Охотничья дробь. Что такое числовая дробь

Одним из самых сложных разделов математики по сей день считаются дроби. История дробей насчитывает не одно тысячелетие. Умение делить целое на части возникло на территории древнего Египта и Вавилона. С годами усложнялись операции, проделываемые с дробями, менялась форма их записи. У каждого были свои особенности во «взаимоотношениях» с этим разделом математики.

Что такое дробь?

Когда возникла необходимость делить целое на части без лишних усилий, тогда и появились дроби. История дробей неразрывна связана с решением утилитарных задач. Сам термин «дробь» имеет арабские корни и происходит от слова, обозначающего «ломать, разделять». С древних времен в этом смысле мало что изменилось. Современное определение звучит следующим образом: дробь — это часть или сумма частей единицы. Соответственно, примеры с дробями представляют собой последовательное выполнение математических операций с долями чисел.

Сегодня различают два способа их записи. возникли в разное время: первые являются более древними.

Пришли из глубины веков

Впервые оперировать дробями начали на территории Египта и Вавилона. Подход математиков двух государств имел значительные отличия. Однако начало и там и там было положено одинаково. Первой дробью стала половина или 1/2. Дальше возникла четверть, треть и так далее. Согласно данным археологических раскопок, история возникновения дробей насчитывает около 5 тысяч лет. Впервые доли числа встречаются в египетских папирусах и на вавилонских глиняных табличках.

Древний Египет

Виды обыкновенных дробей сегодня включают в себя и так называемые египетские. Они представляют собой сумму нескольких слагаемых вида 1/n. Числитель — всегда единица, а знаменатель — натуральное число. Появились такие дроби, как ни трудно догадаться, в древнем Египте. При расчетах все доли старались записывать в виде таких сумм (например, 1/2 + 1/4 + 1/8). Отдельными обозначениями обладали только дроби 2/3 и 3/4, остальные разбивались на слагаемые. Существовали специальные таблицы, в которых доли числа представлялись в виде суммы.

Наиболее древнее из известных упоминаний такой системы встречается в Математическом папирусе Ринда, датируемом началом второго тысячелетия до нашей эры. Он включает таблицу дробей и математические задачи с решениями и ответами, представленными в виде сумм дробей. Египтяне умели складывать, делить и умножать доли числа. Дроби в долине Нила записывались с помощью иероглифов.

Представление доли числа в виде суммы слагаемых вида 1/n, характерное для древнего Египта, использовалось математиками не только этой страны. Вплоть до Средних веков египетские дроби применялись на территории Греции и других государств.

Развитие математики в Вавилоне

Иначе выглядела математика в Вавилонском царстве. История возникновения дробей здесь напрямую связана с особенностями системы счисления, доставшейся древнему государству в наследство от предшественника, шумеро-аккадской цивилизации. Расчетная техника в Вавилоне была удобнее и совершеннее, чем в Египте. Математика в этой стране решала гораздо больший круг задач.

Судить о достижениях вавилонян сегодня можно по сохранившимся глиняным табличкам, заполненным клинописью. Благодаря особенностям материала они дошли до нас в большом количестве. По мнению некоторых в Вавилоне раньше Пифагора открыли известную теорему, что, несомненно, свидетельствует о развитии науки в этом древнем государстве.

Дроби: история дробей в Вавилоне

Система счисления в Вавилоне была шестидесятеричной. Каждый новый разряд отличался от предыдущего на 60. Такая система сохранилась в современном мире для обозначения времени и величин углов. Дроби также были шестидесятеричными. Для записи использовали специальные значки. Как и в Египте, примеры с дробями содержали отдельные символы для обозначения 1/2, 1/3 и 2/3.

Вавилонская система не исчезла вместе с государством. Дробями, написанными в 60-тиричной системе, пользовались античные и арабские астрономы и математики.

