Осциллометрический метод измерения артериального давления недостатки. Осциллометрический метод измерения давления

Метод Короткова

Этот метод, разработанный русским хирургом Н.С. Коротковым в 1905 году, предусматривает для измерения артериального давления очень простой тонометр, состоящий из механического манометра, манжеты с грушей и фонендоскопа. Метод основан на полном пережатии манжетой плечевой артерии и выслушивании тонов, возникающих при медленном выпускании воздуха из манжеты.

Преимущества:признан официальным эталоном неинвазивного измерения артериального давления для диагностических целей и при проведении верификации автоматических измерителей артериального давления; высокая устойчивость к движениям руки.

Недостатки:зависит от индивидуальных особенностей человека, производящего измерение (хорошее зрение, слух, координация системы «руки-зрение-слух»); чувствителен к шумам в помещении, точности расположения головки фонендоскопа относительно артерии; требует непосредственного контакта манжеты и головки микрофона с кожей пациента; технически сложен (повышается вероятность ошибочных показателей при измерении)и требует специального обучения.

Это метод, при котором используются электронные тонометры. Он основан на регистрации тонометром пульсаций давления воздуха, возникающих в манжете при прохождении крови через сдавленный участок артерии.

Преимущества:не зависит от индивидуальных особенностей человека, производящего измерение (хорошее зрение, слух, координация системы «руки-зрение-слух»); устойчивость к шумовым нагрузкам; позволяет производить определение артериального давления при выраженном «аускультативном провале», «бесконечном тоне», слабых тонах Короткова; позволяет производить измерения без потери точности через тонкую ткань одежды не требуется специального обучения.

Недостаток:при измерении рука должна быть неподвижна.

Для измерения артериального давления в настоящее время применяются механические (анероидные) и электронные измерители. Механические измерители, основанные на использовании метода Короткова, в основном применяются в профессиональной медицине, так как без специального обучения допускаются погрешности в показателях. Для домашнего использования наиболее подходят полуавтоматические и автоматические электронные тонометры. Их применение не требует никакого предварительного обучения и, при соблюдении простых методических рекомендаций, позволяет получить точные данные артериального давления путем нажатия одной кнопки. Современные цифровые полуавтоматические тонометры позволяют ограничиться только набором давления (до звукового сигнала), дальнейший сброс давления, регистрацию систолического и диастолического давления, иногда - пульса и аритмии, прибор проводит сам. Автоматические тонометры сами закачивают воздух в манжету, иногда они могут выдавать данные в цифровом виде, для передачи на компьютер или др. приборы.



Порядок выполнения работы

1. Сядьте у стола так, чтобы во время измерения артериального давления рука опиралась на его поверхность. Место наложения манжеты должно находиться приблизительно на той же высоте, что и сердце и предплечье свободно лежит на столе и не двигается.

2. Наденьте манжету сначала на левую руку, при этом трубки должны быть направлены в сторону ладони. Оберните манжету вокруг руки так, чтобы нижняя кромка манжеты находилась на расстоянии 2 – 3 см от локтевого сгиба.

3. Застегните манжету так, чтобы она плотно облегала руку, но не перетягивала ее.

4. Включите прибор и, когда он будет готов к измерению, накачайте манжету, нажимая на грушу, до давления на 30 – 40 мм рт. ст. выше вашего ожидаемого систолического (верхнего) давления. Величина давления в манжете постоянно отображается на экране прибора.

5. По достижении необходимого давления в манжете прекратите накачивать манжету. Давление начнет уменьшаться. В конце измерения на экране появятся показания давления (систолическое и диастолическое) и пульса, которые необходимо записать в табл. 6.1.

6. Сбросьте оставшееся давление в манжете, нажав на клапан сброса давления. Для повторного измерения начните накачивать манжету снова.

7. Измерения давления и пульса необходимо произвести три раза на левой руке и три раза на правой руке. Интервал между измерениями должен составлять не менее 15 секунд, при этом разница в показаниях давления на руках может быть существенной.

