Ацетил апб. Биосинтез жирных кислот, триацилглицеролов и фосфолипидов

Биосинтез жирных кислот включает серию реакций, которые не соответствуют процессу их деградации.

В частности, посредниками в синтезе жирных кислот являются специальные белки - АПБ (acyl carrier proteins). Напротив, при распаде жирной кислоты используется HS-KoA.

Синтез жирной кислоты происходит в цитозоле, а распад жирной кислоты - в митохондрии.

Для синтеза жирной кислоты используется кофермент НАДФ^/НАДФН, тогда как распад жирной кислоты вовлекает кофермент НАД + /НАДН.

Жирные кислоты, входящие в состав липидов тканей, можно разделить на коротко- (2-6 атомов углерода), средне- (8-12 атомов углерода) и длинноцепочечные (14-20 и более атомов углерода в составе молекулы). Большинство жирных кислот в тканях животного являются длинноцепочечными. Подавляющее большинство жирных кислот в организме содержит четное число атомов углерода в молекуле (С: 16,18, 20), хотя в жирах нервной ткани есть и более длинные молекулы жирных кислот, включающие 22 атома углерода с шестью двойными связями.

Кислота с одной двойной связью относится к мононенасыщен- ным жирным кислотам, тогда как кислоты с двумя или более двойными изолированными связями являются полиненасыщенными.

Таблица 2

Основные жирные кислоты организма млекопитающих

Название кислоты

Структура кислоты

Количество и позиция двойных связей

Масляная

СзНтСООН

Капроновая

Каприловая

СтНюСООН

Каприновая

Лауриновая

С11Н21СООН

Миристиновая

СпНзсСООН

Пальмитиновая

С15Н31СООН

Стеариновая

С17Н35СООН

Олеиновая

СпНззСООН

Линолевая

С17Н31СООН

Линоленовая

СпНззСООН

Арахидоновая

С19Н31СООН

4 (5, 8. 11, 14)

Ненасыщенные жирные кислоты обычно находятся в цыс-фор- ме. Жиры растений и рыб содержат в своем составе больше по- линенасыщенных жирных кислот, а в составе жиров млекопитающих и птиц преобладают насыщенные жирные кислоты.

Жирные кислоты рациона и их эндогенный биосинтез необходимы организму для получения энергии и формирования гидрофобных компонентов биомолекул. Избыток белков и углеводов в рационе активно конвертируется в жирные кислоты и запасается в форме триглицеридов.

Большинство тканей способно осуществлять синтез насыщенных жирных кислот. Важным в количественном плане является синтез жирных кислот в первую очередь в печени, кишечнике, жировой ткани, молочной железе, костном мозге, легких. Если окисление жирных кислот происходит в митохондриях клеток, то их синтез имеет место в цитоплазме.

Основной путь обеспечения организма жирными кислотами - их биосинтез из небольших молекул-посредников, производных катаболизма углеводов, отдельных аминокислот и других жирных кислот. Обычно насыщенная 16-карбоновая кислота - пальмитиновая - синтезируется в первую очередь, а все другие жирные кислоты представляют собой модификацию пальмитиновой кислоты.

Все реакции синтеза жирных кислот катализируются муль- тиферментным комплексом - синтазой жирных кислот, который находится в цитозоле. Ацетил-КоА - прямой источник атомов углерода для этого синтеза. Основными поставщиками молекул ацетил-КоА являются: распад аминокислот, окисление жирных кислот, пируват гликолиза.

Необходимый для синтеза жирных кислот малонил-КоА поступает в результате карбоксилирования ацетил-КоА, а также необходимый НАДФН может быть получен в пентозофос- фатном пути.

Молекулы ацетил-КоА в основном содержатся в митохондриях. Однако внутренняя митохондриальная мембрана непроницаема для такой сравнительно крупной молекулы, как аце- тил-КоА. Поэтому для перехода из митохондрии в цитоплазму ацетил-КоА при участии цитратсинтазы вступает во взаимодействие со щавелево-уксусной кислотой, образуя лимонную:

В цитоплазме лимонная кислота расщепляется под влиянием цитратлиазы:

Таким образом, лимонная кислота выступает в роли транспортера ацетил-КоА. У жвачных животных вместо лимонной кислоты в цитоплазме клетки используется ацетат, образующийся в рубце из полисахаридов, который в клетках печени и жировой ткани превращается в ацетил-КоА.

1. На первом этапе биосинтеза жирной кислоты происходит взаимодействие ацетил-КоА со специальным ацилперено- сящим белком (HS-АПБ), содержащим в своем составе витамин В 3 и сульфгидрильную группу (HS), напоминая структуру коэнзима А:

2. Обязательным промежуточным продуктом в синтезе является малонил-КоА, который образуется в реакции карбокси- лирования ацетил-КоА с участием АТФ и биотин-содержащего фермента - ацетил-КоА-карбоксилазы:

Биотин (витамин Н) в качестве кофермента карбоксилазы ковалентно связан с апоферментом для переноса одноуглеродного фрагмента. Ацетил-КоА-карбоксилаза - это мультифунк- циональный фермент, который регулирует скорость синтеза жирной кислоты. Инсулин стимулирует синтез жирной кислоты за счет активирования карбоксилазы, тогда как адреналин и глюкагон обладают обратным эффектом.

