Что происходит в мейозе 2. Деление клеток

Мейоз - это особый способ деления эукариотических клеток, в результате которого происходит переход клеток из диплоидного состояния в гаплоидное. Мейоз состоит из двух последовательных делений, которым предшествует однократная репликация ДНК.

Первое мейотическое деление (мейоз 1) называется редукционным , поскольку именно во время этого деления происходит уменьшение числа хромосом вдвое: из одной диплоидной клетки (2n 4c ) образуются две гаплоидные (1n 2c ).

Интерфаза 1 (в начале - 2n 2c , в конце - 2n 4c ) - синтез и накопление веществ и энергии, необходимых для осуществления обоих делений, увеличение размеров клетки и числа органоидов, удвоение центриолей, репликация ДНК, которая завершается в профазе 1.

Профаза 1 (2n 4c ) - демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер. Конъюгация - процесс сближения и переплетения гомологичных хромосом. Пару конъюгирующих гомологичных хромосом называют бивалентом . Кроссинговер - процесс обмена гомологичными участками между гомологичными хромосомами.

Профаза 1 подразделяется на стадии:

  • лептотена (завершение репликации ДНК),
  • зиготена (конъюгация гомологичных хромосом, образование бивалентов),
  • пахитена (кроссинговер, перекомбинация генов),
  • диплотена (выявление хиазм, 1 блок овогенеза у человека),
  • диакинез (терминализация хиазм).

1 - лептотена; 2 - зиготена; 3 - пахитена; 4 - диплотена; 5 - диакинез; 6 - метафаза 1; 7 - анафаза 1; 8 - телофаза 1; 9 - профаза 2; 10 - метафаза 2; 11 - анафаза 2; 12 - телофаза 2.

Метафаза 1 (2n 4c ) - выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим - к центромерам хромосом.

Анафаза 1 (2n 4c ) - случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая - к другому), перекомбинация хромосом.

Телофаза 1 (1n 2c в каждой клетке) - образование ядерных мембран вокруг групп двухроматидных хромосом, деление цитоплазмы. У многих растений клетка из анафазы 1 сразу же переходит в профазу 2.

Второе мейотическое деление (мейоз 2) называется эквационным.

Интерфаза 2 , или интеркинез (1n 2c ), представляет собой короткий перерыв между первым и вторым мейотическими делениями, во время которого не происходит репликация ДНК. Характерна для животных клеток.

Профаза 2 (1n 2c ) - демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

Метафаза 2 (1n 2c ) - выстраивание двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим - к центромерам хромосом; 2 блок овогенеза у человека.

Анафаза 2 (2n 2с ) - деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), перекомбинация хромосом.

Телофаза 2 (1n 1c в каждой клетке) - деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.

Биологическое значение мейоза . Мейоз является центральным событием гаметогенеза у животных и спорогенеза у растений. Являясь основой комбинативной изменчивости, мейоз обеспечивает генетическое разнообразие гамет.

Профаза первого деления мейоза является чрезвычайно длительным процессом. Ее длительность у разных живых организмов составляет от нескольких дней до нескольких десятков лет. В связи с этим принято условно делить ее на несколько фаз (лептотена, зиготена, пахитена, диплотена, диакинез), во время которых происходят различные события. Важно помнить, что эти фазы четко не разграничены и события одной фазы плавно перетекают в другую.
Во время Профазы1 происходят, среди прочих, события, имеющие огромное биологическое значение. Например, это конъюгация, взаимное соединение гомологичных, удвоенных в результате репликации хромосом, при этом образуются хромосомные комплексы, состоящие из четырех хроматид. Хроматиды соединены вместе с помощью специальной структуры — синаптонемного комплекса. Во время профазы 1 осуществляется и обмен участками между хроматидами гомологичных хромосом (но не между сестринскими хроматидами одного гомолога) — кроссинговер. В процессе профазы 1 происходит синтез примерно 1,5% хромосомной ДНК. Кроме того, хромосомы, в которых в течение этой фазы сохраняются не полностью упакованные, а значит, функциональные участки, продолжают активно синтезировать РНК и регулировать биосинтез белка.