8. Затем в соответствии с правилами обработки результатов прямых измерений найти средние значения верхнего и нижнего давлений, пульса и абсолютную доверительную погрешность ΔР по алгоритму прямых многократных измерений по формуле:

9. Записать результаты. Сравнить свои данные с табличными и проанализировать результат. Поставить себе диагноз.

Таблица 6.1.

номер измерения , мм. рт. ст. , мм. рт. ст. N

Контрольные вопросы

1. В каких единицах измеряется артериальное давление и почему в таких единицах? Соответствуют ли эти единицы измерения системе СИ?

2. Что показывает систолическое и диастолическое артериальные давления?

3. Какую опасность для организма представляет повышенное и пониженное артериальные давления?

4. Какую основную роль выполняет кровообращение?

5. Какие способы измерения артериального давления существуют? В чем заключаются их недостатки и преимущества?

6. Влияет ли атмосферное давление на артериальное давление?

Осциллометрический метод измерения артериального давления широко используется в настоящее время. В медицине используют еще 2 вида измерения артериального давления - инвазивный и неинвазивный.

Методы измерения

Все, которые существуют на сегодняшний день методы измерения давления, были окончательно разработаны в XX столетии.

Инвазивный, его еще называют прямой метод, заключается в том, что в артерию человека вводится специальный зонд, на который установлен датчик давления. С него показания передаются на специальный прибор, который обрабатывает данные и выводит значения артериального на монитор в режиме реального времени. Плюсом метода является высокая точность измерений, которая не зависит от состояния сосудов, наличия аритмии и прочих патологий организма человека. Но так измерять напор крови в сосудах возможно только в условиях стационара, так как за пациентом требуется постоянное наблюдение. Если зонд выпадет из артерии, будет сильное кровотечение, возможно занесение инфекции. Эту методику применяют при хирургических вмешательствах, в палатах реанимации и интенсивной терапии.

В 1905 году выдающий русский хирург Николай Сергеевич Коротков докладом в Императорской военной академии совершил Революцию в практике измерения артериального давления, предложив новую, совершенно не травматичную методику, которая получила название метод тонов Короткова.

Неинвазивный способ

Звуковой (аускультативный, метод тонов Короткова) метод чрезвычайно прост: используется сфигмоманометр, соединенный с манжетой и грушей. При этом нагнетался воздух в манжету и фонендоскоп.
Манжетой он одевается на плечо, в нее нагнетается воздух, артерии пережимаются. Фонендоскоп прикладывается к изгибу лучевой артерии. Воздух из манжеты медленно стравливается. Как только в фонендоскопе прослушивается первый пробой крови в артерии, на сфигмоманометре зрительно фиксируется значение систолического давления, как только тоны затухают - фиксируется диастолическое.
Этот метод официально признан Всемирной организацией здравоохранения как эталонный метод. При всей простоте у данной методики есть недостатки:

  • зависимость от особенностей того, кто проводит измерение (зрение и слух);
  • требуются специальные навыки;
  • зависимость от внешних шумов.

Прибор для измерения артериального давления получил название тонометр.

С развитием электроники в 1976 году корпорацией Omron был разработан осциллометрический метод для измерения давления. Это следующий этап развития метода тонов Короткова, только полностью автоматизированный. Суть его заключается в том, что стравливание воздуха из манжеты происходит ступенчато, где на каждом этапе анализируется пульсация в манжете. Самая мощная пульсация - это систолическое давление, затухание - диастолическое. Этот способ используется в большинстве автоматических и полуавтоматических приборов для измерения артериального давления. Гамма выпускаемых аппаратов чрезвычайно широка.

Простота и точность

Теперь каждый желающий может проводить измерения в домашних условиях, не обращаясь к специалисту. Так, осциллометрический метод полностью автоматизирован и не зависит от навыков пользователя. Для простоты будем использовать термин электронный тонометр.

