Генно инженерные биологические препараты в ревматологии перечень. Лечение ревматоидного артрита биологическими препаратами

Для лечения РА используются ГИБП, к которым относятся ингибиторы ФНО-α (этанерцепт, инфликсимаб, голимумаб), анти- В клеточный препарат – ритуксимаб (РТМ) и блокатор рецепторов интерлейкина 6 – тоцилизумаб (ТЦЗ).

Показания : больные РА, недостаточно отвечающим на МТ и/или другие синтетические БПВП, при умеренной/высокой активности РА у больных с наличием признаков плохого

прогноза: высокая активность болезни, РФ + /АЦЦП + , раннее появление эрозий, быстрое прогрессирование (появление более 2 эрозий за 12 мес даже при снижении активности); сохранение умеренной/высокой активности или плохая переносимость терапии, по крайней мере, двумя стандартными БПВП, одним из которых должен быть МТ в течение 6 месяцев и более или менее 6 месяцев в случае необходимости отмены БПВП из-за развития побочных эффектов (но обычно не менее 2 мес.); наличие умеренной/высокой активности РА или нарастание титров серологических тестов (РФ + /АЦЦП +) должно быть подтверждено в процессе 2-кратного определения в течение 1 мес.

Противопоказания : беременность и лактация; тяжелые инфекции (сепсис, абсцесс, туберкулез и другие оппортунистические инфекции, септический артрит непротезированных суставов в течение предшествующих 12 месяцев, ВИЧ инфекция, гепатиты В и С и др.); сердечная недостаточность III-IV функционального класса (NYHA); демиелинизирующие заболевания нервной системы в анамнезе; возраст менее 18 лет (решение по каждому случаю индивидуально).

Лечение ГИБП взрослых пациентов с тяжелым активным РА в случае неэффективности или непереносимости других БПВП, можно начинать с ингибирования фактора некроза опухоли (этанерцепт, инфликсимаб).

Этанерцепт назначается взрослым при лечении активного ревматоидного артрита средней и высокой степени тяжести в комбинации с метотрексатом, когда ответ на базисные противовоспалительные препараты (БПВП), включая метотрексат, был неадекватным.

Этанерцепт может назначаться в виде монотерапии в случае неэффективности или непереносимости метотрексата. Этанерцепт показан для лечения тяжелого, активного и прогрессирующего ревматоидного артрита у взрослых, не получавших ранее терапии метотрексатом.

Лечение этанерцептом должно назначаться и контролироваться врачом, имеющим опыт в диагностике и лечении ревматоидного артрита.

Этанерцепт в виде готового раствора используется для пациентов, имеющих массу тела более 62,5 кг.У пациентов с массой тела менее 62,5 кг следует использовать лиофилизат для приготовления раствора.

Терапию этанерцептом следует проводить до тех пор, пока не будет достигнута ремиссия, как правило, не более 24 недель. Введение препарата следует прекратить, если после 12 недель лечения не наблюдается положительной динамики симптомов.

При необходимости повторного назначения этанерцепта, следует соблюдать длительность лечения, указанную выше. Рекомендуется назначать дозу 25 мг дважды в неделю или 50 мг один раз в неделю.

Длительность терапии у некоторых больных может превышать 24 недели.

Пожилые пациенты (65 лет и старше)

Нет необходимости корректировать ни дозу, ни способ применения.

Противопоказания

Повышенная чувствительность к этанерцепту или любому другому компоненту лекарственной формы

Сепсис или риск возникновения сепсиса

Активная инфекция, включая хронические или локализованные инфекции (в т.ч. туберкулез)

Беременность и период лактации

Пациенты с массой тела менее 62,5 кг

С осторожностью

Демиелинизирующие заболевания, застойная сердечная недостаточность, состояния иммунодефицита, дискразия крови, заболевания, предрасполагающие к развитию или активации инфекций (сахарный диабет, гепатиты и др.)

Инфликсимаб назначается с соблюдением дозы и кратности введения, в комбинации с Лечение ГИБП взрослых пациентов с тяжелым активным РА в случае неэффективности или непереносимости других БПВП, можно начинать с ингибирования фактора некроза опухоли (инфликсимаб). Инфликсимаб назначается с соблюдением дозы и кратности введения, в комбинации с МТ.

Инфликсимаб из расчета 3 мг/кг веса по схеме. Применяется в комбинации с МТ при его недостаточной эффективности, реже с другими БПВП. Эффективен у пациентов с недостаточным «ответом» на МТ при раннем и позднем РА. Относительно безопасен у носителей вируса гепатита С. Побочные эффекты, требующие прерывания лечения, возникают реже, чем на фоне лечения другими БПВП.

Перед назначением инфликсимаба все пациенты должны быть обследованы на наличие микобактериальной инфекции в соответствии с текущими национальными рекомендациями

Показания:

♦Отсутствие эффекта («неприемлемо высокая активность болезни») на фоне лечения метотрексатом в максимально эффективной и переносимой дозе (до 20 мг/нед) в течение 3 мес или другими БПВП

♦ 5 и более припухших суставов

♦ увеличение СОЭ более 30 мм/ч или СРБ более 20 мг/л.

♦ активность соответствует DAS>3,2

♦ Неэффективность других БПВП (при наличии противопоказаний для назначения метотрексата)

♦ Необходимость снижений дозы ГК.

♦ При наличии противопоказаний к назначению стандартных БПВП инфликсимаб можно использовать в качестве первого БПВП.

Инфликсимаб назначается с соблюдением дозы и кратности введения, в комбинации с метотрексатом. Терапия инфликсимабом продолжается только в том случае, если через 6 месяцев после начала терапии отмечается адекватный эффект. Эффект считается адекватным, если отмечается уменьшение счета активности болезни (DAS28) на 1, 2 пункта или более. Мониторинг лечения с проведением оценки DAS28 каждые 6 месяцев.

Противопоказания:

Тяжёлые инфекционные заболевания (сепсис, септический артрит, пиелонефрит, остеомиелит, туберкулёзная и грибковая инфекции, ВИЧ, гепатиты В и С и др.); -злокачественные новообразования;

· Лечение проводится под контролем врача-ревматолога, имеющего опыт диагностики и лечения РА;

· внутривенные инфузии в дозе 3 мг/кг, продолжительность инфузии - 2 ч.,

· через 2 и 6 нед после первого введения назначаются дополнительные инфузии по 3 мг/кг каждая, затем введения повторяют каждые 8 нед.;

· повторное назначение инфликсимаба через 2-4 года после предшествующей инъекции может привести к развитию реакций гиперчувствительности замед­ленного типа.

· больным с РА, у которых имеются признаки возможного латентного туберкулеза (туберкулез в анамнезе или изменения на рентгенограмме органов грудной клетки), до начала ГИБТ должны быть даны рекомендации по профилактической антитуберкулезной терапии, в соответствии с текущими национальными рекомендациями.

· при наличии клинических оснований пациенты с РА должны обследоваться в отношении возможных опухолей. В случае выявления злокачественной опухоли лечение анти-ФНО препаратами должно прекращаться.

Голимумаб применяется в комбинации с МТ. Голимумаб эффективен у пациентов, ранее не получавших МТ, у пациентов с недостаточным «ответом» на МТ при раннем и позднем РА, а также у пациентов, не отвечающих на другие ингибиторы ФНО-альфа. Применяется подкожно.

Перед назначением голимумаба все пациенты должны быть обследованы на наличие активных инфекционных процессов (включая туберкулез) в соответствии с текущими национальными рекомендациями

Показания:

Голимумаб в комбинации с метотрексатом (МТ) показан для применения в

качестве:

· терапии умеренного и тяжелого активного ревматоидного артрита у взрослых, у которых отмечается неудовлетворительный ответ на терапию БПВП, включая МТ

· терапии тяжелого, активного и прогрессирующего ревматоидного артрита у взрослых, которые ранее не получали терапию МТ

Показано, что голимумаб в комбинации с МТ снижает частоту прогрессирования патологии суставов, что было продемонстрировано при помощи рентгенографии, и улучшает их функциональное состояние

Голимумаб назначается с соблюдением дозы и кратности введения, в комбинации с МТ.Терапия голимумабом продолжается только в том случае, если через 6 месяцев после начала терапии отмечается адекватный эффект. Эффект считается адекватным, если отмечается уменьшение счета активности болезни (DAS28) на 1,2 пункта или более. Мониторинг лечения с проведением оценки DAS28 каждые 6 месяцев.

Противопоказания:

Гиперчувствительность к активному веществу или любым вспомогательным веществам

Туберкулез (ТБ) в активной форме или другие тяжелые инфекции, например, сепсис и оппортунистические инфекции

Умеренная или тяжелая сердечная недостаточность (NYHA класса III/IV).

Лечение проводится под контролем врача-ревматолога, имеющего опыт диагностики и лечения РА;

Голимумаб в дозе 50 мг вводится подкожно один раз в месяц, в один и тот же день месяца.

Голимумаб у пациентов с РА необходимо применять в комбинации с МТ

У пациентов с массой тела более 100 кг, у которых не было достигнуто удовлетворительного клинического ответа после введения 3-4 доз препарата, может быть рассмотрен вопрос о повышении дозы голимумаба до 100 мг 1 раз в месяц.

Больным с РА, у которых имеются признаки возможного латентного туберкулеза (туберкулез в анамнезе или изменения на рентгенограмме органов грудной клетки), до начала ГИБТ должны быть даны рекомендации по профилактической антитуберкулезной терапии, в соответствии с текущими национальными рекомендациями.

При наличии клинических оснований пациенты с РА должны обследоваться в отношении возможных опухолей. В случае выявления злокачественной опухоли лечение анти-ФНО препаратами должно прекращаться.

Ритуксимаб. Терапия рассматривается в качестве варианта лечения взрослых пациентов с тяжелым активным РА, при недостаточной эффективности, непереносимости ингибиторов ФНО-а или имеющих противопоказания к их назначению (наличие в анамнезе туберкулеза, лимфопролиферативных опухолей), а также при ревматоидном васкулите или наличии признаков неблагоприятного прогноза (высокие титры РФ, увеличение концентрации АЦЦП, увеличение СОЭ и концентрации СРБ, быстрое развитие деструкции в суставах) в течение 3-6 месяцев от начала терапии. Ритуксимаб назначается с соблюдением дозы и кратности введения (не реже, чем каждые 6 месяцев), в комбинации с метотрексатом. Терапия ритуксимабом продолжается, если после начала терапии наблюдается адекватный эффект и если этот эффект поддерживается после повторного применения ритуксимаба по крайней мере через 6 месяцев. Эффект считается адекватным, если отмечается уменьшение счета активности болезни (DAS28) на 1,2 пункта или более.

Тоцилизумаб. Применяется при длительности РА более 6 месяцев, высокой активности болезни, наличии признаков плохого прогноза (РФ+, АЦЦП+, наличие множественных эрозий, быстрое прогрессирование). Тоцилизумаб назначается с соблюдением дозы и кратности введения (1 раз в месяц) в режиме монотерапии или комбинации с БПВП у больных с ревматоидным артритом умеренной и тяжелой степени. Приводит к стойкому объективному клиническому улучшению и повышению качества жизни больных. Лечение в режиме монотерапии или в комбинации с метотрексатом следует продолжать, если через 4 месяца после начала терапии отмечается адекватный эффект. Эффект считается адекватным, если отмечается уменьшение счета активности болезни (DAS28) на 1,2 пункта или более. При внутривенном введении тоцилизумаба в сыворотке крови снижается уровень маркеров острого воспалительного процесса, таких как С-реактивный белок и амилоид-А, а также скорость оседания эритроцитов. Повышается уровень гемоглобина, так как тоцилизумаб уменьшает действие IL-6 на выработку гепцидина, что приводит к повышению доступности железа. Наибольший эффект отмечается у больных ревматоидным артритом с сопуствующей анемией. Наряду с торможением факторов острой фазы воспаления, лечению тоцилизумабом сопутствует снижение числа тромбоцитов в пределах нормальных значений.

Показания к применению: ревматоидный артрит средней или высокой степени активности в монотерапии или в составе комплексной терапии (метотрексат, базисные противовоспалительные препараты) в том числе для предотвращения прогрессирования рентгенологически доказанной деструкции суставов. Системный ювенильный идиопатический артрит в монотерапии или в комбинации с метотрекстатом у детей старше 2 лет.

Способ применения и дозы: рекомендуемая доза для взрослых – 8 мг/кг массы тела один раз в 4 недели в виде внутривенной инфузии в течение 1 часа. Тоцилизумаб применяется в виде монотерапии или в комбинации с метотрексатом и/или другими препаратами базовой терапии. Рекомендуемые дозы у детей.

Для лечения РА используются ГИБП, к которым относятся ингибиторы ФНО-α (этанерцепт, инфликсимаб, голимумаб), анти- В клеточный препарат – ритуксимаб (РТМ) и блокатор рецепторов интерлейкина 6 – тоцилизумаб (ТЦЗ).

Показания: больные РА, недостаточно отвечающим на МТ и/или другие синтетические БПВП, при умеренной/высокой активности РА у больных с наличием признаков плохого

прогноза: высокая активность болезни, РФ + /АЦЦП + , раннее появление эрозий, быстрое прогрессирование (появление более 2 эрозий за 12 мес даже при снижении активности); сохранение умеренной/высокой активности или плохая переносимость терапии, по крайней мере, двумя стандартными БПВП, одним из которых должен быть МТ в течение 6 месяцев и более или менее 6 месяцев в случае необходимости отмены БПВП из-за развития побочных эффектов (но обычно не менее 2 мес.); наличие умеренной/высокой активности РА или нарастание титров серологических тестов (РФ + /АЦЦП +) должно быть подтверждено в процессе 2-кратного определения в течение 1 мес.

Противопоказания : беременность и лактация; тяжелые инфекции (сепсис, абсцесс, туберкулез и другие оппортунистические инфекции, септический артрит непротезированных суставов в течение предшествующих 12 месяцев, ВИЧ инфекция, гепатиты В и С и др.); сердечная недостаточность III-IV функционального класса (NYHA); демиелинизирующие заболевания нервной системы в анамнезе; возраст менее 18 лет (решение по каждому случаю индивидуально).

Лечение ГИБП взрослых пациентов с тяжелым активным РА в случае неэффективности или непереносимости других БПВП, можно начинать с ингибирования фактора некроза опухоли (этанерцепт, инфликсимаб).

Этанерцепт назначается взрослым при лечении активного ревматоидного артрита средней и высокой степени тяжести в комбинации с метотрексатом, когда ответ на базисные противовоспалительные препараты (БПВП), включая метотрексат, был неадекватным.

Этанерцепт может назначаться в виде монотерапии в случае неэффективности или непереносимости метотрексата. Этанерцепт показан для лечения тяжелого, активного и прогрессирующего ревматоидного артрита у взрослых, не получавших ранее терапии метотрексатом.

Лекарственная форма

Раствор для подкожного введения 25 мг, 50 мг

Способ применения и дозы

Подкожно.

Лечение Энбрелом должно назначаться и контролироваться врачом, имеющим опыт в диагностике и лечении ревматоидного артрита.

Энбрел в виде готового раствора 25 мг (одноразовый шприц, содержащий 0,5 мл препарата) и 50 мг (одноразовый шприц, содержащий 1,0 мл препарата), используется для пациентов, имеющих массу тела более 62,5 кг.У пациентов с массой тела менее 62,5 кг следует использовать лиофилизат для приготовления раствора.

Терапию Энбрелом следует проводить до тех пор, пока не будет достигнута ремиссия, как правило, не более 24 недель. Введение препарата следует прекратить, если после 12 недель лечения не наблюдается положительной динамики симптомов.

При необходимости повторного назначения Энбрела, следует соблюдать длительность лечения, указанную выше. Рекомендуется назначать дозу 25 мг дважды в неделю или 50 мг один раз в неделю.

Длительность терапии у некоторых больных может превышать 24 недели.

Пожилые пациенты (65 лет и старше)

Нет необходимости корректировать ни дозу, ни способ применения.

Противопоказания

Повышенная чувствительность к этанерцепту или любому другому компоненту лекарственной формы

Сепсис или риск возникновения сепсиса

Активная инфекция, включая хронические или локализованные инфекции (в т.ч. туберкулез)

Беременность и период лактации

Пациенты с массой тела менее 62,5 кг

С осторожностью

Демиелинизирующие заболевания, застойная сердечная недостаточность, состояния иммунодефицита, дискразия крови, заболевания, предрасполагающие к развитию или активации инфекций (сахарный диабет, гепатиты и др.)

Инфликсимаб назначается с соблюдением дозы и кратности введения, в комбинации с Лечение ГИБП взрослых пациентов с тяжелым активным РА в случае неэффективности или непереносимости других БПВП, можно начинать с ингибирования фактора некроза опухоли (инфликсимаб). Инфликсимаб назначается с соблюдением дозы и кратности введения, в комбинации с МТ.

Инфликсимаб из расчета 3 мг/кг веса по схеме. Применяется в комбинации с МТ при его недостаточной эффективности, реже с другими БПВП. Эффективен у пациентов с недостаточным «ответом» на МТ при раннем и позднем РА. Относительно безопасен у носителей вируса гепатита С. Побочные эффекты, требующие прерывания лечения, возникают реже, чем на фоне лечения другими БПВП.