  • Лептотена

  • Аудиофрагмент

  • Лептотена — стадия тонких нитей (хромосом). В начале лептотены происходит компактизация хроматиновых нитей и их превращение в хромосомы. Однако этот процесс не заканчивается. Длина каждой хроматиновой нити в конце этой стадии на 1-2 порядка длиннее, чем у гиперспирализованных хромосом в метафазе1. Это имеет большое биологическое значение, поскольку, не полностью упакованные участки ДНК сохраняют функциональную активность в течение всей профазы1.

    Это позволяет, во-первых, обеспечивать белковым синтезом сложнейшие события во время коньюгации гомологичных хромосом, формирования и разрушения хиазм и кроссинговера. Во-вторых, при овогенезе - создать запас питательных веществ для будущей зиготы.

    Специфическое для каждого вида расположение гиперспирализованных участков - хромомер - на тонких хромосомах, позволяет составлять морфологические карты хромосом, которые используются в цитологическом анализе.

    Уже во время лептотены появляются признаки важнейшего процесса профазы1 - коньюгации гомологичных хромосом, основные события которого происходят во время зиготены.

  • Зиготена

  • Аудиофрагмент

  • Зиготена — стадия конъюгации гомологичных хромосом (синапсис). При этом гомологичные хромосомы (уже двойные после S-периода интерфазы) сближаются и образуют новый хромосомный ансамбль, никогда до этого не встречающийся при клеточном делении, — бивалент. Биваленты — это парные соединения удвоенных гомологичных хромосом, т.е. каждый бивалент состоит из четырех хроматид. Конечная цель формирования бивалентов - это совместное прохождение парой гомологичных хромосом метафазы1 для последующего точного попадания гомологичных хромосом в разные дочерние клетки.

    Главный вопрос до конца до сих пор не понятого процесса коньюгации - как в пространстве ядра хромосомы находят своего специфического гомолога?

    По-видимому, для этого узнавания особое значение имеют участки zДНК, равномерно распределенные по всей длине хромосомы. Расположение этих участков специфично для каждой пары гомологичных хромосом. Репликация zДНК происходит во время зиготены, ингибирование этой репликации (а это всего 0,3% от всей ДНК клетки) останавливает коньюгацию и мейоз. Эти факты свидетельствуют об особой роли zДНК в профазе1.

    Сближение гомологичных хромосом заканчивается формированием синаптонемного комплекса.

  • Синаптонемный комплекс

  • Аудиофрагмент

  • Синаптонемный комплекс встречается практически у всех представителей эукариот, которые обладают половым процессом. Он обнаружен у простейших, водорослей, низших и высших грибов, у высших растений и у животных. Объединение гомологов чаще всего начинается в теломерах и центромерах. В этих местах, а позднее и в других по всей длине соединяющихся хромосом происходит сближение осевых тяжей на расстояние около 100 нм. По своей морфологии синаптонемный комплекс имеет вид трехслойной ленты, состоящей из двух боковых компонентов - тяжей (толщиной 30-60 нм), и центрального осевого элемента (толщиной 10-40 нм); боковые компоненты отстоят друг от друга на 60-120 нм, общая ширина комплекса 160-240 нм. Материал хромосом располагается снаружи от боковых элементов. Каждый боковой элемент связан с петлями двух сестринских хроматид одного гомолога. Большая часть ДНК этих хроматид находится вне синаптонемного комплекса, и лишь менее 5% геномной ДНК входит в его состав, прочно ассоциируясь с белками. В состав этой ДНК входят уникальные и умеренно повторяющиеся последовательности нуклеотидов. Белковый состав синаптонемного комплекса сложен, он состоит более чем из десяти мажорных белков с молекулярными массами от 26 до 190 кДа.

  • Пахитена

  • Аудиофрагмент

  • Пахитена — стадия толстых нитей. Благодаря полной конъюгации гомологов профазные хромосомы как бы увеличились в толщине. Число таких толстых пахитенных хромосом гаплоидно (n), но они состоят из двух объединившихся гомологов, каждый из которых имеет по две сестринские хроматиды. Следовательно, и здесь количество ДНК равно 4с, а число хроматид — 4n.

    Между гомологичными хроматидами (хроматидами разных хромосом) начинают образовываться временные связи, которые многократно перекрещивают бивалент в разных точках - образуются хиазмы.