На рынке представлен огромный модельный ряд тонометров: от миниатюрных моделей, которые измеряют давление на запястье, до больших стационарных приборов для массовых измерений.

Тонометры на запястье подходят для тех, чей возраст не превышает 30 лет, они менее точны. Они больше подходят тем, кто ведет активный и здоровый образ жизни, занимается спортом и служат для того, чтобы мониторить давление до и после тренировок, соответственно, корректируя нагрузки.

Тонометры с манжетой на плечо подходят аюсолютно всем. Они бывают 2 типов:

  • полуавтомат - воздух в манжету нагнетается вручную при помощи груши, дальше процесс автоматизирован;
  • автомат - достаточно одеть манжету и нажать на кнопку.

Инженеры разрабатывают модели, подходящие практически всем категориям граждан. Существуют тонометры, которые уверенно определяют давление при наличии различных патологий. Стоимость таких приборов выше.

Преимущества данных приборов:

  • пользоваться прибором может любой желающий;
  • подходят для тех, у кого есть аритмия;
  • малая зависимость от внешних шумов;
  • независимость от человеческого фактора.

Мифы об электронике

Зачастую люди не доверяют электронике, поскольку, измеряя артериальное давление, не соблюдают элементарные правила. Часто можно услышать: дома померила, пешком поднялась на 5 этаж к соседке, а там показывает по-другому. Перечислим основные правила измерения давления:

Давление необходимо измерять в состоянии покоя: если вы поволновались или пришли откуда-то, необходимо 20 мин. отдохнуть.

    1. Измерения проводятся в положении сидя, манжета должна находиться на уровне сердца. При использовании тонометров, измеряющих давление на запястье, рука с тонометром должна находиться в районе сердца.

  1. Промежуток между измерениями должен быть не должен быть менее 20 мин. Или необходимо сделать 3 последовательных измерения с интервалом не более 15 сек. и вычислить среднее значение, откидывая заведомо ложные.
  2. Измерять давление желательно либо на обнаженной руке, либо через тонкую ткань одежды.

Узнайте Ваш уровень риска инфаркта или инсульта

В современных медицинских приборах, предназначенных для неинвазивного измерения артериального давления, в основном применяются два метода регистрации: аускультативный и осциллометрический. Если осциллограмма отражает изменения объема участка тканей под компрессионной манжетой – это будет объемная осциллометрия. Если осциллограмма отражает скорость, с которой происходят изменения объема участка тканей под компрессионной манжетой – это будет скоростная объемная осциллометрия. Метод объемной осциллометрии измерения артериального давления впервые был предложен в 1880г. Е.Мареем.

Объемная компрессионная осциллометрия (ОКО) - косвенный, неинвазивный метод определения уров­ней артериального давления у человека путем регистрации оригинальной измерительной системой объемных артериальных осциллограмм. Как известно, ритмическая деятельность сердца приводит к появлению пульса - периодических колебаний кровенаполнения и кровяного давления в кровеносных сосудах. Способ определения изменения объема магистрального артериального сосуда под действием нарастающего давления в пережимной манжете и положен в основу метода ОКО.

Объемная компрессионная осциллограмма (в дальнейшем для краткости «кривая», или «осциллограмма») имеет общий характерный рисунок, закономерное развитие и состоит из отдельных пульсовых волн или осцилляций. Наряду с этим на кривой могут быть зафиксированы и индивидуальные визуальные признаки изменяющегося состояния обследуемого.