Древняя Греция

История обыкновенных дробей мало чем обогатилась в древней Греции. Жители Эллады считали, что математика должна оперировать лишь целыми числами. Поэтому выражения с дробями на страницах древнегреческих трактатов практически не встречались. Однако определенный вклад в этот раздел математики внесли пифагорейцы. Они понимали дроби как отношения или пропорции, а единицу считали также неделимой. Пифагор с учениками построил общую теорию дробей, научился проводить все четыре арифметические операции, а также сравнение дробей путем приведения их к общему знаменателю.

Священная римская империя

Римская система дробей была связана с мерой веса, называемой «асс». Она делилась на 12 долей. 1/12 асса называлась унцией. Для обозначения дробей существовало 18 названий. Приведем некоторые из них:

    семис — половина асса;

    секстанте — шестая доля асса;

    семиунция — пол-унции или 1/24 асса.

Неудобство такой системы заключалось в невозможности представить число в виде дроби со знаменателем 10 или 100. Римские математики преодолели трудность с помощью использования процентов.

Написание обыкновенных дробей

В Античности дроби уже писали знакомым нам образом: одно число над другим. Однако было одно существенное отличие. Числитель располагался под знаменателем. Впервые так писать дроби начали в древней Индии. Современный нам способ стали использовать арабы. Но никто из названных народов не применял горизонтальную черту для разделения числителя и знаменателя. Впервые она появляется в трудах Леонардо Пизанского, более известного как Фибоначчи, в 1202 году.

Китай

Если история возникновения обыкновенных дробей началась в Египте, то десятичные впервые появились в Китае. В Поднебесной империи их стали использовать примерно с III века до нашей эры. История десятичных дробей началась с китайского математика Лю Хуэя, предложившего использовать их при извлечении квадратных корней.

В III веке нашей эры десятичные дроби в Китае стали применяться при расчете веса и объема. Постепенно они все глубже начали проникать в математику. В Европе, однако, десятичные дроби стали использоваться гораздо позже.

Аль-Каши из Самарканда

Независимо от китайских предшественников десятичные дроби открыл астроном аль-Каши из древнего города Самарканда. Жил и трудился он в XV веке. Свою теорию ученый изложил в трактате «Ключ к арифметике», увидевшем свет в 1427 году. Аль-Каши предложил использовать новую форму записи дробей. И целая, и дробная часть теперь писались в одной строке. Для их разделения самаркандский астроном не использовал запятую. Он писал целое число и дробную часть разными цветами, используя черные и красные чернила. Иногда для разделения аль-Каши также применял вертикальную черту.

Десятичные дроби в Европе

Новый вид дробей начал появляться в трудах европейских математиков с XIII века. Нужно заметить, что с трудами аль-Каши, как и с изобретением китайцев они знакомы не были. Десятичные дроби появились в трудах Иордана Неморария. Затем их использовал уже в XVI веке Французский ученый написал «Математический канон», в котором содержались тригонометрические таблицы. В них Виет использовал десятичные дроби. Для разделения целой и дробной части ученый применял вертикальную черту, а также разный размер шрифта.

Однако это были лишь частные случаи научного использования. Для решения повседневных задач десятичные дроби в Европе стали применяться несколько позже. Произошло это благодаря голландскому ученому Симону Стевину в конце XVI века. Он издал математический труд «Десятая» в 1585 году. В нем ученый изложил теорию использования десятичных дробей в арифметике, в денежной системе и для определения мер и весов.

Точка, точка, запятая

Стевин также не пользовался запятой. Он отделял две части дроби при помощи нуля, обведенного в круг.

Впервые запятая разделила две части десятичной дроби только в 1592 году. В Англии, однако, вместо нее стали применять точку. На территории США до сих пор десятичные дроби пишут именно таким образом.

Одним из инициаторов использования обоих знаков препинания для разделения целой и дробной части был шотландский математик Джон Непер. Он высказал свое предложение в 1616-1617 гг. Запятой пользовался и немецкий ученый

Дроби на Руси

На русской земле первым математиком, изложившим деление целого на части, стал новгородский монах Кирик. В 1136 году он написал труд, в котором изложил метод «счисления лет». Кирик занимался вопросами хронологии и календаря. В своем труде он привел в том числе и деление часа на части: пятые, двадцать пятые и так далее доли.

