Конспект урока биологии на тему "клетка элементарная единица жизни". План-конспект урока по биологии

Клеточная теория - обобщенные представления о строении, размножении клеток и их роли в формировании многоклеточного организма.

1665 год Роберт Гук - наблюдение клетки
1838 Теодор Шванн - обобщение наблюдений

Определение клетки

Клетка - это ограниченная активной мембраной, упорядоченная структурированная система биополимеров и их макромолекулярных комплексов, участвующих в единой совокупности метаболических и энергетических процессов, осуществляющих поддержание и воспроизведение всей системы.

Клетка - самоподдерживающаяся и самовоспроизводящаяся система биополимеров

Основные положения клеточной теории:

    Клетка - элементарная единица живого.

    Клетка - единая система, включающая множество закономерно связанных друг с другом элементов, представляющих собой целостное образование, состоящее из сопряженных функциональных единиц - органелл или органоидов (компартментов).

    Гомологичность. Клетки сходны (гомологичны) по основным свойствам и строению.

    Деление клеток (клетка от клетки). Клетки увеличиваются в числе путем деления исходной клетки после удвоения ее генетического материала.

    Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединенных и интегрированных в системы тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных (молекулярная регуляция). Клетка в многоклеточном организме - единица функционирования и развития.

    Тотипотентность. Клетки многоклеточных организмов тотипотентны - равнозначны по генетической информации, но отличаются экспрессией генов. Это приводит к дифференцировке клеток (морфологическое и функциональное разнообразие)

Прокариотическая клетка

Прокариотические клетки - клетки бактерий и сине-зеленых водорослей

Основные структуры прокариотической клетки:

    (как правило) Клеточная стенка/оболочка

    Плазматическая мембрана - белково-липидная структура, отделяющая содержимое клетки от внешней среды.

    Цитоплазма - внутренняя среда клетки.

    Нуклеоид - структура неправильной формы с генетическим материалом.

    Внутриклеточные мембранные системы - развиваются за счет плазматической мембраны.

Эукариотическая клетка

Эукариотическая клетка - клетка, содержащая морфологически выраженное ядро.

Основные структуры эукариотической клетки:

Плазматическая мембрана - барьерно-рецепторно-транспорт­ная система клетки.

Клеточное ядро - система хранения, воспроизведения и реализа­ции генетической информации

Цитоплазма - внутреннее содержимое клетки. Компоненты цитоплазмы - гиалоплазма и органеллы.

Гиалоплазма - растворимый компонент цитоплазмы, система основного промежуточного обмена.

Органеллы:

Мембранные органеллы (компартменты):

Одномембранные :

    вакуолярная система - система синтеза и внутриклеточного транспорта белковых биополимеров и генезиса многих клеточных мембран (эндоплазматическая сеть, аппарат Гольджи, лизосомы, пероксисомы, вакуоли)

Двумембранные :

    митохондрии - органеллы энергообеспечения клетки за счет синтеза АТФ

    пластиды растительных клеток - система синтеза АТФ и

Немембранные органеллы:

    цитоскелет - опорно-двигательная система клетки (микротрубочки, микрофилламенты)

Общность и различие прокариотической и эукариотической клетки

Отличия клетки эукариот от прокариотической клетки:

    Наличие ядра

    Развитая система связанных друг с другом мембранных органоидов

    Большой размер

Общие признаки:

    Плазматическая мембрана с функцией переноса веществ из клетки в клетку.

    Схожесть основных биохимических процессов ( , РНК, репликация ДНК и др.)

Урок биологии в 8 классе

Тема: Клеточное строение организма.

Задачи:

    сформировать знания о строении животной клетки, структуре и функциях частей и органоидов клетки (ядро, цитоплазма, клеточная и ядерная мембраны, ЭПС и ее виды, комплекс Гольджи, митохондрии, лизосомы, хромосомы, ДНК);

    сформировать представление о том, что клетка – главный структурный и функциональный элемент организма;

    продолжить формировать умения распознавать структурные компоненты животной клетки на микропрепаратах, таблицах и т.д.;

    развивать навыки работы со световым микроскопом, готовыми микропрепаратами; развивать умение выделять главное;

    совершенствовать логическое мышление.