Исследования в области физиологии кровообращения показали, что насосную (механическую) деятельность сердца лучше характеризуют кривые центрального пульса, которые записывают над крупными сосудами, расположенными близко к сердцу. Методика графической регистрации артериального пульса называется сфигмографией. Сфигмограмма была впервые зарегистрирована К. Виерордтом в 1855г., а более точные записи произведены в 1905г. О. Франком. Каждая пульсовая волна сфигмограммы (рис.1) любой крупной или средней артерии начинается низкоамплитудной предсистолической волной (АВ), происхождение которой, вероятно, связано с изометрическим сокращением левого желудочка. Далее следует высокоамплитудная главная волна, крутой восходящий участок которой называется анакротой (ВС). Этот участок отражает ускоренное поступление крови в артерии из левого желудочка в начале фазы быстрого изгнания, что приводит к увеличению давления в артериях и их растяжению. Затем кривая переходит в пологую вершину главной волны (СD), которая отражает примерное равенство между притоком крови в магистральные артерии и ее оттоком в периферические сосуды, и далее в нисходящее колено - катакроту.

Катакрота (DE) соответствует по времени фазе медленного изгнания, когда отток крови из растянутых эластических артерий начинает преобладать над притоком. Заканчивается катакрота формированием остроконечного, направленного вниз, зубца сфигмограммы (E). Этот зубец называется инцизурой (вырезкой) и соответствует окончанию систолы левого желудочка, когда давление в желудочке становится ниже, чем в аорте. В этот момент объем аорты резко уменьшается за счет того количества крови, которое необходимо для заполнения карманов аортального клапана. Самая низкая точка инцизуры соответствует полному закрытию аортального клапана.

Диастолическая часть центральной сфигмограммы начинается дикротической волной (EF), которая возникает в результате отражения гидравлической волны от замкнутых кармашков аортального клапана. Последующий плавный спуск кривой (FG) соответствует равномерному оттоку крови из центральных артерий в периферические сосуды во время диастолы.

Рис.1 Схема отдельной пульсовой волны сфигмограммы

В отличие от сфигмограммы объемная компрессионная осциллограмма, полученная современными медицинскими осциллометрическими приборами, состоит из описанных выше пульсовых волн крупной артерии, зарегистрированных при нарастающем давлении в манжете (компрессии). Так методика записи объемной компрессионной осциллограммы с помощью прибора КАП ЦГ осм- «Глобус» заключается в следующем. На сегмент конечности, как правило на плечо, накла­дывают пневмоманжету, связанную с измерительным блоком, и запускают в компьютере управляющую программу. В пневмосистему компрессор закачивает воздух, что вызывает постепенное повышение давления в манжете. Датчик давления приступает к регистрации колебаний артерии. Первое скачкообразное изменение амплитуды осцилляций возникает в тот момент, когда давление воздуха в манжете начинает превышать минимальное (диастолическое) артериальное давление. По мере нарастания давления в манжете осцилляции все больше увеличиваются и достигают наибольшей амплитуды. При даль­нейшем сдавливании сосудов величина пульсаций артерии, передаваемых манжете, постепенно снижается до стабилизации минимальной амплитуды, обусловленной ударом струи крови в манжету.

Взаимодействие давлений в сосуде и в манжете приводит к формированию объемной компрессионной осциллограммы артериального пульса, закономерность появления признаков артериального давления на которой непосредственно связана с изменением объема измеряемого сосуда.

Пульсовые волны, или осцилляции, есть ни что иное, как величины приращения объема лоцируемого магистрального артериального сосуда, находящегося под манжетой. Измерительная система позволяет регистрировать практически неискаженные объемные сигналы пульсовых волн, преобразованных манжетой в сигналы давления и поэтому амплитуда каждой пульсовой волны пропорциональна изменяющемуся под действием давления в манжете просвету магистрального артериального сосуда.

В замкнутой пневманической системе измерительная манжета является элементом, преобразующим изменяющийся объем конечности в сигналы давления. Литературные данные позволяют считать, что она не искажает форму пульсовой кривой, и на вход первичного преобразователя давления подается осциллографический сигнал, который по всей полосе частотного спектра повторяет динамический измеряемый объем пульсирующих артерий.