3. Полученный малонил-S-KoA взаимодействует с HS-АПБ при участии фермента малонил-трансацилазы:

4. В следующей реакции конденсации под влиянием фермента ацил-малонил-Б-АПБ-синтазы происходит взаимодействие малонил-Б-АПБ и ацетил-Б-АПБ с образованием ацето- ацетил-Б-АПБ:

5. Ацетоацетил-Б-АПБ при участии НАДФ + -зависимой редуктазы восстанавливается с образованием р-гидроксилбути- рил-Б-АПБ:

7. В следующей реакции кротонил-Б-АПБ восстанавливается НАДФ + -зависимой редуктазой с образованием бутирил-Б-АПБ:

В случае синтеза пальмитиновой кислоты (С: 16) необходимо повторение еще шести циклов реакций, началом каждого будет присоединение молекулы малонил-Б-АПБ к карбоксильному концу синтезируемой цепи жирной кислоты. Таким образом, присоединяя одну молекулу малонил-Б-АПБ, углеродная цепь синтезируемой пальмитиновой кислоты увеличивается на два углеродных атома.

8. Синтез пальмитиновой кислоты завершается гидролитическим отщеплением HS-АПБ от пальмитил-Б-АПБ при участии фермента деацилазы:

Синтез пальмитиновой кислоты является основой в синтезе других жирных кислот, включая мононенасыщенные кислоты (олеиновая, например). Свободная пальмитиновая кислота при участии тиокиназы превращается в пальмитил-S-KoA. Паль- митил-S-KoA в цитоплазме может использоваться в синтезе простых и сложных липидов или поступать с участием карнитина в митохондрии для синтеза жирных кислот с более длинной углеродной цепью.

В митохондриях и в гладком эндоплазматическом ретикулуме имеется система ферментов удлинения жирных кислот для синтеза кислот с 18 и более углеродными атомами за счет удлинения углеродной цепи жирных кислот от 12 до 6 атомов углерода. Если при этом используется пропионил-S-KoA вместо аце- тил-S-KoA, то синтез приводит к получению жирной кислоты с нечетным числом атомов углерода.

Суммарно синтез пальмитиновой кислоты можно представить следующим уравнением:

Ацетил-S-KoA в цитоплазме в данном синтезе служит источником атомов углерода молекулы пальмитиновой кислоты. АТФ необходим для активации ацетил-S-KoA, тогда как НАДФН + Н + является обязательным восстановителем. НАДФН + + Н + в печени образуется в реакциях пентозофосфатного пути. Лишь при наличии указанных основных компонентов в клетке происходит синтез жирной кислоты. Следовательно, в биосинтезе жирных кислот необходима глюкоза, снабжающая процесс радикалами ацетилов, С0 2 и Н 2 в форме НАДФН 2 .

Все ферменты биосинтеза жирных кислот, включая HS-АПБ, находятся в цитоплазме клетки в виде мультиферментного комплекса, получившего название синтетазы жирных кислот.

Синтез олеиновой (непредельной) кислоты с одной двойной связью происходит за счет реакции предельной стеариновой кислоты с НАДФН + Н + в присутствии кислорода:

В гепатоцитах и в молочной железе лактирующих животных НАДФН 2 , необходимый для синтеза жирных кислот, обеспечивается за счет пентозофосфатного пути. Если у большинства эукариотов синтез жирных кислот происходит исключительно в цитоплазме, то синтез жирных кислот в фотосинтезирующих клетках растений имеет место в строме хлоропластов.

Полиненасыщенные жирные кислоты - линолевая (С 17 Н 31 СООН), линоленовая (С 17 Н 29 СООН), имея двойные связи вблизи метильного конца углеродной цепи, в организме млекопитающих не синтезируются по причине отсутствия необходимых ферментов (десатураз), обеспечивающих образование непредельных связей в молекуле. Однако арахидоновая кислота (С 19 Н 31 СООН) может быть синтезирована из линолевой кислоты. В свою очередь арахидоновая кислота является предшественником в синтезе простагландинов. Отметим, что растения способны синтезировать двойные связи в положении 12 и 15 углеродной цепи с участием необходимых ферментов в синтезе линолевой и линоленовой кислот.

Основная роль всех полиненасыщенных жирных кислот, вероятно, состоит в обеспечении свойства текучести в биологических мембранах. Это подтверждается тем, что низшие организмы обладают способностью изменять состав жирных кислот фосфолипидов благодаря их текучести, например при различных температурах внешней среды. Это достигается путем увеличения пропорции жирных кислот с двойными связями или увеличением степени ненасыщенности жирных кислот.

Метиленовый углерод любой двойной связи в структуре по- линенасыщенной жирной кислоты очень чувствителен к удалению водорода и фиксации кислорода с образованием свободных радикалов. Образующиеся таким образом молекулы гидропероксида формируют диальдегиды в основном в форме малонового диальдегида. Последний способен вызывать кросс-связи, приводящие к цитотоксичности, мутагенности, разрушению мембран и модификации ферментов. Полимеризация малонового альдегида формирует нерастворимый пигмент липофусцин, который аккумулируется с возрастом в некоторых тканях.

Интерес к полиненасыщенным жирным кислотам на биохимическом уровне связан с исследованиями, которые свидетельствуют, что рационы с высоким уровнем полиненасыщенных жирных кислот по отношению к уровню насыщенных жирных кислот способствуют снижению уровня холестерина в организме.

