Нейрон физ 01.700 пользование. Как работают нейроны

Инструкция по медицинскому применению препарата

Описание фармакологического действия

Комплекс витаминов группы В. Тиамин (витамин В1) в организме человека в результате процессов фосфорилирования превращается в кокарбоксилазу, которая является коферментом многих ферментативных реакций. Тиамин играет важную роль в обмене углеводов, белков и жиров в организме. Принимает участие во всех ключевых метаболических процессах в тканях нервной системы, сердца, мышц и форменных элементов крови, в процессах проведения нервного импульса в синапсах. Рибофлавин (витамин В2) регулирует окислительно-восстановительные процессы, обмен углеводов, белков и жиров. Необходим для поддержания функции органа зрения, кожи, принимает участие в синтезе гемоглобина.

Показания к применению

Полинейропатия различной этиологии, неврит и невралгия, корешковый синдром, вызванный дегенеративными изменениями позвоночника, ишиас, люмбаго, плексит, межреберная невралгия, невралгия тройничного нерва, парез лицевого нерва; дефицит соответствующих витаминов при различных состояниях, например, при повышенной потребности в витаминах в период беременности и кормления грудью, во время менструации, при лихорадке, хронических заболеваниях, интенсивной физической нагрузке и повышенной утомляемости, в послеоперационный период, у курильщиков; нарушение абсорбции витаминов из пищеварительного тракта при печеночной недостаточности, экзокринной недостаточности поджелудочной железы, хронической диарее, нарушении питания и поражении слизистой оболочки кишечника; алиментарный дефицит витаминов при соблюдении ограничительных диет, дисбалансе питания; дефицит витаминов, вызванный лечением препаратами, увеличивающими метаболизм витаминов (противотуберкулезные, противоэпилептические и другие средства).

Форма выпуска

таблетки

Фармакодинамика

Пиридоксин (витамин В6) необходим для поддержания нормальной функции центральной и периферической нервной системы. В фосфорилированной форме является коферментом в метаболизме аминокислот (процессы декарбоксилирования, трансаминирования и др.). Принимает участие в биосинтезе нейромедиаторов: допамина, норадреналина, адреналина, серотонина, гистамина.

Цианокобаламин (витамин В12) необходим для нормального кроветворения и созревания эритроцитов. Он также принимает участие в ряде биохимических реакций, обеспечивающих жизнедеятельность организма - в перенесении метильных групп, синтезе нуклеиновых кислот, белка, в обмене аминокислот, углеводов, липидов. Витамин В12 влияет на метаболические процессы в нервной системе (синтез РНК, ДНК, миелина, на липидный состав цереброзидов и фосфолипидов). Коферментные формы цианокобаламина - метилкобаламин и аденозилкобаламин - необходимы для процессов репликации и роста клеток.

Компоненты препарата относятся к водорастворимым витаминам, что исключает возможность их кумуляции в организме.

Фармакокинетика

Тиамин и пиридоксин абсорбируются в верхних отделах ЖКТ. Абсорбция цианокобаламина обусловлена наличием внутреннего фактора в желудке и верхних отделах кишечника, в дальнейшем транспорт цианокобаламина в ткани осуществляется транспортным белком транскобаламином II. Тиамин, пиридоксин и цианокобаламин метаболизируются в печени. Рибофлавин в организме превращается в кофермент - флавин мононуклеотид, а затем в другой кофермент - флавин адениндинуклеотид. Приблизительно 60% метаболитов связываются с белками плазмы крови.

Тиамин и пиридоксин выводятся с мочой (8–10% в неизмененном состоянии). При передозировке значительно увеличивается выведение тиамина и пиридоксина через кишечник. Витамин В12 выделяется с желчью и вступает в цикл энтерогепатической рециркуляции, часть принятой дозы экскретируется с мочой, большая часть - на протяжении первых 8 ч после приема. Однако с мочой выводится только незначительное количество принятого внутрь витамина (6–30%). Витамин В12 проникает через плаценту и выделяется с грудным молоком. Рибофлавин выводится с мочой, частично в виде метаболита.

Противопоказания к применению

Повышенная чувствительность к компонентам препарата, одновременное лечение леводопой

Побочные действия

Способ применения и дозы

Передозировка

Возможны симптомы гипервитаминоза: сухость кожи, зуд, крапивница.

Взаимодействия с другими препаратами

Употребление алкоголя, применение пероральных контрацептивов, мочегонных препаратов может снизить уровень тиамина. Целесообразен дополнительный прием препаратов, содержащих магний, поскольку последний необходим для преобразования тиамина в его активную форму. Витамин В6 нельзя назначать пациентам, которые принимают леводопу, поскольку витамин снижает эффективность противопаркинсонического средства. Витамин В6 может повысить внутриклеточный уровень магния и цинка. Снижают уровень пиридоксина и уменьшают его эффект пероральные контрацептивы, изониазид, пенициллин, теофиллин, циклосерин. Пиридоксин может снижать концентрацию противосудорожных препаратов в крови, например, фенитоина, фенобарбитала.