Ткани плеча, окружающие сосуды, содержат примерно 70% воды и практически в данных условиях должны рассматриваться как несжимаемые. Поэтому давление на них, как в жидкости, должно передаваться без потерь, во все стороны совершенно равномерно. Особенностью работы манжеты является то, что она регистрирует изменения объема лежащих под ней тканей только в зависимости от притока и оттока крови в артериях. Как только давление в манжете поднимется до величины, близкой к 40-60 мм Нg, движение крови в венах под манжетой прекращается. Вследствие затруднений венозного оттока застой возникает ниже места наложения манжеты и объем тканей меняется дистальнее места ее наложения.

Изменения объема тканей под манжетой количественно зависят от величины давления в манжете. Это и лежит в основе использования осциллографии как индикатора для измерения давления. Соединенный с манжетой прибор в условиях нарастания давления в манжете будет писать кривую пульсовых изменений объема тканей, расположенных под манжетой. Это будет объемная компрессионная осциллограмма.
Изменяющийся объем лоцируемой артерии преобразуется манжетой в сигналы давления. В свою очередь объем лоцируемого сосуда определяется по формуле V = L x S; где L - длина отрезка сосуда, находящегося под манжетой, S – площадь просвета лоцируемого сосуда. Принимая во внимание, что длина лоцируемого сосуда под манжетой остается постоянной, амплитуда каждой пульсовой волны на осциллометрической кривой в конечном итоге будет пропорциональна изменяющейся площади просвета лоцируемого сосуда за каждый полный цикл сердечного сокращения.

На полученной с помощью прибора осциллограмме, приведенной на рис. 2, компьютерная программа применяя специальные математические и графические модели определяет четыре основные точки, соответствующие 4 видам артериального давления (систолическому, диастолическому, боковому систолическом и среднему гемодинамическому).

Рис. 2. Объемная компрессионная осциллограмма плечевой артерии

Рассмотрим объемную компрессионную осциллограмму плечевой артерии обследуемого (рис.2). В начале набора давления в манжете (отрезок аb) происходит обжатие участка плеча обследуемого пациента, в результате чего пульсовые волны лоцируемого сосуда, практически прямолинейно увеличиваются по амплитуде исключительно за счет повышения давления в манжете.

Увеличиваясь, давление в манжете достигает величины диастолического артериального давления ДАД и несколько превосходит его (точка b). В этой точке давление в пережимной манжете на минимальную величину превосходит ДАД в сосуде и при каждом очередном сокращении сердца начинает превосходить его на все большую величину, уменьшая просвет артерии во время диастолы. Начиная с этого момента (отрезок bc) пульсовые волны начинают скачкообразно увеличиваться, так как давление в манжете начинает препятствовать полному раскрытию сосуда до первоначальных размеров в фазе диастолы, его просвет начинает уменьшаться. Однако, при каждой очередной систоле давление в артерии вновь становится выше давления в манжете и просвет артерии полностью восстанавливается до его прежних максимальных размеров. Увеличение амплитуды осцилляций объясняется тем, что разница между площадью просвета (или объемом) лоцируемого сосуда в диастолу и систолу в этот период начинает скачкообразно возрастать.

Когда давление в манжете достигает величины среднего гемодинамического артериального давления (СрАД) (точка с), артерия в конце фазы диастолы под действием манжеты начинает закрываться. В этот момент площадь просвета лоцируемого сосуда равна нулю. В начале следующей систолы, с приходом новой порции крови, сосуд раскрывается до прежней своей величины. Такая максимальная амплитуда пульсовых волн сохраняется до тех пор, пока давление в мажете меньше бокового систолического артериального давления (БАД) (точка d). При этом первая максимальная осцилляция соответствует среднему гемодинамическому давлению, последняя– боковому артериальному давлению. Сохраняющиеся максимальные размеры осцилляций объясняются тем, что разница между площадью просвета (или объемом) лоцируемого сосуда в диастолу и систолу в этот период практически не изменяется.