Перед назначением инфликсимаба все пациенты должны быть обследованы на наличие микобактериальной инфекции в соответствии с текущими национальными рекомендациями

Показания:

♦Отсутствие эффекта («неприемлемо высокая активность болезни») на фоне лечения метотрексатом в максимально эффективной и переносимой дозе (до 20 мг/нед) в течение 3 мес или другими БПВП

♦ 5 и более при­пухших суставов

♦ увеличение СОЭ более 30 мм/ч или СРБ более 20 мг/л.

♦ активность соответствует DAS>3,2

♦ Неэффективность других БПВП (при наличии противопоказаний для назначения метотрексата) о Необходимость снижений дозы ГК.

♦ При наличии противопоказаний к назначению стандартных БПВП инфликсимаб можно использовать в качестве первого БПВП.

Инфликсимаб назначается с соблюдением дозы и кратности введения, в комбинации с метотрексатом. Терапия инфликсимабом продолжается только в том случае, если через 6 месяцев после начала терапии отмечается адекватный эффект. Эффект считается адекватным, если отмечается уменьшение счета активности болезни (DAS28) на 1,2 пункта или более. Мониторинг лечения с проведением оценки DAS28 каждые 6 месяцев.

Противопоказания:

Тяжёлые инфекционные заболевания (сепсис, септический артрит, пиелонефрит, остеомиелит, туберкулёзная и грибковая инфекции, ВИЧ, гепатиты В и С и др.); -злокачественные новообразования;

· Лечение проводится под контролем врача-ревматолога, имеющего опыт диагностики и лечения РА;

· внутривенные инфузии в дозе 3 мг/кг, продолжительность инфузии - 2 ч.,

· через 2 и 6 нед после первого введения назначаются дополнительные инфузии по 3 мг/кг каждая, затем введения повторяют каждые 8 нед.;

· повторное назначение инфликсимаба через 2-4 года после предшествующей инъекции может привести к развитию реакций гиперчувствительности замед­ленного типа.

· больным с РА, у которых имеются признаки возможного латентного туберкулеза (туберкулез в анамнезе или изменения на рентгенограмме органов грудной клетки), до начала ГИБТ должны быть даны рекомендации по профилактической антитуберкулезной терапии, в соответствии с текущими национальными рекомендациями.

Голимумаб применяется в комбинации с МТ. Голимумаб эффективен у пациентов, ранее не получавших МТ, у пациентов с недостаточным «ответом» на МТ при раннем и позднем РА, а также у пациентов, не отвечающих на другие ингибиторы ФНО-альфа. Применяется подкожно.

Перед назначением голимумаба все пациенты должны быть обследованы на наличие активных инфекционных процессов (включая туберкулез) в соответствии с текущими национальными рекомендациями

Показания:

Голимумаб в комбинации с метотрексатом (МТ) показан для применения в

качестве:

· терапии умеренного и тяжелого активного ревматоидного артрита у взрослых, у которых отмечается неудовлетворительный ответ на терапию БПВП, включая МТ

· терапии тяжелого, активного и прогрессирующего ревматоидного артрита у взрослых, которые ранее не получали терапию МТ

Показано, что голимумаб в комбинации с МТ снижает частоту прогрессирования патологии суставов, что было продемонстрировано при помощи рентгенографии, и улучшает их функциональное состояние

Голимумаб назначается с соблюдением дозы и кратности введения, в комбинации с МТ.Терапия голимумабом продолжается только в том случае, если через 6 месяцев после начала терапии отмечается адекватный эффект. Эффект считается адекватным, если отмечается уменьшение счета активности болезни (DAS28) на 1,2 пункта или более. Мониторинг лечения с проведением оценки DAS28 каждые 6 месяцев.

Противопоказания:

Гиперчувствительность к активному веществу или любым вспомогательным

веществам

Туберкулез (ТБ) в активной форме или другие тяжелые инфекции, например

сепсис и оппортунистические инфекции

Умеренная или тяжелая сердечная недостаточность (NYHA класса III/IV)Рекомендации по применению:

Лечение проводится под контролем врача-ревматолога, имеющего опыт диагностики и лечения РА;

Голимумаб в дозе 50 мг вводится подкожно один раз в месяц, в один и тот же

день месяца.

Голимумаб у пациентов с РА необходимо применять в комбинации с МТ

У пациентов с массой тела более 100 кг, у которых не было достигнуто

удовлетворительного клинического ответа после введения 3-4 доз препарата,

может быть рассмотрен вопрос о повышении дозы голимумаба до 100 мг 1

раз в месяц.

Больным с РА, у которых имеются признаки возможного латентного туберкулеза (туберкулез в анамнезе или изменения на рентгенограмме органов грудной клетки), до начала ГИБТ должны быть даны рекомендации по профилактической антитуберкулезной терапии, в соответствии с текущими национальными рекомендациями.

· при наличии клинических оснований пациенты с РА должны обследоваться в отношении возможных опухолей. В случае выявления злокачественной опухоли лечение анти-ФНО препаратами должно прекращаться.

Ритуксимаб. Терапия рассматривается в качестве варианта лечения взрослых пациентов с тяжелым активным РА, при недостаточной эффективности, непереносимости ингибиторов ФНО-а или имеющих противопоказания к их назначению (наличие в анамнезе туберкулеза, лимфопролиферативных опухолей), а также при ревматоидном васкулите или наличии признаков неблагоприятного прогноза (высокие титры РФ, увеличение концентрации АЦЦП, увеличение СОЭ и концентрации СРБ, быстрое развитие деструкции в суставах) в течение 3-6 месяцев от начала терапии. Ритуксимаб назначается с соблюдением дозы и кратности введения (не реже, чем каждые 6 месяцев), в комбинации с метотрексатом. Терапия ритуксимабом продолжается, если после начала терапии наблюдается адекватный эффект и если этот эффект поддерживается после повторного применения ритуксимаба по крайней мере через 6 месяцев. Эффект считается адекватным, если отмечается уменьшение счета активности болезни (DAS28) на 1,2 пункта или более.

Тоцилизумаб. Применяется при длительности РА более 6 месяцев, высокой активности болезни, наличии признаков плохого прогноза (РФ+, АЦЦП+, наличие множественных эрозий, быстрое прогрессирование). Тоцилизумаб назначается с соблюдением дозы и кратности введения (1 раз в месяц) в режиме монотерапии или комбинации с БПВП у больных с ревматоидным артритом умеренной и тяжелой степени. Приводит к стойкому объективному клиническому улучшению и повышению качества жизни больных. Лечение в режиме монотерапии или в комбинации с метотрексатом следует продолжать, если через 4 месяца после начала терапии отмечается адекватный эффект. Эффект считается адекватным, если отмечается уменьшение счета активности болезни (DAS28) на 1,2 пункта или более. При внутривенном введении тоцилизумаба в сыворотке крови снижается уровень маркеров острого воспалительного процесса, таких как С-реактивный белок и амилоид-А, а также скорость оседания эритроцитов. Повышается уровень гемоглобина, так как тоцилизумаб уменьшает действие IL-6 на выработку гепцидина, что приводит к повышению доступности железа. Наибольший эффект отмечается у больных ревматоидным артритом с сопуствующей анемией. Наряду с торможением факторов острой фазы воспаления, лечению тоцилизумабом сопутствует снижение числа тромбоцитов в пределах нормальных значений.

Показания к применению: ревматоидный артрит средней или высокой степени активности в монотерапии или в составе комплексной терапии (метотрексат, базисные противовоспалительные препараты) в том числе для предотвращения прогрессирования рентгенологически доказанной деструкции суставов. Системный ювенильный идиопатический артрит в монотерапии или в комбинации с метотрекстатом у детей старше 2 лет.

Способ применения и дозы: рекомендуемая доза для взрослых – 8 мг/кг массы тела один раз в 4 недели в виде внутривенной инфузии в течение 1 часа. Актемра применяется в виде монотерапии или в комбинации с метотрексатом и/или другими препаратами базовой терапии. Рекомендуемые дозы у детей:

Масса тела менее 30 кг 12 мг/кг каждые 2 недели

Масса тела 30 кг и более 8 мг/кг каждые 2 недели

Противопоказания: гиперчувствительность к тоцилизумабу или другим компонентам препарата, острые инфекционные заболевания и хронические инфекции в стадии обострения, нейтропения (абсолютное число нейтрофилов менее 0,5*109/л), тромбоцитопения (число тромбоцитов менее 50*109/л), увеличение показателей АЛТ/АСТ более, чем в 5 раз по сравнению с нормой (более 5N), беременность и период лактации, детский возраст до 2 лет

Анемия вследствие хронического воспаления - интенсифицировать тера­пию БПВП, назначить ГК (0,5- 1 мг/кг в день).

Макроцитарная - витамин В 12 и фолиевая кислота.

Железодефицитная - препараты железа.

Гемолитическая - ГК (60 мг/сут); при неэффективности в течение 2 нед - азатиоприн 50-150 мг/сут.

Синдром Фелти:

· основные ЛС - МТ, тактика применения такая же, как и при других формах РА;

· монотерапия ГК (>30 мг/сут) приводит только к временной коррекции гранулоцитопении, которая рецидивирует после снижение дозы ГК.

· У пациентов с агранулоцитозом показано применение пульс-терапии ГК по обычной схеме.

Перикардит или плеврит - ГК(1 мг/кг) + БПВП.

Интерстициальное заболевание лёгких - ГК (1 - 1,5 мг/кг) + циклоспорин А или циклофосфамид; избегать назначения метотрексата.

Изолированный дигитальный артериит - симптоматическая сосудистая терапия.

Системный ревматоидный васкулит - интермиттирующая пульс-терапия циклофосфамидом (5мг/кг/сут) и метилпреднизолоном (1 г/сут) каждые 2 нед. в течение 6 нед, с последующим удлинением интервала между введениями; поддерживающая терапия - азатиоприн; при наличии криоглобулинемии и тяжёлых проявлений васкулита целесообразно проведение плазмафереза.

Кожный васкулит - метотрексат или азатиоприн.

Хирургическое вмешательство

Показания к экстренной или неотложной операции:

Сдавление нерва вследствие синовита или тендосиновита

Угрожающий или совершившийся разрыв сухожилия

Атлантоосевой подвывих, сопровождающийся неврологической симптоматикой

Деформации, затрудняющие выполнение простейших повседневных действий

Тяжёлые анкилозы или дислокации нижней челюсти

Наличие бурситов, нарушающих работоспособность больного, а также ревматических узелков, имеющих тенденцию к изъязвлению.

Относительные показания к операции

Резистентные к лекарственной терапии синовиты, тендосиновиты или бурситы

Выраженный болевой синдром

Значительное ограничение движений в сус­таве

Тяжёлая деформация суставов.

Основные виды оперативного лечения: протезирование суставов, синовэктомия, артродез.

15.3. Профилактические мероприятия: отказ от курения, особенно для

родственников первой степени родства больных анти-ЦЦП позитивным РА.

Профилактика туберкулёзной инфекции: предварительный скрининг пациентов позволяет снизить риск развития туберкулеза на фоне лечения инфликсимабом; у всех пациентов до начала лечения инфликсимабом и уже получающих лечение следует провести рентгенологическое исследование лёгких и консультацию фтизиатра; при положительной кожной пробе (реакция >0,5 см) следует провести рент­генологическое исследование лёгких. При отсутствии рентгенологических изменений следует провести лечение изониазидом (300 мг) и витамином В б в течение 9 мес., через 1 мес. возможно назначение инфликсимаба; при положительной кожной пробе и наличии типичных признаков туберкулёза или кальцифицированных лимфатических узлов средостения до назначения инфликсимаба необходимо провести не менее чем 3-месячную терапию изониазидом и витамином В б. При назначении изониазида у пациентов старше 50 лет необходимо динамическое исследование печёночных ферментов.

Рекомендации по периоперационному ведению пациентов: ацетилсалициловая кислота(риск кровотечений) - отменить за 7-10 дней до операции; неселективные НПВП (риск кровотечений) - отменить за 1 -4 дня (в зависимости от Т 1/2 ЛС); и нгибиторы ЦОГ-2можно не отменять (риск кровотечения отсутствует).

Глюкокортикоиды (риск недостаточности коры надпочечников):

Небольшая хирургическая операция: 25 мг гидрокортизона или 5 мг метилпреднизолона в/в в день операции; средняя хирургическая операция- 50-75 мг гидрокортизона или 10-15 мг метилпреднизолона в/в в день операции и быстрая отмена в течение 1 -2 дней до обычной дозы: большая хирургическая операция: 20-30 мг метилпреднизолона в/в в день процедуры; быстрая отмена в течение 1-2 дней до обычной дозы; критическое состояние - 50 мг гидрокортизона в/в каждые 6 ч.

Метотрексат. Отменить при наличии следующих факторов ♦ пожилой возраст ♦ почечная недостаточность ♦ неконтролируемый сахарный диабет ♦ тяжёлое поражение печени и лёгких ♦ приём ГК > 10 мг/сут. Продолжить приём в прежней дозе через 2 нед после операции.

Сульфасалазин и азатиоприн отменить за 1 день до операции, возобновить приём через 3 дня после операции.

Гидроксихлорохин можно не отменять.

Инфликсимаб можно не отменять или отменить за неделю до операции и во­зобновить приём через 1-2 нед после операции.

15.4. Дальнейшее ведение (пр: послеоперационное, реабилитация, сопровождение пациента на амбулаторном уровне в случае разработки протокола для стационара)

Все больные РА подлежат диспансерному наблюдению:

· своевременно распознавать начавшееся обострение заболевания и коррекция терапии;

· распознавание осложнений лекарственной терапии;

· тщательный мониторинг клинико-лабораторной активности РА и профилактика побочного действия лекарственной терапии;

· посещение ревматолога не реже 2 раз в 3 мес.

· Каждые 3 мес: общие анализы крови и мочи, биохимический анализ крови.

· Ежегодно: исследование липидного профиля (с целью профилактики атеросклероза), денситометрия (диагностика остеопороза), рентгенография костей таза (выявление асептического некроза головки бедренной кости).

Ведение пациентов с РА на фоне беременности и кормления грудью:

Избегать приёма НПВП, особенно во II и III триместрах беременности.

Исключить приём БПВП.

Можно продолжить лечение ГК в минимально эффективных дозах.

16. Индикаторы эффективности лечения и безопасности методов диагностики и лечения, описанных в протоколе: достижение клинико-лабораторной ремиссии.

В оценке терапии больных РА рекомендуется использовать критерии Европейской лиги ревматологов (таб. 9), по которым регистрируется (%) улучшения следующих параметров: ЧБС; ЧПС; Улучшение любых 3 из следующих 5 параметров: общая оценка активности заболевания пациентом; общая оценка активности заболевания врачом; оценка боли пациентом; опросник оценки состояния здоровья (HAQ); СОЭ или СРБ.

Таблица 9. Критерии Европейской лиги ревматологов ответа на терапию

Минимальной степенью улучшения считается эффект соответствующий 20% улучшению. По рекомендациям Американского колледжа ревматологов достижение эффекта ниже 50% улучшения (до 20%) требует коррекции терапии в виде изменения дозы БПВП или присоединения второго препарата.

При лечении БПВП возможны варианты результатов лечения:

1. Снижение активности до низкой или достижение ремиссии;

2.Снижение активности без достижения низкого ее уровня;

3. Минимальное улучшение или его отсутствие.

При 1-ом варианте лечение продолжается без изменений; при 2-ом – нужно менять БПВП, если степень улучшения параметров активности не превышает 40-50% или присоединение к БПВП при 50% улучшении другого БПВП или ГИБП; при 3-ем – отмена препарата, подбор другого БПВП.


Для цитирования: Белов Б.С., Насонов Е.Л. Генно–инженерные биологические препараты и инфекции у больных ревматоидным артритом: современное состояние проблемы // РМЖ. 2009. №21. С. 1418

В последние десятилетия в ревматологии произошли существенные изменения, связанные в первую очередь с активным внедрением в клиническую практику так называемых генно-инженерных биологических препаратов (ГИБП), действие которых направлено на специфические компоненты патогенеза ревматических заболеваний (РЗ). По мере накопления мирового клинического опыта стало понятно, что применение этих препаратов ассоциируется с нарастающим риском развития инфекций разнообразной природы и локализации.

На сегодняшний день механизмы, лежащие в основе нарастания риска инфекций, обусловленных применением ГИБП, до конца не раскрыты. Однако восприимчивость больных к определенным типам инфекций может быть объяснена тем, что «мишенями» указанных препаратов являются ключевые компоненты иммунной защиты человека, а именно фактор некроза опухоли-a (ФНО-a ), интерлейкин-1, интерлейкин-6 (ИЛ-6), В- и Т-лимфоциты и др.

Обсуждение вопросов, связанных с ассоциацией «ГИБП-инфекции», необходимо вести с учетом фонового риска развития инфекционных осложнений, обусловленного как наличием аутоиммунного РЗ, так и необходимостью назначения иных широко применяемых антиревматических препаратов, обладающих иммуносупрессивным действием.

О высокой частоте коморбидных инфекций (КИ), осложняющих течение РА, известно в течение последних 45 лет. КИ у больных РА развиваются в 1,5 раза чаще, чем в популяции, и занимают 2-3-е мес-то по частоте среди причин смерти этих пациентов . По данным российских исследований, в 2002-2005 гг. (т.е. до активного применения ГИБП) частота КИ у стационарного контингента больных составляла 9,7%. При этом частота вторичных инфекций была максимальной среди пациентов с ревматоидным артритом (РА) - 38,1% .