Уровень витамина В12 в крови могут снижать закись азота, общие анестетики, противоэпилептические препараты и алкоголь.

Меры предосторожности при приеме

Препарат не следует назначать до установления диагноза ввиду возможности появления скрытых симптомов подострой дегенерации спинного мозга

Условия хранения

В защищенном от света месте при температуре 15–25 °С.

** Справочник лекарств предназначен исключительно для ознакомительных целей. Для получения более полной информации просим Вас обращаться к аннотации производителя. Не занимайтесь самолечением; перед началом применения препарата Нейрон Вы должны обратиться к врачу. EUROLAB не несет ответственности за последствия, вызванные использованием размещенной на портале информации. Любая информация на сайте не заменяет консультации врача и не может служить гарантией положительного эффекта лекарственного средства.

Вас интересует препарат Нейрон? Вы хотите узнать более детальную информацию или же Вам необходим осмотр врача? Или же Вам необходим осмотр? Вы можете записаться на прием к доктору – клиника Euro lab всегда к Вашим услугам! Лучшие врачи осмотрят Вас, проконсультируют, окажут необходимую помощь и поставят диагноз. Вы также можете вызвать врача на дом . Клиника Euro lab открыта для Вас круглосуточно.

** Внимание! Информация, представленная в данном справочнике лекарств, предназначена для медицинских специалистов и не должна являться основанием для самолечения. Описание препарата Нейрон приведено для ознакомления и не предназначено для назначения лечения без участия врача. Пациентам необходима консультация специалиста!


Если Вас интересуют еще какие-нибудь лекарственные средства и медикаменты, их описания и инструкции по применению, информация о составе и форме выпуска, показания к применению и побочные эффекты, способы применения, цены и отзывы о лекарственных препаратах или же у Вас есть какие-либо другие вопросы и предложения – напишите нам , мы обязательно постараемся Вам помочь.

Комплекс витаминов группы В. Тиамин (витамин В1) в организме человека в результате процессов фосфорилирования превращается в кокарбоксилазу, которая является коферментом многих ферментативных реакций. Тиамин играет важную роль в обмене углеводов, белков и жиров в организме. Принимает участие во всех ключевых метаболических процессах в тканях нервной системы, сердца, мышц и форменных элементов крови, в процессах проведения нервного импульса в синапсах. Рибофлавин (витамин В2) регулирует окислительно-восстановительные процессы, обмен углеводов, белков и жиров. Необходим для поддержания функции органа зрения, кожи, принимает участие в синтезе гемоглобина.

Показания и дозировка:

Полинейропатия различной этиологии, неврит и невралгия, корешковый синдром, вызванный дегенеративными изменениями позвоночника, ишиас, люмбаго, плексит, межреберная невралгия, невралгия тройничного нерва, парез лицевого нерва; дефицит соответствующих витаминов при различных состояниях, например, при повышенной потребности в витаминах в период беременности и кормления грудью, во время менструации, при лихорадке, хронических заболеваниях, интенсивной физической нагрузке и повышенной утомляемости, в послеоперационный период, у курильщиков; нарушение абсорбции витаминов из пищеварительного тракта при печеночной недостаточности, экзокринной недостаточности поджелудочной железы, хронической диарее, нарушении питания и поражении слизистой оболочки кишечника; алиментарный дефицит витаминов при соблюдении ограничительных диет, дисбалансе питания; дефицит витаминов, вызванный лечением препаратами, увеличивающими метаболизм витаминов (противотуберкулезные, противоэпилептические и другие средства).

Назначают взрослым - по 1 таблетке 1–3 раза в сутки после еды на протяжении 30 дней; детям в возрасте от 3 лет - по 1 таблетке 1 раз в сутки после еды на протяжении 30 дней. При необходимости курс повторяют.

Передозировка:

Возможны симптомы гипервитаминоза: сухость кожи, зуд, крапивница.

Побочные эффекты:

В единичных случаях - тошнота, тахикардия, кожные проявления в виде крапивницы и зуда. При приеме в рекомендуемых дозах побочные эффекты маловероятны.

Противопоказания:

Повышенная чувствительность к компонентам препарата, одновременное лечение леводопой.

Можно использовать во время беременности и кормления грудью.

Взаимодействие с другими лекарствами и алкоголем:

Употребление алкоголя, применение пероральных контрацептивов, мочегонных препаратов может снизить уровень тиамина. Целесообразен дополнительный прием препаратов, содержащих магний, поскольку последний необходим для преобразования тиамина в его активную форму. Витамин В6 нельзя назначать пациентам, которые принимают леводопу, поскольку витамин снижает эффективность противопаркинсонического средства. Витамин В6 может повысить внутриклеточный уровень магния и цинка. Снижают уровень пиридоксина и уменьшают его эффект пероральные контрацептивы, изониазид, пенициллин, теофиллин, циклосерин. Пиридоксин может снижать концентрацию противосудорожных препаратов в крови, например, фенитоина, фенобарбитала.