Деление целого на части применялось при расчете размера налога в XV-XVII веках. Использовались операции сложения, вычитания, деления и умножения с дробными частями.

Само слово «дробь» появилось на Руси в VIII веке. Оно произошло от глагола «дробить, разделять на части». Для названия дробей наши предки использовали специальные слова. Например, 1/2 обозначалась как половина или полтина, 1/4 — четь, 1/8 — полчеть, 1/16 — полполчеть и так далее.

Полная теория дробей, мало чем отличающаяся от современной, была изложена в первом учебнике по арифметике, написанном в 1701 году Леонтием Филипповичем Магницким. «Арифметика» состояла из нескольких частей. О дробях подробно автор рассказывает в разделе «О числах ломаных или с долями». Магницкий приводит операции с «ломанными» числами, разные их обозначения.

Сегодня по-прежнему в числе самых сложных разделов математики называются дроби. История дробей также не была простой. Разные народы иногда независимо друг от друга, а иногда заимствуя опыт предшественников, пришли к необходимости введения, освоения и применения долей числа. Всегда учение о дробях вырастало из практических наблюдений и благодаря насущным проблемам. Необходимо было делить хлеб, размечать равные участки земли, высчитывать налоги, измерять время и так далее. Особенности применения дробей и математических операций с ними зависели от системы счисления в государстве и от общего уровня развития математики. Так или иначе, преодолев не одну тысячу лет, раздел алгебры, посвященный долям чисел, сформировался, развился и с успехом используется сегодня для самых разных нужд как практического характера, так и теоретического.

Вы знаете, что, кроме натуральных чисел и нуля, существуют и другие числа − дробные .

Дробные числа возникают, когда один предмет (яблоко, арбуз, торт, буханку хлеба, лист бумаги) или единицу измерения (метр, час, килограмм, градус) делят на несколько равных частей.

Такие слова, как "полхлеба", "полбатона", "полкилограмма", "пол−литра", "четверть часа", "треть пути", "полтора метра", наверное, вы слышите каждый день.

Половина, четверть, треть, одна сотая, полтора − это примеры дробных чисел.

Рассмотрим пример.

На день рождения к вам в гости пришли 10 друзей. Праздничный торт был разделен на 10 равных частей (рис. 185 ). Тогда каждому гостю досталась одна десятая торта. Пишут:

Торта (читают: "одна десятая торта").

Такую "двухэтажную" запись используют для обозначения и других дробных чисел. Например: полкилограмма −

Кг (читают: "одна вторая килограмма"); четверть часа −

Ч (читают: "одна четвертая часа"); треть пути −

Пути (читают: "одна третья пути").

Если двое ваших гостей не любят сладкого, то сладкоежке достанется

Торта (читают: "три десятых торта"; рис. 186 ).

Записи вида

; ; ; ;

И т.п. называют обыкновенными дробями или короче − дробями .

Обыкновенные дроби записывают с помощью двух натуральных чисел и черты дроби .

Число, записанное над чертой, называют числителем дроби ; число, записанное под чертой, называют знаменатель дроби .

Знаменатель дроби показывает, на сколько равных частей разделили нечто целое, а числитель − сколько таких частей взяли .

Так на рисунке 187 равносторонний треугольник ABC разделили на 4 равные части − 4 равных треугольника. Три из них закрашены. Можно сказать, что закрашены фигура, площадь которой составляет

Площади треугольника ABC. Или говорят: закрашено

Треугольника ABC.

На рисунке 188 единичный отрезок OA координатного луча разделен на пять равных частей. Отрезок OB составляет

Единичного отрезка OA. Точка B изображает число

Число

Называют координатой точки B и пишут B (

). Поскольку отрезок OC составляет

Единичного отрезка OA, то координата точки C равна

Т.е. C (

Пример 1 . В саду растут 24 дерева, из них 7 − яблони. Какую часть всех деревьев составляют яблони?