В соответствии с результатами когортного исследования к наиболее частым инфекционным осложнениям РА относятся (в порядке убывания): септический артрит, остеомиелит, инфекции кожи и мягких тканей, пневмония . По данным этих же авторов, основными предикторами развития КИ при РЗ являются хронические заболевания легких, лейкопения, внесуставные проявления болезни, наличие ревматоидного фактора, увеличение СОЭ, а также лечение глюкокортикоидами . В ходе годового проспективного исследования показано, что применение метотрексата у больных РА вело к достоверному повышению общего числа вторичных КИ по сравнению с контролем (62,5 и 47% соответственно, р<0,05) .

Ингибиторы фактора некроза
опухоли-
a

Открытие основных провоспалительных цитокинов, прежде всего фактора некроза опухоли-a (ФНО-a ), привело к созданию группы препаратов (инфликсимаб, адалимумаб, этанерцепт), блокирующих его действие. Применение ингибиторов ФНО-a (иФНО-a ), в первую очередь при РА, имело большой успех. Однако в ходе клинических исследований была выявлена такая проблема, как увеличение частоты развития и тяжести течения инфекций, включая оппортунистические (инвазивные микозы, пневмоцистная пневмония и др.), а также повышенный риск реактивации латентной инфекции, в первую очередь туберкулеза (ТВ). Помимо этого регистрировались случаи тяжелых инфекций (пневмония, сепсис, бактериальный артрит, поражение кожи и мягких тканей и др.), в том числе с летальным исходом. Данные, касающиеся риска развития инфекций, были весьма противоречивыми. Так, в большинстве рандомизированных контролируемых исследований (РКИ) указывалось на низкую частоту развития тяжелых инфекций, схожую с таковой для иных БПВП (в частности, метотрексата) или в целом для больных РА (табл. 1). В то же время применение иФНО-α в реальной клинической практике при РА и других РЗ привело к явному нарастанию частоты инфекций, включая тяжелые. В ходе рандомизированного исследования, включавшего 709 пациентов с различными РЗ, британские авторы констатировали, что при активном применении иФНО-α в период с 1997 по 2004 г. частота развития серьезных инфекций, т.е. требовавших госпитализации и парентерального применения антибиотиков, возросла с 3,4 до 10,5 на 100 пациенто-лет . Еще более впечатляющи данные швейцарских исследователей, согласно которым на фоне терапии инфликсимабом и этанерцептом серьезные инфекции развились в 18,3% случаев. При этом ежегодная частота серьезных инфекций у больных РА при лечении указанными ГИБП увеличилась с 0,008 до 0,181 на 100 пациенто-лет, т.е. в 22 (!) раза .

По данным крупного когортного исследования, включавшего более 5 тыс. больных РА, риск развития верифицированных бактериальных инфекций у пациентов, получавших иФНО-α , по сравнению с таковыми, принимавшими метотрексат, был в 2 раза выше в целом и в 4 раза выше в течение первых 6 мес. терапии .

Повышенная частота развития инфекционных осложнений при лечении иФНО-α подтверждается данными национальных регистров. Так, среди больных РА, включенных в Британский регистр биологических препаратов, частота серьезных инфекционных осложнений в течение первых 90 дней терапии иФНО-α превышала таковую при лечении БПВП как в целом, так и для этанерцепта, инфликсимаба и адалимумаба в отдельности (в 4,6, 4,1, 5,6 и 3,9 раза соответственно) . По данным Германского регистра, частота развития серьезных бактериальных инфекций при лечении РА этанерцептом составила 6,4, инфликсимабом - 6,2, БПВП - 2,3 на 100 пациенто-лет (р=0,016) . Анализ данных Шведского регистра показал, что частота развития серьезных инфекций на фоне стартовой иФНО-α -терапии составила 5,4, а при неэффективности последней и замене одного иФНО-α на другой - 10 на 100 пациенто-лет

Учитывая, что ФНО-α играют ключевую роль в формировании гранулемы посредством индукции апоптоза и в ее сохранении, предполагается, что блокирование этого цитокина ведет к развитию (или обострению уже имеющейся) гранулематозной инфекции. В этом отношении достаточно показательны результаты исследования J. Keane et al., основанного на анализе базы данных AERS (Adverse Effects Report System) Американской комиссии по надзору за пищевыми продуктами и лекарствами (Food&Drug Administration - FDA), куда стекаются все спонтанные сообщения о нежелательных реакциях как от врачей, так и от производителей препаратов. Оказалось, что на фоне активного внедрения инфликсимаба в лечение больных РА частота активной ТВ-инфекции увеличилась в 4 раза . По данным испанского регистра BIOBADASER, частота активного ТВ у больных РА на фоне лечения иФНО-α возрастала в 6,2 раза . В Швеции за период 1999-2001 гг. констатировано 4-кратное увеличение риска развития ТВ . В результате 3-летнего проспективного исследования, выполненного во Франции (RATIO ), выявлено 69 новых случаев ТВ у больных РЗ, получавших иФНО-a . Из них 36 больных получали инфликсимаб, 28 - адалимумаб и 5 - этанерцепт. При анализе методом «случай-кон-троль» оказалось, что применение инфликсимаба или адалимумаба сопровождалось повышением риска ТВ-инфек-ции по сравнению с этанерцептом, в 13,3 и 17,1 раза соответственно. По мнению исследователей, данный факт обусловлен различиями в механизме действия двух видов иФНО-a на мембран-но-связанный ФНО и, следовательно, различным влиянием на эффекторные и регуляторные Т-клетки. Другими факторами риска развития ТВ были возраст, первый год лечения иФНО-a и проживание в эндемичном регионе . Сходные данные представлены в Британском регистре биологических препаратов, где активная ТВ-инфекция диагностирована у 29 больных, получавших иФНО-a . По сравнению с этанерцептом риск развития ТВ возрастал в 2,84 раза для инфликсимаба и в 3,53 - для адалимумаба . Предполагается, что на ранних этапах лечения иФНО-a происходит реактивация латентного ТВ-процесса, а в более поздние сроки - развитие ТВ-инфекции de novo . У таких пациентов могут вознинуть проблемы в ле-че-нии ТВ, обусловленные низкой эффективностью стандартных терапевтических схем .

Вышеизложенное вызвало необходимость разработки рекомендаций по раннему выявлению, диагностике и профилактике ТВ при планировании и проведении иФНО-a - терапии у больных РЗ. В настоящее вре-мя соответствующие рекомендации разработаны и внедрены в клиническую практику в различных странах, в т.ч. в России .

Данные исследований, касающихся применения иФНО-a у больных, инфицированных вирусом гепатита В (HBV) и С (HCV), представляются неоднозначными. В частности, у больных с HBV показана важная роль ФНО-a в клиренсе и, при взаимодействии с интерфероном, подавлении вирусной репликации. Следовательно, ингибиция ФНО-a может привести к снижению элиминации и нарастанию репликации HBV и, таким образом, к рецидиву гепатита. Подтверждением этому служат описания случаев реактивации HBV-инфекции, ведущей к развитию фульминантного гепатита у больных РА и болезнью Стилла на фоне терапии инфликсимабом . В соответствии с опубликованным в 2008 г. консенсусом по применению ГИБП при РЗ назначение иФНО-a не показано больным с верифицированной HBV-инфекцией . Однако ряд авторов полагает, что при наличии четких показаний и отсутствии альтернативы иФНО-a -терапия может быть (с осторожностью!) проведена у HBV-носителей при обязательном профилактическом применении противовирусных препаратов расширенного спектра (ламивудин, энтекавир и др.). Последние назначают за 2-4 недели до начала иФНО-a -терапии и продолжают по меньшей мере 6-12 мес. после ее окончания .

Случаи реактивации HCV при лечении ГИБП на сегодняшний день не описаны. Тем не менее интерес исследователей к этой проблеме по-прежнему велик. Известно, что ФНО-a наряду с другими провоспалительными цитокинами вырабатывается при HCV-инфек-ции и, следовательно, играет важную роль в естественном течении болезни. Показано, что ФНО-a может индуцировать продукцию трансформирующего фактора роста-b , экспрессия которого тесно связана с гистологической выраженностью активности процесса и долькового некроза у больных с хронической HCV-ин-фек-цией. Более того, высокие уровни ФНО-a оказывают негативное влияние на ответ макроорганизма больного HCV при терапии интерфероном . Следо-вательно, блокирование ФНО-a могло бы иметь благоприятные последствия для больных с HCV-инфекцией. Показано, что комбинация этанерцепта со стандартной противовирусной терапией (интерферон + рибавирин) приводила к более благоприятному результату (p=0,04) . Однако длительность терапии в этом исследовании не превышала 3-9 мес. Для окончательной оценки безопасности применения иФНО-a , равно и других ГИБП при РЗ в сочетании с HCV, необходимы крупномасштабные исследования с более длительными сроками лечения и наблюдения.

Таким образом, повышенный риск развития инфекций - это нежелательное явление, специфичное для всей группы иФНО-a . Наличие его в целом не зависит от конкретного механизма блокады ФНО, технологии производства, способа введения и других характеристик препарата. Частота серьезных бактериальных инфекций при лечении иФНО-a возрастает в 2-4 раза, особенно в первые 90 дней лечения, и увеличивается при сочетании с метотрексатом. По данным плацебо-контролируемых исследований, частота инфекций и их структура являются примерно одинаковыми для инфликсимаба, этанерцепта (кроме TB) и адалимумаба.

Ритуксимаб

Ритуксимаб представляет собой генно-инженерные химерные (т.е. состоящие из человеческого и мышиного белка) моноклональные антитела к CD-20-антигену В-клеток. Основное показание для его назначения - ле-чение среднетяжелого и тяжелого РА, резистентного к иФНО-a . Кроме того, ритуксимаб с успехом применяют и при других РЗ (системная красная волчанка, синдром Шегрена, васкулиты и др.).

По данным РКИ (табл. 2), при лечении ритуксимабом отмечено повышение частоты развития инфекций (в т.ч. серьезных инфекций дыхательных и мочевыводящих путей), однако достоверных отличий от препаратов сравнения не наблюдалось. В частности, в рамках IIB фазы исследований частота инфекций составила 28% среди больных, получавших терапию метотрексатом, и 35% для каждой из групп ритуксимаба. В ходе исследования REFLEX показатели серьезных инфекций составили 3,7 и 5,2 на 100 пациенто-лет для плацебо и ритуксимаба соответственно . По данным РКИ, в целом частота серьезных инфекций среди больных РА, получавших ритуксимаб, составила 5,0, в группе контроля 3,4, на 100 пациенто-лет . При длительном проспективном наблюдении за обширной когортой больных РА (1053 человека), получавших ≥1 инъекции ритуксимаба, показана сохраняющаяся (но не нарастающая) частота развития инфекций (включая тяжелые) (табл. 3) .

Данные, свидетельствующие о повышении риска развития ТВ или оппортунистических инфекций, вызываемых условно-патогеными возбудителями, у больных, принимавших ритуксимаб по поводу РА, отсутствуют. В то же время имеются описания случаев реактивации HBV-инфекции у больных с лимфомами. Это может накладывать ограничения на применение ритуксимаба при РА в сочетании с упомянутой инфекцией. Заслуживают внимания факты успешного и безопасного применения ритуксимаба у больных с криоглобулинемическим васкулитом, ассоциированным с HCV . Тем не менее у некоторых из этих пациентов имели место случаи транзиторной HCV-виремии . В соответствии с рекомендациями Французского общества ревматологов, у больных с активными HBV- и HCV-ин-фекциями вопрос о назначении ритуксимаба необходимо решать только после консультации гепатолога .

Таким образом, применение ритуксимаба, как и других иммуномодулирующих препаратов, повышает риск развития инфекций у больных РА. Частота развития серьезных инфекций составляет 5/100 пациен-то-лет и существенно не меняется после повторных инъекций препарата. Несмотря на отсутствие указаний на развитие ТВ в рамках исследований по ритуксимабу, необходимо подчеркнуть, что подавляющее большинство больных, включенных в РКИ, составляли пациенты с предшествующей безуспешной иФНО-a -терапией. Следовательно, всем им уже проводили скрининг на ТВ. По мнению экспертов уже упоминавшегося консенсуса-2008, в настоящее время недостаточно данных для принятия решения о необходимости (или нецелесообразности) скринингового обследования на ТВ пациентов с РА до начала применения ритуксимаба. Поэтому врачу следует сохранять настороженность в отношении возможного развития ТВ на фоне терапии этим препаратом.

Абатацепт

Абатацепт представляет собой растворимую гибридную белковую молекулу, состоящую из 2 компонентов - внеклеточного домена CTLA4 и фрагмента Fc глобулина IgG1. Связываясь с CD80/86, молекулы CTLA4 конкурентно препятствуют взаимодействию с ними CD28 на поверхности Т-лимфоцитов, тем самым блокируя активацию последних.

В ходе РКИ частота развития инфекций (включая серьезные) при лечении абатацептом была достаточно низкой (табл. 2). Однако в ходе годового исследования AIM серьезные инфекции преобладали в группе пациентов, получавших абатацепт . При оценке безопасности абатацепта в реальной клинической практике (исследование ASSURE ) частота инфекционных осложнений, включая тяжелые инфекции, достоверно не отличалась от контроля (56,0 и 54,1%, 2,9 и 1,9% соответственно) . Продемонстрировано нарастание частоты серьезных инфекций при комбинации абатацепта с другими иФНО-a . В целом при оценке 5 крупных РКИ частота развития серьезных инфекций при лечении абатацептом превышала таковую в контроле (3 и 1,3% соответственно). Наиболее частой локализацией серьезных инфекций были органы дыхания (пневмония, бронхит, синусит), урогенитальный тракт (пиелонефрит), кожа и мягкие ткани, а также пищеварительная система (дивертикулит). Зарегистрировано 6 случаев ТВ, что составило 0,06 на 100 пациенто-лет. Также отмечено нарастание частоты герпес-вирусной инфекции по сравнению с контролем (2 и 1% соответственно). Случаев развития HBV, HCV, ВИЧ- и JC-вирус-ной инфекции не наблюдалось .

Таким образом, лечение абатацептом ассоциируется с умеренным риском развития бактериальных инфекций, возрастающим при одновременном применении абатацепта и иФНО-a .

Тоцилизумаб

Тоцилизумаб - препарат, являющийся рекомбинантным гуманизированным моноклональным антителом к человеческому рецептору интерлейкина-6 (ИЛ-6), блокирующим оба сигнальных пути ИЛ-6-зависимой клеточной активации.

В настоящее время программа клинических исследований тоцилизумаба включает около 4 тыс. больных РА, что позволяет составить определенное впечатление не только об эффективности, но и о безопасности этого препарата.

Как видно из рисунка 1, частота серьезных инфекций, развивавшихся при лечении тоцилизумабом, была аналогичной таковой у больных, получавших иФНО-a . Также сходной была структура инфекционных осложнений, которые включали пневмонию, флегмону, herpes zoster -инфекцию, бактериальный артрит и реактивацию, латентных инфекций, в т.ч. микобактериальных. В отдельных случаях серьезные инфекции приводили к летальному исходу. Описано 2 случая развития ТВ у больных РА, длительно (1,5 и 2 года) получавших тоцилизумаб , что обусловливает необходимость проведения соответствующего скрининга до начала лечения. Кроме того, по мнению экспертов Японского колледжа ревматологов , в целях минимизации развития оппортунистических инфекций больные с РА перед назначением тоцилизумаба должны соответствовать следующим условиям; а) число лейкоцитов периферической крови ≥4000/мм3, б) число лимфоцитов периферической крови ≥1000/мм3, в) отрицательный сывороточный тест на 1,3-b -D-глюкан (маркер глубоких инвазивных микозов).

При формировании антибактериальной защиты макроорганизма особая роль ИЛ-6 состоит еще и в том, что он, с одной стороны, являясь эндогенным пирогеном, инициирует повышение температуры тела, с другой - стимулирует продукцию белков острой фазы. Вследствие этого при лечении больных РА тоцилизумабом клинические (лихорадка, слабость) и лабораторные (повышение СОЭ и СРБ) симптомы инфекционного процесса могут быть стертыми или отсутствовать. Сле-до-вательно, необходимо сохранять высокую степень настороженности с целью раннего выявления инфекционных осложнений, в т.ч. серьезных. В качестве ка-зуистики приводят описание случая тяжелой пневмонии с минимальными поначалу клиническими проявлениями и развитием шокового состояния в течение 1-х суток от начала терапии тоцилизумабом .

Вакцинация

В настоящее время в арсенале врачей имеется достаточное количество антиинфекционных препаратов. Но только с их помощью решить все проблемы, связанные с инфекциями в ревматологии, как и в других областях медицины, невозможно. Поэтому в ближайшем будущем большое внимание будет уделено созданию, совершенствованию и активному внедрению в клиническую практику различных вакцин.