Ход урока:

    Орг. момент.

    Сообщение темы и цели урока.

    Изучение новой темы.

Все живые существа состоят из клеток. Давайте вспомним, что такое клетка.

Клетка – наименьшая единица строения и жизнедеятельности живых организмов . (Запись в словарь).

Как и все живые организмы, части и органы тела человека построены из клеток.

Свойства клеток :: они растут, размножаются, участвуют в обмене веществ, активно реагируют на раздражение, обладают способностью к регенерации и передаче наследственной информации.

Все клетки разнообразны по форме и размеру. Форма и размеры клеток зависят от их функции. Так, например, существуют клетки, имеющие форму двояковогнутого диска (эритроцит), или длинного волокна (нервная клетка).

По форме выделяют клетки:

С отростками

Веретенообразные

Круглые

Плоские.

Размеры клеток тела человека варьируются от 2–7 мкм (у тромбоцитов) до гигантских размеров (до 140 мкм у яйцеклетки).

Несмотря на такое разнообразие все клетки тела человека имеют единый план строения. Основные части клетки: ядро, цитоплазма и клеточная мембрана.

Отграничивает клетку от окружающей среды клеточная мембрана . Мембрана служит защитной оболочкой клетки и активно участвует в регуляции обмена веществ между клеткой и окружающей средой, а также осуществляет связь с другими клетками.

Ядро – важная часть клетки, оно содержит наследственную информацию клетки.

Цитоплазма заполняет большую часть клетки. Цитоплазма состоит из двух частей: жидкой части – гиалоплазмы и органоидов.

Органоиды – постоянные структуры клетки, выполняющие определенные функции. (запись в словарь).

Давайте более подробно рассмотрим органоиды клетки человека.

Презентация: органоиды клетки.

Заполнение таблицы «Органоиды клетки» (работа с учебником)

Эндоплазматическая сеть

А)гранулярная (шероховатая)

Б) агранулярная (гладкая)

Система трубочек

На поверхности – рибосомы

Гладкая поверхность

Синтез белка

Синтез гликогена и жиров

Рибосомы

Самые маленькие органоиды округлой формы

Образование белка

Аппарат Гольджи

Трубочки и цистерны

Накопление и транспортировка веществ

Митохондрии

Состоит из двух мембран, внутренняя образует складки

Образование энергии (АТФ)

Лизосомы

Округлые тельца

Расщепление веществ

    Выполнение лабораторной работы «Строеиие клетки» ( в раб. тетр. зад.20 на стр. 18)

Работа в парах, учащиеся рассматривают микропрепараты клеток эпителиальной ткани, соединительной ткани (клеток крови), нервной клетки, мышечной ткани.

    Закрепление.

    1. Выполнение интерактивного задания с

      Определите органоиды клетки (рисунок).

    Подведение итога урока.

    Сообщение домашнего задания.

Клеточное строение растительного организма

На заре развития жизни на Земле все клеточные формы были представлены бактериями. Они всасывали органические вещества, растворенные в первичном океане, через поверхность тела.

Со временем некоторые бактерии приспособились производить органические вещества из неорганических. Для этого они использовали энергию солнечного света. Возникла первая экологическая система, в которой эти организмы были производителями. В результате этого в атмосфере Земли появился кислород, выделяемый этими организмами. С его помощью можно из той же самой пищи получить гораздо больше энергии, а добавочную энергию использовать на усложнение строения тела: разделение тела на части.

В природе существуют как одноклеточные растения, так и многоклеточные. Например, в подводном мире можно встретить одноклеточные водоросли, которые имеют все функции присущие живому организму.

Многоклеточная особь - это не просто набор клеток, а единый организм, способный образовывать различные ткани, органы, которые взаимодействуют друг с другом.

Строение растительной клетки у всех растений одинаковое и состоит из одних и тех же компонентов. Её состав следующий:

оболочка (пластинка, межклетник, плазмодесмы и плазмолеммы, тонопласт);

вакуоли;

цитоплазма (митохондрии; хлоропласты и другие органоиды);

ядро (ядерная оболочка, ядрышко, хроматин).