Решение. Поскольку в саду растет 24 дерева, то одна яблоня составляет

Всех деревьев, а 7 яблонь −

Всех деревьев. .

Пример 2 . В саду растут 24 дерева, из них

Составляют вишни. Сколько вишневых деревьев растет в саду?

Решение. Знаменатель дроби

Показывает, что количество всех деревьев, растущих в саду, надо разделить на 8 равных частей. Поскольку в саду растут 24 дерева, то одна часть составляет 24 : 8 = 3 (дерева).

Числитель дроби3, то всего в саду растет 8 * 3 = 24 (дерева).

Ответ: 24 дерева.

Говоря о математике, нельзя не вспомнить дроби. Их изучению уделяют немало внимания и времени. Вспомните, сколько примеров вам приходилось решать, чтобы усвоить те или иные правила работы с дробями, как вы запоминали и применяли основное свойство дроби. Сколько нервов было потрачено для нахождения общего знаменателя, особенно если в примерах было больше двух слагаемых!

Давайте же вспомним, что это такое, и немного освежим в памяти основные сведения и правила работы с дробями.

Определение дробей

Начнем, пожалуй, с самого главного - определения. Дробь - это число, которое состоит из одной или более частей единицы. Дробное число записывается в виде двух чисел, разделенных горизонтальной либо же косой чертой. При этом верхнее (или первое) называется числителем, а нижнее (второе) - знаменателем.

Стоит отметить, что знаменатель показывает, на сколько частей разделена единица, а числитель - количество взятых долей или частей. Зачастую дроби, если они правильные, меньше единицы.

Теперь давайте рассмотрим свойства данных чисел и основные правила, которые используются при работе с ними. Но прежде чем мы будем разбирать такое понятие, как "основное свойство рациональной дроби", поговорим о видах дробей и их особенностях.

Какими бывают дроби

Можно выделить несколько видов таких чисел. В первую очередь это обыкновенные и десятичные. Первые представляют собой уже указанный нами вид записи с помощью горизонтальной либо косой черты. Второй вид дробей обозначается с помощью так называемой позиционной записи, когда сначала идет указание целой части числа, а затем, после запятой, указывается дробная часть.

Тут стоит отметить, что в математике одинаково используются как десятичные, так и обыкновенные дроби. Основное свойство дроби при этом действительно только для второго варианта. Кроме того, в обыкновенных дробях выделяют правильные и неправильные числа. У первых числитель всегда меньше знаменателя. Отметим также, что такая дробь меньше единицы. В неправильной дроби наоборот - числитель больше знаменателя, а сама она больше единицы. При этом из нее можно выделить целое число. В данной статье мы рассмотрим только обыкновенные дроби.

Свойства дробей

Любое явление, химическое, физическое или математическое, имеет свои характеристики и свойства. Не стали исключением и дробные числа. Они имеют одну немаловажную особенность, с помощью которой над ними можно проводить те или иные операции. Каково основное свойство дроби? Правило гласит, что если ее числитель и знаменатель умножить либо же разделить на одно и то же рациональное число, мы получим новую дробь, величина которой будет равна величине исходной. То есть, умножив две части дробного числа 3/6 на 2, мы получим новую дробь 6/12, при этом они будут равны.

Исходя из этого свойства, можно сокращать дроби, а также подбирать общие знаменатели для той или иной пары чисел.

Операции

Несмотря на то что дроби кажутся нам более сложными, по сравнению с с ними также можно выполнять основные математические операции, такие как сложение и вычитание, умножение и деление. Кроме того, есть и такое специфическое действие, как сокращение дробей. Естественно, каждое из этих действий совершается согласно определенным правилам. Знание этих законов облегчает работу с дробями, делает ее более легкой и интересной. Именно поэтому дальше мы с вами рассмотрим основные правила и алгоритм действий при работе с такими числами.