    На этой стадии происходит второе, чрезвычайно важное событие, характерное для мейоза, — кроссинговер, взаимный обмен идентичными участками по длине гомологических хромосом. Генетическим следствием кроссинговера является рекомбинация сцепленных генов. Здесь возникают отличные от исходных хромосомы, содержащие отдельные участки, пришедшие от их гомологов. Морфологически этот процесс в пахитене уловить нельзя.

    В пахитене также происходит синтез небольшого количества ДНК (всего около 1% от всей ДНК клетки), отличающейся тем, что она содержит повторяющиеся последовательности нуклеотидов. Но этот синтез репаративен, в результате его не образуются дополнительные или недостающие количества ДНК, а происходит восстановление утраченных.

    Весь процесс объединения и обмена между ДНК несестринских хроматид гомологов можно представить следующим образом. По длине хромосомы разбросаны участки повторяющихся последовательностей ДНК, которые при разрывах с помощью специальных ферментов легко могут образовать гибридные молекулы. Сшивание и восстановление целостности молекул с помощью специальных репаративных ферментов приводят к включению предшественников в ДНК на стадии пахитены. По всей вероятности, в этом процессе принимает участие так называемый рекомбинационный узелок — большой белковый ансамбль величиной около 90 нм. Он располагается в синаптонемном комплексе между гомологичными хромосомами, его расположение совпадает с местами хиазм.

    Мейоз состоит из двух последовательных клеточных делений, первое из которых длится почти столько же, сколько весь мейоз, и гораздо сложнее второго ( рис. 15-20А).

    Второе деление мейоза состоит из тех же стадий, что и митоз, с тем отличием, что в каждой клетке находится не диплоидное, а гаплоидное число хромосом. Второе деление мейоза проходит гораздо быстрее первого и обычно занимает несколько часов. В целом же мейоз - значительно более длительный процесс по сравнению с митозом : у ржи он идет более двух суток, у дрозофилы - около недели, у человека - три с половиной недели. В результате мейоза из одной диплоидной клетки образуется четыре клетки с гаплоидным набором хромосом. При этом вследствие случайного распределения отцовских и материнских хромосом между клетками, а также в результате обмена гомологичных хромосом отдельными участками достигается огромное разнообразие гамет у каждого организма. При слиянии половых клеток также возможно образование большого количества комбинаций (об этом подробнее будет рассказано в разделе о наследственной информации). Таким образом, при половом способе размножения происходит перекомбинирование наследственной информации, в результате которого потомство в значительной мере отличается от своих родителей.

    После окончания первого деления мейоза у двух дочерних клеток вновь образуются оболочки и начинается короткая интерфаза . В это время хромосомы несколько деспирализуются, однако вскоре они опять конденсируются и начинается профаза II . Поскольку в этот период синтеза ДНК не происходит, создается впечатление, что у некоторых организмов хромосомы переходят непосредственно от одного деления к другому. Профаза II у всех организмов короткая: ядерная оболочка разрушается, когда формируется новое веретено, после чего, быстро сменяя друг друга, следуют метафаза II , анафаза II и телофаза II . Так же как и при митозе , у сестринских хроматид образуются кинетохорные нити , отходящие от центромеры в противоположных направлениях. В метафазной пластинке две сестринские хроматиды удерживаются вместе до анафазы, когда они разделяются благодаря внезапному расхождению их кинетохоров.Таким образом, второе деление мейоза сходно с обычным митозом , единственное существенное различие состоит в том, что здесь имеется по одной копии каждой хромосомы, а не по две, как в

    Узнать о виде деления клетки поможет данная статья. Мы расскажем кратко и понятно о мейозе, о фазах, которые сопровождают этот процесс, обозначим основные их особенности, узнаем, какие признаки характеризуют мейоз.

    Что такое мейоз?

    Редукционное деление клетки, другими словами - мейоз – это вид деления ядра, при котором число хромосом уменьшается в два раза.

    В переводе с древнегреческого языка, мейоз обозначает уменьшение.

    Данный процесс происходит в два этапа:

    • Редукционный ;

    На этом этапе в процессе мейоза число хромосом в клетке уменьшается вдвое.

    • Эквационный ;

    В ходе второго деления гаплоидность клеток сохраняется.

