Сложение логарифмов с одинаковыми показателями. Логарифм


В центре внимания этой статьи – логарифм . Здесь мы дадим определение логарифма, покажем принятое обозначение, приведем примеры логарифмов, и скажем про натуральные и десятичные логарифмы. После этого рассмотрим основное логарифмическое тождество.

Навигация по странице.

Определение логарифма

Понятие логарифма возникает при решении задачи в известном смысле обратной , когда нужно найти показатель степени по известному значению степени и известному основанию.

Но хватит предисловий, пришло время ответить на вопрос «что такое логарифм»? Дадим соответствующее определение.

Определение.

Логарифм числа b по основанию a , где a>0 , a≠1 и b>0 – это показатель степени, в который нужно возвести число a , чтобы в результате получить b .

На этом этапе заметим, что произнесенное слово «логарифм» должно сразу вызывать два вытекающих вопроса: «какого числа» и «по какому основанию». Иными словами, просто логарифма как бы нет, а есть только логарифм числа по некоторому основанию.

Сразу введем обозначение логарифма : логарифм числа b по основанию a принято обозначать как log a b . Логарифм числа b по основанию e и логарифм по основанию 10 имеют свои специальные обозначения lnb и lgb соответственно, то есть, пишут не log e b , а lnb , и не log 10 b , а lgb .

Теперь можно привести : .
А записи не имеют смысла, так как в первой из них под знаком логарифма находится отрицательное число, во второй – отрицательное число в основании, а в третьей – и отрицательное число под знаком логарифма и единица в основании.

Теперь скажем о правилах чтения логарифмов . Запись log a b читается как «логарифм b по основанию a ». Например, log 2 3 - это логарифм трех по основанию 2 , а - это логарифм двух целых двух третьих по основанию квадратный корень из пяти. Логарифм по основанию e называют натуральным логарифмом , а запись lnb читается как «натуральный логарифм b ». К примеру, ln7 – это натуральный логарифм семи, а мы прочитаем как натуральный логарифм пи. Логарифм по основанию 10 также имеет специальное название – десятичный логарифм , а запись lgb читается как «десятичный логарифм b ». Например, lg1 - это десятичный логарифм единицы, а lg2,75 - десятичный логарифм двух целых семидесяти пяти сотых.

Стоит отдельно остановиться на условиях a>0 , a≠1 и b>0 , при которых дается определение логарифма. Поясним, откуда берутся эти ограничения. Сделать это нам поможет равенство вида , называемое , которое напрямую следует из данного выше определения логарифма.

Начнем с a≠1 . Так как единица в любой степени равна единице, то равенство может быть справедливо лишь при b=1 , но при этом log 1 1 может быть любым действительным числом. Чтобы избежать этой многозначности и принимается a≠1 .

Обоснуем целесообразность условия a>0 . При a=0 по определению логарифма мы бы имели равенство , которое возможно лишь при b=0 . Но тогда log 0 0 может быть любым отличным от нуля действительным числом, так как нуль в любой отличной от нуля степени есть нуль. Избежать этой многозначности позволяет условие a≠0 . А при a<0 нам бы пришлось отказаться от рассмотрения рациональных и иррациональных значений логарифма, так как степень с рациональным и иррациональным показателем определена лишь для неотрицательных оснований. Поэтому и принимается условие a>0 .

Наконец, условие b>0 следует из неравенства a>0 , так как , а значение степени с положительным основанием a всегда положительно.

В заключение этого пункта скажем, что озвученное определение логарифма позволяет сразу указать значение логарифма, когда число под знаком логарифма есть некоторая степень основания. Действительно, определение логарифма позволяет утверждать, что если b=a p , то логарифм числа b по основанию a равен p . То есть, справедливо равенство log a a p =p . Например, мы знаем, что 2 3 =8 , тогда log 2 8=3 . Подробнее об этом мы поговорим в статье

В соотношении

может быть поставлена задача отыскания любого из трех чисел по двум другим, заданным. Если даны а и то N находят действием возведения в степень. Если даны N и то а находят извлечением корня степени х (или возведением в степень ). Теперь рассмотрим случай, когда по заданным а и N требуется найти х.

Пусть число N положительно: число а положительно и не равно единице: .

Определение. Логарифмом числа N по основанию а называется показатель степени, в которую нужно возвести а, чтобы получить число N; логарифм обозначается через

Таким образом, в равенстве (26.1) показатель степени находят как логарифм N по основанию а. Записи

имеют одинаковый смысл. Равенство (26.1) иногда называют основным тождеством теории логарифмов; в действительности оно выражает определение понятия логарифма. По данному определению основание логарифма а всегда положительно и отлично от единицы; логарифмируемое число N положительно. Отрицательные числа и нуль логарифмов не имеют. Можно доказать, что всякое число при данном основании имеет вполне определенный логарифм. Поэтому равенство влечет за собой . Заметим, что здесь существенно условие в противном случае вывод был бы не обоснован, так как равенство верно при любых значениях х и у.

Пример 1. Найти

Решение. Для получения числа следует возвести основание 2 в степень Поэтому.

Можно проводить записи при решении таких примеров в следующей форме:

Пример 2. Найти .

Решение. Имеем

В примерах 1 и 2 мы легко находили искомый логарифм, представляя логарифмируемое число как степень основания с рациональным показателем. В общем случае, например для и т. д., этого сделать не удастся, так как логарифм имеет иррациональное значение. Обратим внимание на один связанный с этим утверждением вопрос. В п. 12 мы дали понятие о возможности определения любой действительной степени данного положительного числа. Это было необходимо для введения логарифмов, которые, вообще говоря, могут быть иррациональными числами.

Рассмотрим некоторые свойства логарифмов.

Свойство 1. Если число и основание равны, то логарифм равен единице, и, обратно, если логарифм равен единице, то число и основание равны.

Доказательство. Пусть По определению логарифма имеем а откуда

Обратно, пусть Тогда по определению

Свойство 2. Логарифм единицы по любому основанию равен нулю.

Доказательство. По определению логарифма (нулевая степень любого положительного основания равна единице, см. (10.1)). Отсюда

что и требовалось доказать.

Верно и обратное утверждение: если , то N = 1. Действительно, имеем .

Прежде чем сформулировать следующее свойство логарифмов, условимся говорить, что два числа а и b лежат по одну сторону от третьего числа с, если они оба либо больше с, либо меньше с. Если одно из этих чисел больше с, а другое меньше с, то будем говорить, что они лежат по разные стороны от с.