Экология жизни. Наука и открытия: Человек освоил морские глубины и воздушные просторы, проник в тайны космоса и земных недр. Он научился противостоять многим болезням

Человек освоил морские глубины и воздушные просторы, проник в тайны космоса и земных недр. Он научился противостоять многим болезням и стал жить дольше. Он пытается манипулировать генами, «выращивать» органы для трансплантации и путем клонирования «творить» живых существ.

Но для него по-прежнему остается величайшей загадкой, как функционирует его собственный мозг, как с помощью обычных электрических импульсов и небольшого набора нейромедиаторов нервная система не только координирует работу миллиардов клеток организма, но и обеспечивает возможность познавать, мыслить, запоминать, испытывать широчайшую гамму эмоций.

На пути к постижению этих процессов человек должен, прежде всего, понять, как функционируют отдельные нервные клетки (нейроны).

Величайшая загадка - как функционирует мозг

Живые электросети

По приблизительным оценкам, в нервной системе человека более 100 млрд нейронов . Все структуры нервной клетки ориентированы на выполнение важнейшей для организма задачи – получение, переработка, проведение и передача информации, закодированной в виде электрических или химических сигналов (нервных импульсов).

Нейрон состоит из тела диаметром от 3 до 100 мкм, содержащего ядро, развитый белок-синтезирующий аппарат и другие органеллы, а также отростков: одного аксона, и нескольких, как правило, ветвящихся, дендритов. Длина аксонов обычно заметно превосходит размеры дентритов, в отдельных случаях достигая десятков сантиметров и даже метров.

Например, гигантский аксон кальмараимеет толщину около 1 мм и несколько метров в длину; экспериментаторы не преминули воспользоваться такой удобной моделью, и опыты именно с нейронами кальмаров послужили выяснению механизма передачи нервных импульсов.

Снаружи нервная клетка окружена оболочкой (цитолеммой), которая не только обеспечивает обмен веществ между клеткой и окружающей средой, но также способна проводить нервный импульс.

Дело в том, что между внутреннней поверхностью мембраны нейрона и внешней средой постоянно поддерживается разность электрических потенциалов. Это происходит благодаря работе так называемых «ионных насосов» – белковых комплексов, осуществляющих активный транспорт положительно заряженных ионов калия и натрия через мембрану.

Такой активный перенос, а также постоянно протекающая пассивная диффузия ионов через поры в мембране обуславливают в покое отрицательный относительно внешней среды заряд с внутренней стороны мембраны нейрона.

Если раздражение нейрона превышает определенную пороговую величину, то в точке стимуляции возникает серия химических и электрических изменений (активное поступление ионов натрия в нейрон и кратковременное изменение заряда с внутренней стороны мембраны с отрицательного на положительный), которые распространяются по всей нервной клетке.

В отличие от простого электрического разряда, который из-за сопротивления нейрона будет постепенно ослабевать и сумеет преодолеть лишь короткое расстояние, нервный импульс в процессе распространения постоянно восстанавливается .

Основными функциями нервной клетки являются:

  • восприятие внешних раздражений (рецепторная функция),
  • их переработка (интегративная функция),
  • передача нервных влияний на другие нейроны или различные рабочие органы (эффекторная функция).

По дендритам – инженеры назвали бы их «приемниками» – импульсы поступают в тело нервной клетки, а по аксону – «передатчику» – идут от ее тела к мышцам, железам или другим нейронам.

В зоне контакта

Аксон имеет тысячи ответвлений, которые тянутся к дендритам других нейронов. Зона функционального контакта аксонов и дендритов называется синапсом .

Чем больше синапсов на нервной клетке, тем больше воспринимается различных раздражений и, следовательно, шире сфера влияний на ее деятельность и возможность участия нервной клетки в разнообразных реакциях организма. На телах крупных мотонейронов спинного мозга может насчитываться до 20 тыс синапсов.

В синапсе происходит преобразование электрических сигналов в химические и обратно. Передача возбуждения осуществляется с помощью биологически активных веществ – нейромедиаторов (ацетилхолина, адреналина, некоторых аминокислот, нейропептидов и др.). О ни содержатся в особых пузырьках, находящихся в окончаниях аксонов – пресинаптической части.

Когда нервный импульс достигает пресинаптической части, происходит выброс нейромедиаторов в синаптическую щель, они связываются с рецепторами, расположенными на теле или отростках второго нейрона (постсинаптической части), что приводит к генерации электрического сигнала – постсинаптического потенциала.

Величина электрического сигнала прямо пропорциональна количеству нейромедиатора.

Одни синапсы вызывают деполяризацию нейрона, другие – гиперполяризацию; первые являются возбуждающими, вторые – тормозящими.

После прекращения выделения медиатора происходит удаление его остатков из синаптической щели и возвращение рецепторов постсинаптической мембраны в исходное состояние. Результат суммации сотен и тысяч возбуждающих и тормозных импульсов, одновременно стекающихся к нейрону, определяет, будет ли он в данный момент генерировать нервный импульс.