    ТОП-4 статьи которые читают вместе с этой

    Особенностью данного процесса является то, что протекает он только лишь в диплоидных, а также в чётных полиплоидных клетках. А всё потому, что в результате первого деления в профазе 1 в нечётных полиплоидах нет возможности обеспечить попарное слияние хромосом.

    Фазы мейоза

    В биологии деление происходит на протяжении четырёх фаз: профазы, метафазы, анафазы и телофазы . Мейоз не является исключением, особенностью данного процесса является то, что происходит он в два этапа, между которыми имеется короткая интерфаза .

    Первое деление:

    Профаза 1 является достаточно сложным этапом всего процесса в целом, состоит она из пяти стадий, которые внесены в следующую таблицу:

    Стадия

    Признак

    Лептотена

    Хромосомы укорачиваются, конденсируется ДНК и образуются тонкие нити.

    Зиготена

    Гомологичные хромосомы соединяются в пары.

    Пахитена

    По длительности самая длинная фаза, в ходе которой гомологические хромосомы плотно присоединяются друг к другу. В результате происходит обмен некоторых участков между ними.

    Диплотена

    Хромосомы частично деконденсируются, часть генома начинает выполнять свои функции. Образуется РНК, синтезируется белок, при этом хромосомы ещё соединены между собой.

    Диакинез

    Снова происходит конденсация ДНК, процессы образования прекращаются, ядерная оболочка исчезает, центриоли располагаются в противоположных полюсах, но хромосомы соединены между собой.

    Заканчивается профаза образованием веретена деления, разрушением ядерных мембран и самого ядрышка.

    Метофаза первого деления знаменательна тем, что хромосомы выстраиваются вдоль экваториальной части веретена деления.

    Во время анафазы 1 сокращаются микротрубочки, биваленты разделяются и хромосомы расходятся к разным полюсам.

    В отличие от митоза, на этапе анафазы к полюсам отходят целые хромосомы, которые состоят из двух хроматид.

    На этапе телофазы деспирализуются хромосомы и образуется новая ядерная оболочка.

    Рис. 1. Схема мейоза первого этапа деления

    Второе деление имеет такие признаки:

    • Для профазы 2 характерна конденсация хромосом и разделение клеточного центра, продукты деления которого расходятся к противоположным полюсам ядра. Ядерная оболочка разрушается, образуется новое веретено деления, которое располагается перпендикулярно по отношению к первому веретену.
    • В ходе метафазы хромосомы вновь располагаются на экваторе веретена.
    • Во время анафазы хромосомы делятся и хроматиды располагаются по разным полюсам.
    • Телофаза обозначена деспирализацией хромосом и появлением новой ядерной оболочки.

    Рис. 2. Схема мейоза второго этапа деления

    В результате из одной диплоидной клетки путём такого деления получаем четыре гаплоидных клетки. Исходя из этого, делаем выводы, что мейоз - это форма митоза, в результате которого из диплоидных клеток половых желёз образуются гаметы.

    Значение мейоза

    В ходе мейоза на этапе профазы 1 происходит процесс кроссинговера - перекомбинация генетического материала. Помимо этого во время анафазы, как первого, так и второго деления, хромосомы и хроматиды расходятся к разным полюсам в случайном порядке. Это объясняет комбинативную изменчивость исходных клеток.

    В природе мейоз имеет огромное значение, а именно:

    • Это один из основных этапов гаметогенеза;

    Рис. 3. Схема гаметогенеза

    • Осуществляет передачу генетического кода при размножении;
    • Получаемые дочерние клетки не похожи на материнскую клетку, а также различаются между собой.

    Мейоз очень важен для образования половых клеток, так как в результате оплодотворения гамет ядра сливаются. В противном случае в зиготе число хромосом было бы вдвое больше. Благодаря такому делению половые клетки гаплоидны, а при оплодотворении восстанавливается диплоидность хромосом.

    Что мы узнали?

    Мейоз - это вид деления эукариотической клетки, при котором из одной диплоидной клетки образуется четыре гаплоидных, путём уменьшения числа хромосом. Весь процесс проходит в два этапа - редукционного и эквационного, каждый из которых состоит из четырёх фаз - профазы, метафазы, анафазы и телофазы. Мейоз очень важен для образования гаметы, для передачи генетической информации будущим поколениям, а также осуществляет перекомбинацию генетического материала.

    Тест по теме

    Оценка доклада

    Средняя оценка: 4.6 . Всего получено оценок: 772.