Но прежде чем говорить о таких математических операциях, как сложение и вычитание, разберем такую операцию, как приведение к общему знаменателю. Вот тут нам как раз таки и пригодится знание того, какое основное свойство дроби существует.

Общий знаменатель

Для того чтобы число привести к общему знаменателю, сначала понадобится найти наименьшее общее кратное для двух знаменателей. То есть наименьшее число, которое одновременно делится на оба знаменателя без остатка. Наиболее простой способ подобрать НОК (наименьшее общее кратное) - выписать в строчку для одного знаменателя, затем для второго и найти среди них совпадающее число. В том случае, если НОК не найдено, то есть у данных чисел нет общего кратного числа, следует перемножить их, а полученное значение считать за НОК.

Итак, мы нашли НОК, теперь следует найти дополнительный множитель. Для этого нужно поочередно разделить НОК на знаменатели дробей и записать над каждой из них полученное число. Далее следует умножить числитель и знаменатель на полученный дополнительный множитель и записать результаты в виде новой дроби. Если вы сомневаетесь в том, что полученное вами число равняется прежнему, вспомните основное свойство дроби.

Сложение

Теперь перейдем непосредственно к математическим операциям над дробными числами. Начнем с самой простой. Есть несколько вариантов сложения дробей. В первом случае оба числа имеют одинаковый знаменатель. В таком случае остается лишь сложить числители между собой. Но знаменатель не меняется. Например, 1/5 + 3/5 = 4/5.

В случае если у дробей разные знаменатели, следует привести их к общему и лишь затем выполнять сложение. Как это сделать, мы с вами разобрали чуть выше. В данной ситуации вам как раз и пригодится основное свойство дроби. Правило позволит привести числа к общему знаменателю. При этом значение никоим образом не изменится.

Как вариант, может случиться, что дробь является смешанной. Тогда следует сначала сложить между собой целые части, а затем уже дробные.

Умножение

Не требует никаких хитростей, и для того чтобы выполнить данное действие, необязательно знать основное свойство дроби. Достаточно сначала перемножить между собой числители и знаменатели. При этом произведение числителей станет новым числителем, а знаменателей - новым знаменателем. Как видите, ничего сложного.

Единственное, что от вас требуется, - знание таблицы умножения, а также внимательность. Кроме того, после получения результата следует обязательно проверить, можно ли сократить данное число или нет. О том, как сокращать дроби, мы расскажем немного позже.

Вычитание

Выполняя следует руководствоваться теми же правилами, что и при сложении. Так, в числах с одинаковым знаменателем достаточно от числителя уменьшаемого отнять числитель вычитаемого. В том случае, если у дробей разные знаменатели, следует привести их к общему и затем выполнить данную операцию. Как и в аналогичном случае со сложением, вам понадобится использовать основное свойство алгебраической дроби, а также навыки в нахождении НОК и общих делителей для дробей.

Деление

И последняя, наиболее интересная операция при работе с такими числами - деление. Она довольно простая и не вызывает особых трудностей даже у тех, кто плохо разбирается, как работать с дробями, в особенности выполнять операции сложения и вычитания. При делении действует такое правило, как умножение на обратную дробь. Основное свойство дроби, как и в случае с умножением, задействовано для данной операции не будет. Разберем подробнее.

При делении чисел делимое остается без изменений. Дробь-делитель превращается в обратную, то есть числитель со знаменателем меняются местами. После этого числа перемножаются между собой.

Сокращение

Итак, мы с вами уже разобрали определение и структуру дробей, их виды, правила операций над данными числами, выяснили основное свойство алгебраической дроби. Теперь поговорим о такой операции, как сокращение. Сокращением дроби называется процесс ее преобразования - деление числителя и знаменателя на одно и то же число. Таким образом, дробь сокращается, не меняя при этом своих свойств.

Обычно при совершении математической операции следует внимательно посмотреть на полученный в итоге результат и выяснить, возможно ли сократить полученную дробь или же нет. Помните, что в итоговый результат всегда записывается не требующее сокращения дробное число.