Нейрокомпьютеры

Попытка смоделировать принципы работы биологических нейронных сетей привела к созданию такого устройства переработки информации как нейрокомпьютер .

В отличие от цифровых систем, представляющих собой комбинации процессорных и запоминающих блоков, нейропроцессоры содержат память, распределенную в связях (своего рода синапсах) между очень простыми процессорами, которые формально могут быть названы нейронами.

Нейрокомпьютеры не программируют в традиционном смысле этого слова, а «обучают», настраивая эффективность всех «синаптических» связей между составляющими их «нейронами».

Основными сферами применения нейрокомпьютеров их разработчики видят:

  • распознавание визуальных и звуковых образов;
  • экономическое, финансовое, политическое прогнозирование;
  • управление в реальном времени производственными процессами, ракетами, самолетами;
  • оптимизация при конструировании технических устройств и т.д.

«Голова – предмет темный…»

Нейроны можно разбить на три большие группы:

  • рецепторные,
  • промежуточные,
  • эффекторные.

Рецепторные нейроны обеспечивают ввод в мозг сенсорной информации. Они трансформируют сигналы, поступающие на органы чувств (оптические сигналы в сетчатке глаза, акустические – в ушной улитке, обонятельные – в хеморецепторах носа и др.), в электрическую импульсацию своих аксонов.

Промежуточные нейроны осуществляют обработку информации, получаемой от рецепторов, и генерируют управляющие сигналы для эффекторов. Нейроны этой группы образуют центральную нервную систему (ЦНС).

Эффекторные нейроны передают приходящие на них сигналы исполнительным органам. Результат деятельности нервной системы – та или иная активность, в основе которой лежит сокращение или расслабление мышц либо секреция или прекращение секреции желез. Именно с работой мышц и желез связан любой способ нашего самовыражения.

Если принципы функционирования рецепторных и эффекторных нейронов более или менее понятны ученым, то промежуточный этап, на котором организм «переваривает» поступившую информацию и принимает решение о том, как на нее отреагировать, понятен лишь на уровне простейших рефлекторных дуг.

В большинстве же случаев нейрофизиологический механизм формирования тех или иных реакций остается загадкой. Не даром в научно-популярной литературе головной мозг человека часто сравнивают с «черным ящиком».

«…В вашей голове живут 30 млрд нейронов, хранящих ваши знания, навыки, накопленный жизненный опыт. После 25 лет размышлений данный факт кажется мне не менее поразительным, чем раньше. Тончайшая пленка, состоящая из нервных клеток, видит, чувствует, творит наше мировоззрение. Это просто невероятно! Наслаждение теплотой летнего дня и смелые мечты о будущем – все создается этими клетками… Ничего другого не существует: никакой магии, никакого специального соуса, только нейроны, исполняющие информационный танец,» – писал в своей книге «Об интеллекте» известнейший разработчик компьютеров, основатель Редвудского института нейрологии (США) Джефф Хокинс.

Уже более полувека тысячи ученых-нейрофизиологов во всем мире пытаются понять хореографию этого «информационного танца», однако на сегодня известны лишь его отдельные фигуры и па, не позволяющие создать универсальную теорию функционирования головного мозга.

Следует отметить, что многие работы в области нейрофизиологии посвящены так называемой «функциональной локализации» – выяснению того, какой нейрон, группа нейронов или целая область мозга активируется в тех или иных ситуациях.

На сегодня накоплен огромный массив информации о том, какие нейроны у человека, крысы, обезьяны избирательно активируются при наблюдении различных объектов, вдыхании феромонов, прослушивании музыки, разучивании стихотворений и т.д.

Правда, иногда подобные опыты кажутся несколько курьезными. Так, еще в 70-е годы прошлого века одним из исследователей в мозге у крысы были обнаружены «нейроны зеленого крокодильчика»: эти клетки активировались, когда бегущее по лабиринту животное среди прочих предметов натыкалось на уже знакомую ему игрушку маленького зеленого крокодильчика.

А другим ученым позднее в мозге у человека был локализован нейрон, «реагирующий» на фотографию президента США Била Клинтона.

Все эти данные подтверждают теорию о том, что нейроны в головном мозге специализированы , однако ни в коей мере не объясняют, почему и каким образом происходит эта специализация.

Лишь в общих чертах понятны ученым нейрофизиологические механизмы обучения и памяти. Предполагается, что в процессе запоминания информации происходит формирование новых функциональных контактов между нейронами коры головного мозга.

Иными словами, нейрофизиологическим «следом» памяти являются синапсы. Чем больше возникает новых синапсов, тем «богаче» память индивидуума. Типичная клетка в коре головного мозга образует несколько (до 10) тысяч синапсов. С учетом общего числа нейронов коры получается, что всего здесь могут сформироваться сотни миллиардов функциональных контактов!

Под влиянием каких-либо ощущений, мыслей или эмоций происходит припоминание – возбуждение отдельных нейронов активизирует весь ансамбль, ответственный за хранение той или иной информации.