Свойство 3. Если число и основание лежат по одну сторону от единицы, то логарифм положителен; если число и основание лежат по разные стороны от единицы, то логарифм отрицателен.

Доказательство свойства 3 основано на том, что степень а больше единицы, если основание больше единицы и показатель положителен или основание меньше единицы и показатель отрицателен. Степень меньше единицы, если основание больше единицы и показатель отрицателен или основание меньше единицы и показатель положителен.

Требуется рассмотреть четыре случая:

Ограничимся разбором первого из них, остальные читатель рассмотрит самостоятельно.

Пусть тогда в равенстве показатель степени не может быть ни отрицательным, ни равным нулю, следовательно, он положителен, т. е. что и требовалось доказать.

Пример 3. Выяснить, какие из указанных ниже логарифмов положительны, какие отрицательны:

Решение, а) так как число 15 и основание 12 расположены по одну сторону от единицы;

б) , так как 1000 и 2 расположены по одну сторону от единицы; при этом несущественно, что основание больше логарифмируемого числа;

в) , так как 3,1 и 0,8 лежат по разные стороны от единицы;

г) ; почему?

д) ; почему?

Следующие свойства 4-6 часто называют правилами логарифмирования: они позволяют, зная логарифмы некоторых чисел, найти логарифмы их произведения, частного, степени каждого из них.

Свойство 4 (правило логарифмирования произведения). Логарифм произведения нескольких положительных чисел по данному основанию равен сумме логарифмов этих чисел по тому же основанию.

Доказательство. Пусть даны положительные числа .

Для логарифма их произведения напишем определяющее логарифм равенство (26.1):

Отсюда найдем

Сравнив показатели степени первого и последнего выражений, получим требуемое равенство:

Заметим, что условие существенно; логарифм произведения двух отрицательных чисел имеет смысл, но в этом случае получим

В общем случае, если произведение нескольких сомножителей положительно, то его логарифм равен сумме логарифмов модулей этих сомножителей.

Свойство 5 (правило логарифмирования частного). Логарифм частного положительных чисел равен разности логарифмов делимого и делителя, взятых по тому же основанию. Доказательство. Последовательно находим

что и требовалось доказать.

Свойство 6 (правило логарифмирования степени). Логарифм степени какого-либо положительного числа равен логарифму этого числа, умноженному на показатель степени.

Доказательство. Запишем снова основное тождество (26.1) для числа :

что и требовалось доказать.

Следствие. Логарифм корня из положительного числа равен логарифму подкоренного числа, деленному на показатель корня:

Доказать справедливость этого следствия можно, представив как и воспользовавшись свойством 6.

Пример 4. Прологарифмировать по основанию а:

а) (предполагается, что все величины b, с, d, е положительны);

б) (преполагается, что ).

Решение, а) Удобно перейти в данном выражении к дробным степеням:

На основании равенств (26.5)-(26.7) теперь можно записать:

Мы замечаем, что над логарифмами чисел производятся действия более простые, чем над самими числами: при умножении чисел их логарифмы складываются, при делении - вычитаются и т.д.

Именно поэтому логарифмы получили применение в вычислительной практике (см. п. 29).

Действие, обратное логарифмированию, называется потенцированием, а именно: потенцированием называется действие, с помощью которого по данному логарифму числа находится само это число. По существу потенцирование не является каким-либо особым действием: оно сводится к возведению основания в степень (равную логарифму числа). Термин «потенцирование» можно считать синонимом термина «возведенение в степень».

При потенцировании надо пользоваться правилами, обратными по отношению к правилам логарифмирования: сумму логарифмов заменить логарифмом произведения, разность логарифмов - логарифмом частного и т. д. В частности, если перед знаком логарифма находится какой-либо множитель, то его при потенцировании нужно переносить в показатель степени под знак логарифма.

Пример 5. Найти N, если известно, что

Решение. В связи с только что высказанным правилом потенцирования множители 2/3 и 1/3, стоящие перед знаками логарифмов в правой части данного равенства, перенесем в показатели степени под знаками этих логарифмов; получим

Теперь разность логарифмов заменим логарифмом частного:

для получения последней дроби в этой цепочке равенств мы предыдущую дробь освободили от иррациональности в знаменателе (п. 25).

Свойство 7. Если основание больше единицы, то большее число имеет больший логарифм (а меньшее - меньший), если основание меньше единицы, то большее число имеет меньший логарифм {а меньшее - больший).

Это свойство формулируют также и как правило логарифмирования неравенств, обе части которых положительны:

При логарифмировании неравенств по основанию, большему единицы, знак неравенства сохраняется, а при логарифмировании по основанию, меньшему единицы, знак неравенства меняется на противоположный (см. также п. 80).

Доказательство основано на свойствах 5 и 3. Рассмотрим случай, когда Если , то и, логарифмируя, получим

(а и N/М лежат по одну сторону от единицы). Отсюда

Случай а следует , читатель разберет самостоятельно.

\(a^{b}=c\) \(\Leftrightarrow\) \(\log_{a}{c}=b\)

Объясним проще. Например, \(\log_{2}{8}\) равен степени, в которую надо возвести \(2\), чтоб получить \(8\). Отсюда понятно, что \(\log_{2}{8}=3\).

Примеры:

\(\log_{5}{25}=2\)

т.к. \(5^{2}=25\)

\(\log_{3}{81}=4\)

т.к. \(3^{4}=81\)

\(\log_{2}\)\(\frac{1}{32}\) \(=-5\)

т.к. \(2^{-5}=\)\(\frac{1}{32}\)

Аргумент и основание логарифма

Любой логарифм имеет следующую «анатомию»:

Аргумент логарифма обычно пишется на его уровне, а основание - подстрочным шрифтом ближе к знаку логарифма. А читается эта запись так: «логарифм двадцати пяти по основанию пять».

Как вычислить логарифм?

Чтобы вычислить логарифм - нужно ответить на вопрос: в какую степень следует возвести основание, чтобы получить аргумент?