Рис. 1. Строение клетки растения.

Протоплазма — это живое вещество организма; в ней протекают сложнейшие реакции обмена, характерные для жизни.

В протоплазме находится большое количество мембран-пленок, в образовании которых большую роль играют соединения белков с фосфатидами (жироподобными веществами). Благодаря наличию мембран у протоплазмы имеются огромные внутренние поверхности, на которых и протекают процессы адсорбции (поглощения) и десорбции (выделения) веществ и их передвижение, происходящие с большой скоростью.

Большое количество мембран, разделяющих содержимое клетки, позволяет различным веществам, находящимся в клетке, не перемешиваться и передвигаться одновременно в противоположных направлениях.

Однако физико-химические свойства мембран непостоянны; они непрерывно изменяются в зависимости от внутренних и внешних условий, что дает возможность саморегулирования биохимических процессов.

Очень сложен. Она состоит из органических и неорганических соединений, находящихся как в коллоидном, так и в растворенном состоянии.

Удобным объектом для изучения химического состава протоплазмы является плазмодий фикомицетов, представляющий собой голую, лишенную оболочки протоплазму.

Химический состав протоплазмы высших растений близок к приведенному выше, но он может изменяться в зависимости от вида, возраста и органа растения.

В протоплазме содержится до 80% воды (в протоплазме покоящихся семян — 5—15%). Она пропитывает всю коллоидную систему протоплазмы, являясь ее структурным элементом. В протоплазме все время происходят химические реакции, для протекания которых необходимо, чтобы реагирующие соединения были в растворе.

Основной частью протоплазмы является цитоплазма , представляющая собой полужидкое содержимое клетки и заполняющее ее внутреннее пространство.

В цитоплазме расположены ядро, пластиды, митохондрии (хондриосомы), рибосомы и аппарат Гольджи.

Наружная мембрана цитоплазмы, граничащая с клеточной оболочкой, называется плазмалеммой. Плазмалемма легко пропускает воду и многие ионы, но задерживает крупные молекулы.

На границе цитоплазмы с вакуолью тоже образуется мембрана, называемая тонопластом.

В цитоплазме расположена эндоплазматическая сеть, представляющая собой систему ветвящихся мембран, соединенных с наружной мембраной. Мембраны эндоплазматической сети образуют каналы и расширения, на поверхности которых и протекают все химические реакции.

Важнейшие свойства цитоплазмы — вязкость и эластичность. Вязкость цитоплазмы изменяется в зависимости от температуры: при повышении температуры вязкость уменьшается и, наоборот, при понижении — увеличивается. При большой вязкости обмен веществ в клетке снижается, при малой — возрастает.

Эластичность цитоплазмы проявляется в ее способности возвращаться к исходной форме после деформации, что указывает на определенную структуру цитоплазмы.

Цитоплазма способна к движению, которое тесно связано с окружающими условиями. Основу движения составляет сократимость белков цитоплазмы клеток. Повышение температуры ускоряет движение цитоплазмы, отсутствие кислорода останавливает его. Вероятно, движение цитоплазмы тесно связано с превращением веществ и энергии в растении.

Способность цитоплазмы реагировать на внешние условия и приспосабливаться к ним называется раздражимостью.

Наличие раздражимости характеризует живой организм. Ответная реакция цитоплазмы на воздействие температуры, света и влаги требует затраты энергии, которая выделяется в процессе дыхания. Листочки стыдливой мимозы при механическом раздражении быстро складываются, но при частом повторении раздражения перестают на него реагировать; последнее, по-видимому, объясняется недостатком энергии. Раздражимость цитоплазмы— основа всех видов движения и других явлений жизнедеятельности раст.

Ядро — важнейший и самый крупный органоид клетки. Размеры ядра зависят от вида растения и состояния клетки (у высших растений в среднем от 5 до 25 мк). Форма ядра чаще всего шаровидная, у вытянутых клеток — овальная.