В 2000 г шведскому фармакологу Арвиду Карлссону и американским нейробиологам Полу Грингарду и Эрику Кенделу была присуждена Нобелевская премия по физиологии и медицине за открытия, касающиеся «передачи сигналов в нервной системе».

Ученые продемонстрировали, что память большинства живых существ работает благодаря действию так называемых нейротрансмиттеров дофамина, норадреналина и серотонина , эффект которых в отличие от классических нейромедиаторов развивается не за миллисекунды, а за сотни миллисекунд, секунды и даже часы. Именно этим и обусловлено их длительное, модулирующее влияние на функции нервных клеток, их роль в управлении сложными состояниями нервной системы – воспоминаниями, эмоциями, настроениями.

Следует также отметить, что величина сигнала, генерируемого на постсинаптической мембране, может быть различной даже при одинаковой величине исходного сигнала, достигшего пресинаптической части. Эти различия определяет так называемая эффективность, или вес, синапса, который может изменяться в процессе функционирования межнейронного контакта.

По мнению многих исследователей, изменение эффективности синапсов также играет немаловажную роль в работе памяти. Возможно, часто используемая человеком информация хранится в нейронных сетях, связанных высокоэффективными синапсами, и поэтому быстро и легко «вспоминается». В то же время, синапсы, участвующие в хранении второстепенных, редко «извлекаемых» данных, по-видимому, характеризуются низкой эффективностью.

А все-таки они восстанавливаются!

Одна из наиболее волнующих с медицинской точки зрения проблем нейробиологии – возможность регенерации нервной ткани . Известно, что перерезанные или поврежденные волокна нейронов периферической нервной системы, окруженные неврилеммой (оболочкой из специализированных клеток), могут регенерировать, если тело клетки сохранилось в целости. Ниже места перерезки неврилемма сохраняется в виде трубчатой структуры, и та часть аксона, которая осталась связанной с телом клетки, растет по этой трубке, пока не достигнет нервного окончания. Таким образом восстанавливается функция поврежденного нейрона.

Аксоны в ЦНС не окружены неврилеммой и поэтому, по-видимому, не способны вновь прорастать к месту прежнего окончания.

В то же время, до недавнего времени нейрофизиологи считали, что в течение жизни человека новые нейроны в ЦНС не образуются.

«Нервные клетки не восстанавливаются!», – предостерегали нас ученые. Предполагалось, что поддержание нервной системы в «рабочем состоянии» даже при серьезных заболеваниях и травмах происходит благодаря ее исключительной пластичности: функции погибших нейронов берут на себя их оставшиеся в живых «коллеги», которые увеличиваются в размерах и формируют новые связи.

Высокую, но не беспредельную эффективность подобной компенсации можно проиллюстрировать на примере болезни Паркинсона, при которой происходит постепенное отмирание нейронов. Оказывается, пока в головном мозге не погибнет около 90% нейронов, клинические симптомы заболевания (дрожание конечностей, неустойчивая походка, слабоумие) не проявляются, то есть человек выглядит практически здоровым. Получается, что одна живая нервная клетка может функционально заменить девять погибших!

В настоящее время доказано, что в головном мозге взрослых млекопитающих образование новых нервных клеток (нейрогенез) все же происходит. Еще в 1965 г было показано, что новые нейроны регулярно появляются у взрослых крыс в гиппокампе – области мозга отвечающей за ранние фазы обучения и памяти.

Спустя 15 лет ученые показали, что в мозге птиц новые нервные клетки появляются на протяжении всей жизни. Однако исследования мозга взрослых приматов на предмет нейрогенеза не давали обнадеживающих результатов.

Лишь около 10 лет назад американские ученые разработали методику, которая доказала, что в мозге обезьян в течение всей жизнииз нейрональных стволовых клеток продуцируются новые нейроны. Исследователи вводили животным специальное вещество-метку (бромдиоксиуридин), которое включалось в ДНК только делящихся клеток.

Так было обнаружено, что новые клетки начинали размножаться в субвентрикулярной зоне и уже оттуда мигрировали в кору, где и созревали до взрослого состояния. Новые нейроны обнаруживались в зонах головного мозга, связанных с когнитивными функциями, и не возникали в зонах, реализующих более примитивный уровень анализа.

В связи с этим ученые предположили, что новые нейроны могут быть важны для процесса обучения и памяти .

В пользу данной гипотезы говорит также следующее: большой процент новых нейронов гибнет в первые недели после того, как они родились; однако в тех ситуациях, когда происходит постоянное обучение, доля выживших нейронов значительно выше, чем тогда, когда они «не востребованы» – когда животное лишено возможности образовывать новый опыт.

На сегодня установлены универсальные механизмы гибели нейронов при различных заболеваниях:

1) повышение уровня свободных радикалов и окислительное повреждение мембран нейронов;

2) нарушение деятельности митохондрий нейронов;

3) неблагоприятное действие избытка возбуждающих нейротрансмиттеров глутамата и аспартата, приводящее к гиперактивации специфических рецепторов, избыточному накоплению внутриклеточного кальция, развитию окислительного стресса и гибели нейрона (феномен эксайтотоксичности).