Например , вычислите логарифм: а) \(\log_{4}{16}\) б) \(\log_{3}\)\(\frac{1}{3}\) в) \(\log_{\sqrt{5}}{1}\) г) \(\log_{\sqrt{7}}{\sqrt{7}}\) д) \(\log_{3}{\sqrt{3}}\)

а) В какую степень надо возвести \(4\), чтобы получить \(16\)? Очевидно во вторую. Поэтому:

\(\log_{4}{16}=2\)

\(\log_{3}\)\(\frac{1}{3}\) \(=-1\)

в) В какую степень надо возвести \(\sqrt{5}\), чтобы получить \(1\)? А какая степень делает любое число единицей? Ноль, конечно!

\(\log_{\sqrt{5}}{1}=0\)

г) В какую степень надо возвести \(\sqrt{7}\), чтобы получить \(\sqrt{7}\)? В первую – любое число в первой степени равно самому себе.

\(\log_{\sqrt{7}}{\sqrt{7}}=1\)

д) В какую степень надо возвести \(3\), чтобы получить \(\sqrt{3}\)? Из мы знаем, что – это дробная степень, и значит квадратный корень - это степень \(\frac{1}{2}\) .

\(\log_{3}{\sqrt{3}}=\)\(\frac{1}{2}\)

Пример : Вычислить логарифм \(\log_{4\sqrt{2}}{8}\)

Решение :

\(\log_{4\sqrt{2}}{8}=x\)

Нам надо найти значение логарифма, обозначим его за икс. Теперь воспользуемся определением логарифма:
\(\log_{a}{c}=b\) \(\Leftrightarrow\) \(a^{b}=c\)

\((4\sqrt{2})^{x}=8\)

Что связывает \(4\sqrt{2}\) и \(8\)? Двойка, потому что и то, и другое число можно представить двойки:
\(4=2^{2}\) \(\sqrt{2}=2^{\frac{1}{2}}\) \(8=2^{3}\)

\({(2^{2}\cdot2^{\frac{1}{2}})}^{x}=2^{3}\)

Слева воспользуемся свойствами степени: \(a^{m}\cdot a^{n}=a^{m+n}\) и \((a^{m})^{n}=a^{m\cdot n}\)

\(2^{\frac{5}{2}x}=2^{3}\)

Основания равны, переходим к равенству показателей

\(\frac{5x}{2}\) \(=3\)


Умножим обе части уравнения на \(\frac{2}{5}\)


Получившийся корень и есть значение логарифма

Ответ : \(\log_{4\sqrt{2}}{8}=1,2\)

Зачем придумали логарифм?

Чтобы это понять, давайте решим уравнение: \(3^{x}=9\). Просто подберите \(x\), чтобы равенство сработало. Конечно, \(x=2\).

А теперь решите уравнение: \(3^{x}=8\).Чему равен икс? Вот в том-то и дело.

Самые догадливые скажут: «икс чуть меньше двух». А как точно записать это число? Для ответа на этот вопрос и придумали логарифм. Благодаря ему, ответ здесь можно записать как \(x=\log_{3}{8}\).

Хочу подчеркнуть, что \(\log_{3}{8}\), как и любой логарифм - это просто число . Да, выглядит непривычно, но зато коротко. Потому что, если бы мы захотели записать его в виде десятичной дроби, то оно выглядело бы вот так: \(1,892789260714.....\)

Пример : Решите уравнение \(4^{5x-4}=10\)

Решение :

\(4^{5x-4}=10\)

\(4^{5x-4}\) и \(10\) никак к одному основанию не привести. Значит тут не обойтись без логарифма.

Воспользуемся определением логарифма:
\(a^{b}=c\) \(\Leftrightarrow\) \(\log_{a}{c}=b\)

\(\log_{4}{10}=5x-4\)

Зеркально перевернем уравнение, чтобы икс был слева

\(5x-4=\log_{4}{10}\)

Перед нами . Перенесем \(4\) вправо.

И не пугайтесь логарифма, относитесь к нему как к обычному числу.

\(5x=\log_{4}{10}+4\)

Поделим уравнение на 5

\(x=\)\(\frac{\log_{4}{10}+4}{5}\)


Вот наш корень. Да, выглядит непривычно, но ответ не выбирают.

Ответ : \(\frac{\log_{4}{10}+4}{5}\)

Десятичный и натуральный логарифмы

Как указано в определении логарифма, его основанием может быть любое положительное число, кроме единицы \((a>0, a\neq1)\). И среди всех возможных оснований есть два встречающихся настолько часто, что для логарифмов с ними придумали особую короткую запись:

Натуральный логарифм: логарифм, у которого основание - число Эйлера \(e\) (равное примерно \(2,7182818…\)), и записывается такой логарифм как \(\ln{a}\).

То есть, \(\ln{a}\) это то же самое, что и \(\log_{e}{a}\)

Десятичный логарифм: логарифм, у которого основание равно 10, записывается \(\lg{a}\).

То есть, \(\lg{a}\) это то же самое, что и \(\log_{10}{a}\) , где \(a\) - некоторое число.

Основное логарифмическое тождество

У логарифмов есть множество свойств. Одно из них носит название «Основное логарифмическое тождество» и выглядит вот так:

\(a^{\log_{a}{c}}=c\)

Это свойство вытекает напрямую из определения. Посмотрим как именно эта формула появилась.

Вспомним краткую запись определения логарифма:

если \(a^{b}=c\), то \(\log_{a}{c}=b\)

То есть, \(b\) – это тоже самое, что \(\log_{a}{c}\). Тогда мы можем в формуле \(a^{b}=c\) написать \(\log_{a}{c}\) вместо \(b\). Получилось \(a^{\log_{a}{c}}=c\) – основное логарифмическое тождество.

Остальные свойства логарифмов вы можете найти . С их помощью можно упрощать и вычислять значения выражений с логарифмами, которые «в лоб» посчитать сложно.

Пример : Найдите значение выражения \(36^{\log_{6}{5}}\)

Решение :

Ответ : \(25\)

Как число записать в виде логарифма?

Как уже было сказано выше – любой логарифм это просто число. Верно и обратное: любое число может быть записано как логарифм. Например, мы знаем, что \(\log_{2}{4}\) равен двум. Тогда можно вместо двойки писать \(\log_{2}{4}\).

Но \(\log_{3}{9}\) тоже равен \(2\), значит, также можно записать \(2=\log_{3}{9}\) . Аналогично и с \(\log_{5}{25}\), и с \(\log_{9}{81}\), и т.д. То есть, получается

\(2=\log_{2}{4}=\log_{3}{9}=\log_{4}{16}=\log_{5}{25}=\log_{6}{36}=\log_{7}{49}...\)

Таким образом, если нам нужно, мы можем где угодно (хоть в уравнении, хоть в выражении, хоть в неравенстве) записывать двойку как логарифм с любым основанием – просто в качестве аргумента пишем основание в квадрате.