После достижения давления в манжете равного БАД, и с дальнейшим его ростом (отрезок de) амплитуды волн начинают скачкообразно уменьшаться, что свидетельствует о неполном раскрытии лоцируемого магистрального артериального сосуда в фазе систолы. Давление в манжете уже препятствует этому процессу. Происходит снижение осциллометрического сигнала. Снижение амплитуды осцилляций объясняется тем, что разница между площадью просвета (или объемом) лоцируемого сосуда в диастолу и систолу в этот период начинает скачкообразно уменьшаться.
На этом отрезке систолическое давление в артерии уже недостаточно для полного ее раскрытия, и просвет артерии по мере дальнейшего увеличения давления в манжете все более сужается и, наконец, полностью перекрывается.

Когда давление в манжете достигнет величины, равной систолическому артериальному давлению (САД), артериальный сосуд закрывается, кровоток по нему прекращается. Пульсовые волны, обусловленные ударами крови в проксимальный край (верхнюю часть манжеты) несколько стабилизируются (отрезок ef), их быстрое уменьшение по амплитуде прекращается, и «ложатся» в систолической области осциллометрической кривой на более пологую прямую линию.

Таким образом на осциллограмме с помощью компьютерной обработки, определяются точки перегиба кривой, которые являются признаками показателей артериального давления:

САД – систолическое АД, которое определяется по последнему наиболее выраженному зубцу перед резким падением амплитуды осцилляции в самом конце кривой;

ДАД -диастолическое АД, которое определяется по первому наиболее выраженному зубцу;

СрАД – среднее гемодинамическое давление, которое определяется по первому максимальному зубцу, которому соответст­вует самая большая амплитуда осцилляции;

БАД – боковое АД, которое определяется по последнему максимальному зубцу.

Следует подчеркнуть, что это схематическое представление метода ОКО. Указанный алгоритм не всегда позволяет четко определить указанные точки перегиба. Поэтому в компьютерной программе используются другие, более точные математические и графические методики определения точек перегиба осциллографической кривой.

Клинические испытания в сравнении с инвазивным методом показали, что метод объемной компрессионной осциллометрии позволяет измерять все виды артериального давления в плечевой артерии практически с той же точностью, что и при ее прямой манометрии. Это дало возможность с помощью прибора определять не только показатели АД, но и с высокой достоверностью определять расчетным путем целый ряд других параметров системы кровообращения.

Однако, многочисленные исследования показывают, что величины артериального давления, измеренные аускультативным методом и одновремнно инвазивным имеют существенные отличия. Указанные различия, по-видимому, объясняются особенностями формирования звуковых феноменов в артерии и их высокой зависимостью от факторов, влияющих на тонус артериальной стенки. Учитывая этот феномен для определения осциллометрическим методом систолического и диастолического артериальных давлений, адекватных аускультиативному методу, нами были разработаны и проверены в клинической практике поправочные коэффициенты. Это позволило прибором определять не только фактические величины артериального давления, но и адаптировать их к аускультативному методу.

Литература:

  • Гидродинамика кровообращения. Сборник переводов под редакцией Регирера С.А. – М.: Мир, 1971. – 271 с., ил.
  • Каро К., Педли Т., Шротер Р., Сид У. Механика кровообращения : Пер. с англ. - М.: Мир, 1981. – 624 с., ил.
  • Комплекс аппаратно-программный неинвазивного исследования центральной гемодинамики методом объемной компрессионной осциллометрии «КАП ЦГ осм- «Глобус». Инструкция по применению . Белгород. ООО «Глобус». 2004. – 51 с.
  • Педли Т. Гидродинамика крупных кровеносных сосудов : Пер. с англ. – М.: Мир, 1983. – 400 с.,ил.
  • Савицкий Н.Н. Некоторые методы исследования и функциональной оценки системы кровообращения . – Л.: Медицина, 1956. – 329 с., ил.
  • Фофанов П.Н. Учебное пособие по механокардиографии . – Л.: ВМедА им. С.М.Кирова, 1977. – 111 с., ил.
  • Эман А.А. Биофизические основы измерения артериального давления .- Л.: Медицина, 1983. – 128с., ил.