Исходя из этого, в качестве лекарственных средств – нейропротекторов в неврологии используют:

  • препараты с антиоксидантными свойствами (витамины Е и С, др.),
  • корректоры тканевого дыхания (коэнзим Q10, янтарная кислота, рибофлавини, др),
  • а также блокаторы рецепторов глутамата (мемантин, др.).

Примерно в то же время была подтверждена возможность появления новых нейронов из стволовых клеток в головном мозге взрослого человека: патологоанатомическое исследование пациентов, получавших при жизни бромдиоксиуридин с терапевтической целью, показало, что нейроны, содержащие данное вещество-метку, обнаруживаются практически во всех отделах мозга, включая кору больших полушарий.

Этот феномен всесторонне исследуется с целью лечения различных нейродегенеративных заболеваний, прежде всего болезней Альцгеймера и Паркинсона, ставших настоящим бичом для «стареющего» населения развитых стран.

В экспериментах для трансплантации используют как нейрональные стволовые клетки, которые и у эмбриона, и у взрослого человека располагаются вокруг желудочков головного мозга, так и эмбриональные стволовые клетки, способные превращаться практически в любые клетки организма.

К сожалению, на сегодняшний день врачи не могут разрешить основную проблему, связанную с пересадкой нейрональных стволовых клеток: их активное размножение в организме реципиента в 30-40% случаев приводит к образованию злокачественных опухолей.

Несмотря на это, специалисты не теряют оптимизма и называют трансплантацию стволовых клетокодним из наиболее перспективных подходов в терапии нейродегенеративных заболеваний. опубликовано . Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта .

С моим видением того как работает мозг и каковы возможные пути создания искусственного интеллекта. За прошедшее с тех пор время удалось существенно продвинуться вперед. Что-то получилось глубже понять, что-то удалось смоделировать на компьютере. Что приятно, появились единомышленники, активно участвующие в работе над проектом.

В настоящем цикле статей планируется рассказать о той концепции интеллекта над которой мы сейчас работаем и продемонстрировать некоторые решения, являющиеся принципиально новыми в сфере моделирования работы мозга. Но чтобы повествование было понятным и последовательным оно будет содержать не только описание новых идей, но и рассказ о работе мозга вообще. Какие-то вещи, особенно в начале, возможно покажутся простыми и общеизвестными, но я бы советовал не пропускать их, так как они во многом определяют общую доказательность повествования.

Общее представление о мозге

Нервные клетки, они же нейроны, вместе со своими волокнами, передающими сигналы, образуют нервную систему. У позвоночных основная часть нейронов сосредоточена в полости черепа и позвоночном канале. Это называется центральной нервной системой. Соответственно, выделяют головной и спинной мозг как ее составляющие.

Спинной мозг собирает сигналы от большинства рецепторов тела и передает их в головной мозг. Через структуры таламуса они распределяются и проецируются на кору больших полушарий головного мозга.

Кроме больших полушарий обработкой информации занимается еще и мозжечок, который, по сути, является маленьким самостоятельным мозгом. Мозжечок обеспечивает точную моторику и координацию всех движений.

Зрение, слух и обоняние обеспечивают мозг потоком информации о внешнем мире. Каждая из составляющих этого потока, пройдя по своему тракту, также проецируется на кору. Кора – это слой серого вещества толщиной от 1.3 до 4.5 мм, составляющий наружную поверхность мозга. За счет извилин, образованных складками, кора упакована так, что занимает в три раза меньшую площадь, чем в расправленном виде. Общая площадь коры одного полушария – приблизительно 7000 кв.см.

В итоге все сигналы проецируются на кору. Проекция осуществляется пучками нервных волокон, которые распределяются по ограниченным областям коры. Участок, на который проецируется либо внешняя информация, либо информация с других участков мозга образует зону коры. В зависимости от того, какие сигналы на такую зону поступают, она имеет свою специализацию. Различают моторную зону коры, сенсорную зону, зоны Брока, Вернике, зрительные зоны, затылочную долю, всего около сотни различных зон.




В вертикальном направлении кору принято делить на шесть слоев. Эти слои не имеют четких границ и определяются по преобладанию того или иного типа клеток. В различных зонах коры эти слои могут быть выражены по-разному, сильнее или слабее. Но, в общем и целом, можно говорить о том, что кора достаточно универсальна, и предполагать, что функционирование разных ее зон подчиняется одним и тем же принципам.