Точно также и с тройкой – ее можно записать как \(\log_{2}{8}\), или как \(\log_{3}{27}\), или как \(\log_{4}{64}\)… Здесь мы как аргумент пишем основание в кубе:

\(3=\log_{2}{8}=\log_{3}{27}=\log_{4}{64}=\log_{5}{125}=\log_{6}{216}=\log_{7}{343}...\)

И с четверкой:

\(4=\log_{2}{16}=\log_{3}{81}=\log_{4}{256}=\log_{5}{625}=\log_{6}{1296}=\log_{7}{2401}...\)

И с минус единицей:

\(-1=\) \(\log_{2}\)\(\frac{1}{2}\) \(=\) \(\log_{3}\)\(\frac{1}{3}\) \(=\) \(\log_{4}\)\(\frac{1}{4}\) \(=\) \(\log_{5}\)\(\frac{1}{5}\) \(=\) \(\log_{6}\)\(\frac{1}{6}\) \(=\) \(\log_{7}\)\(\frac{1}{7}\) \(...\)

И с одной третьей:

\(\frac{1}{3}\) \(=\log_{2}{\sqrt{2}}=\log_{3}{\sqrt{3}}=\log_{4}{\sqrt{4}}=\log_{5}{\sqrt{5}}=\log_{6}{\sqrt{6}}=\log_{7}{\sqrt{7}}...\)

Любое число \(a\) может быть представлено как логарифм с основанием \(b\): \(a=\log_{b}{b^{a}}\)

Пример : Найдите значение выражения \(\frac{\log_{2}{14}}{1+\log_{2}{7}}\)

Решение :

Ответ : \(1\)

Определение логарифма

Логарифмом числа b по основанию а называется показатель степени, в которую нужно возвести а, чтобы получить b .

Числом е в математике принято обозначать предел, к которому стремиться выражение

Число е является иррациональным числом - числом, несоизмеримым с единицей, оно не может быть точно выраженным ни целым ни дробным рациональным числом.

Буква е - первая буква латинского слова exponere - выставлять напоказ, отсюда в математике название экспоненциальная - показательная функция.

Число е широко применяется в математике, и во всех науках, так или иначе применяющих для своих нужд математические расчеты.

Логарифмы. Свойства логарифмов

Определение: Логарифмом положительного числа b по основанию называется показатель степени с, в которую надо возвести число а, чтобы получить число b.

Основное логарифмическое тождество:

7) Формула перехода к новому основанию:

lna = log e a, e ≈ 2,718…

Задачи и тесты по теме «Логарифмы. Свойства логарифмов»

  • Логарифмы — Важные темы для повторения ЕГЭ по математике

Для успешного выполнения заданий по данной теме Вы должны знать определение логарифма, свойства логарифмов, основное логарифмическое тождество, определения десятичного и натурального логарифмов. Основные типы задач по данной теме — это задачи на вычисление и преобразование логарифмических выражений. Рассмотрим их решение на следующих примерах.

Решение: Используя свойства логарифмов, получим

Решение: используя свойства степени, получим

1) (2 2) log 2 5 =(2 log 2 5) 2 =5 2 =25

Свойства логарифмов, формулировки и доказательства.

Логарифмы обладают рядом характерных свойств. В этой статье мы разберем основные свойства логарифмов . Здесь мы дадим их формулировки, запишем свойства логарифмов в виде формул, покажем примеры их применения, а также приведем доказательства свойств логарифмов.

Навигация по странице.

Основные свойства логарифмов, формулы

Для удобства запоминания и использования представим основные свойства логарифмов в виде списка формул. В следующем пункте дадим их формулировки, доказательства, примеры использования и необходимые пояснения.

  • Свойство логарифма единицы: log a 1=0 для любого a>0 , a≠1 .
  • Логарифм числа, равного основанию: log a a=1 при a>0 , a≠1 .
  • Свойство логарифма степени основания: log a a p =p , где a>0 , a≠1 и p – любое действительное число.
  • Логарифм произведения двух положительных чисел: log a (x·y)=log a x+log a y , a>0 , a≠1 , x>0 , y>0 ,
    и свойство логарифма произведения n положительных чисел: log a (x 1 ·x 2 ·…·x n)= log a x 1 +log a x 2 +…+log a x n , a>0 , a≠1 , x 1 >0, x 2 >0, …, x n >0 .
  • Свойство логарифма частного: , где a>0 , a≠1 , x>0 , y>0 .
  • Логарифм степени числа: log a b p =p·log a |b| , где a>0 , a≠1 , b и p такие числа, что степень b p имеет смысл и b p >0 .
  • Следствие: , где a>0 , a≠1 , n – натуральное число, большее единицы, b>0 .
  • Следствие 1: , a>0 , a≠1 , b>0 , b≠1 .
  • Следствие 2: , a>0 , a≠1 , b>0 , p и q – действительные числа, q≠0 , в частности при b=a имеем .
  • Формулировки и доказательства свойств

    Переходим к формулированию и доказательству записанных свойств логарифмов. Все свойства логарифмов доказываются на основе определения логарифма и вытекающего из него основного логарифмического тождества, а также свойств степени.

    Начнем со свойства логарифма единицы . Его формулировка такова: логарифм единицы равен нулю, то есть, log a 1=0 для любого a>0 , a≠1 . Доказательство не вызывает сложностей: так как a 0 =1 для любого a , удовлетворяющего указанным выше условиям a>0 и a≠1 , то доказываемое равенство log a 1=0 сразу следует из определения логарифма.

    Приведем примеры применения рассмотренного свойства: log 3 1=0 , lg1=0 и .

    Переходим к следующему свойству: логарифм числа, равного основанию, равен единице , то есть, log a a=1 при a>0 , a≠1 . Действительно, так как a 1 =a для любого a , то по определению логарифма log a a=1 .

    Примерами использования этого свойства логарифмов являются равенства log 5 5=1 , log 5,6 5,6 и lne=1 .