Живая клетка обычно имеет только одно ядро, но у высших растений сильно вытянутые клетки (из которых образуются лубяные волокна) содержат по нескольку ядер. В молодых клетках, не имеющих вакуоли, ядро обычно занимает центральное положение, у взрослых при образовании вакуолей оно отодвигается к периферии.

Ядро представляет собой коллоидную систему, но более вязкую, чем цитоплазма. Оно отличается от цитоплазмы и по химическому составу; в ядре содержатся основные и кислые белки и различные ферменты, а также большое количество нуклеиновых кислот, дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). ДНК преобладает в ядре и обычно не содержится в цитоплазме.

Ядро отделяется от цитоплазмы тонкой оболочкой, или ядерной мембраной, в которой находятся отверстия — поры. Через поры осуществляется обмен между ядром и цитоплазмой. Под мембраной находится ядерный сок, в который погружены одно или несколько ядрышек и хромосомы. В ядрышке содержатся рибонуклеиновая кислота (РНК), которая принимает участие в синтезе белка, и фосфорсодержащие белки.

Ядро принимает участие во всех жизненных процессах клетки; при его удалении клетка отмирает.

Пластиды имеются только в растительных клетках. Они хорошо видны в обычный микроскоп, так как более плотные и иначе преломляют свет, чем цитоплазма.
Во взрослой растительной клетке различают 3 типа пластид:

хлоропласты, имеющие зеленую окраску,

хлоропласты желтые или оранжевые,

лейкопласты — бесцветные.

Размеры пластид зависят от вида растения и колеблются от 3—4 до 15—30 мк. Лейкопласты обычно мельче хлоропластов и хромопластов.

Митохондрии встречаются во всех живых клетках и расположены в цитоплазме. Форма их весьма разнообразна и изменчива, размеры 0,2—5 мк. Количество митохондрий в клетке колеблется от десятков до нескольких тысяч. Они более плотны, чем цитоплазма, и имеют иной химический состав; в них содержится 30—40% белка, 28—38% липоидов и 1 — .6% рибонуклеиновой кислоты.

Митохондрии передвигаются в клетке вместе с цитоплазмой, но в некоторых клетках, по-видимому, они способны и к самостоятельному движению. Роль митохондрий в обмене веществ клетки очень велика.

Митохондрии являются центрами, в которых происходит дыхание и образование макроэргических связей, заключенных в аденозинтрифосфорной кислоте (АТФ) и имеющих большой запас энергии (стр. 70, 94—96).

Освобождение и перенос образующейся энергии происходят с участием большого числа ферментов, находящихся в митохондриях.

В цитоплазме находится аппарат Гольджи , форма которого различна в разных клетках. Он может быть в виде дисков, палочек, зернышек. Аппарат Гольджи имеет много полостей, окруженных двухслойной оболочкой. Роль его сводится к накоплению и выведению из клетки различных веществ, вырабатываемых клеткой.

Рибосомы — это субмикроскопические частицы, имеющие форму зернышек размером до 0,015 мк. Рибосомы содержат много белка (до 55%) и богаты рибонуклеиновой кислотой (35%), что составляет 65% всей рибонуклеиновой кислоты (РНК), находящейся в клетке.

В рибосомах из аминокислот синтезируются белки, что возможно только при наличии РНК. Рибосомы находятся в цитоплазме, ядре, пластидах и, возможно, в митохондриях.

Характерный признак растительной клетки — наличие прочной оболочки, которая придает клетке определенную форму и предохраняет протоплазму от повреждений. Оболочка может расти только при участии протоплазмы. Клеточная оболочка молодых клеток состоит в основном из целлюлозы (клетчатки), гемицеллюлоз и пектиновых веществ.

Молекулы целлюлозы имеют вид длинных цепочек, собранных в мицеллы, расположение которых неодинаково у разных клеток. У волокон льна, конопли и других, представляющих собой вытянутые в длину клетки, мицеллы целлюлозы расположены вдоль клетки под некоторым углом. У клеток с одинаковым диаметром мицеллы расположены по всем направлениям в виде сетки. В межмицеллярных пространствах оболочки находится вода.