Слои коры

По афферентным волокнам сигналы поступают в кору. Они попадают на III, IV уровень коры, где распределяются по близлежащим к тому месту, куда попало афферентное волокно, нейронам. Большая часть нейронов имеет аксонные связи в пределах своего участка коры. Но некоторые нейроны имеют аксоны, выходящие за ее пределы. По этим эфферентным волокнам сигналы идут либо за пределы мозга, например, к исполнительным органам, или проецируются на другие участки коры своего или другого полушария. В зависимости от направления передачи сигналов эфферентные волокна принято делить на:

  • ассоциативные волокна, которые связывают отдельные участки коры одного полушария;
  • комиссуральные волокна, которые соединяют кору двух полушарий;
  • проекционные волокна, которые соединяют кору с ядрами низших отделов центральной нервной системы.
Если взять направление, перпендикулярное поверхности коры, то замечено, что нейроны, располагающиеся вдоль этого направления, реагируют на схожие стимулы. Такие вертикально расположенные группы нейронов, принято называть кортикальными колонками.

Можно представить себе кору головного мозга как большое полотно, раскроенное на отдельные зоны. Картина активности нейронов каждой из зон кодирует определенную информацию. Пучки нервных волокон, образованные аксонами, выходящими за пределы своей зоны коры, формируют систему проекционных связей. На каждую из зон проецируется определенная информация. Причем на одну зону может поступать одновременно несколько информационных потоков, которые могут приходить как с зон своего, так и противоположного полушария. Каждый поток информации похож на своеобразную картинку, нарисованную активностью аксонов нервного пучка. Функционирование отдельной зоны коры – это получение множества проекций, запоминание информации, ее переработка, формирование собственной картины активности и дальнейшая проекция информации, получившейся в результате работы этой зоны.

Существенный объем мозга – это белое вещество. Оно образовано аксонами нейронов, создающими те самые проекционные пути. На рисунке ниже белое вещество можно увидеть как светлое заполнение между корой и внутренними структурам мозга.


Распределение белого вещества на фронтальном срезе мозга

Используя диффузную спектральную МРТ, удалось отследить направление отдельных волокон и построить трехмерную модель связанности зон коры (проект Connectomics (Коннектом)).

Представление о структуре связей хорошо дают рисунки ниже (Van J. Wedeen, Douglas L. Rosene, Ruopeng Wang, Guangping Dai, Farzad Mortazavi, Patric Hagmann, Jon H. Kaas, Wen-Yih I. Tseng, 2012).


Вид со стороны левого полушария


Вид сзади


Вид справа

Кстати, на виде сзади отчетливо видна асимметрия проекционных путей левого и правого полушария. Эта асимметрия во многом и определяет различия в тех функциях, которые приобретают полушария по мере их обучения.

Нейрон

Основа мозга – нейрон. Естественно, что моделирование мозга с помощью нейронных сетей начинается с ответа на вопрос, каков принцип его работы.

В основе работы реального нейрона лежат химические процессы. В состоянии покоя между внутренней и внешней средой нейрона существует разность потенциалов – мембранный потенциал, составляющий около 75 милливольт. Он образуется за счет работы особых белковых молекул, работающих как натрий-калиевые насосы. Эти насосы за счет энергии нуклеотида АТФ гонят ионы калия внутрь, а ионы натрия - наружу клетки. Поскольку белок при этом действует как АТФ-аза, то есть фермент, гидролизующий АТФ, то он так и называется - «натрий-калиевая АТФ-аза». В результате нейрон превращается в заряженный конденсатор с отрицательным зарядом внутри и положительным снаружи.


Схема нейрона (Mariana Ruiz Villarreal)

Поверхность нейрона покрыта ветвящимися отростками – дендритами. К дендритам примыкают аксонные окончания других нейронов. Места их соединений называются синапсами. Посредством синаптического взаимодействия нейрон способен реагировать на поступающие сигналы и при определенных обстоятельствах генерировать собственный импульс, называемый спайком.

Передача сигнала в синапсах происходит за счет веществ, называемых нейромедиаторами. Когда нервный импульс по аксону поступает в синапс, он высвобождает из специальных пузырьков молекулы нейромедиатора, характерные для этого синапса. На мембране нейрона, получающего сигнал, есть белковые молекулы – рецепторы. Рецепторы взаимодействуют с нейромедиаторами.


Химический синапс

Рецепторы, расположенные в синаптической щели, являются ионотропными. Это название подчеркивает тот факт, что они же являются ионными каналами, способными перемещать ионы. Нейромедиаторы так воздействуют на рецепторы, что их ионные каналы открываются. Соответственно, мембрана либо деполяризуется, либо гиперполяризуется – в зависимости от того, какие каналы затронуты и, соответственно, какого типа этот синапс. В возбуждающих синапсах открываются каналы, пропускающие катионы внутрь клетки, - мембрана деполяризуется. В тормозных синапсах открываются каналы, проводящие анионы, что приводит к гиперполяризации мембраны.

В определенных обстоятельствах синапсы могут менять свою чувствительность, что называется синаптической пластичностью. Это приводит к тому, что синапсы одного нейрона приобретают различную между собой восприимчивость к внешним сигналам.

Одновременно на синапсы нейрона поступает множество сигналов. Тормозящие синапсы тянут потенциал мембраны в сторону накопления заряда внутри клети. Активирующие синапсы, наоборот, стараются разрядить нейрон (рисунок ниже).


