Периодическая система элементов менделеева - плутоний. Плутоний

Открыт в 1940-41 годах американскими учеными Г. Сиборгом, Э. Макмилланом, Дж. Кеннеди и А. Валем, которые получили изотоп 238 Рu в результате облучения урана ядрами тяжелого водорода - дейтонами. Назван в честь планеты Плутон, как и предшественники Плутония в таблице Менделеева - уран и нептуний, названия которых также произошли от планет Урана и Нептуна. Известны изотопы Плутония с массовыми числами от 232 до 246. Следы изотопов 247 Рu и 255 Рu обнаружены в пыли, собранной после взрывов термоядерных бомб. Самым долгоживущим изотопом Плутоний является α-радиоактивный 244 Рu (период полураспада T ½ около 7,5·10 7 лет). Величины T ½ всех изотопов Плутония много меньше возраста Земли, и поэтому весь первичный Плутоний (существовавший на нашей планете при ее формировании) полностью распался. Однако ничтожные количества 239 Рu постоянно образуются при β-распаде 239 Np, который, в свою очередь, возникает при ядерной реакции урана с нейтронами (например, нейтронами космического излучения). Поэтому следы Плутония обнаружены в урановых рудах.

Плутоний - блестящий белый металл, при температурах от комнатной до 640°С (t пл) существует в шести аллотропных модификациях. Аллотропные превращения Плутония сопровождаются скачкообразными изменениями плотности. Уникальная особенность металлического Плутония состоит в том, что при нагревании от 310 до 480 °С он не расширяется, как другие металлы, а сжимается. Конфигурация трех внешних электронных оболочек атома Pu 5s 2 5p 6 5d 10 5f 6 6s 2 6p 2 7s 2 . Химические свойства Плутония во многом сходны со свойствами его предшественников в периодической системе - ураном и нептунием. Плутоний образует соединения со степенями окисления от +2 до +7. Известны оксиды РuО, Рu 2 О 3 , РuО 2 и фаза переменного состава Рu 2 О 3 - Pu 4 O 7 . В соединениях с галогенами Плутоний обычно проявляет степень окисления +3, но известны также галогениды PuF 4 , PuF 6 и РuСl 4 . В растворах Плутоний существует в формах Pu 3+ , Pu 4+ , РuО 2 (плутоноил-ион), PuO 2+ (плутонил - ион) и PuO s 3- , отвечающих степеням окисления от +3 до +7. Указанные ионы (кроме РuО 3- 5) могут находиться в растворе одновременно в равновесии. Ионы Плутония всех степеней окисления склонны к гидролизу и комплексообразованию.

Из всех изотопов Плутония наиболее важен α-радиоактивный 239 Рu (T ½ = 2,4·10 4 лет). Ядра 239 Pu способны к цепной реакции деления под действием нейтронов, поэтому 239 Рu можно использовать как источник атомной энергии (энергия, освобождающаяся при расщеплении 1 г 239 Рu, эквивалентна теплоте, выделяющейся при сгорании 4000 кг угля). В СССР первые опыты по получению 239 Pu были начаты в 1943-44 годах под руководством академиков И. В. Курчатова и В. Г. Хлопина. Впервые Плутоний в СССР был выделен из облученного нейтронами урана в 1945 году. В предельно сжатые сроки были выполнены обширные исследования свойств Плутония, и в 1949 в СССР начал работать первый завод по радиохимическому выделению Плутония.

Промышленное производство 239 Pu основано на взаимодействии ядер 238 U с нейтронами в ядерных реакторах. Последующее отделение Рu от U, Np и высокорадиоактивных продуктов деления осуществляют радиохимическими методами (соосаждением, экстракцией, ионным обменом и других). Металлический Плутоний обычно получают восстановлением PuF 3 , PuF 4 или PuСO 2 парами бария, кальция или лития. Как делящийся материал, 238 Pu используют в атомных реакторах и в атомных и термоядерных бомбах. Изотоп 238 Рu применяют для изготовления атомных электрических батареек, срок службы которых достигает 5 лет и более. Такие батарейки могут применяться, например, в генераторах тока, стимулирующих работу сердца.