В соответствии с рекомендациями Центра по контролю за заболеваниями (Center of Disease Control - CDC) и Североамериканского общества по инфекционным болезням от 2009 г., всем взрослым пациентам с иммуносупрессией, обусловленной как самим заболеванием, так и применением иммуномодулирующих препаратов, целесообразно проведение вакцинации против гриппа и пневмококковой инфекции . Данное положение с полным правом можно экстраполировать на большинство больных РЗ, включая и категорию пациентов, рассматриваемую в настоящей статье.

Не могут ли механизмы, которые обусловливают повышенную восприимчивость больных РЗ к инфекциям, вызвать ослабленный иммунный ответ на вакцину? Не приведет ли вызванная вакциной активация иммунной системы к развитию или обострению уже имеющегося РЗ? Эти два вопроса оставались до последнего времени главными сдерживающими факторами широкого применения вакцинации в ревматологии. Имеющиеся на сегодняшний день данные свидетельствуют об отсутствии какого-либо негативного влияния иммунизации на течение основного РЗ, а также о сохранении или небольшом статистически незначимом уменьшении уровня индуцируемых вакциной противоинфекционных антител, в т.ч. у больных РА, получающих ГИБП.

Данные о влиянии иФНО-a на поствакцинальный иммунный ответ суммированы в таблице 4. В работе Kaine и соавт. после назначения противогриппозной вакцины протективный уровень антител у больных РА, получавших адалимумаб, не отличался от такового в плацебо-контроле (98 и 94,55% соответственно). По данным этих же авторов, протективные уровни антител после введения 23-валентной полисахаридной пневмококковой вакцины также были аналогичными в указанных группах (85,9 и 81,7% соответственно). В проспективном когортном исследовании голландских авторов протективный уровень антител в ответ на вакцинацию против гриппа сохранялся у 80% больных, получавших иФНО-a , 82-93% - прочие БПВП и 89-94% - в здоровом контроле. Поствакцинальные титры антипневмококковых антител у больных РА, получавших иФНО-a , не отличались от таковых в контроле и значимо превосходили данные, полученные при лечении метотрексатом .

Таким образом, вакцинация против гриппа и пневмококковой инфекции имеет важное значение в курации больных РА, получающих ГИБП, несмотря на то, что в некоторых исследованиях иммунный ответ на указанные вакцины был неполным. Назначение живых вакцин противопоказано. Иммунизацию указанными вакцинами целесообразно проводить не менее чем за 4 недели до начала лечения ГИБП. В целях отработки более четких показаний для вакцинации и оценки влияния на ее результаты различных ГИБП необходимы дальнейшие многоцентровые крупномасштабные исследования.

В заключение считаем целесообразным акцентировать внимание врачей на наиболее важных моментах, связанных с минимизацией влияния инфекции на терапию ГИБП.

На исходном этапе :

.  тщательный отбор больных в строгом соответствии с показаниями;

.  исключение больных с клинически значимой инфекцией в активной форме;

.  тщательное обследование с целью выявления латентной инфекции, соответствующее лечение в случае ее обнаружения, отсрочка начала терапии ГИБП;

.  крайняя осторожность при решении вопроса о лечении ГИБП у больных с повышенной восприимчиво-стью к инфекциям, с хронической инфекцией или нали-чием в анамнезе рецидивирующих инфекций.

Во время и после лечения :

.  информация больных о возможности ГИБП повышать способность к развитию инфекций;

.  инструктаж больных о необходимости немедленного обращения к врачу при появлении во время или после лечения ГИБП симптомов инфекции (повышение tº тела, общая слабость, кашель или гриппоподобные симптомы) или признаков, позволяющих заподозрить туберкулез (субфебрилитет, длительно сохраняющийся кашель, снижение массы тела и др.);

.  тщательное наблюдение как минимум в течение 6 мес. после окончания лечения ГИБП (в частности, иФНО-a );

.  прекращение терапии ГИБП при развитии тяжелой инфекции и проведение в связи с этим соответствующего обследования и лечения.








Литература
1. Sokka T, Abelson B, Pincus T.Mortality in rheumatoid arthritis: 2008 update. Clin Exp Rheumatol. 2008;26(5 Suppl 51): 35-61.
2. Белов Б.С., Балабанова Р.М., Манукян С.Г., Полянская М.В., Оттева Э.Н., Сороцкая В.Н., Марусенко И.М., Прокопьева Н.Л. Коморбидные инфекции при ревматических заболеваниях. XVI Росс. нац. конгр. «Человек и лекарство»: Тез. докл. М., 2007. С. 527.
3. Doran MF, Crowson CS, Pond GR, O’Fallon WM, Gabriel SE Frequency of infection in patients with rheumatoid arthritis compared with controls: a population-based study. Arthritis Rheum. 2002;46(9):2287-2293.
4. Doran MF, Crowson CS, Pond GR, O’Fallon WM, Gabriel SE Predictors of infection in rheumatoid arthritis. Arthritis Rheum. 2002;46(9):2294-2300.
5. van der Veen MJ., van der Heide A., Kruize AA., Bijlsma JWJ. Infection rate and use antibiotics in patients with rheumatoid arthritis treated with methotrexate. Ann. Rheum. Dis., 1994; 53: 224-228.
6. St Clair EW, van der Heijde DM, Smolen JS, Maini RN, Bathon JM, Emery P, Keystone E, Schiff M, Kalden JR, Wang B, Dewoody K, Weiss R, Baker D; Active-Controlled Study of Patients Receiving Infliximab for the Treatment of Rheumatoid Arthritis of Early Onset Study Group.Combination of infliximab and methotrexate therapy for early rheumatoid arthritis: a randomized, controlled trial. Arthritis Rheum. 2004;50(11):3432-3443.
7. Lipsky PE, van der Heijde DM, St Clair EW, Furst DE, Breedveld FC, Kalden JR, Smolen JS, Weisman M, Emery P, Feldmann M, Harriman GR, Maini RN; Anti-Tumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study Group. Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-Tumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study Group. N Engl J Med. 2000;343(22):1594-1602.
8. Maini RN, Breedveld FC, Kalden JR, Smolen JS, Furst D, Weisman MH, St Clair EW, Keenan GF, van der Heijde D, Marsters PA, Lipsky PE; Anti-Tumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study Group.Sustained improvement over two years in physical function, structural damage, and signs and symptoms among patients with rheumatoid arthritis treated with infliximab and methotrexate. Arthritis Rheum. 2004;50(4):1051-1065.
9. Weinblatt ME, Keystone EC, Furst DE, Moreland LW, Weisman MH, Birbara CA, Teoh LA, Fischkoff SA, Chartash EK Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum. 2003;48(1):35-45.
10. Furst DE, Schiff MH, Fleischmann RM, Strand V, Birbara CA, Compagnone D, Fischkoff SA, Chartash EK. Adalimumab, a fully human anti tumor necrosis factor-alpha monoclonal antibody, and concomitant standard antirheumatic therapy for the treatment of rheumatoid arthritis: results of STAR (Safety Trial of Adalimumab in Rheumatoid Arthritis). J Rheumatol. 2003;30(12):2563-2571.
11. van de Putte LB, Atkins C, Malaise M, Sany J, Russell AS, van Riel PL, Settas L, Bijlsma JW, Todesco S, Dougados M, Nash P, Emery P, Walter N, Kaul M, Fischkoff S, Kupper H. Efficacy and safety of adalimumab as monotherapy in patients with rheumatoid arthritis for whom previous disease modifying antirheumatic drug treatment has failed. Ann Rheum Dis. 2004;63(5):508-516.
12. Keystone EC, Kavanaugh AF, Sharp JT, Tannenbaum H, Hua Y, Teoh LS, Fischkoff SA, Chartash EK Radiographic, clinical, and functional outcomes of treatment with adalimumab (a human anti-tumor necrosis factor monoclonal antibody) in patients with active rheumatoid arthritis receiving concomitant methotrexate therapy: a randomized, placebo-controlled, 52-week trial. Arthritis Rheum. 2004;50(5):1400-1411.
13. Breedveld FC, Weisman MH, Kavanaugh AF, Cohen SB, Pavelka K, van Vollenhoven R, Sharp J, Perez JL, Spencer-Green GT. The PREMIER study: A multicenter, randomized, double-blind clinical trial of combination therapy with adalimumab plus methotrexate versus methotrexate alone or adalimumab alone in patients with early, aggressive rheumatoid arthritis who had not had previous methotrexate treatment. Arthritis Rheum. 2006;54(1):26-37.
14. van Riel PL, Taggart AJ, Sany J, Gaubitz M, Nab HW, Pedersen R, Freundlich B, MacPeek D; Add Enbrel or Replace Methotrexate Study Investigators. Efficacy and safety of combination etanercept and methotrexate versus etanercept alone in patients with rheumatoid arthritis with an inadequate response to methotrexate: the ADORE study Ann Rheum Dis. 2006; 65(11): 1478-1483.
15. Klareskog L, van der Heijde D, de Jager JP, Gough A, Kalden J, Malaise M, Martin Mola E, Pavelka K, Sany J, Settas L, Wajdula J, Pedersen R, Fatenejad S, Sanda M; TEMPO (Trial of Etanercept and Methotrexate with Radiographic Patient Outcomes) study investigators. Therapeutic effect of the combination of etanercept and methotrexate compared with each treatment alone in patients with rheumatoid arthritis: double-blind randomised controlled trial. Lancet. 2004;363(9410):675-681.
16. Genovese MC, Bathon JM, Martin RW, Fleischmann RM, Tesser JR, Schiff MH, Keystone EC, Wasko MC, Moreland LW, Weaver AL, Markenson J, Cannon GW, Spencer-Green G, Finck BK. Etanercept versus methotrexate in patients with early rheumatoid arthritis: two-year radiographic and clinical outcomes. Arthritis Rheum. 2002; 46(6):1443-1450.
17. Salliot C, Gossec L, Ruyssen-Witrand A, Luc M, Duclos M, Guignard S, Dougados M. Infections during tumour necrosis factor-alpha blocker therapy for rheumatic diseases in daily practice: a systematic retrospective study of 709 patients.Rheumatology. 2007; 46(2):327-334.
18. Kroesen S, Widmer AF, Tyndall A, Hasler P Serious bacterial infections in patients with rheumatoid arthritis under anti-TNF-alpha therapy. Rheumatology. 2003; 42(5): 617-621.
19. Curtis JR, Patkar N, Xie A, Martin C, Allison JJ, Saag M, Shatin D, Saag KG. Risk of serious bacterial infections among rheumatoid arthritis patients exposed to tumor necrosis factor alpha antagonists. Arthritis Rheum. 2007;56(4):1125-1133.
20. Dixon WG, Symmons DP, Lunt M, Watson KD, Hyrich KL, Silman AJ; British Society for Rheumatology Biologics Register Control Centre Consortium; British Society for Rheumatology Biologics Register. Serious infection following anti-tumor necrosis factor alpha therapy in patients with rheumatoid arthritis: Lessons from interpreting data from observational studies. //Arthritis Rheum. 2007;56(9):2896-2904.
21. Listing J, Strangfeld A, Kary S, Rau R, von Hinueber U, Stoyanova-Scholz M,Gromnica-Ihle E, Antoni C, Herzer P, Kekow J, Schneider M, Zink A. Infections in patients with rheumatoid arthritis treated with biologic agents.// Arthritis Rheum. 2005 N;52(11):3403-3412.
22. Askling J, Fored CM, Brandt L, Baecklund E, Bertilsson L, Feltelius N, Coster L, Geborek P, Jacobsson LT, Lindblad S, Lysholm J, Rantapaa-Dahlqvist S, Saxne T, van Vollenhoven RF, Klareskog L. Time-dependent increase in risk of hospitalisation with infection among Swedish RA patients treated with TNF antagonists. Ann Rheum Dis. 2007; 66(10):1339-1344.
23. Keane J, Gershon S, Wise RP, Mirabile-Levens E, Kasznica J, Schwieterman WD, Siegel JN, Braun MM. Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med. 2001; 345(15): 1098-1104.
24. Gomez-Reino JJ, Carmona L, Valverde VR, Mola EM, Montero MD; BIOBADASER Group. Treatment of rheumatoid arthritis with tumor necrosis factor inhibitors may predispose to significant increase in tuberculosis risk: a multicenter active-surveillance report. Arthritis Rheum. 2003;48(8):2122-2127.
25. Askling J, Fored CM, Brandt L, Baecklund E, Bertilsson L, Coster L, Geborek P, Jacobsson LT, Lindblad S, Lysholm J, Rantapaa-Dahlqvist S, Saxne T, Romanus V, Klareskog L, Feltelius N. Risk and case characteristics of tuberculosis in rheumatoid arthritis associated with tumor necrosis factor antagonists in Sweden. Arthritis Rheum. 2005; 52(7): 1986-1992.
26. Tubach F, Salmon D, Ravaud P, Allanore Y, Goupille P, Breban M, Pallot-Prades B, Pouplin S, Sacchi A, Chichemanian RM, Bretagne S, Emilie D, Lemann M, Lorthololary O, Mariette X; Research Axed on Tolerance of Biotherapies Group. Risk of tuberculosis is higher with anti-tumor necrosis factor monoclonal antibody therapy than with soluble tumor necrosis factor receptor therapy: The three-year prospective french research axed on tolerance of biotherapies registry. Arthritis Rheum. 2009;60(7):1884-1894.
27. Dixon WG, Hyrich KL, Watson KD, Lunt M, Symmons DPM. Drug-specific risk of tuberculosis in patient with rheumatoid arthritis treated with anti-TNF therapy: results from the BSR biologic register (BSRBR). Ann Rheum Dis. 2008; 67 (suppl II): 178.
28. Taylor JC, Orkin R, Lanham J. Tuberculosis following therapy with infliximab may be refractory to antibiotic therapy. Rheumatology 2003;42: 901-902.
29. Диагностика туберкулезной инфекции при планировании и проведении терапии блокаторами ФНО-а у больных ревматическими заболеваниями: Пособие для врачей. Ред. М.И. Перельман, Е.Л. Насонов. М., 2008. 40 с.
30. Michel M, Duvoux C, Hezode C, Cherqui D. Fulminant hepatitis after infliximab in a patient with hepatitis B virus treated for an adult onset still’s disease. J Rheumatol. 2003; 30(7):1624-1625.
31. Ostuni P, Botsios C, Punzi L, Sfriso P, Todesco S. Hepatitis B reactivation in a chronic hepatitis B surface antigen carrier with rheumatoid arthritis treated with infliximab and low dose methotrexate. Ann Rheum Dis. 2003; 62(7):686-687.
32. Furst DE, Keystone EC, Kirkham B, Kavanaugh A, Fleischmann R, Mease P, Breedveld FC, Smolen JS, Kalden JR, Burmester GR, Braun J, Emery P, Winthrop K, Bresnihan B, De Benedetti F, Dorner T, Gibofsky A, Schiff MH, Sieper J, Singer N, Van Riel PL, Weinblatt ME, Weisman MH. Updated consensus statement on biological agents for the treatment of rheumatic diseases, 2008. Ann Rheum Dis. 2008;67 (Suppl 3):2-25.
33. Vassilopoulos D, Calabrese LH Risks of immunosuppressive therapies including biologic agents in patients with rheumatic diseases and co-existing chronic viral infections. Curr Opin Rheumatol. 2007;19(6):619-625.
34. Zingarelli S, Frassi M, Bazzani C, Scarsi M, Puoti M, Airo P. Prophylaxis and therapy of HBV infection in 20 patients treated with disease modifying antirheumatic drugs or with biological agents for rheumatic diseases. J Rheumatol. 2009;36(6):1188-1194.
35. Peterson JR, Hsu FC, Simkin PA, Wener MH. Effect of tumor necrosis factor alpha antagonists on serum transaminases and viraemia in patients with rheumatoid arthritis and chronic hepatitis C infection. Ann Rheum Dis 2003; 62: 1078-1082.
36. Zein NN and Etanercept Study Group. Etanercept as an adjuvant to interferon and ribavirin in treatment-naive patients with chronic hepatitis C virus infection: a phase 2 randomised, double-blind, placebo-controlled study. J Hepatol.2005; 42: 315-322.
37. Emery P, Fleischmann R, Filipowicz-Sosnowska A, Schechtman J, Szczepanski L, Kavanaugh A, Racewicz AJ, van Vollenhoven RF, Li NF, Agarwal S, Hessey EW, Shaw TM; DANCER Study Group. The efficacy and safety of rituximab in patients with active rheumatoid arthritis despite methotrexate treatment: results of a phase IIB randomized, double-blind, placebo-controlled, dose-ranging trial. Arthritis Rheum. 2006;54(5):1390-1400.
38. Edwards JC, Szczepanski L, Szechinski J, Filipowicz-Sosnowska A, Emery P, Close DR, Stevens RM, Shaw T. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis N Engl J Med. 2004;350(25):2572-2581.
39. Cohen SB, Emery P, Greenwald MW, Dougados M, Furie RA, Genovese MC, Keystone EC, Loveless JE, Burmester GR, Cravets MW, Hessey EW, Shaw T, Totoritis MC; REFLEX Trial Group. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: Results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks.Arthritis Rheum. 2006;54(9):2793-2806.
40. Looney RJ, Srinivasan R, Calabrese LH. The effects of rituximab on immunocompetency in patients with autoimmune disease. Arthritis Rheum. 2008;58(1):5-14.
41. van Vollenhoven R, Emery P, Bingham C, Keystone E, Greenwald M, Moreland LW et al. Long-term safety data from extended follow-up and repeat use of rituximab in rheumatoid arthritis. Ann Rheum Dis 2007; 66 (Suppl II): 88.
42. Ahmed MS, Wong CF Should rituximab be the rescue therapy for refractory mixed cryoglobulinemia associated with hepatitis C? J Nephrol 2007; 20: 350-356/
43. Lake-Bakaar G, Dustin L, McKeating J, Newton K, Freeman V, Frost SD. Hepatitis C virus and alaninaminitransferase kinetics following B-lymphocyte depletion with rituximab: evidence for significant role of humoral immunity in the control of viremia in chronic HCV liver disease. Blood. 2007;109(2):845-846.
44. Pham T, Fautrel B, Gottenberg JE, Goupille P, Hachulla E, Masson C, Morel J, Mouthon L, Saraux A, Schaeverbeke T, Wendling D, Mariette X. Rituximab (MabThera) therapy and safety management. Joint Bone Spine 2008; 75 (Suppl 1): 1-99.
45. Kremer JM, Westhovens R, Leon M, Di Giorgio E, Alten R, Steinfeld S, Russell A, Dougados M, Emery P, Nuamah IF, Williams GR, Becker JC, Hagerty DT, Moreland LW. Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N Engl J Med. 2003;349(20):1907-1915.
46. Genovese MC, Becker JC, Schiff M, Luggen M, Sherrer Y, Kremer J, Birbara C, Box J, Natarajan K, Nuamah I, Li T, Aranda R, Hagerty DT, Dougados M. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med. 2005; 353(11): 1114-1123.
47. Kremer JM, Genant HK, Moreland LW, Russell AS, Emery P, Abud-Mendoza C, Szechinski J, Li T, Ge Z, Becker JC, Westhovens R. Effects of abatacept in patients with methotrexate-resistant active rheumatoid arthritis: a randomized trial. Ann Intern Med. 2006;144(12):865-876.
48. Weinblatt M, Combe B, Covucci A, Aranda R, Becker JC, Keystone E. Safety of the selective costimulation modulator abatacept in rheumatoid arthritis patients receiving background biologic and nonbiologic disease-modifying antirheumatic drugs: A one-year randomized, placebo-controlled study. Arthritis Rheum. 2006;54(9):2807-2816.
49. Weinblatt M, Schiff M, Goldman A, Kremer J, Luggen M, Li T, Chen D, Becker JC. Selective costimulation modulation using abatacept in patients with active rheumatoid arthritis while receiving etanercept: a randomised clinical trial Ann Rheum Dis. 2007; 66(2):228-234.
50. Schiff M, Keiserman M, Codding C, Songcharoen S, Berman A, Nayiager S, Saldate C, Li T, Aranda R, Becker JC, Lin C, Cornet PL, Dougados M. Efficacy and safety of abatacept or infliximab vs placebo in ATTEST: a phase III, multi-centre, randomised, double-blind, placebo-controlled study in patients with rheumatoid arthritis and an inadequate response to methotrexate. Ann Rheum Dis. 2008;67(8):1096-1103.
51. Sibilia J, Westhovens R. Safety of T-cell co-stimulation modulation with abatacept in patients with rheumatoid arthritis.Clin Exp Rheumatol. 2007; (5 Suppl 46):46-56.
52. Smitten A, Simon T Qi K et al. Hospitalized infections in the abatacept RA clinical development program: an updated epidemiological assessment with >10,000 person-years of exposure. Arthritis Rheum 2008; 58 (Suppl 9): 786-787.
53. Nishimoto N, Yoshizaki K, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T, Hashimoto J, Azuma J, Kishimoto T. Treatment of rheumatoid arthritis with humanized anti-interleukin-6 receptor antibody: a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum. 2004 Jun;50(6):1761-1769.
54. Maini RN, Taylor PC, Szechinski J, Pavelka K, Broll J, Balint G, Emery P, Raemen F, Petersen J, Smolen J, Thomson D, Kishimoto T; CHARISMA Study Group. Double-blind randomized controlled clinical trial of the interleukin-6 receptor antagonist, tocilizumab, in European patients with rheumatoid arthritis who had an incomplete response to methotrexate. Arthritis Rheum. 2006 Sep;54(9):2817-2829.
55. Nishimoto N, Hashimoto J, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T, Murata N, van der Heijde D, Kishimoto T. Study of active controlled monotherapy used for rheumatoid arthritis, an IL-6 inhibitor (SAMURAI): evidence of clinical and radiographic benefit from an x ray reader-blinded randomised controlled trial of tocilizumab Ann Rheum Dis. 2007 Sep;66(9):1162-1167.
56. Nishimoto N, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T, Azuma J. Long-term safety and efficacy of tocilizumab, an anti-interleukin-6 receptor monoclonal antibody, in monotherapy, in patients with rheumatoid arthritis (the STREAM study): evidence of safety and efficacy in a 5-year extension study. Ann Rheum Dis published online 19 Nov 2008. www.ard.bmj.com.
57. Emery P, Keystone E, Tony HP, Cantagrel A, van Vollenhoven R, Sanchez A, Alecock E, Lee J, Kremer J. IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: results from a 24-week multicentre randomised placebo-controlled trial. Ann Rheum Dis. 2008;67(11):1516-1523.
58. Nishimoto N, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T, Azuma J, Kishimoto T. Study of active controlled tocilizumab monotherapy for rheumatoid arthritis patients with an inadequate response to methotrexate (SATORI): significant reduction in disease activity and serum vascular endothelial growth factor by IL-6 receptor inhibition therapy. Mod Rheumatol. 2009;19(1):12-19.
59. Smolen JS, Beaulieu A, Rubbert-Roth A, Ramos-Remus C, Rovensky J, Alecock E, Woodworth T, Alten R; OPTION Investigators. Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial. Lancet. 2008;371(9617):987-997.
60. Genovese MC, McKay JD, Nasonov EL, Mysler EF, da Silva NA, Alecock E, Woodworth T, Gomez-Reino JJ.. Interleukin-6 receptor inhibition with tocilizumab reduces disease activity in rheumatoid arthritis with inadequate response to disease-modifying antirheumatic drugs: the tocilizumab in combination with traditional disease-modifying antirheumatic drug therapy study. Arthritis Rheum. 2008;58(10):2968-2980.
61. Hirabayashi Y, Ishii T, Harigae H.. Clinical efficacy of tocilizumab in patients with active rheumatoid arthritis in real clinical practice. Rheumatol Int. 2009 Published online: 22 August 2009 www. springerlink.com/content/hr7j313w331526t6/
62. Nishimoto N, Miyasaka N, Yamanaka K, Kawai S, Takeuchi T, Ito K, Kakehi T. Safety profile of tocilizumab in Japanese patients with rheumatoid arthritis -incidences of infections in Japanese long-term clinical studies- . Ann Rheum Dis 2008;67 (Suppl II):335.
63. Koike R, Harigai M, Atsumi T, Amano K, Kawai S, Saito K, Saito T, Yamamura M, Matsubara T, Miyasaka N. Japan College of Rheumatology 2009 guidelines for the use of tocilizumab, a humanized anti-interleukin-6 receptor monoclonal antibody, in rheumatoid arthritis. Mod Rheumatol. 2009; 19(4):351-357.
64. Fujiwara H, Nishimoto N, Hamano Y, Asanuma N, Miki S, Kasayama S, Suemura M.Masked. Early symptoms of pneumonia in patients with rheumatoid arthritis during tocilizumab treatment: a report of two cases. Mod Rheumatol. 2009;19(1):64-68.
65. Recommended Adult Immunization Schedule: United States, 2009. Ann Intern Med 2009;150(1):40-44.
66. Pickering LK, Baker CJ, Freed GL, Gall SA, Grogg SE, Poland GA, Rodewald LE, Schaffner W, Stinchfield P, Tan L, Zimmerman RK, Orenstein WA. Immunization Programs for Infants, Children, Adolescents, and Adults: Clinical Practice Guidelines by the Infectious Diseases Society of America. Clin Infect Dis 2009; 49:817-840.
67. Kapetanovic MC, Saxne T, Nisson JA, Geborec P. Influenza vaccination as model for testing immune modulation induced by anti-TNF and methotrexate therapy in rheumatoid arthritis patients. Rheumatology 2007; 46: 608-611.
68. Kaine JL, Kivitz AJ, Birbara C, Luo AY. Immune Responses Following Administration of Influenza and Pneumococcal Vaccines to Patients with Rheumatoid Arthritis Receiving Adalimumab. J Rheumatol 2007;34:272-279.
69. Kapetanovic MC, Saxne T, Sjoholm A, Truedsson L, Jonsson G, Geborek P. Influence of methotrexate, TNF blockers and prednisolone on antibody responses to pneumococcal piolysaccharide vaccine in patients with rheumatoid arthritis. Rheumatology 2006; 45: 106-111.
70. Fomin I, Caspi D, Levy V, Varsano N, Shalev Y, Paran D, Levartovsky D, Litinsky I, Kaufman I, Wigler I, Mendelson E, Elkayam O. Vaccination against influenza in rheumatoid arthritis: the effect of disease modifying drugs, including TNFa blockers. Ann Rheum Dis 2006;65:191-194.
71. Chalmers A, Scheifele D, Patterson C, Williams D, Weber J, Shuckett R, Teufel A. Immunization of patients with rheumatoid arthritis against influenza: a study of vaccine safety and immunogenicity. J Rheumatol 1994; 21: 1203-1206.
72. Del Porto F, Lagana B, Biselli R, Donatelli I, Campitelli L, Nisini R, Cardelli P, Rossi F, D’Amelio R. Influenza vaccine administration in patients with systemic lupus erythematosus and rheumatoid arthritis. Safety and immunogenicity. Vaccine 2006; 24: 3217-3223.
73. Francioni C, Rosi P, Fioravanti A, Megale F, Pipitone N, Marcolongo R. Vaccination against influenza in patients with rheumatoid arthritis: clinical and antibody response. Recenti Prog Med 1996; 87: 145-149.
74. Visvanathan S, F. Keenan GF, Baker DG,. Levinson AL,. Wagner CL. Response to pneumococcal vaccine in patients with early rheumatoid arthritis receiving infliximab plus methotrexate or methotrexate alone. J Rheumatol 2007;34: 952-957.
75. Gelinck LBS, van der Bijl AE, Beyer WEP, Visser IG, Huizinga TWJ, van Hogezand RA, Rimmelzwaan GF, Kroon FP The effect of anti-tumour necrosis factor a treatment on the antibody response to influenza vaccination. Ann Rheum Dis 2008; 67: 713-716.