Другие операции

Напоследок отметим, что мы перечислили далеко не все операции над дробными числами, упомянув лишь самые известные и необходимые. Дроби также можно сравнять, преобразовать в десятичные и наоборот. Но в данной статье мы не стали рассматривать данные операции, так как в математике они осуществляются намного реже, чем те, что были приведены нами выше.

Выводы

Мы с вами поговорили о дробных числах и операциях с ними. Разобрали также основное свойство Но заметим, что все эти вопросы были рассмотрены нами вскользь. Мы привели лишь наиболее известные и употребляемые правила, дали наиболее важные, на наш взгляд, советы.

Данная статья призвана скорее освежить забытые вами сведения о дробях, нежели дать новую информацию и "забить" голову бесконечными правилами и формулами, которые, вероятнее всего, вам так и не пригодятся.

Надеемся, что материал, представленный в статье просто и лаконично, стал для вас полезным.

В статье покажем, как решать дроби на простых понятных примерах. Разберемся, что такое дробь и рассмотрим решение дробей !

Понятие дроби вводится в курс математики начиная с 6 класса средней школы.

Дроби имеют вид: ±X/Y, где Y - знаменатель, он сообщает на сколько частей разделили целое, а X - числитель, он сообщает, сколько таких частей взяли. Для наглядности возьмем пример с тортом:

В первом случае торт разрезали поровну и взяли одну половину, т.е. 1/2. Во втором случае торт разрезали на 7 частей, из которых взяли 4 части, т.е. 4/7.

Если часть от деления одного числа на другое не является целым числом, ее записывают в виде дроби.

Например, выражение 4:2 = 2 дает целое число, а вот 4:7 нацело не делится, поэтому такое выражение записывается в виде дроби 4/7.

Иными словами дробь - это выражение, которое обозначает деление двух чисел или выражений, и которое записывается с помощью дробной черты.

Если числитель меньше знаменателя - дробь является правильной, если наоборот - неправильной. В состав дроби может входить целое число.

Например, 5 целых 3/4.

Данная запись означает, что для того, чтобы получить целую 6 не хватает одной части от четырех.

Если вы хотите запомнить, как решать дроби за 6 класс , вам надо понять, что решение дробей , в основном, сводится к понимаю нескольких простых вещей.

  • Дробь по сути это выражение доли. То есть числовое выражение того, какую часть составляет данное значение от одного целого. К примеру дробь 3/5 выражает, что, если мы поделили что то целое на 5 частей и количество долей или частей это этого целого - три.
  • Дробь может быть меньше 1, например 1/2(или по сути половина), тогда она правильная. Если дробь больше 1, к примеру 3/2(три половины или один с половиной), то она неправильная и для упрощения решения, нам лучше выделить целую часть 3/2= 1 целая 1/2.
  • Дроби это такие же числа, как 1, 3, 10, и даже 100, только числа это не целые а дробные. С ними можно выполнять все те же операции, что с числами. Считать дроби не сложнее, и далее на конкретных примерах мы это покажем.

Как решать дроби. Примеры.

К дробям применимы самые разные арифметические операции.

Приведение дроби к общему знаменателю

Например, необходимо сравнить дроби 3/4 и 4/5.

Чтобы решить задачу, сначала найдем наименьший общий знаменатель, т.е. наименьшее число, которое делится без остатка на каждый из знаменателей дробей

Наименьший общий знаменатель(4,5) = 20

Затем знаменатель обоих дробей приводится к наименьшему общему знаменателю

Ответ: 15/20

Сложение и вычитание дробей

Если необходимо посчитать сумму двух дробей, их сначала приводят к общему знаменателю, затем складывают числители, при этом знаменатель останется без изменений. Разность дробей считается аналогичным образом, различие лишь в том, что числители вычитаются.