Плутоний в организме. Плутоний концентрируется морскими организмами: его коэффициент накопления (то есть отношение концентраций в организме и во внешней среде) для водорослей составляет 1000-9000, для планктона (смешанного) - около 2300, для моллюсков - до 380, для морских звезд - около 1000, для мышц, костей, печени и желудка рыб - 5, 570, 200 и 1060 соответственно. Наземные растения усваивают Плутоний главным образом через корневую систему и накапливают его до 0,01% от своей массы. В организме человека Плутоний задерживается преимущественно в скелете и печени, откуда почти не выводится (особенно из костей). Наиболее токсичный 239 Pu вызывает нарушения кроветворения, остеосаркомы, рак легких. С 70-х годов 20 века доля Плутония в радиоактивном загрязнении биосферы возрастает (так, облученность морских беспозвоночных за счет Плутония становится больше, чем за счет 90 Sr и 137 Cs).

(Pu) – серебристо-белый радиоактивный металл группы актиноидов, теплый на ощупь (из-за своей радиоактивности. В природе встречается в очень малых количествах в уранитовий смолке и других рудах урана и церия, в значительном количестве получают искусственно. Около 5 тонн плутония выброшено в атмосферу в результате ядерных испытаний.
История
Открытый 1940 Гленом Сиборг (Glenn Seaborg), Эдвином Макмиллан (Edwin McMillan), Кеннеди (Kennedy) и Артуром Уолхом (Arthur Wahl) 1940 года в Беркли (США) во время бомбардировки урановой мишени дейтронами, ускоренными в циклотроне.
Происхождение названия
Плутоний был назван в честь планеты Плутон, поскольку предыдущий открытый химический элемент получил название Нептуний.
Получение
Плутоний получают в ядерных реакторах.
Изотоп 238 U, что составляет основную массу природного урана, мало пригоден к делению. Для ядерных реакторов уран несколько обогащают, но доля 235 U в ядерном топливе остается небольшой (примерно 5%). Основную часть в ТВЭЛах составляет 238 U. Во время работы ядерного реактора часть ядер 238 U захватывает нейтроны и превращается в 239 Pu, который в дальнейшем можно выделить.

Выделить плутоний среди продуктов ядерных реакций достаточно сложно, так как плутоний (как и уран, торий, нептуний) относится к очень похожих между собой по химическим свойствам актиноидов. Задача усложняется тем, что среди продуктов распада содержащихся редкоземельные элементы, химические свойства которых тоже подобные плутония. Применяют традиционные радиохимические методы – осаждение, экстракцию, ионный обмен и т.д. Конечным продуктом этой многостадийной технологии являются оксиды плутония PuO 2 или фториды (PuF 3, PuF 4).
Добывают плутоний методом Металлотермия (восстановлением активными металлами из оксидов и солей в вакууме):