Генно-инженерная терапия ревматоидного артрита является современным методом лечения заболевания, назначается пациентам как монотерапия или используется в комбинации с другими средствами.

Возможности генной инженерии в лечении суставов

Биологические препараты представляют собой специально разработанные лекарственные средства, оказывающие влияние на иммунную систему человека: угнетение функции клеток цитокинов, ответственных за воспалительные реакции в организме.

Биологические препараты для лечения ревматоидного артрита в виде таблеток и растворов содержат животные или человеческие антитела к медиаторам воспаления (веществ, поддерживающих воспалительный процесс в очаге патологии). Подавление их деятельности позволяет остановить воспалительно-дегенеративные процессы в суставе и предотвратить разрушение рядом расположенных тканей. Точечная направленность препаратов позволяет добиться максимального эффекта лечения с минимальным проявлением побочных эффектов.

К преимуществам использования биологических лекарств относятся:

  • Возможность комбинирования с другими лекарственными средствами для усиления их действия и получения максимально быстрого эффекта от проводимой терапии;
  • Быстродействие: терапевтический эффект при приеме обычных средств достигается через 1-3 месяца, а при назначении биологических препаратов улучшение состояния отмечается через несколько дней от начала лечения.

Подтверждается эффективность лечения ревматоидного артрита биологическими препаратами при помощи лабораторных исследований крови: снижается уровень СОЭ, С-реактивного белка и Ревматоидного фактора.

Внешне отмечается повышение двигательной активности пациент и восстановление трудоспособности или улучшение качеств жизни.

Препараты генной инженерии при ревматоидном артрите имеют следующие недостатки:

  • Стоимость (лекарства отличаются высокой стоимостью);
  • Подавление иммунной системы организма (возрастает вероятность инфекционного поражения организма);
  • Риск развития аллергических реакций.

Биотерапия не проводится при следующих заболеваниях и состояниях:

  • ВИЧ-инфекция;
  • Гепатит В, С;
  • Злокачественные опухоли;
  • Сепсис крови;
  • Пневмония, бронхит.

Проведение противовоспалительной терапии биопрепаратами недопустимо при обострении заболевания, поэтому проводится антибактериальное или противовирусное лечение с последующим назначением ГИБП (генно-инженерных биологических препаратов).

На заметку!

Применяется биологическая терапия для лечения пациентов с осложненным, тяжело протекающим и быстро прогрессирующим артрозом в сочетании с базисными препаратами (на ранних стадиях болезни эффективна комбинация ГИБП с метотрексатом).

Обзор биологических препаратов

Среди зарегистрированных и прошедших клинические испытания при лечении артроза используются следующие препараты:

  • Инфликсимаб;
  • Анакинра;
  • Абатасепт;
  • Ритуксимаб.

Каждый из препаратов имеет свои противопоказания и показания, назначается при лечении ревматоидного артрита по определенным схемам.

Инфликсимаб

Является распространенным биопрепаратом для лечения нового поколения: воздействует на клетки ФНО-α, снижая функциональную активность фактора, и состоит из химерных мышечно-человеческих антител.

Показания к применению Инфликсимаба:

  • Ревматоидный артрит;
  • Язвенный колит;
  • Анкилозирующий спондилит;
  • Болезнь Крона;

Назначается лекарство при отсутствии эффекта от лечения базовыми медикаментозными средствами, так как имеют ряд противопоказаний:

  • Аллергия на компоненты препарата;
  • Период лактации;
  • Сепсис и абсцесс;
  • Возраст (до 18 лет не применяется);

Превышение дозировки биологического препарата провоцирует развитие острой сердечной недостаточности, поэтому необходимо строго соблюдение дозировки – внутривенное введение средства от 7 до 10 мг/кг в течение 2 часов через апирогенный фильтр.

Распространенные побочные действия – головные боли и головокружение, кишечные расстройства, симптомы герпесной инфекции, бронхита или туберкулеза.

Существует вероятность развития психозов и нервозности, обострения инфекционных поражений и хронических болезней.

Недопустимо сочетание лекарства с Анакинрой, при появлении побочных эффектов введение раствора прекращается, проводится симптоматическая терапия и подбирается другое лекарственное средство.

Средняя стоимость Инфликсимаба – это 4500 евро.

Анакинра

ГИБП для ревматоидного артрита, относящееся к группе иммунодепрессантов, воздействует на интерлейкиновые рецепторы.

Применяется средство при ревматоидном артрите в комбинации с базисными препаратами (исключено сочетание с TNF- ингибиторами).

Противопоказания к применению:

  • Индивидуальная непереносимость;
  • Острые инфекционные заражения.

Для лечения ревматоидного артрита назначают подкожные инъекции (бедро или живот) с высшей суточной и разовой дозой – это 100 мг.

После введения биологического препарата возможен дискомфорт и болезненность в области инъекции, покраснение кожных покровов. Стоимость Анакинры от 1100 евро за упаковку.

Выполнять инъекции необходимо раз в сутки, в одно и то же время, ограничивая применение лекарства во время обострения инфекционных болезней.

Абатасепт

Биологическое лечение ревматоидного артрита при помощи Абатасепта заключается в сочетании с лекарственным средством Метотрексат, допустимо применение лекарства в виде монотерапии.

Абатасепт представляет собой рекомбинантный белок на основе клеток млекопитающих, способствующий активации Т-лимфоцитов.

Допустимо назначение препарата детям от 6 лет и взрослым для уменьшения симптомов заболевания и улучшения общего самочувствия.

Противопоказано применять Абатасепт детям до 6 лет, беременным женщинам и пожилым людям с высоким риском развития инфекционного поражения организма (наличие в анамнезе сахарного диабета, гепатита).

Общая дозировка препарата – это 0,5-1 г, назначаемого в виде подкожных инъекций или инфузий. Первоначально вводится лекарство 1-2 раза в месяц, затем 1 раз в 4 недели. По показаниям врача допустимо осуществление подкожных инъекций взрослым в дозировке 125 мг через день.

Дозировка Абатесепта для детей рассчитывается лечащим врачом в индивидуальном порядке. Стоимость лекарства зависит от производителя и дозировки, колеблется от 12000 до 70000 рублей.

На заметку!

Недопустимо одновременное введение препарата при помощи инфузий с другими лекарственными средствами.

К распространенным побочным эффектам относятся тошнота и головная боль, вероятно инфекционное поражение верхних дыхательных путей, появление язв, симптомов нарушения сердечно-сосудистой и пищеварительной системы. Запрещено комбинирование Абатесепта с Этанерцептом и Ритуксимабом, блокаторами ФНО.

Средняя стоимость препарата – это 18000 руб.

Ритуксимаб

В основе препарата находятся мышиные и человеческие антитела, воздействующие на В-лимфоциты.

Применение Ритуксимаба необходимо при лечении лимфом и ревматоидного артрита, когда другие методы терапии малоэффективны.

