связь (обратная афферентация) – структурная основа рефлекторного кольца: воздействие работающего органа на состояние своего центра. Петля обратной связи – информация о реализованном результате рефлекторной реакции в нервный центр, выдающий исполнительные команды. Значение: Вносит постоянные поправки в рефлекторный акт.

№ слайда 7

Описание слайда:

Классификация рефлексов Безусловные и условные (по способу образования рефлекторной дуги: генетически запрограммирована или сформирована в онтогенезе); Спинальные, бульбарные, мезэнцефальные, кортикальные (по расположению основных нейронов, без которых рефлекс не реализуется); Интерорецептивные, экстерорецептивные (по локализации рецепторов); Защитные, пищевые, половые (по биологическому значению рефлексов); Соматические, вегетативные (по участию отдела нервной системы).Если эффекторами являются внутренние органы, говорят о вегетативных рефлексах, если скелетные мышцы – о соматических рефлексах); Сердечные, сосудистые, слюноотделительные (по конечному результату).

№ слайда 8

Описание слайда:

Нервный центр: определение Рефлекторная деятельность организма во многом определяется общими свойствами нервных центров. Нервный центр – «ансамбль» нейронов, согласованно включающихся в регуляцию определенной функции или в осуществление рефлекторного акта. Нейроны ЦНС (нервных центров): Преимущественно, вставочные (интернейроны); Мультиполярные (дендритное дерево! шипики); Разнообразные по химизму: разные нейроны секретируют различные медиаторы (АХ, ГАМК, глицин, эндорфины, дофамин, серотонин, нейропептиды и др.)

№ слайда 9

Описание слайда:

Классификация нервных центров Морфологический критерий (локализация в отделах ЦНС): Спинальные центры (в спинном мозге); Бульбарные (в продолговатом мозге); Мезэнцефальные (в среднем мозге); Диэнцефальные (в промежуточном мозге); Таламические (в зрительных буграх); Корковые и подкорковые.

№ слайда 10

Описание слайда:

Нервные центры В основе нервной деятельности лежат активные и противоположные по своим функциональным свойствам процессы: Возбуждение; Торможение. Функциональное значение торможения: Координирует функции, т.е. направляет возбуждение по определенным путям, к определенным нервным центрам, выключая те пути и нейроны, активность которых в данный момент не нужна для конкретного приспособительного результата. Выполняет охранительную (защитную) функцию, предохраняя нейроны от перевозбуждения и истощения при действии сверхсильных и длительных раздражителей.

№ слайда 11

Описание слайда:

Особенности распространения возбуждения в ЦНС: односторонность В ЦНС, внутри рефлекторной дуги и нейронных цепей возбуждение идет, как правило, в одном направлении: от афферентного нейрона к эфферентному. Это обусловлено особенностями структуры химического синапса: медиатор выделяется только пресинаптической частью.

№ слайда 12

Описание слайда:

Особенности распространения возбуждения в ЦНС: замедленное проведение Известно, что возбуждение по нервным волокнам (периферия) проводится быстро, а в ЦНС– относительно медленно (синапсы!). Время, в течение которого возбуждение проводится в ЦНС с афферентного на эфферентный путь –центральное время рефлекса (3 мс). Чем сложнее рефлекторная реакция, тем больше время ее рефлекса. Удетей время центральной задержки больше, оно увеличивается также при различных воздействиях на организм человека. При утомлении водителя оно может превышать 1000 мс, что приводит в опасных ситуациях к замедленным реакциям и дорожным авариям.

№ слайда 13

Описание слайда:

Особенности распространения возбуждения в ЦНС: суммация Это свойство впервые описал И.М. Сеченов (1863): При действии ряда подпороговых стимулов на рецептор или афферентный путь возникает ответная реакция. Виды суммации: Последовательная (временная); Пространственная. Один подпороговый афферентный стимул не вызывает ответной реакции, а создает в ЦНС местное возбуждение (локальный ответ) –недостаточное для ПД количество медиатора).

№ слайда 14

Описание слайда:

Особенности распространения возбуждения в ЦНС: временная суммация А. В ответ на одиночный раздражитель возникает синаптический ток (затененная область) и синаптический потенциал, Б. Если вскоре после одного постсинаптического потенциала возникает другой, то он складывается с ним. Это явление называется временной суммацией. Чем короче при этом будет интервал между двумя последовательными синаптическими потенциалами, тем выше будет амплитуда суммарного потенциала.