PuF 4 +2 Ba = 2BaF 2 + Pu

Изотопы
Известно более десятка изотопов плутония, все они радиоактивны.
Важнейшим является изотоп 239 Pu, способный к делению ядра и цепной ядерной реакции. Это единственный изотоп, пригодный для использования в ядерном оружии. Имеет лучшие, чем уран-235, показатели поглощения и рассеяния нейтронов, количества нейтронов на одно деление (около 3 против 2,3) и, соответственно, меньшую критическую массу. Его период полураспада составляет около 24 тыс. лет. Другие изотопы плутония рассматривают прежде всего с точки зрения вредности для основного (вооруженного) применения.
Изотопу 238 Pu имеет мощную альфа-радиоактивность и, как следствие, значительное тепловыделение (567 Вт / кг). Это создает неудобства для использования в ядерном оружии, но находит применение в ядерных батареях. Почти все космические аппараты, улетевшие за орбиту Марса, имеют радиоизотопные реакторы на 238 Pu. В реакторном плутонии доля этого изотопа очень незначительна.
Изотоп 240 Pu является основным загрязнителем оружейного плутония. Имеет высокую интенсивность спонтанного распада, создает высокий нейтронный фон, что существенно усложняет подрыв ядерных зарядов. Считают, что его доля в оружии не должна превышать 7%.
241 Pu имеет низкий нейтронный фон и умеренную тепловую эмиссию. Его доля составляет чуть менее 1% и на свойства оружейного плутония не влияет. Однако с периодом полураспада 1914 превращается в америций-241, который выделяет много тепла, что может создавать проблему перегрева зарядов.
242 Pu имеет очень малое сечение реации захвата нейтронов и накапливается в ядерных реакторах, хотя и в очень небольшом количестве (менее 0,1%). На свойства оружейного плутония не влияет. Его применяют в основном для дальнейших ядерных реакций синтеза трансплутониевого элементов: тепловые нейтроны не вызывают деления ядра, поэтому любые количества этого изотопа можно облучать мощными потоками нейтронов.
Другие изотопы плутония встречаются чрезвычайно редко и не имеют влияния на изготовление ядерных зарядов. Тяжелые изотопы образуются в очень незначительных количествах, имеют небольшое время жизни (менее нескольких дней или часов) и, путем бета-распада, превращаются в соответствующие изотопы америция. Среди них выделяется 244 Pu – его период полураспада составляет около 82 млн. лет. Это самый изотоп среди всех трансурановых элементов.
Применение
На конец 1995 года в мире было произведено около 1270 тонн плутония, из них 257 тонн – для вооруженного использования, для которого пригоден только изотоп 239 Pu. Возможно применение 239 Pu качестве топлива в ядерных реакторах, но он проигрывает урана по экономическим показателям. Стоимость переработки ядерного топлива для добычи плутония намного больше, чем стоимость низкообогащенного (~ 5% 235 U) урана. Программу энергетического использования плутония имеет только Япония.
Аллотропные модификации
В твердом виде плутоний имеет семь аллотропных модификаций (однако фазы? и?1 иногда объединяют и считают одной фазе). При комнатной температуре плутоний представляет собой кристаллическую структуру, которая называется ?-фаза. Атомы связаны ковалентной связью (вместо металлического), поэтому физические свойства ближе к минералам чем к металлам. Это твердый, хрупкий материал, ломается в определенных направлениях. Имеет низкую теплопроводность среди всех металлов, низкую электропроводность, за исключением марганца. ?-фаза не поддается обработке обычными для металлов технологиями.
При изменениях температуры в плутонии происходит перестройка структуры и он испытывает чрезвычайно сильные изменения. Некоторые переходы между фазами сопровождаются просто поразительными изменениями объема. В двух из этих фаз (? и?1) плутоний обладает уникальным свойством – отрицательный температурный коефициент расширения, т.е. он сжимается с увеличением температуры.
У гамма и дельта фазах плутоний проявляет обычные свойства металлов, в частности ковкость. Однако в дельта-фазе плутоний проявляет нестабильность. Под небольшим давлением он пытается осесть в плотную (на 25%) альфа-фазу. Это свойство применяют в имплозийних устройствах ядерного оружия.
В чистом плутонии под давлением свыше 1 килобар дельта-фаза вообще не существует. Под давлением более 30 килобар существуют только альфа-и бета-фазы.
Металлургия плутония
Плутоний можно стабилизировать в дельта-фазе при обычном давлении и комнатной температуры путем образования сплава с трехвалентными металлами, такими как галлий, алюминий, церий, индий в концентрации несколько молярных процентов. Именно в таком виде плутоний применяют в ядерном оружии.
Вооруженный плутоний
Для производства ядерного оружия нужно достичь чистоты нужного изотопа (235 U или 239 Pu) более 90%. Создание зарядов из урана требует многих стадий обогащения (потому, что доля 235 U в природном уране составляет менее 1%), в то время как доля 239 Pu в реакторном плутонии обычно составляет от 50% до 80% (т.е. почти в 100 раз больше). А в некоторых режимах работы реакторов можно получить плутоний, содержащий более 90% 239 Pu – такой плутоний не требует обогащения и может использоваться для изготовления ядерного оружия напрямую.
Биологическая роль
Плутоний является одной из самых токсичных известных веществ. Токсичность плутония обусловлена не столько химическими свойствами (хотя плутоний, пожалуй, токсический как любой тяжелый металл), сколько его альфа-радиоактивности. Альфа-частицы задерживаются даже незначительными слоями материалов или тканей. Скажем, несколько миллиметров кожи полностью поглотит их поток, защищая внутренние органы. Но альфа-частицы наздвичайно сильно повреждают ткани, с которыми они контактируют. Итак, плутоний представляет серьезную опасность, если попадает в организм. Он очень плохо всасывается в желудочном тракте, даже если попадает туда в растворимом виде. Но поглощения полграмма плутония может привести к смерти в течение нескольких недель вследствие острого облучения путей пищеварения.
Вдыхание десятой доли грамма пыли плутония приводит к смерти от отека легких в течение десяти дней. Вдыхание дозы в 20 мг приводит к смерти от фиброза течение месяца. Меньшие дозы вызывают кацерогенний эффект. Попадание в организм 1 мкг плутония увеличивает вероятность рака легких на 1%. Следовательно, 100 мкг плутония в организме почти гарантируют развитие рака (в течение десяти лет, хотя повреждения тканей могут оказался и раньше).
В биологических системах плутоний обычно находится в степени окисления +4 и обнаруживает сходство с железа. Попадая в кровь, он наиболее вероятно будет концентрироваться в тканях, содержащих железо: костном мозге, печени, селезенке. Если даже 1-2 микрограмма плутония осядут в костном мозге, иммунитет существенно ухудшится. Период выведения плутония из костной ткани составляет 80-100 лет, т.е. он будет оставаться там практически в течение всей жизни.
Международная комиссия по радиологической защите установила величину максимального ежегодного поглощения плутония на уровне 280 нанограмм.