Схема лечения ревматоидного артрита подбирается индивидуально: средство разводят до концентрации 1-4 мг/мл физиологическим раствором, а затем вводят внутривенно капельно. Курс лечения – это 30 дней (осуществляется 1 инфузия в 7 дней).

Противопоказание к назначению и применению – аллергия на белок мыши или другие компоненты препарата.

К побочным действиям относятся:

  • Гиперкалиемия;
  • Гипоксия;
  • Кардиогенный шок;
  • Инфаркт миокарда.

Допустимо сочетание препарата с Преднизолоном, Винкристином, Доксорубицином и Циклофосфамидом.

В аптеках стоимость препарата колеблется от 12000 до 20000 рублей за флакон.

За 12 ч до проведения терапии исключаются антигипертензивные средства, а непосредственно перед процедурой проводится премедикация обезболивающими и антигистаминными препаратами.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ГОУ ВПО «Сибирский государственный

медицинский университет» Минздрава России

Фармацевтический факультет

Кафедра фармацевтической технологии

КУРСОВАЯ РАБОТА

«Лекарственные препараты, получаемые методом генной инженерии»

Выполнила студентка

V курса фармацевтического факультета

гр. 3004 Исаченко К. А.

Проверила старший преподаватель,

кандидат фармацевтических наук, Теплякова Е. М.

Введение

1. Номенклатура генно-инженерных препаратов

2. Моноклональные антитела

Заключение

Список литературы

Введение

биологический генетический медицинский

Генная инженерия, или технология рекомбинантных ДНК - изменение с помощью биохимических и генетических методик хромосомного материала - основного наследственного вещества клеток. В результате удается осуществить такие изменения генома, которые естественным путем вряд ли могли бы возникнуть. Методом генной инженерии получен уже ряд препаратов, в том числе инсулин человека и противовирусный препарат интерферон. В медицине это весьма перспективный путь создания и производства вакцин. В сельском хозяйстве с помощью рекомбинантной ДНК могут быть получены сорта культурных растений, устойчивые к засухе, холоду, болезням, насекомым-вредителям и гербицидам.

Перенос плазмид у бактерий. Большая часть работ по переносу участков ДНК, или генов, проводилась до последнего времени на бактериях. У бактерий генетическая информация заключена в одной большой молекуле ДНК - хромосоме бактерии. Поскольку бактерии размножаются бесполым путем, эта генетическая информация на протяжении многих поколений остается в значительной степени неизменной. В бактериальной клетке имеются, помимо главной ее хромосомы, еще и небольшие кольцевые сегменты ДНК. Эти молекулы ДНК, т.н. плазмиды, часто несут в себе гены, ответственные за устойчивость к антибиотикам. Плазмиды можно извлечь из одной клетки и перенести в другую. Такие работы проводятся, например, на Esсherichia coli (кишечной палочке), безвредной бактерии, обитающей в желудочно-кишечном тракте человека. Некоторые из клеток E. coli содержат плазмиду с генами устойчивости к антибиотику тетрациклину. Такие плазмиды - их называют факторами устойчивости - легко отделить от главной хромосомной ДНК. Неустойчивые к тетрациклину (разрушаемые им) бактерии можно заставить включить в себя эти плазмиды, подвергнув клетки соответствующей химической обработке, которая сделает оболочку проницаемой для чужих плазмид. Клетки, получившие таким способом фактор устойчивости, выживают на культуральной среде, содержащей тетрациклин, тогда как неустойчивые клетки погибают. Из каждой клетки - в результате многократных делений - возникает клон, т.е. собрание точных копий одной-единственной клетки, полученных путем бесполого размножения. Плазмида воспроизводится в каждой клетке клона, и ее воспроизведение называют молекулярным клонированием.

Соединение разных плазмид. Плазмиды можно разрезать, фрагменты сращивать друг с другом, а затем такие комбинированные плазмиды вводить в клетки. Можно соединять фрагменты ДНК одного и того же вида или же разных видов. Поскольку плазмидная ДНК представляет собой замкнутую кольцевую молекулу, кольцо нужно сперва разорвать таким образом, чтобы свободные концы были в химическом отношении реакционноспособными, пригодными для последующего соединения. Достичь этого удается с помощью различных ферментов, называемых нуклеазами (рестриктазами). Затем фрагменты ДНК соединяют с помощью лигаз - ферментов, исправляющих повреждения в ДНК и сшивающих концы ее разорванных нитей. Именно таким путем плазмиды из штамма E. coli, устойчивого к тетрациклину, и плазмиды из штамма, устойчивого к другому антибиотику, каномицину, можно соединить и получить штамм E. coli, устойчивый к обоим антибиотикам.

Эксперименты с двумя видами. Плазмиды другого вида бактерий, например Staphylococcus aureus (золотистого стафилококка), сами по себе не способны размножаться в клетках E. coli. Однако в них могут размножаться гибридные плазмиды, составленные искусственным путем из части плазмиды S. aureus и фрагмента плазмиды E. coli. Был проведен эксперимент, в котором соединили плазмиды S. aureus, устойчивого к пенициллину, и плазмиды штамма E. coli, устойчивого к тетрациклину. Когда затем гибридные плазмиды были введены в клетки E. coli, полученный штамм оказался устойчивым и к пенициллину, и к тетрациклину. Этот эксперимент, в котором был осуществлен перенос генетической информации между неродственными организмами, позволил предположить, что в клетки бактерии можно вводить молекулы ДНК и высших организмов и что они будут в этих клетках реплицироваться (копироваться).

Перенос генов животных. Из генов животных первыми были введены в бактерию гены шпорцевой лягушки Xenopus laevis. Эти гены хорошо изучены и легко поддаются идентификации. Их ввели в клетки штамма E. coli, устойчивого к тетрациклину, и они здесь реплицировались. У полученных клонов состав ДНК соединял в себе характеристики X. laevis и E. coli. В настоящее время научились уже переносить гены от одного животного к другому и от животного к растениям. Получены "трансгенные" мыши, свиньи, овцы, коровы и рыбы. ДНК можно прямо инъецировать в оплодотворенное яйцо вида-реципиента, или можно использовать в качестве переносчика вирус, который, проникнув в клетку, внесет с собой и нужный ген. Третий метод связан с использованием неспециализированных стволовых клеток эмбриона. Гены вводят в стволовые клетки путем инъекции или с помощью вируса, и полученные в результате трансгенные клетки инъецируют другому зародышу, который включает эти чужие клетки в свои ткани. Гены человека вводили и в растения, например в табак, в надежде получить таким способом большие количества нужных белков, в частности антител и ферментов.

Практическое применение. Теперь умеют уже синтезировать гены, и с помощью таких синтезированных генов, введенных в бактерии, получают ряд веществ, в частности гормоны и интерферон. Их производство составило важную отрасль биотехнологии. Интерферон - белок, синтезируемый организмом в ответ на вирусную инфекцию, изучают сейчас как возможное средство лечения рака и СПИДа. Понадобились бы тысячи литров крови человека, чтобы получить такое количество интерферона, какое дает всего один литр бактериальной культуры. Выигрыш от массового производства этого вещества очень велик. Очень важную роль играет также получаемый на основе микробиологического синтеза инсулин, необходимый для лечения диабета. Методами генной инженерии удалось создать и ряд вакцин, которые испытываются сейчас для проверки их эффективности против вызывающего СПИД вируса иммунодефицита человека (ВИЧ). С помощью рекомбинантной ДНК получают в достаточных количествах и человеческий гормон роста, единственное средство лечения редкой детской болезни - гипофизарной карликовости. Еще одно перспективное направление в медицине, связанное с рекомбинантной ДНК, - т.н. генная терапия. В этих работах, которые пока еще не вышли из экспериментальной стадии, в организм для борьбы с опухолью вводится сконструированная по методу генной инженерии копия гена, кодирующего мощный противоопухолевый фермент. Генную терапию начали применять также для борьбы с наследственными нарушениями в иммунной системе. В сельском хозяйстве удалось генетически изменить десятки продовольственных и кормовых культур. В животноводстве использование гормона роста, полученного биотехнологическим путем, позволило повысить удои молока; с помощью генетически измененного вируса создана вакцина против герпеса у свиней.

Общественное мнение. Несмотря на явную пользу от генетических исследований и экспериментов, само понятие "генная инженерия" породило различные подозрения и страхи, стало предметом озабоченности и даже политических споров. Многие опасаются, например, что какой-нибудь вирус, вызывающий рак у человека, будет введен в бактерию, обычно живущую в теле или на коже человека, и тогда эта бактерия будет вызывать рак. Возможно также, что плазмиду, несущую ген устойчивости к лекарственным препаратам, введут в пневмококк, в результате чего пневмококк станет устойчивым к антибиотикам и пневмония не будет поддаваться лечению. Такого рода опасности, несомненно, существуют. Генетические исследования ведутся серьезными и ответственными учеными, а методы, позволяющие свести к минимуму возможность случайного распространения потенциально опасных микробов, все время совершенствуются. Оценивая возможные опасности, которые эти исследования в себе таят, следует сопоставлять их с подлинными трагедиями, вызванными недоеданием и болезнями, губящими и калечащими людей.

1. Номенклатура генно-инженерных преператов

Биологические препараты, полученные методом генетической инженерии.

Из многих сотен препаратов, полученных методом генетической инженерии, в практику внедрена только часть: интерфероны, интерлейкины, фактор VIII, инсулин, гормон роста, тканевый активатор плазминогена, вакцина против гепатита В, моноклональные антитела для предупреждения отторжения при пересадках почки, диагностические препараты для выявления ВИЧ и др. Это обстоятельство можно объяснить несколькими причинами. Во-первых, длительное время к этим препаратам и рекомбинантным штаммам микроорганизмов относились настороженно, опасаясь, что может произойти неуправляемое распространение экологически опасных рекомбинантных микроорганизмов. Однако в наши дни эти опасения практически сняты. Во-вторых, использование рекомбинантных штаммов продуцентов предусматривает разработку сложных технологических процессов по получению и выделению целевых продуктов. На разработку технологии получения препаратов методом генетической инженерии, доклинические и клинические испытания их обычно затрачивается значительно больше средств, чем на получение штамма. В-третьих, при получении препаратов методом генетической инженерии всегда возникает вопрос об идентичности активной субстанции, вырабатываемой рекомбинантным штаммом-продуцентом, природному веществу, т. е. требуется проведение исследовательских работ, направленных на доказательство идентичности, а также иногда решение дополнительных задач по приданию продукту природного характера.

Таблица 1. Медицинские препараты, разрабатываемые методами современной биотехнологии

Тип препарата

Применение

Антикоагулянты и тромболитики

Тканевой активатор плазминогена, факторы VIII и IX

Колониестимулирующие факторы (КСФ)

Соматомедин С, гранулоцитный КСФ, макрофагальный КСФ

Иммуноцитокины

Интерфероны, интерлейкины, фактор некроза опухолей, миелопептиды, пептиды вилочковой железы

Гормон роста, инсулин, эритропоэтин

Ферменты

Липазы, протеазы

Против ВИЧ-инфекции, гепатита В, малярии и др.

Диангостикумы

Для выявления ВИЧ-инфекции, гепатита В, сифилиса и др.

Рецепторы

Т-4 лимфоцитов и др.

Моноклональные антитела

Для иммунотерапии опухолей, предупреждения реакций отторжения

Триптофан, белок А, альбумин, поведенческие пептиды и др.

При определении целесообразности и экономичности методов генетической инженерии для получения медицинских или других препаратов по сравнению с традиционными способами учитываются многие обстоятельства, в первую очередь доступность этого метода, экономичность его, качество получаемого препарата, новизна, безопасность проведения работ и др.

Метод генетической инженерии является единственным при получении препаратов, если природный микроорганизм или животные и растительные клетки не культивируются в промышленных условиях. Например, возбудитель сифилиса или малярийный плазмодий практически не растет на искусственных питательных средах. Поэтому для получения диагностических препаратов или вакцин прибегают к клонированию или синтезу генов протективных антигенов, их встраиванию в легко культивируемые бактерии. При выращивании этих рекомбинантных бактерий-реципиентов получают нужные антигены, на основе которых создают диагностический препарат или вакцину. Таким образом, уже производится вакцина против гепатита В. Ген HBs-антигена вируса гепатита встроен в дрожжевую клетку; при выращивании дрожжей образуется HBs-антиген, из которого готовят вакцину.

Метод генетической инженерии предпочтительнее также в том случае, когда микроорганизм высоко патогенен и опасен при промышленном производстве. Например, для получения из ВИЧ диагностических препаратов и вакцин предпочитают не выращивать вирус в больших количествах, а необходимые антигены получают методом генетической инженерии. К настоящему времени практически все основные антигены ВИЧ (р24, gp41, gp!20 и др.) получены путем выращивания рекомбинантных штаммов Е. coli или дрожжей, способных продуцировать эти антигены. На основе рекомбинантных белков уже созданы диагностические препараты для обнаружения СПИДа.

Метод генетической инженерии используют в том случае, когда исходное сырье для получения препарата традиционным способом является дефицитным или дорогостоящим. Например, лейкоцитарный а-интерферон получают из лейкоцитов донорской крови человека. Из 1 л крови получают 2.3 дозы высококонцентрированного интерферона. На курс лечения онкологического больного требуются сотни доз препарата. Следовательно, массовое производство и применение лейкоцитарного интерферона из крови нереально. Производство лейкоцитарного интерферона методом генетической инженерии значительно экономичнее и не требует дефицитного сырья (крови). Его получают путем выращивания рекомбинантных штаммов бактерий (Е. coli, псевдомонад), способных продуцировать интерферон в результате встройки им гена а-интерферона. Из 1 л культуры рекомбинантных бактерий получают 100.150 доз лейкоцитарного интерферона с активностью 106 ME. Получение природного инсулина. гормона для лечения диабета, основанное на извлечении его из поджелудочных желез крупного рогатого скота и свиней, сдерживается дефицитом сырья. Кроме того, гормон имеет животное происхождение. Разработанный генетической инженерией метод получения человеческого инсулина путем выращивания рекомбинантного штамма Е. coli решил проблему обеспечения больных этим жизненно важным препаратом. Такая же ситуация наблюдается и в отношении гормона роста человека, получаемого из гипофиза умерших людей. Этого гормона не хватало для лечения карликовости, быстрейшего заживления ран и т.д. Генетическая инженерия решила эту проблему: достаточно 1000 л культуры рекомбинантного штамма Е. coli, чтобы получить количество гормона, достаточное для лечения карликовости, например, в такой большой стране, как США.

Большую группу иммуноцитокинов эндогенного происхождения, играющих большую роль в регуляции иммунитета, кооперации иммунокомпетентных клеток и в связи с этим используемых для лечебных и профилактических целей при иммунодефицитах, опухолях, нарушениях работы иммунной системы, получают главным образом методом генетической инженерии, поскольку этот метод эффективнее традиционного. К иммуноцитокинам относят интерлейкины (насчитывают 18 разновидностей: ИЛ-1, ИЛ-2… ИЛ-18), миелопептиды, фактор роста, гормоны вилочковой железы. Все они являются пептидами, вырабатываемыми иммунокомпетентными клетками, и обладают биологическим действием, влияют на пролиферацию, дифференцировку или физиологическую активность иммунокомпетентных и других клеток (Т- и В-лимфоцитов, макрофагов). Иммуноцитокины получают путем культивирования клеток (лимфоцитов, макрофагов и др.) на искусственных питательных средах. Однако процесс этот сложен, продукция иммуноцитокинов незначительна и не имеет практического значения. Поэтому для получения иммуноцитокинов применяют метод генетической инженерии. Уже созданы рекомбинантные штаммы Е. coli и другие штаммы, продуцирующие интерлейкины (ИЛ-1, 2, 6 и др.), фактор некроза опухолей, фактор роста фибробластов и др. Это значительно ускорило процесс внедрения иммуноцитокинов в практику.

Метод генетической инженерии используется для получения принципиально новых продуктов и препаратов, не существующих в природе. Например, только с помощью генетической инженерии можно получить рекомбинантные поливалентные живые вакцины, несущие антигены нескольких микроорганизмов. " Получен рекомбинантный штамм вируса оспенной вакцины, продуцирующий HBs-антиген вируса гепатита В, бешенства, клещевого энцефалита. Такие живые вакцины называют векторными.

Метод генетической инженерии позволяет также заменить " многие методы, основанные на получении продуктов in vivo, на способы получения этих продуктов in vitro. До последнего времени диагностические, лечебные и профилактические сыворотки получали из крови иммунизированных лошадей или вакцинированных людей-доноров. В настоящее время этот дорогой и непростой способ вытесняется гибридомной техникой получения антител. Эта техника основана на получении клеток-гибридом путем слияния В-лимфоцитов, взятых от иммунизированных животных и миеломных (раковых) клеток. Образующаяся гибридная клетка (гибридома) обладает способностью миеломной клетки быстро размножаться на искусственных питательных средах и продуцировать при этом антитела (так же, как В-лимфоцит) к антигену, использованному для иммунизации.

Гибридомы, продуцирующие антитела, могут выращиваться в больших масштабах в культиваторах или специальных аппаратах. Поскольку образующиеся гибридомой антитела произошли от одной родоначальной клетки (В-лимфоцита), то они называются моноклональными антителами. Моноклональные антитела широко используются для создания диагностических препаратов, а также в некоторых случаях применяются с лечебной целью (в онкологии).