В организме голодающего животного при последующем наличии рациона с высоким уровнем углеводов и низким уровнем жиров значительно усиливается активность ацетил-КоА-кар- боксилазы за счет ковалентной модификации и синтез жирных кислот в течение нескольких дней. Это адаптивный контроль регуляции жирового обмена. Синтез и окисление жирных кислот в организме являются взаимозависимыми процессами. При голодании животного уровень свободных жирных кислот в крови возрастает за счет повышения активности липазы жировых клеток под влиянием таких гормонов, как адреналин, глюкагон. Биосинтез жирных кислот, превращая молекулы НАДФН + Н + в НАДФ~, вызывает распад глюкозы по пентозофосфатному пути. Таким образом, глюкоза является незаменимой в биосинтезе жирных кислот, поставляя не только радикалы ацетила, но и коферменты в форме НАДФН + Н + .

Свободные жирные кислоты связываются с альбуминами сыворотки крови, которые являются основными транспортерами неэтерифицированных жирных кислот. В комплексе с альбуминами жирные кислоты представляют активный транспортный источник энергии для различных тканей в определенный период времени. Однако нервная ткань, получающая почти все количество энергии за счет глюкозы, не способна использовать жирные кислоты, связанные с альбуминами, для получения энергии.

Концентрация свободных жирных кислот в крови сравнительно постоянна (0,6 мМ). Период их полураспада составляет лишь две минуты. Печень интенсивно вовлекает жирные кислоты в синтез триглицеридов, связывая их в липопротеины низкой плотности (ЛПНП), которые поступают в циркуляцию крови. ЛПНП переносят холестерин плазмы крови в различные ткани, стенки кровеносных сосудов.

Синтез жиров в организме происходит главным образом из углеводов, поступающих в избыточном количестве и не используемых для синтеза гликогена. Кроме этого, в синтезе липидов участвуют также и некоторые аминокислоты. По сравнению с гликогеном жиры представляют более компактную форму хранения энергии, поскольку они менее окислены и гидратированы. При этом количество энергии, резервированное в виде нейтральных липидов в жировых клетках, ничем не ограничивается в отличие от гликогена. Центральным процессом в липогенезе является синтез жирных кислот, поскольку они входят в состав практически всех групп липидов. Кроме этого, следует помнить, что основным источником энергии в жирах, способным трансформироваться в химическую энергию молекул АТФ, являются процессы окислительных превращений именно жирных кислот.

Биосинтез жирных кислот

Структурным предшественником для синтеза жирных кислот является ацетил-КоА. Это соединение образуется в матриксе митохондрий преимущественно из пирувата, в результате реакции его окислительного декарбоксили- рования, а также в процессе р-окислсния жирных кислот. Следовательно, углеводородные цепи собираются в ходе последовательного присоединения двухуглсродных фрагментов в форме ацетил-КоА, т. е. биосинтез жирных кислот происходит по той же схеме, но в противоположном направлении по сравнению с р-окислснием.

Однако существует ряд особенностей, различающих эти два процесса, благодаря которым они становятся термодинамически выгодными, необратимыми и по-разному регулируются.

Следует отметить основные отличительные особенности анаболизма жирных кислот.

  • Синтез насыщенных кислот с длиной углеводородной цепи до С 16 (пальмитиновая кислота) в эукариотических клетках осуществляется в цитозоле клетки. Дальнейшее наращивание цепи происходит в митохондриях и частично в ЭПР, где идет превращение насыщенных кислот в ненасыщенные.
  • Термодинамически важным является карбоксилирование ацетил-КоА и превращение его в малонил-КоА (СООН-СН 2 -СООН), на образование которого затрачивается одна макроэргическая связь молекулы АТФ. Из восьми молекул ацетил-КоА, необходимых для синтеза пальмитиновой кислоты, только одна включается в реакции в виде ацетил-КоА, остальные семь в виде малонил-КоА.
  • В качестве донора восстановительных эквивалентов для восстановления кетогруппы до гидроксигруппы функционирует НАДФН, в то время как при обратной реакции в процессе р-окисления восстанавливается НАДН или ФАДН 2 в реакциях дегидрирования ацил-КоА.
  • Ферменты, катализирующие анаболизм жирных кислот, объединены в единый мультиферментный комплекс, получивший название «синтетаза высших жирных кислот».
  • На всех этапах синтеза жирных кислот активированные ацильные остатки связаны с ацилпереносящим белком, а не с коэнзимом А, как в процессе р-окисления жирных кислот.

Транспорт внутримитохондриального ацетил-КоА в цитоплазму. Ацетил-КоА образуется в клетке преимущественно в процессе внутри митохондриальных реакций окисления. Как известно, митохондриальная мембрана непроницаема для ацетил-КоА.

Известны две транспортные системы, обеспечивающие перенос ацетил-КоА из митохондрий в цитоплазму: ацил-карнитиновый механизм, описанный ранее, и цитрат-транспортная система (рис. 23.14).

Рис. 23.14.

В процессе транспорта внутри митохондриального ацетил-КоА в цитоплазму по нитратному механизму вначале происходит его взаимодействие с оксалоацетатом, который превращается в цитрат (первая реакция цикла три- карбоновых кислот, катализируемая ферментом цитратсинтазой; гл. 19). Специфической транслоказой образовавшийся цитрат переносится в цитоплазму, где расщепляется ферментом цитратлиазой при участии коэнзима А на окса- лоацстат и ацетил-КоА. Механизм этой реакции, сопряженной с гидролизом АТФ, приведен ниже:


В связи с тем что для оксалоацетата мембрана митохондрии непроницаема, уже в цитоплазме он восстанавливается посредством НАДН в малат, который при участии специфической транслоказы может вернуться в матрикс митохондрии, где окисляется до оксалатацетата. Таким образом, завершается так называемый челночный механизм транспорта ацетила через метохондриальную мембрану. Часть цитоплазматического малата подвергается окислительному дскарбоксилированию и превращается в пируват с помощью особого «малик»- фермента, коферментом которого является НАДФ + . Восстановленный НАДФН наряду с ацетил-КоА и С0 2 используется в синтезе жирных кислот.