Описание плутония

Плутоний (Plutonium) представляет собой тяжелый химический элемент серебристого цвета, радиоактивный металл с атомным числом 94, который в периодической обозначается символом Pu.

Данный электроотрицательный активный химический элемент относится к группе актиноидов с атомной массой 244,0642, и, как и нептуний, который получил свое название в честь одноименной планеты, своим названием этот химический обязан планете Плутон, поскольку предшественниками радиоактивного элемента в периодической таблице химических элементов Менделеева является и нептуний, которые также были названы в честь далеких космических планет нашей Галактики.

Происхождение плутония

Элемент плутоний впервые был открыт в 1940 году в Калифорнийском Университете группой ученых-радиологов и научных исследователей Г. Сиборгом, Э. Макмилланом, Кеннеди, А. Уолхом при бомбардировании урановой мишени из циклотрона дейтронами — ядрами тяжелого водорода.

В декабре того же года учеными был открыт изотоп плутония – Pu-238, период полураспада которого составляет более 90 лет, при этом было установлено, что под воздействием сложнейших ядерных химических реакций изначально получается изотоп нептуний-238, после чего уже происходит образование изотопа плутония-238 .

В начале 1941 года ученые открыли плутоний 239 с периодом распада в 25 000 лет. Изотопы плутония могут иметь различное содержание нейтронов в ядре.

Чистое соединение элемента смогли получить только в конце 1942. Каждый раз, когда ученые-радиологи открывали новый изотоп, они всегда измеряли время периодов полураспада изотопов.

В настоящий момент изотопы плутония, которых всего насчитывается 15, отличаются по времени продолжительности периода полураспада . Именно с этим элементом связаны большие надежды, перспективы, но и в тот же момент, серьезные опасения человечества.

Плутоний имеет значительно большую активность, чем, к примеру, уран и принадлежит к самым дорогостоящим технически важным и значимым веществам химической природы.

К примеру, стоимость грамма плутония в несколько раз больше одного грама , , или других не менее ценных металлов.

Производство, добыча плутония считается затратной, а стоимость одного грамма металла в наше время уверенно держится на отметке в 4000 американских долларов.

Как получают плутоний? Производство плутония

Производство химического элемента происходит в атомных реакторах, внутри которых уран расщепляется под воздействием сложных химическо-технологических взаимосвязанных процессов.

Уран и плутоний являются главными, основными компонентами при производстве атомного (ядерного) горючего.

При необходимости получения большого количества радиоактивного элемента применяют метод облучения трансурановых элементов, которые можно получить из отработанного атомного топлива и облучения урана. Протекание сложных химических реакций позволяет отделить металл от урана.

Чтобы получить изотопы, а именно плутоний-238 и оружейный плутоний-239, которые представляют собой промежуточные продукты распада, используют облучение нептуния-237 нейтронами.

Ничтожно малую часть плутония-244, который является самым «долгоживущим» вариантом изотопа, по причине его длительного периода полураспада, обнаружили при исследованиях в цериевой руде, которая, скорее всего, сохранилась с момента формирования нашей Планеты Земля. В естественном виде в природе данный радиоактивный элемент не встречается.

Основные физические свойства и характеристики плутония

Плутоний — довольно тяжелый радиоактивный химический элемент серебристого цвета, который блестит только в очищенном виде. Атомная масса металла плутоний равна 244 а. е. м.