Первые продукты из ГМО -- антибиотики

К антибиотикам относятся низкомолекулярные вещества, различающиеся по химической структуре. Общее для этих соединений то, что, являясь продуктами жизнедеятельности микроорганизмов, они в ничтожных концентрациях специфически нарушают рост других микроорганизмов.

Большинство антибиотиков относится к вторичным метаболитам. Их, как и токсины и алкалоиды, нельзя отнести к строго необходимым для обеспечения роста и развития микроорганизмов веществам. По этому признаку вторичные метаболиты отличаются от первичных, в присутствии которых наступает гибель микроорганизма.

Биосинтез антибиотиков, как и других вторичных метаболитов, как правило, происходит в клетках, прекративших рост (идиофаза). Биологическая роль их в обеспечении жизнедеятельности клеток-продуцентов остается до конца не исследованной. Специалисты, изучающие перспективы биотехнологии в области микробиологического производства антибиотиков, считают, что они в неблагоприятных условиях подавляют рост конкурирующих микроорганизмов, обеспечивая тем самым более благоприятные условия для выживания микроба-продуцента того или иного антибиотика. Значение процесса антибиотикообразования в жизнедеятельности микробной клетки подтверждается тем, что у стрептомицетов около 1% геномной ДНК приходится на долю генов, кодирующих ферменты биосинтеза антибиотиков, которые в течение продолжительного времени могут не экспрессироваться. Продуцентами известных антибиотиков в основном являются шесть родов нитчатых грибов, три рода актиномицетов (почти 4000 различных антибиотиков) и два рода истинных бактерий (примерно 500 антибиотиков). Из нитчатых грибов особое внимание следует обратить на плесневые грибы родов Cephalosporium и Penicillium, являющиеся продуцентами так называемых бета-лактамных антибиотиков -- пенициллинов и цефалоспоринов. Большая часть актиномицетов, синтезирующих антибиотические вещества, включая тетрациклины, относится к роду Streptomyces.

Из известных 5000-6000 природных антибиотических веществ для реализации потребителям производится только около 1000. В то время, когда установили антибактериальное действие пенициллина и возможность его использования в качестве лекарственного препарата (Х.У. Флори, Э.Б. Чейн и др., 1941), продуктивность лабораторного штамма плесени -- 2 мг препарата на 1 л культуральной жидкости -- была явно недостаточной для промышленного производства антибиотика. Многократными систематическими воздействиями на исходный штамм Penicillium chrisogenum такими мутагенами, как рентгеновское и ультрафиолетовое облучение, азотистый иприт в сочетании со спонтанными мутациями и отбором наилучших продуцентов, удалось увеличить продуктивность гриба в 10 000 раз и довести концентрацию пенициллина в культуральной жидкости до 2%.

Путь повышения эффективности штаммов-продуцентов антибиотиков, основанный на беспорядочных мутациях и ставших классическим, несмотря на колоссальные затраты труда, используется до настоящего времени. Создавшееся положение является следствием того, что антибиотик, в отличие от белка, не является продуктом конкретного гена; биосинтез антибиотика происходит в результате совместного действия 10-30 разных ферментов, кодируемых соответствующим количеством разных генов. Кроме того, для многих антибиотиков, микробиологическое производство которых налажено, молекулярные механизмы их биосинтеза до сих пор не изучены. Полигенный механизм, лежащий в основе биосинтеза антибиотиков, является причиной того, что изменения отдельных генов не приводят к успеху. Автоматизация рутинных приемов анализа продуктивности мутантов позволяет изучить десятки тысяч функционирующих штаммов и тем самым ускоряет процедуру отбора при использовании классического генетического приема.

Новая биотехнология, основанная на использовании штаммов-суперпродуцентов антибиотиков, предполагает совершенствование механизмов защиты продуцента от синтезируемого им антибиотика.

Высокую продуктивность проявляют штаммы, устойчивые к действию высоких концентраций антибиотиков в культурной среде. Это свойство также учитывается при конструировании клеток-суперпродуцентов. Со времени открытия пенициллина в конце 1920-х годов из различных микроорганизмов были выделены более 6000 антибиотиков, обладающих разной специфичностью и разным механизмом действия. Их широкое применение для лечения инфекционных заболеваний помогло сохранить миллионы жизней. Подавляющее большинство основных антибиотиков было выделено из грамположительной почвенной бактерии Streptomyces, хотя их продуцируют также грибы и другие грамположительные и грамотрицательные бактерии. Ежегодно во всем мире производится 100 000 т антибиотиков на сумму примерно S млрд. долларов, в том числе более 100 млн. долларов приходится на долю антибиотиков, добавляемых в корм скоту в качестве добавок или ускорителей роста.

По оценкам, каждый год ученые обнаруживают от 100 до 200 новых антибиотиков, прежде всего в рамках обширных исследовательских программ по поиску среди тысяч различных микроорганизмов таких, которые синтезировали бы уникальные антибиотики. Получение и клинические испытания новых препаратов обходятся очень дорого, и в продажу поступают только те из них, которые имеют большую терапевтическую ценность и представляют экономический интерес. На их долю приходится 1-2% всех обнаруживаемых антибиотиков. Большой эффект здесь дает технология рекомбинантных ДНК. Во-первых, с ее помощью можно создавать новые антибиотики с уникальной структурой, оказывающие более мощное воздействие на определенные микроорганизмы и обладающие минимальными побочными эффектами. Во-вторых, генноинженерные подходы могут использоваться для увеличения выхода антибиотиков и соответственно для снижения стоимости их производства.

Можно считать, что клиническая биотехнология зародилась с началом промышленного производства пенициллина в 40-х гг. и его использования в терапии. По-видимому, применение этого первого природного пенициллина повлияло на снижение заболеваемости и смертности больше, чем какого-либо другого препарата, но, с другой стороны, поставило ряд новых проблем, которые удалось решить опять-таки с помощью биотехнологии.

Во-первых, успешное применение пенициллина вызвало большую потребность в этом лекарственном препарате, и для ее удовлетворения нужно было резко повысить выход пенициллина при его производстве. Во-вторых, первый пенициллин -- С(бензилпенициллин) -- действовал главным образом на грамположительные бактерии (например, Streptococci и Staphylococci), а нужно было получить антибиотики с более широким спектром действия и/или активностью, поражающие и грамотрицательные бактерии типа E.coli и Pseudomonas. В-третьих, поскольку антибиотики вызывали аллергические реакции (чаще всего незначительные, вроде сыпи на коже, но иногда и тяжелее, угрожающие жизни проявления анафилаксии), необходимо было иметь целый набор антибактериальных средств, с тем чтобы можно было выбрать из равноэффективных препаратов такой, который не вызывал бы у больного аллергию. В- четвертых, пенициллин нестабилен в кислой среде желудка, и его нельзя назначать для приема внутрь. Наконец, многие бактерии приобретают устойчивость к антибиотикам. Классический пример тому -- образование стафилококками фермента бета-лактамазы, который гидролизует амидную связь в бета-лактамном кольце пенициллина с образованием фармакологически неактивной пенициллоиновой кислоты. Увеличить выход пенициллина при его производстве удалось в основном благодаря последовательному использованию серии мутантов исходного штамма Penicillium chrysogenum, а также путем изменения условий выращивания.

Процесс биосинтеза одного антибиотика может состоять из десятков ферментативных реакций, так что клонирование всех генов его биосинтеза -- задача не из легких. Один из подходов к выделению полного набора таких генов основан на трансформации одного или нескольких мутантных штаммов, не способных синтезировать данный антибиотик, банком клонов, созданным из хромосомной ДНК штамма дикого типа. После введения банка клонов в мутантные клетки проводят отбор трансформантов, способных синтезировать антибиотик. Затем выделяют плазмидную ДНК клона, содержащего функциональный экс премирующийся ген антибиотика (т.е. ген, восстанавливающий утраченную мутантным штаммом функцию), и используют ее в качестве зонда для скрининга другого банка клонов хромосомной ДНК штамма дикого типа, из которого отбирают клоны, содержащие нуклеотидные последовательности, которые перекрываются с последовательностью зонда. Таким образом идентифицируют, а затем клонируют элементы ДНК, примыкающие к комплементирующей последовательности, и воссоздают полный кластер генов биосинтеза антибиотика. Описанная процедура относится к случаю, когда эти гены сгруппированы в одном сайте хромосомной ДНК. Если же гены биосинтеза разбросаны в виде небольших кластеров по разным сайтам, то нужно иметь, по крайней мере, по одному мутанту на кластер, чтобы получить клоны ДНК, с помощью которых можно идентифицировать остальные гены кластеров.

С помощью генетических или биохимических экспериментов можно идентифицировать, а затем выделить один или несколько ключевых ферментов биосинтеза, определить их N-концевые аминокислотные последовательности и, исходя из этих данных, синтезировать олигонуклеотидные зонды. Этот подход использовался для выделения из Penicillium chrysogenum гена синтетазы изопенициллина N.

Новые антибиотики с уникальными свойствами и специфичностью можно получить, проводя генно-инженерные манипуляции с генами, участвующими в биосинтезе уже известных антибиотиков. Один из первых экспериментов, в ходе которого был получен новый антибиотик, состоял в объединении в одном микроорганизме двух немного различающихся путей биосинтеза антибиотика.

Разработка новых методов получения современных поликетидных антибиотиков.

Термин «поликетидные» относится к классу антибиотиков, которые образуются в результате последовательной ферментативной конденсации карбоновых кислот типа ацетата, пропионата и бутирата. Некоторые поликетидные антибиотики синтезируются растениями и грибами, но большая их часть образуется актиномицетами в виде вторичных метаболитов. Прежде чем проводить манипуляции с генами, кодирующими ферменты биосинтеза поликетидных антибиотиков, необходимо было выяснить механизм действия этих ферментов.

Детально изучив генетические и биохимические составляющие биосинтеза эритромицина в клетках Saccharopolyspora erythraea, удалось внести специфические изменения в гены, ассоциированные с биосинтезом этого антибиотика, и синтезировать производные эритромицина с другими свойствами. Эти эксперименты позволили показать, что если идентифицировать и охарактеризовать кластер генов, кодирующих ферменты биосинтеза определенного поликетидного антибиотика, то, внося в них специфические изменения, можно будет направленно изменять структуру антибиотика.

Кроме того, вырезая и соединяя те или иные участки ДНК, можно перемещать домены поликетидсинтазы и получать новые поликетидные антибиотики.

ДНК-технология в усовершенствование производства антибиотиков.

С помощью генной инженерии можно не только создавать новые антибиотики, но и увеличивать эффективность синтеза уже известных. Лимитирующим фактором в промышленном производстве антибиотиков с помощью Streptomyces spp. Часто является количество доступного клеткам кислорода. Вследствие плохой растворимости кислорода в воде и высокой плотности культуры Streptomyces его часто оказывается недостаточно, рост клеток замедляется, и выход антибиотика снижается. Чтобы решить эту проблему, можно, во-первых, изменить конструкцию биореакторов, в которых выращивается культура Streptomyces, а во-вторых, используя методы генной инженерии, создать штаммы Streptomyces, более эффективно использующие имеющийся кислород. Эти два подхода не исключают друг друга.

Одна из стратегий, используемых некоторыми аэробными микроорганизмами для выживания в условиях недостатка кислорода, состоит в синтезе гемоглобинподобного продукта, способного аккумулировать кислород и доставлять его в клетки. Например, аэробная бактерия Vitreoscilla sp. Синтезирует гомодимерный гемсодержащий белок, функционально подобный эукариотическому гемоглобину. Ген «гемоглобина» Vitreoscilla был выделен, встроен в плазмидный вектор Streptomyces и введен в клетки этого микроорганизма. После его экспрессии на долю гемоглобина Vitreoscilla приходилось примерно 0,1% всех клеточных белков S.coelicoior даже в том случае, когда экспрессия осуществлялась под контролем собственного промотора гена гемоглобина Vitreoscilla, а не промотора Streptomyces. Трансформированные клетки S.coelicoior, растущие при низком содержании растворенного кислорода (примерно 5% от насыщающей концентрации), синтезировали в 10 раз больше актинородина на 1 г сухой клеточной массы и имели большую скорость роста, чем нетранс формированные. Этот подход можно использовать и для обеспечения кислородом других микроорганизмов, растущих в условиях недостатка кислорода.

Исходным материалом при химическом синтезе некоторых цефалоспоринов -- антибиотиков, обладающих незначительным побочным эффектом и активных в отношении множества бактерий, -- является 7-аминоцефалоспорановая кислота (7АСА), которая в свою очередь синтезируется из антибиотика цефалоспорина С. К сожалению, природных микроорганизмов, способных синтезировать 7АСА, до сих пор не выявлено.

Новый путь биосинтеза 7АСА был сконструирован включением специфических генов в плазмиду гриба Acremonium chrysogenum, который обычно синтезирует только цефалоспорин-С. Один из этих генов был представлен кДНК гриба Fusarium solani, кодирующей оксидазу D-аминокислот, а другой происходил из геномной ДНК Pseudomonas diminuta и кодировал цефалоспоринацилазу. В плазмиде гены находились под контролем промотора A.chrysogenum.

Интерфероны

В конце 70-х -- начале 80-х г.г. XX века ДНК-технология впервые стала привлекать к себе внимание общественности и крупных инвесторов. Одним из перспективных биотехнологических продуктов был интерферон, на который в то время возлагали надежды как на чудодейственное средство против множества вирусных заболеваний и рака. О выделении кДНК интерферона человека и его последующей экспрессии в Escherichia coli сообщали все заинтересованные издания мира.

Для выделения генов или белков человека используют разные подходы. Обычно выделяют нужный белок и определяют аминокислотную последовательность соответствующего участка молекулы. Исходя из этого, находят кодирующую его нуклеотидную последовательность, синтезируют соответствующий олигонуклеотид и используют его в качестве гибридизационного зонда для выделения нужного гена или кДНК из геномных или кДНК-библиотек. Другой подход состоит в выработке антител к очищенному белку и использовании их для скрининга библиотек, в которых происходит экспрессия определенных генов. Для белков человека, синтезируемых преимущественно в какой-то одной ткани, кДНК-библиотека, полученная на основе мРНК, выделенной из этой ткани, будет обогащена последовательностью ДНК-мишени. Например, основным белком, синтезируемым клетками островков Лангерганса поджелудочной железы, является инсулин, и 70% мРНК, выделенных из этих клеток, кодируют именно его.

Однако принцип обогащения кДНК неприменим для тех белков человека, количество которых очень мало или место синтеза которых неизвестно. В этом случае могут понадобиться другие экспериментальные подходы. Например, интерфероны (ИФ) человека, включающие альфа, бета- и гамма-интерфероны, -- это природные белки, каждый из которых может найти свое терапевтическое применение. Первый ген интерферона был выделен в начале 80-х г.г. XX века. С тех пор было обнаружено несколько разных интерферонов. Полипептид, обладающий действием лейкоцитарного интерферона человека, синтезирован в E.coli.

Некоторые особенности интерферона сделали выделение его кДНК особенно сложным. Во-первых, несмотря на то, что интерферон был очищен более чем в 80000 раз, его удавалось получать лишь в очень небольших количествах, т.к. в то время не была известна его точная молекулярная масса. Во-вторых, в отличие от многих других белков, интерферон не обладает легко идентифицируемой химической или биологической активностью: ее оценивали только по снижению цитопатического действия вируса животных на культуру клеток, а это сложный и длительный процесс. В-третьих, в отличие от инсулина, было неизвестно, есть ли клетки человека, способные вырабатывать интерферон в достаточно больших количествах, т.е. существует ли источник мРНК интерферона. Несмотря на все эти трудности, в конце концов была выделена и охарактеризована кДНК, кодирующая интерферон. При выделении их кДНК пришлось разработать специальный подход, позволяющий преодолеть трудности, связанные с недостаточным содержанием соответствующих мРНК и белков. Теперь такая процедура выделения ДНК обычна и стандартна и для интерферонов состоит в следующем.

1. Из лейкоцитов человека выделили мРНК и фракционировали ее по размерам; провели обратную транскрипцию и встроили в сайт плазмиды.

2. Полученным продуктом трансформировали Escherichia соli. Образовавшиеся клонов подразделили на группы. Тестирование проводили на фуппе клонов, что позволило ускорить процесс их идентификации.

3. Каждую группу клонов гибридизовали с неочищенным препаратом ИФ-мРНК.

4. Из образовавшихся гибридов, содержащих клонированную ДНК и мРНК, выделили мРНК и провели ее трансляцию в бесклеточной системе синтеза белка.

5. Определили интерферонную противовирусную активность каждой смеси, полученной в результате трансляции. Группы, проявившие интерферонную активность, содержали клон с кДНК, гибридизовавшейся с ИФ-мРНК.

6. Позитивные группы разбили на подгруппы, содержащие по несколько клонов, и вновь провели тестирование. Разбиение на подгруппы повторяли до тех пор, пока не идентифицировали клон, содержащий полноразмерную ИФ-кДНК человека.

С тех пор было обнаружено несколько разных типов интерферонов. Были выделены гены нескольких интерферонов и показана их эффективность при лечении различных вирусных заболеваний, но, к сожалению, интерферон не стал панацеей.