    Логарифм степени числа, равного основанию логарифма, равен показателю степени . Этому свойству логарифма отвечает формула вида log a a p =p , где a>0 , a≠1 и p – любое действительное число. Это свойство напрямую следует из определения логарифма. Заметим, что оно позволяет сразу указать значение логарифма, если есть возможность представить число под знаком логарифма в виде степени основания, подробнее об этом мы поговорим в статье вычисление логарифмов.

    К примеру, log 2 2 7 =7 , lg10 -4 =-4 и .

    Логарифм произведения двух положительных чисел x и y равен произведению логарифмов этих чисел: log a (x·y)=log a x+log a y , a>0 , a≠1 . Докажем свойство логарифма произведения. В силу свойств степени a log a x+log a y =a log a x ·a log a y , а так как по основному логарифмическому тождеству a log a x =x и a log a y =y , то a log a x ·a log a y =x·y . Таким образом, a log a x+log a y =x·y , откуда по определению логарифма вытекает доказываемое равенство.

    Покажем примеры использования свойства логарифма произведения: log 5 (2·3)=log 5 2+log 5 3 и .

    Свойство логарифма произведения можно обобщить на произведение конечного числа n положительных чисел x 1 , x 2 , …, x n как log a (x 1 ·x 2 ·…·x n)= log a x 1 +log a x 2 +…+log a x n . Данное равенство без проблем доказывается методом математической индукции.

    Например, натуральных логарифм произведения можно заменить суммой трех натуральных логарифмов чисел 4 , e , и .

    Логарифм частного двух положительных чисел x и y равен разности логарифмов этих чисел. Свойству логарифма частного соответствует формула вида , где a>0 , a≠1 , x и y – некоторые положительные числа. Справедливость этой формулы доказывается как и формула логарифма произведения: так как , то по определению логарифма .

    Приведем пример использования этого свойства логарифма: .

    Переходим к свойству логарифма степени . Логарифм степени равен произведению показателя степени на логарифм модуля основания этой степени. Запишем это свойство логарифма степени в виде формулы: log a b p =p·log a |b| , где a>0 , a≠1 , b и p такие числа, что степень b p имеет смысл и b p >0 .

    Сначала докажем это свойство для положительных b . Основное логарифмическое тождество позволяет нам представить число b как a log a b , тогда b p =(a log a b) p , а полученное выражение в силу свойство степени равно a p·log a b . Так мы приходим к равенству b p =a p·log a b , из которого по определению логарифма заключаем, что log a b p =p·log a b .

    Осталось доказать это свойство для отрицательных b . Здесь замечаем, что выражение log a b p при отрицательных b имеет смысл лишь при четных показателях степени p (так как значение степени b p должно быть больше нуля, в противном случае логарифм не будет иметь смысла), а в этом случае b p =|b| p . Тогда b p =|b| p =(a log a |b|) p =a p·log a |b| , откуда log a b p =p·log a |b| .

    Например, и ln(-3) 4 =4·ln|-3|=4·ln3 .

    Из предыдущего свойства вытекает свойство логарифма из корня : логарифм корня n -ой степени равен произведению дроби 1/n на логарифм подкоренного выражения, то есть, , где a>0 , a≠1 , n – натуральное число, большее единицы, b>0 .

    Доказательство базируется на равенстве (смотрите определение степени с дробным показателем), которое справедливо для любых положительных b , и свойстве логарифма степени: .

    Вот пример использования этого свойства: .

    Теперь докажем формулу перехода к новому основанию логарифма вида . Для этого достаточно доказать справедливость равенства log c b=log a b·log c a . Основное логарифмическое тождество позволяет нам число b представить как a log a b , тогда log c b=log c a log a b . Осталось воспользоваться свойством логарифма степени: log c a log a b =log a b·log c a . Так доказано равенство log c b=log a b·log c a , а значит, доказана и формула перехода к новому основанию логарифма .

    Покажем пару примеров применения этого свойства логарифмов: и .

    Формула перехода к новому основанию позволяет переходить к работе с логарифмами, имеющими «удобное» основание. Например, с ее помощью можно перейти к натуральным или десятичным логарифмам, чтобы можно было вычислить значение логарифма по таблице логарифмов. Формула перехода к новому основанию логарифма также позволяет в некоторых случаях находить значение данного логарифма, когда известны значения некоторых логарифмов с другими основаниями.

    Часто используется частный случай формулы перехода к новому основанию логарифма при c=b вида . Отсюда видно, что log a b и log b a – взаимно обратные числа. К примеру, .

    Также часто используется формула , которая удобна при нахождении значений логарифмов. Для подтверждения своих слов покажем, как с ее помощью вычисляется значение логарифма вида . Имеем . Для доказательства формулы достаточно воспользоваться формулой перехода к новому основанию логарифма a: .

    Осталось доказать свойства сравнения логарифмов.

    Воспользуемся методом от противного. Предположим, что при a 1 >1 , a 2 >1 и a 1 2 и при 0 1 справедливо log a 1 b≤log a 2 b . По свойствам логарифмов эти неравенства можно переписать как и соответственно, а из них следует, что log b a 1 ≤log b a 2 и log b a 1 ≥log b a 2 соответственно. Тогда по свойствам степеней с одинаковыми основаниями должны выполняться равенства b log b a 1 ≥b log b a 2 и b log b a 1 ≥b log b a 2 , то есть, a 1 ≥a 2 . Так мы пришли к противоречию условию a 1 2 . На этом доказательство завершено.

    Основные свойства логарифмов

    • Материалы к уроку
    • Скачать все формулы
    • Логарифмы, как и любые числа, можно складывать, вычитать и всячески преобразовывать. Но поскольку логарифмы - это не совсем обычные числа, здесь есть свои правила, которые называются основными свойствами .

      Эти правила обязательно надо знать - без них не решается ни одна серьезная логарифмическая задача. К тому же, их совсем немного - все можно выучить за один день. Итак, приступим.

      Сложение и вычитание логарифмов

      Рассмотрим два логарифма с одинаковыми основаниями: log a x и log a y . Тогда их можно складывать и вычитать, причем:

      Итак, сумма логарифмов равна логарифму произведения, а разность - логарифму частного. Обратите внимание: ключевой момент здесь - одинаковые основания . Если основания разные, эти правила не работают!

      Эти формулы помогут вычислить логарифмическое выражение даже тогда, когда отдельные его части не считаются (см. урок «Что такое логарифм»). Взгляните на примеры - и убедитесь:

      Задача. Найдите значение выражения: log 6 4 + log 6 9.