    Сущность мейоза — образование клеток с гаплоидным набором хромосом .

    Мейоз состоит из двух последовательных делений.

    Между ними не происходит репликации ДНК – поэтому и набор гаплоидный.

    Благодаря этому процессу происходит:

    • гаметогенез;
    • с порообразование у растений;
    • и зменчивость наследственной информации

    Теперь давайте поподробнее рассмотрим этот процесс.

    Мейоз представляет собой 2 деления , следующих друг за другом.

    В результате чего образуются как правило четыре клетки (за исключением например, где после первого деления, вторая клетка дальше не делится, а редуцируется сразу).

    Здесь еще один важный момент: в результате мейоза как правило три клетки из четырех редуцируются, остается одна, то есть происходит естественный отбор . Это тоже одна из задач мейоза.

    Интерфаза первого деления :

    клетка переходит из состояния 2n2c в 2n4c , так как произошла репликация ДНК.

    Профаза:

    В первом делении происходит важный процесс – кроссинговер .

    В профазе I мейоза , каждая из уже скрученных двухроматидных хромосом, унивалентов тесно сближается с гомологичной ей. Это называется (ну путать с конъюгацией инфузорий ), или синапсис . Пара сблизившихся гомологичных хромосом называется

    Затем хроматида перекрещивается с гомологичной (несестренской) хроматидой на соседней хромосоме (с которой образован бивалент ). Места скрещивания хроматид называется . Хиазмы открыл в 1909 году бельгийский ученый Франс Альфонс Янсенс.

    А потом кусочек хроматиды отрывается в месте хиазмы и перескакивает на другую (гомологичную т.е. несестренскую) хроматиду.

    Произошла рекомбинация генов .

    Результат: часть генов перекочевало с одной гомологичной хромосомы на другую.

    До кроссинговера одна гомологичная хромосома обладала генами от материнского организма, а вторая от отцовского. А после обе гомологичные хромосомы обладают генами как материнского так и отцовского организма.

    Значение кроссинговера таково: в результате этого процесса образуются новые комбинации генов, следовательно больше наследственная изменчивость, следовательно больше вероятность появления новых признаков, которые могут оказаться полезными.

    Синапсис (конъюгация) при мейозе происходит всегда, а вот кроссинговер может и не произойти.

    Из-за этих всех процессов: конъюгация, кроссинговер профаза I более продолжительна, чем профаза II.

    Метафаза

    Основное отличие первого деления мейоза от

    в митозе по экватору выстраиваются двухроматидные хромосомы, а в первом делении мейоза биваленты гомологичных хромосом, к каждой из которых прикрепляются нити веретена деления .

    Анафаза

    из-за того, что по экватору выстроились биваленты , происходит расхождение гомологичных двухроматидных хромосом. В отличии от митоза , в котором расходятся хроматиды одной хромосомы.

    Телофаза

    Образовавшиеся клетки из состояния 2n4c становятся n2c , чем опять таки отличаются от клеток, образовавшихся в результате митоза : во-первых, они гаплоидны . Если в митозе по завершении деления образуются абсолютно идентичные клетки, то то в первом делении мейоза каждая клетка содержит только одну гомологичную хромосому.

    Ошибки расхождения хромосом при первом деления могут повлечь за собой трисомию. То есть наличие в одной паре гомологичных хромосом еще одной хромосомы. Например у человека трисомия по 21 является причиной Синдрома Дауна.

    Интерфаза между первым и вторым делением

    — либо очень короткая, либо ее нет вовсе. Поэтому перед вторым делением не происходит репликация ДНК . Это очень важно, так как второе деление вообще нужно для того, чтобы клетки получились гаплоидные с однохроматидными хромосомами.

    Второе деление

    – происходит почти так же как митотическое деление. Только в деление вступают гаплоидные клетки с двухроматидными хромосомами (n2c), каждая из которых выстраивается по экватору, нити веретена деления прикрепляются к центромерам каждой хроматиды каждой хромосомы в метафазе II. В анафазе II хроматиды расходятся. И в телофазе II образуются гаплоидные клетки с однохроматидными хромосомами (nc ). Это необходимо, чтобы при слиянии с другой такой же клеткой (nc) образовалась «нормальная» 2n2c.



    gastroguru © 2017