№ слайда 15

Описание слайда:

Особенности распространения возбуждения в ЦНС: пространственная суммация Пространственная суммация: два или несколько подпороговых импульсов приходят в ЦНС по разным афферентным путям и вызывают ответную рефлекторную реакцию. Для возникновения импульса в нейроне необходимо, чтобы начальный сегмент аксона, обладающий низким порогом возбуждения, был деполяризован до критического уровня

№ слайда 16

Описание слайда:

Особенности распространения возбуждения в ЦНС: окклюзия Феномен окклюзии (<лат occlusus запертый) – уменьшение (ослабление) ответной реакции при совместном раздражении двух рецептивных полей по сравнению с арифметической суммой реакций при изолированном (раздельном) раздражении каждого из рецептивных полей. Причина феномена – перекрытие путей на вставочных или эфферентных нейронах благодаря конвергенции.

№ слайда 17

Описание слайда:

№ слайда 18

Описание слайда:

Особенности распространения возбуждения в ЦНС: проторение (постактивационное облегчение) Проторение (постактивационное облегчение): После возбуждения, вызванного ритмической стимуляцией, последующий стимул вызывает больший эффект; Для поддержания прежнего уровня ответной реакции требуется меньшая сила последующего раздражения. Объяснение: Структурно-функциональные изменения в синаптическом контакте: Накопление у пресинаптической мембраны везикул с медиатором;

№ слайда 19

Описание слайда:

Свойства нервных центров: высокая утомляемость Длительное повторное раздражение рецептивного поля рефлекса →ослабление рефлекторной реакции вплоть до полного исчезновения – утомление. Объяснение: В синапсах: истощается запас медиатора, уменьшаются энергетические ресурсы, происходит адаптация постсинаптических рецепторов к медиатору; Малая лабильность центра → нервный центр функционирует с максимальной нагрузкой, так как получает стимулы от высоколабильного нервного волокна, превышающие лабильность нерва→утомление.

№ слайда 20

Описание слайда:

№ слайда 21

Описание слайда:

Свойства нервных центров: повышенная чувствительность к недостатку кислорода Обусловлена высокой интенсивность обменных процессов: 100 г нервной ткани (головной мозг собаки) использует О2 в 22 раза больше, чем 100 г мышечной ткани. Мозг человека поглощает 40 – 50 мл О2 в минуту: 1/6 – 1/8 часть всего О2, потребляемого телом в состоянии покоя. Чувствительность нейронов разных отделов мозга: Смерть нейронов коры больших полушарий - через 5 – 6 мин. после полного прекращения кровоснабжения; Восстановление функций нейронов ствола мозга возможна после 15 – 20 мин полного прекращения кровоснабжения; Функции нейронов спинного мозга сохраняется и после 30 минутного отсутствия кровообращения.

№ слайда 22

Описание слайда:

Свойства нервных центров: пластичность и тонус Пластичность – функциональная подвижность нервного центра: возможность его включения в регуляцию различных функций. Тонус – наличие определенной фоновой активности. Объяснение: определенное количество нейронов мозга в покое (в отсутствие специальных внешних раздражителей) находится в состоянии постоянного возбуждения – генерирует фоновые импульсные потоки. Обнаружено наличие в высших отделах мозга «сторожевых нейронов» даже в состоянии физиологического сна

№ слайда 23

Описание слайда:

Торможение в ЦНС Торможение - активный процесс, который ослабляет существующую деятельность или препятствует ее возникновению. Впервые экспериментально процесс торможения в ЦНС наблюдал в 1862 г. И. М. Сеченов в опыте, который и получил название «опыт торможения Сеченова». «Коперник второй Вселенной».

№ слайда 24

Описание слайда:

Виды торможения Первичное и вторичное (наличие или отсутствие специального морфологического образования - тормозного синапса); Пресинаптическое и постсинаптическое (место возникновения – зона межнейронального контакта); А также Возвратное; Реципрокное; Латеральное.

№ слайда 25

Описание слайда:

Вторичное торможение Осуществляется без участия специальных тормозных структур и развивается в возбуждающих синапсах. Было изучено Н.Е.Введенским и названо пессимальным. Н.Е. Введенский показал, что возбуждение может сменяться торможением в любом участке, обладающем низкой лабильностью. В ЦНС наименьшей лабильностью обладают синапсы.

№ слайда 26

Описание слайда:

Первичное торможение в ЦНС Первичное торможение связывают с наличием в ЦНС специального морфологического субстрата – тормозного синапса (нейрона). Тормозные нейроны – тип интернейронов, аксоны которых образуют на телах и дендритах возбуждающих нейронов тормозные синапсы. Примеры тормозных нейронов: грушевидные клетки (клетки Пуркинье) коры мозжечка и клетки Реншоу в спинном мозге.

Описание слайда:

Торможение в ЦНС: пресинаптическое торможение Механизм: возбуждение Т→ деполяризация мембраны афферента → уменьшение амплитуды ПД в афферентах → уменьшение количества выделяемого медиатора из пресинаптической области синапса →уменьшение амплитуды ВПСП на мембране мотонейрона →уменьшение активности мотонейрона. Медиатор тормозного синапса - ГАМК. Значение: координирующее. Обеспечивает тонкую регуляция.