Обратите внимание, что цитрат транспортируется в цитоплазму лишь тогда, когда его концентрация в матриксе митохондрии достаточно велика, например при избытке углеводов, когда цикл трикарбоновых кислот обеспечен ацетил-КоА.

Таким образом, цитратный механизм обеспечивает как транспорт аце- тил-КоА из митохондрии, так и примерно на 50% потребности в НАДФН, который используется в восстановительных реакциях синтеза жирных кислот. Кроме этого, потребности в НАДФН восполняются также за счет пентозофос- фатного пути окисления глюкозы.


БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
Кафедра ЭТТ
РЕФЕРАТ
На тему:
«Окисление ненасыщенных жирных кислот. Биосинтез холестерина. Мембранный транспорт»

МИНСК, 2008
Окисление ненасыщенных жирных кисл от.
В принципе происходит также как и насыщенных, однако имеются особенности. Двойные связи природных ненасыщенных жирных кислот имеют цис-конфигурацию, а в КоА эфирах ненасыщенных кислот, являющихся промежуточными продуктами при окислении, двойные связи имеют транс-конфигурацию. В тканях есть фермент, изменяющий конфигурацию двойной связи цис- в транс-.
Метаболизм кетоновых тел.
Под термином кетоновые (ацетоновые) тела подразумевают ацетоуксусную кислоту, -гидроксимасляную и ацетон. Кетоновые тела образуются в печени в результате деацилирования ацетоацетил КоА. Имеются данные, указывающие на важную роль кетоновых тел в поддержании энергетического гомеостаза. Кетоновые тела - своего рода поставщики топлива для мышц, мозга и почек и действуют как часть регуляторного механизма, предотвращающая мобилизацию жирных кислот из депо.
Биосинтез липидов.
Биосинтез липидов из глюкозы является важным звеном обмена у большинства организмов. Глюкоза, в количествах, превышающих непосредственные энергетические потребности может являться строительным материалом для синтеза жирных кислот и глицерина. Синтез жирных кислот в тканях протекает в цитоплазме клетки. В митохондриях в основном происходит удлинение существующих цепей жирных кислот.
Внемитохондриальный синтез жирных кислот.
Строительным блоком для синтеза жирных кислот в цитоплазме клетки служит ацетил КоА, который в основном происходит из митохондриального. Для синтеза необходимо наличие в цитоплазме углекислого газа и иона бикарбоната и цитрат. Митохондриальный ацетил КоА не может диффундировать в цитоплазму клетки, т.к. митохондриальная мембрана непроницаема для него. Митохондриальный ацетил КоА взаимодействует с оксалоацетатом, образуя цитрат и проникает в цитоплазму клетки, где расщепляется до ацетил КоА и оксалоацетата.
Имеется еще один путь проникновения ацетил КоА через мембрану - с участием карнитина.
Этапы биосинтеза жирных кислот :
Образование малонил КоА, путем связывания углекислого газа(биотин-фермент и АТФ) с коэнзимом А. Для этого необходимо наличие НАДФН 2 .
Образование ненасыщенных жирных кислот:
В тканях млекопитающих присутствуют 4 семейства ненасыщенных жирных кислот -
1.пальмитоолеиновая, 2.олеиновая, 3. линолевая,4.линоленовая
1 и 2 синтезируются из пальмитиновой и стеариновой кислот.
Биосинтез триглицеридов.
Синтез триглицеридов происходит из глицерина и жирных кислот (стеариновой, пальмитиновой, олеиновой). Путь биосинтеза триглицеридов происходит через образование глицерол-3-фосфата.
Глицерол-3-фосфат ацилируется и образуется фосфатидная кислота. Далее происходит дефосфорилирование фосфатидной кислоты и образование 1,2-диглицерида. Затем происходит этерификация молекулой ацил КоА и образование триглицерида. Глицерофосфолипиды синтезируются в эндоплазматической цепи.
Биосинтез насыщенных жирных кислот.
Непосредственным предшественником двууглеродных единиц в синтезе жирных кислот служит малонил КоА.
Полный синтез насыщенных жирных кислот катализируется особым синтетазным комплексом, состоящим из 7 ферментов. Синтетазная система, катализируюшая синтез жирных кислот в растворимой фракции цитоплазмы ответственна за следующую суммарную реакцию при которой одна молекула ацетил КоА и 7 молекул малонил КоА конденсируются с образованием одной молекулы пальмитиновой кислоты (восстановление осуществляется за счет НАДФН). Единственная молекула ацетил КоА, необходимая для реакции служит инициатором.
Образование малонил КоА:
1. Цитрат способен проходить через митохондриальную мембрану в цитоплазму. Митохондриальный ацетил КоА переносится на оксалоацетат с образованием цитрата, который может проходить через митохондриальную мембрану в цитоплазму с помощью системы переноса. В цитоплазме цитрат расщепляется до ацетил КоА, который взаимодействуя с углекислым газом превращается в малонил КоА. Лимитирующий фермент всего процесса синтеза жирных кислот - ацетил КоА-карбоксилаза.