Мы поговорили об артериальной гипертензии, методах и правилах измерения артериального давления (АД). Сегодня речь пойдет об осциллометрическом методе измерения АД.

Осциллометрический метод измерения АД

Преимущества
а) Относительно устойчив с шумовым нагрузкам, что позволяет использовать его в ситуациях с высоким уровнем шума (вплоть до кабины вертолета).

б) Позволяет проводить определение АД в случаях, представляющих проблему для аускультативного метода - при выраженном « аускультативном провале» , «бесконечном тоне» , слабых тонах Короткова.

в) Значения давления практически не зависят от разворота манжеты на руке и мало зависят от ее перемещений вдоль руки (пока манжета не достигает локтевого сгиба).

г) Позволяет проводить измерения АД без потери точности через тонкую ткань одежды.

Недостатки

  • Относительно низкая устойчивость к движениям руки. Так прибор SL90202 не обеспечивал измерения АД при ВЭМ пробе (велоэргометрия) в 82% измерений.

Осциллометрический и аускультативный методы измерения давления оказываются неэффективными при выраженных нарушениях ритма сердца . В этой ситуации чрезвычайно затруднено и врачебное определение АД, поскольку проблематичен сам алгоритм осуществления методики, приемлемый для нерегулярных сокращений сердца.

В последние годы все большее внимание привлекают новые неинвазивные методы определения АД .

В 1969 г. чешский исследователь J. Penaz получил патент на метод, который в англоязычной литературе обычно именуется как «volume-clump». В отечественной литературе этот и подобные ему методы называют компенсационными (реже, методами разгруженной артерии ). Он основан на непрерывной оценке объема сосудов пальца методом фотоплетизмографии и использовании следящей электропневматической системы для создания в окружающей палец манжете давления, противодействующего растяжению проходящих под манжетой артериальных сосудов. При выполнении последнего условия и постоянстве диаметра пальцевых артерий в них поддерживается неизменное растягивающее давление, близкое к нулю, а давление в манжете повторяет давление крови в артериях пальца.

Таким образом, прибор обеспечивает уникальную возможность длительной регистрации неинвазивными средствами всей кривой артериального давления , что ранее было возможно только инвазивным методом Oxford. Стационарный прибор, реализующий данный метод известен под названием Finapres, а недавно созданный - Portapres (I и II). Последний предполагает наложение манжеток на два пальца руки и их чередование для исключения неприятных ощущений у пациента при суточном мониторировании. Прибор имеет систему коррекции АД на гидростатическую поправку, возникающую при различном расположении пальцев относительно уровня сердца. К сожалению, метод не лишен принципиальных недостатков. Измеряемая величина диастолического давления ниже, чем в плечевой артерии, причем поправка зависит от вазоспастического состояния артерий пальца. Систолическое АД, как правило, выше, чем в плечевой артерии, для молодых субъектов, но ниже у пожилых . Поправка также зависит от тонуса артерий. Масса прибора с аккумуляторами более 2 кг, и он существенно дороже традиционных мониторов АД.

Метод тонометрии, впервые описанный Pressman и Newgard в 1963 г. предполагает частичное сдавливание поверхностно залегающих артерий конечности (например, на запястье) и регистрацию с помощью тензодатчиков бокового давления, передаваемого на них через стенку сосуда. В настоящее время проходит апробацию серийно выпускаемый прикроватный вариант аппарата Colin Pilot 9200. Интерес к этому методу связан, прежде всего, с ожидаемой комбинацией - непрерывная запись АД, низкий уровень тактильных воздействий, приемлемая цена.