      Поскольку основания у логарифмов одинаковые, используем формулу суммы:
      log 6 4 + log 6 9 = log 6 (4 · 9) = log 6 36 = 2.

      Задача. Найдите значение выражения: log 2 48 − log 2 3.

      Основания одинаковые, используем формулу разности:
      log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

      Задача. Найдите значение выражения: log 3 135 − log 3 5.

      Снова основания одинаковые, поэтому имеем:
      log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

      Как видите, исходные выражения составлены из «плохих» логарифмов, которые отдельно не считаются. Но после преобразований получаются вполне нормальные числа. На этом факте построены многие контрольные работы. Да что контрольные - подобные выражения на полном серьезе (иногда - практически без изменений) предлагаются на ЕГЭ.

      Вынесение показателя степени из логарифма

      Теперь немного усложним задачу. Что, если в основании или аргументе логарифма стоит степень? Тогда показатель этой степени можно вынести за знак логарифма по следующим правилам:

    • log a x n = n · log a x ;
    • Несложно заметить, что последнее правило следует их первых двух. Но лучше его все-таки помнить - в некоторых случаях это значительно сократит объем вычислений.

      Разумеется, все эти правила имеют смысл при соблюдении ОДЗ логарифма: a > 0, a ≠ 1, x > 0. И еще: учитесь применять все формулы не только слева направо, но и наоборот, т.е. можно вносить числа, стоящие перед знаком логарифма, в сам логарифм. Именно это чаще всего и требуется.

      Задача. Найдите значение выражения: log 7 49 6 .

      Избавимся от степени в аргументе по первой формуле:
      log 7 49 6 = 6 · log 7 49 = 6 · 2 = 12

      Задача. Найдите значение выражения:

      [Подпись к рисунку]

      Заметим, что в знаменателе стоит логарифм, основание и аргумент которого являются точными степенями: 16 = 2 4 ; 49 = 7 2 . Имеем:

      [Подпись к рисунку]

      Думаю, к последнему примеру требуются пояснения. Куда исчезли логарифмы? До самого последнего момента мы работаем только со знаменателем. Представили основание и аргумент стоящего там логарифма в виде степеней и вынесли показатели - получили «трехэтажную» дробь.

      Теперь посмотрим на основную дробь. В числителе и знаменателе стоит одно и то же число: log 2 7. Поскольку log 2 7 ≠ 0, можем сократить дробь - в знаменателе останется 2/4. По правилам арифметики, четверку можно перенести в числитель, что и было сделано. В результате получился ответ: 2.

      Переход к новому основанию

      Говоря о правилах сложения и вычитания логарифмов, я специально подчеркивал, что они работают только при одинаковых основаниях. А что, если основания разные? Что, если они не являются точными степенями одного и того же числа?

      На помощь приходят формулы перехода к новому основанию. Сформулируем их в виде теоремы:

      Пусть дан логарифм log a x . Тогда для любого числа c такого, что c > 0 и c ≠ 1, верно равенство:

      [Подпись к рисунку]

      В частности, если положить c = x , получим:

      [Подпись к рисунку]

      Из второй формулы следует, что можно менять местами основание и аргумент логарифма, но при этом все выражение «переворачивается», т.е. логарифм оказывается в знаменателе.

      Эти формулы редко встречается в обычных числовых выражениях. Оценить, насколько они удобны, можно только при решении логарифмических уравнений и неравенств.

      Впрочем, существуют задачи, которые вообще не решаются иначе как переходом к новому основанию. Рассмотрим парочку таких:

      Задача. Найдите значение выражения: log 5 16 · log 2 25.

      Заметим, что в аргументах обоих логарифмов стоят точные степени. Вынесем показатели: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

      А теперь «перевернем» второй логарифм:

      [Подпись к рисунку]

      Поскольку от перестановки множителей произведение не меняется, мы спокойно перемножили четверку и двойку, а затем разобрались с логарифмами.

      Задача. Найдите значение выражения: log 9 100 · lg 3.

      Основание и аргумент первого логарифма - точные степени. Запишем это и избавимся от показателей:

      [Подпись к рисунку]

      Теперь избавимся от десятичного логарифма, перейдя к новому основанию:

      [Подпись к рисунку]

      Основное логарифмическое тождество

      Часто в процессе решения требуется представить число как логарифм по заданному основанию. В этом случае нам помогут формулы:

    1. n = log a a n
    2. В первом случае число n становится показателем степени, стоящей в аргументе. Число n может быть абсолютно любым, ведь это просто значение логарифма.

      Вторая формула - это фактически перефразированное определение. Она так и называется: основное логарифмическое тождество.

      В самом деле, что будет, если число b возвести в такую степень, что число b в этой степени дает число a ? Правильно: получится это самое число a . Внимательно прочитайте этот абзац еще раз - многие на нем «зависают».

      Подобно формулам перехода к новому основанию, основное логарифмическое тождество иногда бывает единственно возможным решением.

      [Подпись к рисунку]

      Заметим, что log 25 64 = log 5 8 - просто вынесли квадрат из основания и аргумента логарифма. Учитывая правила умножения степеней с одинаковым основанием, получаем:

      [Подпись к рисунку]

      Если кто-то не в курсе, это была настоящая задача из ЕГЭ 🙂

      Логарифмическая единица и логарифмический ноль

      В заключение приведу два тождества, которые сложно назвать свойствами - скорее, это следствия из определения логарифма. Они постоянно встречаются в задачах и, что удивительно, создают проблемы даже для «продвинутых» учеников.

      1. log a a = 1 - это логарифмическая единица. Запомните раз и навсегда: логарифм по любому основанию a от самого этого основания равен единице.
      2. log a 1 = 0 - это логарифмический ноль. Основание a может быть каким угодно, но если в аргументе стоит единица - логарифм равен нулю! Потому что a 0 = 1 - это прямое следствие из определения.

      Вот и все свойства. Обязательно потренируйтесь применять их на практике! Скачайте шпаргалку в начале урока, распечатайте ее - и решайте задачи.

      Логарифм. Свойства логарифма (сложение и вычитание).

      Свойства логарифма вытекают из его определения. И так логарифм числа b по основанию а определяется как показатель степени, в которую надо возвести число a , чтобы получить число b (логарифм существует только у положительных чисел).