2. Ацилпереносящий белок в синтезе жирных кислот служит своего рода якорем, к которому в ходе реакций образования алифатической цепи присоединяются ацильные промежуточные продукты. В митохондриях молекулы насыщенных жирных кислот удлиняются в форме эфиров КоА путем последовательного добавления КоА. Ацильные группы ацетил КоА и малонил КоА переносятся на тиоловые группы ацил-переносящего белка.
3. После конденсации этих двухуглеродных фрагментов идет их восстановление с образованием высших насыщенных жирных кислот.
Последующие этапы синтеза жирных кислот в цитоплазме сходны с реакциями обратными реакциям митохондриального -окисления. Осуществление этого процесса со всеми промежуточными продуктами прочно связано с большим многоферментным комплексом - синтетазой жирных кислот.
Регуляция обмена жирных кислот.
Процессы обмена жиров в организме регулируются нейрогуморальным путем. Одновременно ЦНС и кора головного мозга осуществляют согласованность различных гормональных влияний. Кора головного мозга оказывает трофическое влияние на жировую ткань либо через симпатическую и парасимпатическую систему, либо через эндокринные железы.
Поддержание определенного соотношения между катаболизмом и анаболизмом жирных кислот в печени связано с воздействием метаболитов внутри клетки, а также влиянием гормональных факторов и потребляемой пищи.
При регуляции -окисления первостепенное значение имеет доступность субстрата. Поступление жирных кислот в клетки печени обеспечивается:
1. захватом жирных кислот из жировой ткани, регуляция этого процесса осуществляется гормонами.
2. захват жирных кислот (обусловленных содержанием жиров в пище).
3. высвобождение жирных кислот под действием липазы из триглицеридов печени.
Второй контролирующий фактор - уровень запаса энергии в клетке (соотношение АДФ и АТФ). Если АДФ много (клеточные резервы энергии малы), то протекают реакции сопряжения, что способствует синтезу АТФ. Если содержание АТФ повышено, вышеупомянутые реакции тормозятся, накапливающиеся жирные кислоты используются для биосинтеза жиров и фосфолипидов.
Способность цикла лимонной кислоты катаболизировать ацетил КоА, образующийся при -окислении имеет важное значение в реализации общего энергетического потенциала катаболизма жирных кислот, а также нежелательного накопления кетоновых тел (ацетоуксусная кислота, -оксибутират и ацетон).
Инсулин усиливает биосинтез жирных кислот, превращение углеводов в жиры. Адреналин, тироксин и гормон роста активируют распад (липолиз) жира.
Снижение выработки гормонов гипофиза и половых гормонов приводит к стимуляции синтеза жиров.
Нарушения липидного обмена
1.Нарушение процессов всасывания жиров
а) недостаточность поступления панкреатической липазы
б)нарушение поступления в кишечник желчи
в)нарушение желудочно-кишечного тракта (повреждение эпителиального покрова).
2. Нарушение процессов перехода жира из крови в ткани - нарушается переход жирных кислот из хиломикронов плазмы крови в жировые депо. Это наследственное заболевание, связанное с отсутствием фермента.
3. Кетонурия и кетонемия- при голодании у лиц с диабетом содержание кетоновых тел повышено - это кетонемия. Оно состояние сопровождается кетонурией (наличие кетоновых тел в моче). Ввиду необычно высокой концентрации кетоновых тел в притекающей крови мышцы и другие органы не справляются с их окислением.
4. Атеросклероз и липопротеиды. Доказана ведущая роль определенных классов липопротеидов в патогенезе атеросклероза. Формирование липидных пятен и бляшек сопровождается глубокими дистрофическими изменениями в пределах сосудистой стенки.
Холестерин
У млекопитающих большая часть (около 90%) холестерина синтезируется в печени. Большая часть его (75 %) используется при синтезе так называемых желчных кислот, помогающих перевариванию липидов, поступающих с пищей в кишечнике. Они делают их более доступными для гидролитических ферментов - липаз. Основной желчной кислотой является холевая кислота. Холестерин является также матаболическим предшественником других важных стероидов, многие из которых выступают в виде гормонов.: альдостерона и кортизона, эстрона, тестостерона и андростерона.
Нормальный уровень холестерина в плазме крови в пределах 150-200 мг/мл. Высокий уровень может привести к отложению холестериновых бляшек в аорте и мелких артериях, это состояние известно под названием артериосклероза (атеросклероза). В конечном счете он способствует нарушению сердечной деятельности. Поддержание нормального уровня холестерина осуществляется путем организации правильного режима питания, а также in vivo регуляцией пути ацетил-КоА. Один из способов снижения высокого уровня холестерина в крови заключается в приеме внутрь соединений, уменьшающих способность организма синтезировать холестерин. Холестерин синтезируется в печени и плазме крови, упаковывается в липопротеиновые комплексы, которые переносятся в другие клетки. Проникновение холестерина в клетку зависит от наличия мембранных рецепторов, связывающих такие комплексы, которые проникают в клетку путем эндоцитоза и затем лизосомные ферменты освобождают холестерин внутри клетки. У пациентов с высоким уровнем холестерина в крови были обнаружены дефектные рецепторы, это - генетический дефект.