Точность измерения АД является одной из ключевых характеристик приборов для измерения давления

Для ее определения проводятся клинические испытания, в ходе которых измерения прибора сопоставляются с эталонными. В качестве последних могут выступать инвазивно измеренное давление или давление, измеренное методом Короткова двумя экспертами. Методики проведения испытаний и обработки результатов регламентированы национальными и международными стандартами и протоколами. Однако наиболее популярными остаются протоколы AAMI/ANSI (США) и BHS (Великобритания). Согласно протоколу AAMI/ANSI среднее значение отличий в величинах АД, определенных прибором и экспертами, не должно превышать 5 мм рт. ст., а среднеквадратичное отклонение - 8 мм рт. ст. По протоколу BHS после испытаний прибору присваивается класс « точности» в соответствии с таблицей частоты наблюдаемых отличий между показаниями прибора и значениями АД, определенными двумя обученными медицинскими специалистами.

Процент отличий приборного и экспертного АД

Класс

Для полного удовлетворения требованиям BHS прибор должен иметь класс не ниже В/В, а приборы с характеристиками хуже С не рекомендуются для применения.

Согласно рекомендациям четвертой международной согласительной конференции по проблемам суточного мониторирования АД в амбулаторных условиях (1994 г.) для проведения СМАД (суточное мониторирование артериального давления) предпочтительней ориентироваться на приборы, успешно прошедшие тестирование по упомянутым выше протоколам в ведущих медицинских учреждениях (с опубликованием полученных результатов).

Рекомендации обоих упомянутых протоколов легли в основу протокола клинических испытаний, используемого при тестировании измерителей АД в отделе новых методов диагностики и исследований НИИ Кардиологии им. А. Л.Мясникова РКНПК МЗ РФ.

Возможно ли использование «бытовых» аппаратов для исследования профиля АД (« самомониторинг»)?

1. Возможна оценка только дневного профиля АД, так как пробуждение в ночное время для проведения измерений давления неизбежно вызовет артефактный подъем АД и исказит результаты.

2. Следует отдавать предпочтение аппаратам с автоматическим нагнетанием воздуха в манжету. Ручное нагнетание воздуха в полуавтоматических приборах может сопровождаться временным подъемом АД.

3. Аппараты, для измерения АД на запястье и пальце менее точны, чем плечевые. Поправочные величины могут существенно отличаться у разных людей (и даже менять знак), за счет спастических проявлений.

4. Необходимо ориентироваться только на аппараты, прошедшие всесторонние клинические испытания. По данным журнала Общества потребителей США (октябрь 1996 г.) хорошие результаты в этом плане продемонстрировали модели A&D UA-767, Omron HEM-711, A&D UA-702, Omron HEM-712C, Lumiscope 1085M (приведены в последовательности нарастания суммарных баллов потребительских свойств). Приборы фирм Omron и А&D с автоматическим нагнетанием воздуха в манжету и расположением окклюзионной манжеты на плече продемонстрировали высокую точность и при клинических испытаниях по протоколу BHS в РКНПК (B/B и А/А).

При использовании « бытовых» приборов необходимо учитывать, что:

а) Даже лучшие автоматические приборы этого класса не могут претендовать на замещение традиционного измерения давления по методу Н. С.Короткова в диагностических целях, последний остается единственным официально утвержденным методом для диагностики и оценки эффекта лечения.

б) Примерно у 3-7% кардиологических больных автоматические измерители дают значения АД, устойчиво отличающиеся от традиционного врачебного определения АД более чем на 10 мм рт. ст. и контрольные сопоставления у каждого пациента необходимы для правильной ориентации на данные автоматических приборов.

В статье использованы материалы Рогоза А. Н., Никольский В. П., Ощепкова Е. В. и др.: Суточное мониторирование артериального давления при гипертонии (Методические вопросы). Российский кардиологический научно-производственный комплекс МЗ РФ.



gastroguru © 2017