В процессе жизни растительного организма в строении клеточной оболочки могут происходить изменения: оболочка может утолщаться и химически изменяться. Утолщение оболочки идет изнутри за счет жизнедеятельности протоплазмы, причем оно происходит не по всей внутренней поверхности клетки; всегда остаются не утолщенные места — поры, состоящие только из тонкой целлюлозной оболочки.

Через поры, расположенные в соседних клетках друг против друга, проходят тончайшие нити цитоплазмы — плазмодесмы, благодаря которым осуществляется обмен между клетками. Однако при очень сильном утолщении оболочек резко затрудняется обмен, в клетке остается очень мало протоплазмы, и такие клетки отмирают, например лубяные волокна льна и конопли.

В оболочке клетки могут происходить также химические изменения в зависимости от характера растительной ткани. В покровных тканях — эпидермисе — происходит кутинизация. При этом в межмицеллярных пространствах целлюлозной оболочки накапливается кутин — жироподобное вещество, трудно проницаемое для газов и воды.

Однако кутинизация не приводит к отмиранию клеток, так как отложения кутина не захватывают всей поверхности клетки. В клетках покровной ткани кутинизируется только наружная стенка, образуя так называемую кутикулу.

В оболочках клеток может также откладываться суберин — пробковое вещество, тоже жироподобное и непроницаемое для воды и газов. Отложение суберина, или опробковение, происходит быстро по всей поверхности оболочки, это нарушает обмен клетки и приводит к ее отмиранию. Может происходить и одревеснение оболочки. В этом случае она пропитывается лигнином, который приводит к остановке роста клетки, а в дальнейшем, при более сильном одревеснении, и к ее отмиранию.

Молодая растительная клетка полностью заполнена протоплазмой, но по мере роста клетки в ней появляются вакуоли, заполненные клеточным соком . Вначале вакуоли возникают в большом количестве в виде мелких капелек, затем отдельные вакуоли начинают сливаться в одну центральную и протоплазма оттесняется к стенкам клетки.

Изменения происходящие в растительной клетке при ее росте

молодая клетка,

образование вакуолей,

слияние вакуолей и оттеснение протоплазмы к оболочке.

Клеточный сок, заполняющий вакуолю, представляет собой водный раствор органических и минеральных веществ. В нем могут находиться сахара, органические и минеральные кислоты и их соли, ферменты, растворимые белки и пигменты. Весьма часто в клеточном соке встречается пигмент антоциан, окраска которого меняется в зависимости от реакции среды.

Данный видеоурок посвящен теме «Клетка: строение, химический состав и жизнедеятельность». Наука, изучающая клетку, называется цитология. На этом занятии мы обсудим строение самой маленькой структурной единицы нашего организма, узнаем ее химический состав и рассмотрим, как осуществляется ее жизнедеятельность.

Тема: Общий обзор организма человека

Урок: Клетка: строение, химический состав и жизнедеятельность

Организм человека - это огромное многоклеточное государство. Клетка - структурная единица как растительных, так животных организмов. Наука, изучающая клетки, называется .

По форме, строению и функциям клетки чрезвычайно разнообразны, но все они имеют общую структуру. А вот форма, размеры, и особенности зависят от выполняемой органом функции.

Впервые о существовании клеток сообщил в 1665 г. выдающийся английский физик, математик и микроскопист Роберт Гук.

Рис. 1.

После открытия Гука клетки обнаруживали под микроскопом у всевозможных видов животных и растений. И все они имели общий план строения. Но в световой микроскоп можно было увидеть лишь цитоплазму и ядро. Появление электронного микроскопа позволило ученым не только увидеть другие, но и рассмотреть их ультраструктуру.

1. Колесов Д.В., Маш Р.Д., Беляев И.Н. Биология 8 М.:Дрофа - с. 32, задания и вопрос 2, 3, 5.

2. Какие существуют основные части клетки?

3. Расскажите о клеточных органеллах.

4. Подготовьте сообщение об истории открытия микроскопа.



gastroguru © 2017