Холестерин является предшественником многих стероидов, таких как стероиды кала, желчные кислоты и стероидные гормоны. При образовании стероидных гормонов из холестерина сначала синтезируется промежуточный продукт прегненолон, который служит предшественником прогестерона - гормона плаценты и желтого тела, мужских половых гормонов (тестостерона), женских половых гормонов (эстрона) и гормонов коры надпочечников (кортикостерона).
Главным исходным материалом для биосинтеза этих гормонов является аминокислота тирозин. Ее источник в клетках -
1. Протеолиз
2. Образование из фенилаланина (незаменимой АК)
Биосинтез стероидных гормонов несмотря на разнообразный спектр их действия, является единым процессом.
Центральное положение в биосинтезе всех стероидных гормонов занимает прогестерон.
Имеются 2 пути его синтеза:
Из холестерина
Из ацетата
В регуляции скоростей биосинтеза отдельных стероидных гормонов важнейшую роль играют тропные гормоны гипофиза. АКТГ стимулирует биосинтез кортикальных гормонов надпочечников.
Имеются 3 причины расстройства биосинтеза и выделения специфических гормонов:
1. Развитие патологического процесса в самой эндокринной железе.
2. Нарушение регуляторных влияний на процессы со стороны ЦНС.
3. Нарушение координации деятельности отдельных желез внутренней секреции.
Биосинтез холестерина .
Этот процесс насчитывает 35 стадий.
Можно выделить 3 основные:
1. Превращение активного ацетата в мевалоновую кислоту
2. Образование сквалена
3. Окислительная циклизация сквалена в холестерин.
Холестерин является предшественником многих стероидов:
Стероидов кала, желчных кислот, стероидных гормонов. Распад холестерина - это превращение его в желчные кислоты в печени.
Показано, что регуляция биосинтеза холестерина осуществляется путем изменения синтеза и активности -гидрокси--метил глутарил КоА-редуктазы. Этот фермент локализован в мембранах эндоплазматической сети клетки. Его активность зависит от концентрации холестерина, приводит к снижению активности фермента. Регуляция активности редуктазы холестерином - пример регуляции ключевого фермента конечным продуктом по принципу отрицательной обратной связи.
Существует и второй путь биосинтеза мевалоновой кислоты.
Два автономных пути имеют значение для внутриклеточного разграничения биосинтеза холестерина необходимого для внутриклеточных нужд (синтез липопротеидов клеточных мембран) от холестерина, идущего на образование жирных кислот. В составе липопротеидов холестерин покидает печень и поступает в кровь. Содержание общего холестерина в плазме крови 130-300 мг/мл.
Молекулярные компоненты мембран.
Большинство мембран состоит примерно из 40% липида и 60% белка. Липидная часть мембран содержит преимущественно полярные липиды различных типов, практически все количество полярных липидов клетки сосредоточено в ее мембранах.
Большинство мембран содержит мало триацилглицеринов и стеринов, исключением в этом смысле являются плазматические мембраны клеток высших животных с характерным для них высоким содержанием холестерина.
Соотношение между различными липидами постоянно для каждого данного типа мембран клетки и, следовательно, определяются генетически. Большинство мембран характеризуется одинаковым соотношением липида и белка. Почти все мембраны легко проницаемы для воды и для нейтральных липофильных соединений, в меньшей степени проницаемы для полярных веществ, таких как сахара и амиды и совсем плохо проницаемы для небольших ионов, таких как натрий или хлор.
Для большинства мембран характерно высокое электрическое сопротивление. Эти общие свойства послужили основой для создания первой важной гипотезы относительно структуры биологических мембран - гипотезы элементарной мембраны. Согласно гипотезе, элементарная мембрана состоит из двойного слоя смешанных полярных липидов, в котором углеводородные цепи обращенных внутрь и образуют непрерывную углеводородную фазу, а гидрофильные головы молекул направлены наружу, каждая из поверхностей двойного слоя липидов покрыта мономолекулярным слоем белка, полипептидные цепи которого находятся в вытянутой форме. Общая толщина элементарной мембраны - 90 ангстрем, а толщина двойного слоя липидов - 60-70- ангстрем.
Структурное многообразие мембран больше, чем исходя из гипотезы элементарной мембраны.
Другие модели мембран:
1. Структурный белок мембраны находится внутри двойного слоя липидов, а углеводородные хвосты липидов проникают в свободные и т.д.................