№ слайда 30

Описание слайда:

Торможение в ЦНС: реципрокное торможение Пример реципрокного (сопряженного) торможения – взаимное торможение центров мышц-антагонистов. Механизм: возбуждение проприорецепторов (рецепторы растяжения) мышц- сгибателей → активация мотонейронов данных мышц и вставочных тормозных нейронов →постсинаптическое торможение мотонейронов мышц-разгибателей.

Описание слайда:

Принципы координации нервных центров: «общий конечный путь» (конвергенция) Выдвинут Ч.С. Шеррингтоном в 1906 г. Конвергенция – морфологическая основа координации, – исходит из анатомического соотношения между афферентными и эфферентными нейронами (5:1). Такое соотношение Шеррингтон схематически представил в виде воронки:

№ слайда 33

Описание слайда:

Принципы координации нервных центров: «общий конечный путь» Согласно этому принципу к одному мотонейрону приходит множество импульсов от различных рефлексогенных зон, но только некоторые из них приобретают рабочее значение. Самые разнообразные стимулы могут стать причиной одной и той же рефлекторной реакции, т.е. происходит борьба за «общий конечный путь». Функциональные особенности нервных центров определяют какой из импульсов, сталкивающихся на пути к мотонейрону, окажется победителем и завладеет общим конечным путем.

№ слайда 34

Описание слайда:

Принципы координации нервных центров: доминанта Принцип доминанты (лат. dominare господствовать) – установлен А. А. Ухтомским (1923). По Ухтомскому: доминанта – господствующий очаг возбуждения, предопределяющий характер текущих реакций нервных центров в данный момент. Доминантный центр (очаг) может возникнуть в различных этажах ЦНС при длительном действии гуморальных или рефлекторных раздражителей. «…Внешним выражением доминанты является стационарно поддерживаемая работа или рабочая поза организма…». (А.А.Ухтомский. Т.1. С. 165. 1950)

№ слайда Описание слайда:

Доминанта А.А. Ухтомский о (+) и (–) доминанты: «… Доминанта, как общая формула, ещё ничего не обещает. Как общая формула, доминанта говорит лишь то, что из самых умных вещей глупец извлечет повод для продолжения глупостей, а из самых неблагоприятных условий умный извлечет умное.»

№ слайда 37

Описание слайда:

Принципы координации нервных центров: иерархия и субординация В ЦНС имеют место: Иерархические взаимоотношения (греч. hierarchia < hieros – священный + arche – власть) – высшие отделы мозга контролируют нижележащие; Субординация (соподчинение) –нижележащий отдел подчиняется вышележащим отделам.

№ слайда 38

Описание слайда:

Принципы координации нервных центров: иррадиация Иррадиация (лат. irradio освещать, озарять) – распространение процессов возбуждения (торможения). Иррадиация тем шире, чем сильнее и длительнее афферентное раздражение. В основе иррадиации – многочисленные связи аксонов афферентных нейронов с дендритами и телами вставочных нейронов, объединяющих нервные центры. Иррадиация лежит в основе формирования временной (условно-рефлекторной) связи. Иррадиация (как возбуждения, так и торможения) имеет свои пределы: →концентрация (формирование доминанты, исключение хаотичности).

Описание слайда:

Возрастные особенности свойств нервных центров Для организма ребенка характерна более высокая утомляемость нервных центров по сравнению со взрослыми, связанная с меньшими запасами медиаторов в синапсах и их быстрым истощением в результате ритмических раздражений. Нервные центры детей более чувствительны к недостатку кислорода и глюкозы вследствие высокого уровня обмена веществ. На ранних стадиях развития нервные центры обладают большей компенсаторной способностью и пластичностью.

№ слайда 41

Описание слайда:

Возрастные особенности координации нервных процессов Ребенок рождается с несовершенной координацией рефлекторных реакций. Ответная реакция у новорожденного всегда связана с обилием ненужных движений и широкими неэкономичными вегетативными сдвигами. В основе рассматриваемых явлений лежит более высокая степень иррадиации нервных процессов, которая во многом связана с плохой «изоляцией» нервных волокон (отсутствием у многих периферических и центральных нервных волокон миелиновой оболочки) → процесс возбуждения с одного нерва легко переходит на соседний. на первых этапах постнатального развития ведущее значение в регуляции рефлекторной деятельности имеет не кора, а подкорковые структуры головного мозга.

№ слайда 42

Описание слайда:

Возрастные особенности координации нервных процессов Дети, в сравнении со взрослыми, имеют: меньшую специализацию нервных центров, более распространенные явления конвергенции и более выраженные явления индукции нервных процессов. Доминантный очаг у ребенка возникает быстрее и легче (неустойчивость внимания детей). Новые раздражители легко вызывают и новую доминанту в мозге ребенка. Своего совершенства координационные процессы достигают только к 18 – 20 годам.



gastroguru © 2017