      Из данной формулировки следует, что вычисление x=log a b , равнозначно решению уравнения a x =b. Например, log 2 8 = 3 потому, что 8 = 2 3 . Формулировка логарифма дает возможность обосновать, что если b=a с , то логарифм числа b по основанию a равен с . Также ясно, что тема логарифмирования тесно взаимосвязана с темой степени числа.

      С логарифмами, как и с любыми числами, можно выполнять операции сложения, вычитания и всячески трансформировать. Но ввиду того, что логарифмы — это не совсем ординарные числа, здесь применимы свои особенные правила, которые называются основными свойствами .

      Сложение и вычитание логарифмов.

      Возьмем два логарифма с одинаковыми основаниями: log a x и log a y . Тогда сними возможно выполнять операции сложения и вычитания:

      Как видим, сумма логарифмов равняется логарифму произведения, а разность логарифмов — логарифму частного. Причем это верно если числа а , х и у положительны и а ≠ 1.

      Важно обращать внимание, что основным аспектом в данных формулах выступают одни и те же основания. Если основания отличаются друг от друга, эти правила не применимы!

      Правила сложения и вычитания логарифмов с одинаковыми основаниями читаются не только с лева на право, но и на оборот. В результате мы имеем теоремы логарифма произведения и логарифма частного.

      Логарифм произведения двух положительных чисел равен сумме их логарифмов; перефразируя данную теорему получим следующее, если числа а , x и у положительны и а ≠ 1 , то:

      Логарифм частного двух положительных чисел равен разности логарифмов делимого и делителя. Говоря по другому, если числа а , х и у положительны и а ≠ 1 , то:

      Применим вышеизложенные теоремы для решения примеров :

      Если числа x и у отрицательны, то формула логарифма произведения становится бессмысленной. Так, запрещено писать:

      так как выражения log 2 (-8) и log 2 (-4) вообще не определены (логарифмическая функция у = log 2 х определена лишь для положительных значений аргументах ).

      Теорема произведения применима не только для двух, но и для неограниченного числа сомножителей. Это означает, что для всякого натурального k и любых положительных чисел x 1 , x 2 , . . . ,x n существует тождество:

      Из теоремы логарифма частного можно получить еще одно свойство логарифма. Общеизвестно, что log a 1= 0, следовательно,

      А значит имеет место равенство:

      Логарифмы двух взаимно обратных чисел по одному и тому же основанию будут различны друг от друга исключительно знаком. Так:

      Логарифм. Свойства логарифмов

      Логарифм. Свойства логарифмов

      Рассмотрим равенство . Пусть нам известны значения и и мы хотим найти значение .

      То есть мы ищем показатель степени, в которую нужно взвести чтобы получить .

      Пусть переменная может принимать любое действительное значение, тогда на переменные и накладываются такие ограничения: o» title=»a>o»/> , 1″ title=»a1″/>, 0″ title=»b>0″/>

      Если нам известны значения и , и перед нами стоит задача найти неизвестное , то для этой цели вводится математическое действие, которое называется логарифмирование .

      Чтобы найти значение , мы берем логарифм числа по основанию :

      Логарифмом числа по основанию называется показатель степени, в которую надо возвести , чтобы получить .

      То есть основное логарифмическое тождество :

      o» title=»a>o»/> , 1″ title=»a1″/>, 0″ title=»b>0″/>

      является по сути математической записью определения логарифма .

      Математическая операция логарифмирование является обратной по отношению к операции возведения в степень, поэтому свойства логарифмов тесно связаны со свойствами степени.

      Перечислим основные свойства логарифмов :

      (o» title=»a>o»/> , 1″ title=»a1″/>, 0″ title=»b>0″/>, 0,

      d>0″/>, 1″ title=»d1″/>

      4.

      5.

      Следующая группа свойств позволяет представить показатель степени выражения, стоящего под знаком логарифма, или стоящего в основании логарифма в виде коэффициента перед знаком логарифма:

      6.

      7.

      8.

      9.

      Следующая группа формул позволяет перейти от логарифма с данным основанием к логарифму с произвольным основанием, и называется формулами перехода к новому основанию :

      10.

      12. (следствие из свойства 11)

      Следующие три свойства не очень известны, однако они часто используются при решении логарифмических уравнений, или при упрощении выражений, содержащих логарифмы:

      13.

      14.

      15.

      Частные случаи:

      десятичный логарифм

      натуральный логарифм

      При упрощении выражений, содержащих логарифмы применяется общий подход:

      1. Представляем десятичные дроби в виде обыкновенных.

      2. Смешанные числа представляем в виде неправильных дробей.

      3. Числа, стоящие в основании логарифма и под знаком логарифма раскладываем на простые множители.

      4. Стараемся привести все логарифмы к одному основанию.

      5. Применяем свойства логарифмов.

      Давайте рассмотрим примеры упрощения выражений, содержащих логарифмы.

      Пример 1.

      Вычислить:

      Упростим все показатели степеней: наша задача привести их к логарифмам, в основании которых стоит то же число, что и в основании степtни.

      ==(по свойству 7)=(по свойству 6) =

      Подставим показатели, которые у нас получились в исходное выражение. Получим:

      Ответ: 5,25

      Пример 2. Вычислить:

      Приведем все логарифмы к основанию 6 (при этом логарифмы из знаменателя дроби «перекочуют» в числитель):

      Разложим числа, стоящие под знаком логарифма на простые множители:

      Применим свойства 4 и 6:

      Введем замену

      Получим:

      Ответ: 1

      Логарифм . Основное логарифмическое тождество.

      Свойства логарифмов. Десятичный логарифм. Натуральный логарифм.

      Логарифмом положительного числа N по основанию (b > 0, b 1) называется показатель степени x , в которую нужно возвести b , чтобы получить N .

      Эта запись равнозначна следующей: b x = N .

      П р и м е р ы: log 3 81 = 4 , так как 3 4 = 81 ;

      log 1/3 27 = 3 , так как (1/3) — 3 = 3 3 = 27 .

      Вышеприведенное определение логарифма можно записать в виде тождества:

      Основные свойства логарифмов.

      2) log 1 = 0 , так как b 0 = 1 .