Строительным блоком для синтеза жирных кислот в цитозоле клетки служит ацетил-КоА, который образуется двумя путями: либо в результате окислительного декарбоксилирования пирувата. (см. рис. 11, Этап III), либо в результате b-окисления жирных кислот (см. рис. 8).

Рисунок 11 – Схема превращения углеводов в липиды

Напомним, что превращения образовавшегося при гликолизе пирувата в ацетил-КоА и его образование при b-окислении жирных кислот происходит в митохондриях. Синтез жирных кислот протекает в цитоплазме. Внутренняя мембрана митохондрий непроницаема для ацетил-КоА. Его поступление в цитоплазму осуществляется по типу облегченной диффузии в виде цитрата или ацетилкарнитина, которые в цитоплазме превращаются в ацетил-КоА, оксалоацетат или карнитин. Однако главный путь переноса ацетил-коА из митохондрии в цитозоль является цитратный (см. рис. 12).

Вначале внутримитохондриальный ацетил-КоА взаимодействует с оксалоацетатом, в результате чего образуется цитрат. Реакция катализируется ферментом цитрат-синтазой. Образовавшийся цитрат переносится через мембрану митохондрий в цитозоль при помощи специальной трикарбоксилаттранспортирующей системы.

В цитозоле цитрат реагирует с HS-КоА и АТФ, вновь распадается на ацетил-КоА и оксалоацетат. Эта реакция катализируется АТФ-цитратлиазой. Уже в цитозоле оксалоацетат при участии цитозольной дикарбоксилат-транспортирующей системы возвращается в митохондриальный матрикс, где окисляется до оксалоацетата, завершая тем самым так называемый челночный цикл:

Рисунок 12 – Схема переноса ацетил-КоА из митохондрий в цитозоль

Биосинтез насыщенных жирных кислот происходит в направлении, противоположном их b-окислению, наращивание углеводородных цепей жирных кислот осуществляется за счет последовательного присоединения к их концам двухуглеродного фрагмента (С 2) – ацетил-КоА (см. рис. 11, этап IV.).

Первой реакцией биосинтеза жирных кислот является карбоксилирование ацетил-КоА, для чего требуется СО 2 , АТФ, ионы Mn. Катализирует эту реакцию фермент ацетил-КоА – карбоксилаза. Фермент содержит в качестве простетической группы биотин (витамин Н). Реакция протекает в два этапа: 1 – карбоксилирование биотина с участием АТФ и II – перенос карбоксильной группы на ацетил-КоА, в результате чего образуется малонил-КоА:

Малонил-КоА представляет собой первый специфический продукт биосинтеза жирных кислот. В присутствии соответствующей ферментной системы малонил-КоА быстро превращается в жирные кислоты.

Нужно отметить, что скорость биосинтеза жирных кислот определяется содержанием сахаров в клетке. Увеличение концентрации глюкозы в жировой ткани человека, животных и повышение скорости гликолиза стимулирует процесс синтеза жирных кислот. Это свидетельствует о том, что жировой и углеводный обмен тесно взаимосвязаны друг с другом. Важную роль здесь играет именно реакция карбоксилирования ацетил-КоА с его превращением в малонил-КоА, катализируемая ацетил-КоА-карбоксилазой. Активность последней зависит от двух факторов: наличия в цитоплазме высокомолекулярных жирных кислот и цитрата.


Накопление жирных кислот оказывает тормозящее влияние на их биосинтез, т.е. подавляют активность карбоксилазы.

Особая роль отводится цитрату, который является активатором ацетил-КоА-карбоксилазы. Цитрат в то же время играет роль связующего звена углеводного и жирового обменов. В цитоплазме цитрат вызывает двойной эффект в стимулировании синтеза жирных кислот: во-первых, как активатор ацетил-КоА-карбоксилазы и, во-вторых, как источник ацетильных групп.

Очень важной особенностью синтеза жирных кислот является то, что все промежуточные продукты синтеза ковалентно связаны с ацилпереносящим белком (HS-АПБ).

HS-АПБ – низкомолекулярный белок, который термостабилен, содержит активную HS-группу и в простетической группе которого содержится пантотеновая кислота (витамин В 3). Функция HS-АПБ аналогична функции фермента А (HS-КоА) при b-окислении жирных кислот.

В процессе построения цепи жирных кислот промежуточные продукты образуют эфирные связи с АБП (см. рис. 14):

Цикл удлинения цепи жирных кислот включает четыре реакции: 1) конденсации ацетил-АПБ (С 2) с малонил-АПБ (С 3); 2) восстановления; 3) дегидротации и 4) второго восстановления жирных кислот. На рис. 13 представлена схема синтеза жирных кислот. Один цикл удлинения цепи жирной кислоты включает четыре последовательных реакции.

Рисунок 13 – Схема синтеза жирных кислот

В первой реакции (1) – реакции конденсации – ацетильная и малонильные группы взаимодействуют между собой с образованием ацетоацетил-АБП с одновременным выделением СО 2 (С 1). Эту реакцию катализирует конденсирующий фермент b-кетоацил-АБП-синтетаза. Отщепленный от малонил-АПБ СО 2 – это тот же самый СО 2 , который принимал участие в реакции карбоксилирования ацетил-АПБ. Таким образом, в результате реакции конденсации происходит образование из двух-(С 2) и трехуглеродных (С 3) компонентов четырехуглеродного соединения (С 4).

Во второй реакции (2) – реакции восстановления, катализируемой b-кетоацил-АПБ-редуктазой, ацетоацетил-АПБ превращается в b-гидроксибутирил-АПБ. Восстанавливающим агентом служит НАДФН + Н + .

В третьей реакции (3) цикла-дегидратации – от b-гидроксибутирил-АПБ отщепляется молекула воды с образованием кротонил-АПБ. Реакция катлизируется b-гидроксиацил-АПБ-дегидратазой.

Четвертой (конечный) реакцией (4) цикла является восстановление кротонила-АПБ в бутирил-АПБ. Реакция идет под действием еноил-АПБ-редуктазы. Роль восстановителя здесь выполняет вторая молекула НАДФН + Н + .