По причине своей высокой радиоактивности данный элемент теплый на ощупь, может разогреться до температуры, которая превышает температурный показатель при кипении воды.

Плутоний, под воздействием атомов кислорода быстро темнеет и покрывается радужной тонкой пленочкой изначально светло-желтого, а затем насыщенного — или бурого оттенка.

При сильном окислении происходит образование на поверхности элемента — порошка PuO2. Данный вид химического металла подвержен сильным процессам окисления и воздействия коррозии даже при незначительном уровне влажности.

Чтобы предотвратить коррозирование и оксидировании поверхности металла, необходима сушильная . Фото плутония можно посмотреть ниже.

Плутоний относится к четырехвалентным химическим металлам, хорошо и быстро растворяется в йодистоводородных веществах, кислых средах, к примеру, в , хлорной, .

Соли металла быстро нейтрализуются в средах с нейтральной реакцией, щелочных растворах, при этом образовывая нерастворимый гидрооксид плутония.

Температура, при которой происходит плавление плутония равна 641 градусам Цельсия, температура кипения – 3230 градусов.

Под воздействием высоких температурных режимов происходят неестественные изменения плотности металла. В виде плутоний обладает различными фазами, имеет шесть кристаллических структур.

При переходе между фазами происходят значительные изменения объемах элемента. Наиболее плотную форму элемент приобретает в шестой альфа-фазе (последняя стадия перехода), при этом тяжелее металла в этом состоянии бывает только , , нептуний, радий.

При расплавлении происходит сильное сжатие элемента, поэтому металл может держаться на поверхности воды и других неагрессивных жидких сред.

Несмотря на то, что данный радиоактивный элемент принадлежит к группе химических металлов, элемент довольно летуч, и при нахождении в закрытом пространстве за непродолжительный период времени увеличивается и возрастает в несколько раз его концентрация в воздухе.

К основным физическим свойствам металла можно отнести: невысокую степень, уровень теплопроводности из всех существующих и известных химических элементов, низкий уровень электропроводности, в жидком состоянии плутоний относится к одним из наиболее вязких металлов.

Стоит отметить, что любые соединения плутония относятся к токсичным, ядовитым и представляют серьезную опасность облучения для человеческого организма, которое происходит по причине активного альфа-излучения, поэтому все работы нужно выполнять предельно внимательно и только в специальных костюмах с химической защитой.

Больше о свойствах, теориях происхождения уникального металла можно прочитать в книге Обручева «Плутония ». Автор В.А. Обручев приглашает читателей окунуться в удивительный и уникальный мир фантастической страны Плутония, которая расположена в глубине недр Земли.

Применение плутония

Промышленный химический элемент принято классифицировать на оружейный и реакторный («энергетический») плутоний.

Так, для производства ядерного вооружения из всех существующих изотопов допустимо применять только плутоний 239, в котором не должно быть более 4.5% плутония 240, так как он подвержен самопроизвольному делению, что значительно затрудняет изготовление боевых снарядов.

Плутоний-238 находит применение для функционирования малогабаритных радиоизотопных источников электрической энергии, к примеру, в качестве источника энергии для космической техники.

Несколько десятилетий тому назад плутоний применяли в медицине в кардиостимуляторах (приборы для поддержания сердечного ритма).

Первая атомная бомба, созданная в мире, имела плутониевый заряд. Ядерный плутоний (Pu 239) востребован как ядерное топливо для обеспечения функционирования энергетических реакторов. Также этот изотоп служит источником для получения в реакторах трансплутониевых элементов.

Если провести сравнение ядерного плутония с чистым металлом, изотоп обладает более высокими металлическими параметрами, не имеет фаз перехода, поэтому его широко используют в процессе получения элементов топлива.

Оксиды изотопа Плутония 242 также востребованы как источник питания для космических летальных агрегатов, техники, в ТВЭЛах.

Оружейный плутоний – это элемент, который представлен в виде компактного металла, в котором содержится не меньше 93% изотопа Pu239.

Данный вид радиоактивного металла применяют про производстве различных видов ядерного оружения.

Получают оружейный плутоний в специализированных промышленных атомных реакторах, которые функционируют на природном или на низкообогащенном уране, в результате захвата им нейтронов.