Например, необходимо найти сумму дробей 1/2 и 1/3

Теперь найдем разность дробей 1/2 и 1/4

Умножение и деление дробей

Тут решение дробей несложное, здесь все достаточно просто:

  • Умножение - числители и знаменатели дробей перемножаются между собой;
  • Деление - сперва получаем дробь, обратную второй дроби, т.е. меняем местами ее числитель и знаменатель, после чего полученные дроби перемножаем.

Например:

На этом о том, как решать дроби , всё. Если у вас остались какие то вопросы по решению дробей , что то непонятно, то пишите в комментарии и мы обязательно вам ответим.

Если вы учитель, то возможно скачать презентацию для начальной школы (http://school-box.ru/nachalnaya-shkola/prezentazii-po-matematike.html) будет вам кстати.

Определение обыкновенной дроби

Определение 1

Обыкновенные дроби используют для описания числа долей. Рассмотрим пример, с помощью которого можно дать определение обыкновенной дроби.

Яблоко разделили на $8$ долей. В этом случае каждая доля представляет одну восьмую долю целого яблока, т. е. $\frac{1}{8}$. Две доли обозначаются $\frac{2}{8}$, три доли -- $\frac{3}{8}$ и т.д., а $8$ долей -- $\frac{8}{8}$. Каждая из представленных записей называется обыкновенной дробью .

Приведем общее определение обыкновенной дроби.

Определение 2

Обыкновенной дробью называется запись вида $\frac{m}{n}$, где $m$ и $n$-- любые натуральные числа.

Часто можно встретить следующую запись обыкновенной дроби: $m/n$.

Пример 1

Примеры обыкновенных дробей:

\[{3}/{4}, \frac{101}{345},\ \ {23}/{5}, \frac{15}{15}, {111}/{81}.\]

Замечание 1

Числа $\frac{\sqrt{2}}{3}$, $-\frac{13}{37}$, $\frac{4}{\frac{2}{7}}$, $\frac{2,4}{8,3}$ не являются обыкновенными дробями, т.к. не подходят под вышеприведенное определение.

Числитель и знаменатель

Обыкновенная дробь состоит из числителя и знаменателя.

Определение 3

Числителем обыкновенной дроби $\frac{m}{n}$ называется натуральное число $m$, которое показывает количество взятых равных долей из единого целого.

Определение 4

Знаменателем обыкновенной дроби $\frac{m}{n}$ называется натуральное число $n$, которое показывает, на сколько равных долей разделено единое целое.

Рисунок 1.

Числитель располагается над дробной чертой, а знаменатель --под дробной чертой. Например, числителем обыкновенной дроби $\frac{5}{17}$ является число $5$, а знаменателем -- число $17$. Знаменатель показывает, что предмет разделен на $17$ долей, а числитель -- что взято $5$ таких долей.

Натуральное число как дробь со знаменателем 1

Знаменателем обыкновенной дроби может быть единица. В таком случае считают, что предмет неделим, т.е. представляет собой единое целое. Числитель такой дроби показывает, сколько целых предметов взято. Обыкновенная дробь вида $\frac{m}{1}$ имеет смысл натурального числа $m$. Таким образом получаем обоснованное равенство $\frac{m}{1}=m$.

Если переписать равенство в виде $m=\frac{m}{1}$, то оно даст возможность любое натуральное число $m$ представить в виде обыкновенной дроби. Например, число $5$ можно представить в виде дроби $\frac{5}{1}$, число $123 \ 456$ -- это дробь $\frac{123\ 456}{1}$.

Таким образом, любое натуральное число $m$ можно представить в виде обыкновенной дроби со знаменателем $1$, а любую обыкновенную дробь вида $\frac{m}{1}$ можно заменить натуральным числом $m$.

Дробная черта как знак деления

Представление предмета в виде $n$ долей является делением на $n$ равных частей. После деления предмета на $n$ долей его можно разделить поровну между $n$ людьми -- каждый получит по одной доле.