Далее цикл реакций повторяется. Допустим, что идет синтез пальмитиновой кислоты (С 16). В этом случае образование бутирил-АПБ завершается лишь первый из 7 циклов, в каждом из которых началом является присоединение молекулы молонил-АПБ (С 3) – реакция (5) к карбоксильному концу растущей цепи жирной кислоты. При этом отщепляется карбоксильная группа в виде СО 2 (С 1). Этот процесс можно представить в следующем виде:

С 3 + С 2 ® С 4 + С 1 – 1цикл

С 4 + С 3 ® С 6 + С 1 – 2 цикл

С 6 + С 3 ® С 8 + С 1 –3 цикл

С 8 + С 3 ® С 10 + С 1 – 4 цикл

С 10 + С 3 ® С 12 + С 1 – 5 цикл

С 12 + С 3 ® С 14 + С 1 – 6 цикл

С 14 + С 3 ® С 16 + С 1 – 7 цикл

Могут синтезироваться не только высшие насыщенные жирные кислоты, но и ненасыщенные. Мононенасыщенные жирные кислоты образуются из насыщенных в результате окисления (десатурации), катализуруемой ацил-КоА-оксигеназой. В отличие от растительных тканей ткани животных обладают весьма ограниченной способностью превращать насыщенные жирные кислоты в ненасыщенные. Установлено, что две наиболее распространенные мононенасыщенные жирные кислоты – пальмитоолеиновая и олеиновая – синтезируются из пальмитиновой и стеариновой кислот. В организме млекопитающих, в том числе и человека, не могут образовываться, например, из стеариновой кислоты (С 18:0) линолевая (С 18:2) и линоленовая (С 18:3) кислоты. Эти кислоты относятся к категории незаменимых жирных кислот. К незаменимым жирным кислотам относят также арахиновую кислоту (С 20:4).

Наряду с десатурацией жирных кислот (образование двойных связей) происходит и их удлинение (элонгации). Причем, оба эти процесса могут сочетаться и повторяться. Удлинение цепи жирной кислоты происходит путем последовательного присоединения к соответствующему ацил-КоА двууглеродных фрагментов при участии малонил-КоА и НАДФН+Н + .

На рисунке 14 представлены пути превращения пальмитиновой кислоты в реакциях десатурации и элонгации.

Рисунок 14 – Схема превращения насыщенных жирных кислот

в ненасыщенные

Завершается синтез любой жирной кислоты отщеплением HS-АПБ от ацил-АПБ под влиянием фермента деацилазы. Например:

Образовавшийся ацил-КоА является активной формой жирной кислоты.

С пищей в организм поступают разнообразные жирные кислоты, в том числе и незаменимые. Значительная часть заменимых жирных кислот синтезируется в печени, в меньшей степени - в жировой ткани и лактирующей молочной железе. Источником углерода для синтеза жирных кислот служит ацетил-КоА, образующийся при распаде глюкозы в абсорбтивном периоде. Таким образом, избыток углеводов, поступающих в организм, трансформируется в жирные кислоты, а затем в жиры.

Биосинтез жирных кислот наиболее активно происходит в цитозоле клеток печени, кишечника, жировой ткани в состоянии покоя или после еды.

Условно можно выделить 4 этапа биосинтеза:

1. Образование ацетил-SКоА из глюкозы, других моносахаров или кетогенных аминокислот.

2. Перенос ацетил-SКоА из митохондрий в цитозоль:

Биосинтез жирных кислот протекает с участием НАДФН, АТФ, Мn2+ и НСО3– (в качестве источника СО2); субстратом является ацетил-КоА

Образование малонил-КоА . Первой реакцией биосинтеза жирных кислот является карбоксилирование ацетил-КоА, для чего требуются бикарбонат, АТФ, ионы марганца. Катализирует эту реакцию фермент ацетил-КоА-карбоксилаза

Реакция протекает в два этапа:

I – карбоксилирование биотина с участием АТФ и

II – перенос карбоксильной группы на ацетил-КоА, в результате чего образуется малонил-КоА

мультиферментный комплекс, называемый синтетазой (синтазой) жирных кислот, состоит из 6 ферментов, связанных с так называемым ацилпереносящим белком (АПБ).

Завершается синтез жирной кислоты отщеплением HS-АПБ от ацил-АПБ под влиянием фермента деацилазы.

1. представление о пентозофосфатном пути превращений глюкозы. Окислительные реакции до стадии рибулозо-5-фосфата. Суммарные результаты пентозофосфатного пути. Образование НАДФ*Н и пентоз. Распространение и физиологическое значение.

ПЕНТОЗОФОСФАТНЫЙ ПУТЬ ПРЕВРАЩЕНИЯ ГЛЮКОЗЫ

Пентозофосфатный путь, называемый также гексомонофосфатным шунтом, служит альтернативным путём окисления глюкозо-6-фосфата. Пентозофосфатный путь состоит из 2 фаз (частей) - окислительной и неокислительной.

В окислительной фазе глюкозо-6-фосфат необратимо окисляется в пентозу - рибулозо-5-фосфат, и образуется восстановленный NADPH.

В неокислительной фазе рибулозо-5-фосфат обратимо превращается в рибозо-5-фосфат и метаболиты гликолиза.

Пентозофосфатный путь обеспечивает клетки рибозой для синтеза пуриновых и пиримидиновых нуклеотидов и гидрированным коферментом NADPH, который используется в восстановительных процессах.

Суммарное уравнение пентозофосфатного пути выражается следующим образом:

3 Глюкозо-6-фосфат + 6 NADP+ -> 3 С02 + 6 (NADPH + Н+) + 2 Фруктозо-6-фосфат + Глицеральдегид- 3 -фосфат.

Ферменты пентозофосфатного пути, локализованы в цитозоле.

Наиболее активно Пентозофосфатный путь протекает в жировой ткани, печени, коре надпочечников, эритроцитах, молочной железе в период лактации, семенниках.



gastroguru © 2017