Изотоп плутония 238 Pu впервые искусственно получен 23.02.1941 года группой американских ученых во главе с Г. Сиборгом путем облучения ядер урана дейтронами. Только затем плутоний был обнаружен в природе: в ничтожно малых количествах 239 Pu обычно содержится в урановых рудах как продукт радиоактивного превращения урана. Плутоний - первый искусственный элемент, полученный в доступных для взвешивания количествах (1942г.) и первый, производство которого началось в промышленных масштабах.
В названии элемента продолжена астрономическая тема: он назван в честь Плутона, второй планеты, следующей за Ураном.

Нахождение в природе, получение:

В урановых рудах в результате захвата нейтронов (например, нейтронов из космического излучения) ядрами урана образуется нептуний(239 Np), продуктом b -распада которого и является природный плутоний-239. Однако плутоний образуется в таких микроскопических количествах (0,4-15 частей Pu на 10 12 частей U), что о его добыче из урановых руд не может быть и речи.
Плутоний получают в ядерных реакторах. В мощных потоках нейтронов происходит та же реакция, что и в урановых рудах, но скорость образования и накопления плутония в реакторе намного выше – в миллиард миллиардов раз. Для реакции превращения балластного урана-238 в энергетический плутоний-239 создаются оптимальные (в пределах допустимого) условия.
Плутоний-244 также накопили в ядерном реакторе. Изотоп элемента №95 – америция, 243 Am захватив нейтрон, переходил в америций-244; америций-244 переходил в кюрий, но в одном из 10 тыс. случаев происходил переход в плутоний-244. Из смеси америция с кюрием выделили препарат плутония-244 весом всего несколько миллионных долей грамма. Но их хватило для того чтобы определить период полураспада этого интереснейшего изотопа - 75 млн лет. Позднее он был уточнен и оказался равным 82,8 млн лет. В 1971 г. следы этого изотопа нашли в редкоземельном минерале бастнезите. 244 Pu – это самый долгоживущий из всех изотопов трансурановых элементов.

Физические свойства:

Серебристо-белый металл, имеет 6 аллотропных модификаций. Температура плавления 637°C, кипения - 3235°C. Плотность: 19,82 г/см 3 .

Химические свойства:

Плутоний способен реагировать с кислородом, с образованием оксида(IV), который, как у всех первых семи актиноидов, имеет слабый основный характер.
Pu + O 2 = PuO 2
Реагирует с разбавленной серной, соляной, хлорной кислотами.
Pu + 2HCl(p) = PuCl 2 + H 2 ; Pu + 2H 2 SO 4 = Pu(SO 4) 2 + 2H 2
Не реагирует с азотной и концентрированной серной кислотами. Валентность плутония меняется от трех до семи. Химически наиболее стабильны (а следовательно, наиболее распространены и наиболее изучены) соединения четырехвалентного плутония. Разделение близких по химическим свойствам актиноидов – урана, нептуния и плутония – может быть основано на разнице в свойствах их четырех- и шестивалентных соединений.

Важнейшие соединения:

Оксид плутония(IV) , PuO 2 , имеет слабый основный характер.
...
...

Применение:

Плутоний широко использовался в производстве ядерного оружия (т. н. «оружейный плутоний»). Первый ядерный заряд на основе плутония был взорван 16 июля 1945 года на полигоне Аламогордо (испытание под кодовым названием "Тринити").
Находит применение (экспериментально) в качестве ядерного топлива для атомных реакторов гражданского и исследовательского назначения.
Плутоний-242 важен как «сырье» для сравнительно быстрого накопления высших трансурановых элементов в ядерных реакторах. Если в обычном реакторе облучать плутоний-239, то на накопление из граммов плутония микрограммовых количеств, к примеру, калифорния-251 потребуется около 20 лет. Плутоний-242 тепловыми нейтронами не делится, его и в больших количествах можно облучать в интенсивных нейтронных потоках. Поэтому в реакторах из этого изотопа «делают» и накапливают в весовых количествах все элементы от калифорния до эйнштейния.

Коваленко О.А.
ХФ ТюмГУ

Источники:
"Вредные химические вещества: Радиоактивные вещества" Справочник Л. 1990 стр. 197
Рабинович В.А., Хавин З.Я. "Краткий химический справочник" Л.: Химия, 1977 стр. 90, 306-307.
И.Н. Бекман. Плутоний. (уч.пособие, 2009)



gastroguru © 2017