Пусть имеется $m$ одинаковых предметов, разделенных на $n$ долей. Эти $m$ предметов можно поровну разделить между $n$ людьми, если раздать каждому человеку по одной доле от каждого из $m$ предметов. При этом каждый человек получит $m$ долей $\frac{1}{n}$, которые дают обыкновенную дробь $\frac{m}{n}$. Получаем, что обыкновенная дробь $\frac{m}{n}$ может применяться для обозначения деления $m$ предметов между $n$ людьми.

Связь между обыкновенными дробями и делением выражается в том, что дробную черту можно понимать как знак деления, т.е. $\frac{m}{n}=m:n$.

Обыкновенная дробь дает возможность записывать результат деления двух натуральных чисел, для которых не выполняется деление нацело.

Пример 2

Например, результат деления $7$ яблок на $9$ человек можно записать как $\frac{7}{9}$, т.е. каждый получит семь девятых долей яблока: $7:9=\frac{7}{9}$.

Равные и неравные обыкновенные дроби, сравнение дробей

Результатом сравнения двух обыкновенных дробей может быть или их равенство, или их не равенство. При равенстве обыкновенных дробей их называют равными, в другом случае обыкновенные дроби называют неравными.

равными , если справедливым является равенство $a\cdot d=b\cdot c$.

Обыкновенные дроби $\frac{a}{b}$ и $\frac{c}{d}$ называют неравными , если равенство $a\cdot d=b\cdot c$ не выполняется.

Пример 3

Выяснить, являются ли равными дроби $\frac{1}{3}$ и $\frac{2}{6}$.

Равенство выполняется, значит, дроби $\frac{1}{3}$ и $\frac{2}{6}$ являются равными: $\frac{1}{3}=\frac{2}{6}$.

Данный пример можно рассмотреть на примере яблок: одно из двух одинаковых яблок разделено на три равные доли, второе -- на $6$ долей. При этом видно, что две шестых доли яблока составляют $\frac{1}{3}$ долю.

Пример 4

Проверить, являются ли равными обыкновенные дроби $\frac{3}{17}$ и $\frac{4}{13}$.

Проверим, выполняется ли равенство $a\cdot d=b\cdot c$:

\ \

Равенство не выполняется, значит, дроби $\frac{3}{17}$ и $\frac{4}{13}$ не равны: $\frac{3}{17}\ne \frac{4}{13}$.

При сравнении двух обыкновенных дробей, если выясняется, что они не равны, можно узнать, какая из них больше, а какая -- меньше другой. Для этого используют правило сравнения обыкновенных дробей: нужно привести дроби к общему знаменателю и затем сравнить их числители. У какой дроби числитель будет больше, та дробь и будет являться большей.

Дроби на координатном луче

Все дробные числа, которые отвечают обыкновенным дробям, можно отобразить на координатном луче.

Чтобы на координатном луче отметить точку, которая соответствует дроби $\frac{m}{n}$, необходимо от начала координат в положительном направлении отложить $m$ отрезков, длина которых составляет $\frac{1}{n}$ долю единичного отрезка. Такие отрезки получают при делении единичного отрезка на $n$ равных частей.

Чтобы отобразить на координатном луче дробное число, нужно единичный отрезок разделить на части.

Рисунок 2.

Равные дроби описываются одним и тем же дробным числом, т.е. равные дроби представляют собой координаты одной и той же точки на координатном луче. Например, координатами $\frac{1}{3}$, $\frac{2}{6}$, $\frac{3}{9}$, $\frac{4}{12}$ описывается одна и та же точка на координатном луче, так как все записанные дроби равны.

Если точка описывается координатой с большей дробью, то она будет находится правее на горизонтальном направленном вправо координатном луче от точки, координатой которой является меньшая дробь. Например, т.к. дробь $\frac{5}{6}$ больше дроби $\frac{2}{6}$, то и точка с координатой $\frac{5}{6}$ находится правее точки с координатой $\frac{2}{6}$.

Аналогично, точка с меньшей координатой будет лежать левее точки с большей координатой.



gastroguru © 2017