      3) Логарифм произведения равен сумме логарифмов сомножителей:

      4) Логарифм частного равен разности логарифмов делимого и делителя:

      5) Логарифм степени равен произведению показателя степени на логарифм её основания:

      Следствием этого свойства является следующее: логарифм корня равен логарифму подкоренного числа, делённому на степень корня:

      6) Если в основании логарифма находится степень, то величину, обратную показателю степени, можно вынести за знак лога рифма:

      Два последних свойства можно объединить в одно:

      7) Формула модуля перехода (т. e . перехода от одного основания логарифма к другому основанию):

      В частном случае при N = a имеем:

      Десятичным логарифмом называется логарифм по основанию 10. Он обозначается lg , т.е. log 10 N = lg N . Логарифмы чисел 10, 100, 1000, . p авны соответственно 1, 2, 3, …, т.е. имеют столько положительных

      единиц, сколько нулей стоит в логарифмируемом числе после единицы. Логарифмы чисел 0.1, 0.01, 0.001, . p авны соответственно –1, –2, –3, …, т.е. имеют столько отрицательных единиц, сколько нулей стоит в логарифмируемом числе перед единицей (считая и нуль целых). Логарифмы остальных чисел имеют дробную часть, называемую мантиссой . Целая часть логарифма называется характеристикой . Для практического при менения десятичные логарифмы наиболее удобны.

      Натуральным логарифмом называется логарифм по основанию е . Он обозначается ln , т.е. log e N = ln N . Число е является иррациональным, его приближённое значение 2.718281828. Оно является пределом, к которому стремится число (1 + 1 / n ) n при неограниченном возрастании n (см. первый замечательный предел на странице «Пределы числовых последовательностей»).
      Как это ни покажется странным, натуральные логарифмы оказались очень удобными при проведении различного рода операций, связанных с анализом функций. Вычисление логарифмов по основанию е осуществляется гораздо быстрее, чем по любому другому основанию.

    • Что нужно сегодня для усыновления ребенка в России? Усыновление в России, кроме ответственного личного решения, предполагает ряд процедур государственной проверки кандидатов. Жесткий отбор на подготовительном этапе способствует более […]
    • Сведения бесплатно по ИНН или ОГРН из реестра налоговой по всей России - онлайн На Едином портале Налоговых услуг могут быть получены сведения о государственной регистрации юридических лиц, индивидуальных предпринимателей, […]
    • Наказание за езду без документов (водительские права, страховка, СТС) Иногда по забывчивости водители садятся за руль без ВУ и получают штраф за езду без документов. Напомним, что автолюбитель за рулём при себе в обязательном порядке […]
    • Цветы мужчин. Какие цветы можно подарить мужчине? Какие цветы мужчине можно подарить? «Мужских» цветов не так много, но есть такие, которые дарят мужчинам. Маленький цветочный список перед вами: Хризантемы. Розы. Гвоздики. […]
    • Служебная записка – это специальная форма документа, которая используется во внутренней среде предприятия и служит для быстрого решения текущих производственных проблем. Обычно этот документ составляется с целью внесения какого-либо […]
    • Когда и как получить накопительную часть пенсии в Сбербанке? Сбербанк является банком-партнером государственного пенсионного фонда. На основании этого граждане, оформившие накопительную пенсию, могли переводить в него накопительную часть […]
    • Детские пособия в Ульяновске и Ульяновской области в 2018 году Кроме того, во всех субъектах работают программы, утвержденные федеральным законодательством. Разберем, кто и на какие льготы может рассчитывать. Как региональные власти […]
    • Подробное руководство, как составить доверенность на представление интересов физического лица в суде В гражданском или арбитражном иске, в административном или уголовном деле интересы и истца, и ответчика могут представляться поверенным: […]

    Одним из элементов алгебры примитивного уровня является логарифм. Название произошло из греческого языка от слова “число” или “степень” и означает степень, в которую необходимо возвести число, находящееся в основании, для нахождения итогового числа.

    Виды логарифмов

    • log a b – логарифм числа b по основанию a (a > 0, a ≠ 1, b > 0);
    • lg b – десятичный логарифм (логарифм по основанию 10, a = 10);
    • ln b – натуральный логарифм (логарифм по основанию e , a = e ).

    Как решать логарифмы?

    Логари́фм числа b по основанию a является показателем степени, которая требует, чтобы в число b возвели основание а. Полученный результат произносится так: “логарифм b по основанию а”. Решение логарифмических задач состоит в том, что вам необходимо определить данную степень по числам по указанным числам. Существуют некоторые основные правила, чтобы определить или решить логарифм, а также преобразовать саму запись. Используя их, производится решение логарифмических уравнений, находятся производные, решаются интегралы и осуществляются многие другие операции. В основном, решением самого логарифма является его упрощенная запись. Ниже приведены основные формулы и свойства:

    Для любых a ; a > 0; a ≠ 1 и для любых x ; y > 0.

    • a log a b = b – основное логарифмическое тождество
    • log a 1 = 0
    • log a a = 1
    • log a (x · y ) = log a x + log a y
    • log a x/ y = log a x – log a y
    • log a 1/x = -log a x
    • log a x p = p log a x
    • log a k x = 1/k · log a x , при k ≠ 0
    • log a x = log a c x c
    • log a x = log b x/ log b a – формула перехода к новому основанию
    • log a x = 1/log x a


    Как решать логарифмы – пошаговая инструкция решения

    • Для начала запишите необходимое уравнение.

    Обратите внимание: если в логарифме по основанию стоит 10 , то запись укорачивается, получается десятичный логарифм. Если стоит натуральное число е, то записываем, сокращая до натурального логарифма. Имеется ввиду, что результат всех логарифмов – степень, в которую возводится число основания до получения числа b.


    Непосредственно, решение и заключается в вычислении этой степени. До того как решить выражение с логарифмом, его необходимо упростить по правилу, то есть, пользуясь формулами. Основные тождества вы сможете найти, вернувшись немного назад в статье.

    Складывая и вычитая логарифмы с двумя различными числами, но с одинаковыми основаниями, заменяйте одним логарифмом с произведением или делением чисел b и с соответственно. В таком случае можно применить формулу перехода к другому основания (см. выше).

    Если вы используете выражения для упрощения логарифма, то необходимо учитывать некоторые ограничения. А то есть: основание логарифма а – только положительное число, но не равное единице. Число b, как и а, должно быть больше нуля.

    Есть случаи, когда упростив выражение, вы не сможете вычислить логарифм в числовом виде. Бывает, что такое выражение не имеет смысла, ведь многие степени – числа иррациональные. При таком условии оставьте степень числа в виде записи логарифма.





    gastroguru © 2017