Исходя из химических и биологических свойств интерферона, можно выделить три группы: ИФ-альфа, ИФ-бета и ИФ-гамма. ИФ-альфа и ИФ-бета синтезируются клетками, обработанными препаратами вирусов или вирусной РНК, а ИФ-гамма вырабатывается в ответ на действие веществ, стимулирующих рост клеток. ИФ-альфа кодируется семейством генов, включающим как минимум 15 неаллельных генов, в то время как ИФ-бета и ИФ-гамма кодируются одним геном каждый. Подтипы ИФ-альфа проявляют разную специфичность. Например, при проверке эффективности ИФ-альфа-1 и ИФ-альфа-2 на обработанной вирусом линии клеток быка эти интерфероны проявляют сходную противовирусную активность, в случае же обработанных вирусом клеток человека ИФ-альфа-2 оказывается в семь раз активнее, чем ИФ-альфа-1. Если противовирусная активность проверяется на клетках мыши, то ИФ-альфа-2 оказывается в 30 раз менее эффективным, чем ИФ-альфа-1.

В связи с тем, что существует семейство интерферонов, было предпринято несколько попыток создать ИФ с комбинированными свойствами, используя тот факт, что разные члены семейства ИФ-альфа различаются по степени и специфичности своей противовирусной активности. Теоретически этого можно достичь, соединив части последовательностей генов разных ИФ-альфа. Это приведет к образованию гибридного белка с другими свойствами, чем у каждого из исходных белков. Сравнение последовательностей кДНК ИФ-альфа-1 и ИФ-альфа-2, показало, что они содержат одинаковые сайты рестрикции. После расщепления обеих кДНК в этих сайтах и последующего лигирования фрагментов было получено несколько гибридных генов. Эти гены экспрессировали в E.coli, синтезированные белки очистили и исследовали их биологические функции. Проверка защитных свойств гибридных ИФ на культуре клеток млекопитающих показала, что некоторые из них проявляют большую активность, чем родительские молекулы. Кроме того, многие гибридные ИФ индуцировали образование 2"-5"-олигоизоаденилат-синтетазы в контрольных клетках. Этот фермент участвует в синтезе 2"-5"-связанных олигонуклеотидов, которые в свою очередь активируют латентную клеточную эндорибонуклеазу, расщепляющую вирусную мРНК. Другие гибридные ИФ проявляли большую, чем родительские молекулы, антипролиферативную активность в культурах различных раковых клеток человека.

Гормон роста

Стратегию конструирования новых белков путем замены функциональных доменов или с помощью направленного мутагенеза можно использовать для усиления или ослабления биологического свойства белка. Например, нативный гормон роста человека (ГРЧ) связывается в разных типах клеток как с рецептором гормона роста, так и с пролактиновым рецептором. Чтобы избежать нежелательных побочных эффектов в процессе лечения, нужно исключить присоединение ГРЧ к пролактиновому рецептору. Поскольку участок молекулы гормона роста, связывающийся с этим рецептором, по своей аминокислотной последовательности лишь частично совпадает с участком молекулы, который взаимодействует с пролактиновым рецептором, удалось избирательно снизить связывание гормона с последним. Для этого использовали сайт-специфический мутагенез, в результате которого произошли определенные изменения в боковых группах некоторых аминокислот -- лигандов для ионов Zn2+, необходимых для высокоаффинного связывания ГРЧ с пролактиновым рецептором. Модифицированный гормон роста связывается только со «своим» рецептором. Полученные результаты представляют несомненный интерес, но смогут ли модифицированные ГРЧ найти применение в клинике, пока неясно.

Муковисцидоз

Наиболее частым летальным наследственным заболеванием среди европеоидов является муковисцидоз. В США выявлено 30 ООО случаев этого заболевания, в Канаде и странах Европы -- 23 000. Пациенты с муковисцидозом часто страдают инфекционными заболеваниями, поражающими легкие. Лечение рецидивирующих инфекций антибиотиками в конце концов приводит к появлению резистентных штаммов патогенных бактерий. Бактерии и продукты их лизиса вызывают накопление в легких вязкой слизи, затрудняющей дыхание. Одним из компонентов слизи является высокомолекулярная ДНК, которая высвобождается из бактериальных клеток при лизисе. Ученые из биотехнологической компании Genentech (США) выделили и экспреccировали ген ДНКазы -- фермента, который расщепляет высокомолекулярную ДНК на более короткие фрагменты. Очищенный фермент вводят в составе аэрозоля в легкие больных муковисцидозом, он расщепляет ДНК, вязкость слизи снижается, что облегчает дыхание. Хотя эти меры и не излечивают муковисцидоз, они облегчают состояние больного. Применение данного фермента было недавно одобрено Департаментом по контролю качества пищевых продуктов, медикаментов и косметических средств (США), и объем его продаж составил в 2000 г. примерно 100 млн. долларов.

Другой биотехнологический продукт, помогающий больным -- альгинат-лиаза. Альгинат -- это полисахарид, синтезируемый целым рядом морских водорослей, а также почвенными и морскими бактериями. Его мономерными единицами являются два сахарида -- бета-D-маннуронат и альфа-1-гулуронат, относительное содержание и распределение которых и определяют свойства конкретного альгината. Так, остатки a-L-гулуроната образуют межцепочечные и внутрицепочечные сшивки путем связывания ионов кальция; остатки бета-D-маннуроната связывают ионы других металлов. Альгинат, содержащий такие сшивки, образует эластичный гель, вязкость которого прямо пропорциональна размеру полисахаридных молекул.

Выделение альгината слизистыми штаммами Pseudomonas aeruginosa существенно повышает вязкость слизи у больных муковисцидозом. Чтобы очистить дыхательные пути и облегчить состояние больных, в дополнение к обработке ДНКазой следует провести деполимеризацию альгината с помощью альгинат-лиазы.

Ген альгинат-лиазы был выделен из Flavobacterium sp., грамотрицательной почвенной бактерии, активно вырабатывающей этот фермент. На основе E.coli был создан банк клонов Flavobacterium и проведен скрининг тех из них, которые синтезируют альгинат-лиазу, путем высевания всех клонов на твердую среду, содержащую альгинат, с добавлением ионов кальция. В таких условиях весь альгинат, находящийся в среде, за исключением того, который окружает продуцирующие альгинат-лиазу колонии, образует сшивки и становится мутным. Гидролизованный альгинат теряет способность к формированию сшивок, поэтому среда вокруг синтезирующих альгинат-лиазу колоний остается прозрачной. Анализ клонированного фрагмента ДНК, присутствующего в одной из положительных колоний, показал наличие открытой рамки считывания, кодирующей полипептид молекулярной массой около 69 000. Более детальные биохимические и генетические исследования показали, что этот полипептид, по-видимому, является предшественником трех альгинат-лиаз, вырабатываемых Flavobacterium sp. Сначала какой-то протеолитический фермент отрезает от него N-концевой пептид массой около 6000. Оставшийся белок молекулярной массой 63 000 способен деполимеризовать альгинат, вырабатываемый как бактериями, так и морскими водорослями. При его последующем разрезании образуется продукт молекулярной массой 23 000, деполимеризующий альгинат морских водорослей, и фермент молекулярной массой 40 000, разрушающий альгинат бактерий. Для получения больших количеств фермента молекулярной массой 40 000 кодирующую его ДНК амплифицировали методом полимеразной цепной реакции (ПЦР), а затем встраивали в выделенный из B.subrjlis плазмидный вектор, несущий ген, кодирующий сигнальный пептид а-амилазы B.subrjlis. Транскрипцию контролировали при помощи системы экспрессии гена пенициллиназы. При трансформации клеток B.subrjlis полученной плазмидой и высевании их на содержащую альгинат твердую среду с добавлением ионов кальция образовались колонии с большим ореолом. Когда такие колонии выращивали в жидкой среде, рекомбинантная альгинат-лиаза выделялась в культуральную среду. Последующие тесты показали, что этот фермент способен эффективно разжижать альгинаты, синтезируемые слизистыми штаммами P.aeruginosa, которые были выделены из легких больных муковисцидозом. Для того чтобы определить, целесообразно ли проводить клиническое тестирование рекомбинантной альгинат-лиазы, нужны дополнительные исследования.

Профилактика отторжения трансплантированных органов.

В 1970-х гг. были пересмотрены взгляды на пассивную иммунизацию: ее стали считать профилактическим средством борьбы с отторжением трансплантированных органов. Предлагалось вводить пациентам специфические антитела, которые будут связываться с лимфоцитами определенного типа, уменьшая иммунный ответ, направленный против пересаженного органа.

Первыми веществами, рекомендованными Департаментом по контролю качества пищевых продуктов, медикаментов и косметических средств (США), для использования в качестве иммуносупрессоров при пересадке органов у человека, были моноклональные антитела мыши ОКТЗ. За отторжение органов отвечают так называемые Т-клетки -- лимфоциты, дифференцирующиеся в тимусе. ОКТЗ связываются с рецептором, находящимся на поверхности любой Т-клетки, который называется CD3. Это предупреждает развитие полного иммунного ответа и отторжение трансплантированного органа. Подобная иммуносупрессия весьма эффективна, хотя и оказывает некоторые побочные действия, например, вызывает лихорадку и приводит к появлению сыпи.

Были разработаны приемы по производству антител с помощью E.coli. Гибридомы, подобно большинству других клеточных культур животных, растут относительно медленно, не достигают высокой плотности и требуют сложных и дорогих сред. Получаемые таким образом моноклональные антитела очень дороги, что не позволяет широко использовать их в клинике.

Чтобы решить эту проблему, были предприняты попытки создания своего рода «биореакторов» на основе генетически модифицированных бактерий, растений и животных. В этих целях в геном хозяина вводили генные конструкции, способные кодировать отдельные участки антител. Для эффективной доставки и функционирования некоторых иммунотерапевтических средств зачастую достаточно одной антигенcвязывающей области антитела (Fab- или Fv-фрагмента), т.е. присутствие Fc-фрагмента антитела необязательно.

ГМ растения -- продуценты фармакологических препаратов

Сегодня все реальнее выглядят перспективы сельскохозяйственной биотехнологии предоставить такие растения, которые будут использоваться как лекарства или вакцины.

Среди генов, экспрессия которых в растениях считается экзотической, наиболее важными являются гены, кодирующие синтез полипептидов, имеющих медицинское значение. Очевидно, первым выполненным исследованием в этой области следует считать патент фирмы Calgene об экспрессии интерферона мыши в клетках растений. Позже был показан синтез иммуноглобулинов в листьях растений.

Кроме этого, возможно введение в геном растения гена, кодирующего оболочечный белок (белки) какого-либо вируса. Потребляя растение в пищу, люди постепенно приобретут иммунитет к этому вирусу. По сути это -- создание растений-лекарств.

Трансгенные растения обладают рядом преимуществ по сравнению с культурой клеток микроорганизмов, животных и человека для производства рекомбинантных белков. Среди преимуществ трансгенных растений отметим основные: возможность широкомасштабного получения, дешевизна, легкость очистки, отсутствие примесей, имеющих аллергенное, иммунносупрессивное, канцерогенное, тератогенное и прочие воздействия на человека. Растения могут синтезировать, гликозилировать и собирать из субъединиц белки млекопитающих. При поедании сырых овощей и фруктов, несущих гены, кодирующие синтез белков-вакцин, происходит оральная иммунизация.

Одним из путей уменьшения риска утечки генов в окружающую среду, применяемый, в частности, при создании съедобных вакцин, состоит во введении чужеродных генов в хлоропласты, а не в ядерные хромосомы, как обычно. Считается, что этот способ позволит расширить область применения ГМ растений. Несмотря на то, что ввести нужные гены в хлоропласты гораздо труднее, этот способ имеет ряд преимуществ. Одно из них заключается в том, что чужеродная ДНК из хлоропластов не может попасть в пыльцу. Это полностью исключает возможность неконтролируемого переноса ГМ материала.

Использование ДНК-технологий для разработки вакцин

Перспективным направлением является создание трансгенных растений, несущих гены белков, характерных для бактерий и вирусов, вызывающих инфекционные заболевания. При потреблении сырых плодов и овощей, несущих такие гены, или их сублимированных соков происходит вакцинация организма. Например, при введении гена нетоксичной субъединицы энтеротоксина холеры в растения картофеля и скармливании сырых клубней подопытным мышам в их организме образовывались антитела к возбудителям холеры. Очевидно, что такие съедобные вакцины могут стать эффективным простым и недорогим методом защиты людей и обеспечения безопасности питания в целом.

Развитие в последние десятилетия ДНК-технологий совершило революцию и в деле разработки и производства новых вакцин. При помощи методов молекулярной биологии и генетической инженерии были идентифицированы антигенные детерминанты многих инфекционных агентов, клонированы гены, кодирующие соответствующие белки и, в ряде случаев, налажено производство вакцин на основе белковых субъединиц этих антигенов. Диарея, вызываемая инфекцией холерным вибрионом или энтеротоксигенной кишечной палочкой (Escherichia coli), является одной из опаснейших болезней с высоким процентом летальных исходов, особенно у детей. Общее количество заболеваний холерой на земном шаре превышает 5 миллионов случаев ежегодно, в результате чего умирает около 200 тысяч человек. Поэтому Всемирная организация здравоохранения (ВОЗ) уделяет внимание профилактике заболевания диарейными инфекциями, всячески стимулируя создание разнообразных вакцин против этих заболеваний. Вспышки заболевания холерой встречаются и в нашей стране, особенно в южных регионах.

Диарейные бактериальные заболевания также широко распространены и у сельскохозяйственных животных и птицы, в первую очередь у молодняка, что является причиной больших убытков в хозяйствах в результате потери веса и смертности поголовья.

Классическим примером рекомбинантной вакцины, полученной с помощью микроорганизмов, служит производство поверхностного антигена гепатита В. Вирусный ген HbsAg был встроен в дрожжевую плазмиду, в результате чего в дрожжах в больших количествах стал синтезироваться вирусный белок, который после очистки используется для инъекций в качестве эффективной вакцины против гепатита (Pelre et al., 1992).

Многие южные страны с высоким процентом заболевания гепатитом проводят всеобщую вакцинацию населения, включая детей, против этой болезни. К сожалению, стоимость такой вакцины относительно высока, что препятствует широкому распространению программ всеобщей вакцинации населения в странах с невысоким уровнем жизни. В связи с таким положением в начале 90-х годов ВОЗ выступила с инициативой создания новых технологий для производства недорогих вакцин против инфекционных болезней, доступных для всех стран мира.

...

Подобные документы

    Обзор ряда препаратов генно-инженерной биологической терапии и их использование в лечении анкилозирующего спондилита. Анализ эффективности применения препаратов этой группы при клиническом течении некоторых ревматических воспалительных заболеваний.

    курсовая работа , добавлен 20.05.2015

    Классификация противотуберкулезных препаратов Международного союза борьбы с туберкулезом. Комбинирование изониазида и рифампицина. Препараты гидразида изоникотиновой кислоты. Комбинированные противотуберкулезные препараты, их лекарственные взаимодействия.

    презентация , добавлен 21.10.2013

    Группа противотуберкулёзных препаратов, спектр их активности и лекарственное взаимодействие. Различия препаратов I и II ряда, комбинированные препараты. Инфекции, передающиеся половым путем, основные принципы их лечения. Выбор препаратов от сифилиса.

    презентация , добавлен 20.10.2013

    Исследование группы сульфаниламидов: препаратов для системного применения, препаратов, действующих в просвете кишечника, препараты для наружного применения. Анализ группы хинолонов, фторхинолонов, нитрофуранов: механизм действия, спектр активности.

    презентация , добавлен 17.04.2019

    Лекарственные средства для коррекции нарушений функций репродуктивной системы. Препараты женских и мужских половых гормонов и их синтетические аналоги. Классификация препаратов половых гормонов. Форма выпуска и механизм действия гормональных препаратов.

    презентация , добавлен 15.03.2015

    Принципы конструирования рекомбинантных противовирусных вакцин. Получение соответствующего фрагмента нуклеиновой кислоты. Выбор высокоактивной и хорошо изученной в иммунологическом отношении модели вектора-носителя и клонирование соответствующего гена.

    курсовая работа , добавлен 18.12.2010

    Препараты для лечения и предупреждения заболеваний. Использование для лечения растений в разных видах, высушенных насекомых, органов животных. Сырье для получения неорганических препаратов. Противомикробные, антигистаминные и болеутоляющие лекарства.

    презентация , добавлен 16.04.2014

    Характеристика хроматографических методов идентификации антибиотиков и их отнесения к той или иной группе антибактериальных препаратов. Анализ исследований ученых мира в сфере выявления и классификации антибиотиков в различных медицинских препаратов.

    курсовая работа , добавлен 20.03.2010

    Понятие вакцины и их классификация. Рассмотрение принципа действия препаратов, предназначенных для создания иммунитета к инфекционным болезням. Метод получения генно-инженерных вакцин с помощью биотехнологии, которая сводится к генетической рекомбинации.

    презентация , добавлен 09.10.2014

    Использование сульфаниламидов, ко-тримоксазола, хинолонов, фторхинолонов и нитрофуранов в клинической практике. Механизм действия препаратов, спектр их активности, особенности фармакокинетики, противопоказания, лекарственные взаимодействия и показания.



gastroguru © 2017