Возбуждение (A) и торможение (B) ганглиозной клетки сетчатки (Николлс Дж., Мартин Р., Валлас Б., Фукс П., 2003)

Когда суммарная активность превышает порог инициации, возникает разряд, называемый потенциалом действия или спайком. Спайк – это резкая деполяризация мембраны нейрона, которая и порождает электрический импульс. Весь процесс генерации импульса длится порядка 1 миллисекунды. При этом ни продолжительность, ни амплитуда импульса не зависят от того, насколько были сильны вызвавшие его причины (рисунок ниже).


Регистрация потенциала действия ганглиозной клетки (Николлс Дж., Мартин Р., Валлас Б., Фукс П., 2003)

После спайка ионные насосы обеспечивают обратный захват нейромедиатора и расчистку синаптической щели. В течение рефрактерного периода, наступающего после спайка, нейрон не способен порождать новые импульсы. Продолжительность этого периода определяет максимальную частоту генерации, на которую способен нейрон.

Спайки, которые возникают как следствие активности на синапсах, называют вызванными. Частота следования вызванных спайков кодирует то, насколько хорошо поступающий сигнал соответствует настройке чувствительности синапсов нейрона. Когда поступающие сигналы приходятся именно на чувствительные синапсы, активирующие нейрон, и этому не мешают сигналы, приходящие на тормозные синапсы, то реакция нейрона максимальна. Образ, который описывается такими сигналами, называют характерным для нейрона стимулом.

Конечно, представление о работе нейронов не стоит излишне упрощать. Информация между некоторыми нейронами может передаваться не только спайками, но и за счет каналов, соединяющих их внутриклеточное содержимое и передающих электрический потенциал напрямую. Такое распространение называется градуальным, а само соединение называется электрическим синапсом. Дендриты в зависимости от расстояния до тела нейрона делятся на проксимальные (близкие) и дистальные (удаленные). Дистальные дендриты могут образовывать секции, работающие как полуавтономные элементы. Помимо синаптических путей возбуждения есть внесинаптические механизмы, вызывающие метаботропные спайки. Кроме вызванной активности существует еще и спонтанная активность. И наконец, нейроны мозга окружены глиальными клетками, которые также оказывают существенное влияние на протекающие процессы.

Долгий путь эволюции создал множество механизмов, которые используются мозгом в своей работе. Некоторые из них могут быть поняты сами по себе, смысл других становится ясен только при рассмотрении достаточно сложных взаимодействий. Поэтому не стоит воспринимать сделанное выше описание нейрона как исчерпывающее. Чтобы перейти к более глубоким моделям, нам необходимо сначала разобраться с «базовыми» свойствами нейронов.

В 1952 году Аланом Ллойдом Ходжкином и Эндрю Хаксли были сделаны описания электрических механизмов, которые определяют генерацию и передачу нервного сигнала в гигантском аксоне кальмара (Hodgkin, 1952). Что было оценено Нобелевской премией в области физиологии и медицины в 1963 году. Модель Ходжкина – Хаксли описывает поведение нейрона системой обыкновенных дифференциальных уравнений. Эти уравнения соответствуют автоволновому процессу в активной среде. Они учитывают множество компонент, каждая из которых имеет свой биофизический аналог в реальной клетке (рисунок ниже). Ионные насосы соответствуют источнику тока I p . Внутренний липидный слой клеточной мембраны образует конденсатор с емкостью C m . Ионные каналы синаптических рецепторов обеспечивают электрическую проводимость g n , которая зависит от подаваемых сигналов, меняющихся со временем t, и общей величины мембранного потенциала V. Ток утечки мембранных пор создает проводник g L . Движение ионов по ионным каналам происходит под действием электрохимических градиентов, которым соответствуют источники напряжения с электродвижущей силой E n и E L .


Основные компоненты модели Ходжкина - Хаксли

Естественно, что при создании нейронных сетей возникает желание упростить модель нейрона, оставив в ней только самые существенные свойства. Наиболее известная и популярная упрощенная модель – это искусственный нейрон Маккалока - Питтса, разработанный в начале 1940-х годов (Маккалох Дж., Питтс У., 1956).


Формальный нейрон Маккалока - Питтса

На входы такого нейрона подаются сигналы. Эти сигналы взвешенно суммируются. Далее к этой линейной комбинации применяется некая нелинейная функция активации, например, сигмоидальная. Часто как сигмоидальную используют логистическую функцию:


Логистическая функция

В этом случае активность формального нейрона записывается как

В итоге такой нейрон превращается в пороговый сумматор. При достаточно крутой пороговой функции сигнал выхода нейрона – либо 0, либо 1. Взвешенная сумма входного сигнала и весов нейрона – это свертка двух образов: образа входного сигнала и образа, описываемого весами нейрона. Результат свертки тем выше, чем точнее соответствие этих образов. То есть нейрон, по сути, определяет, насколько подаваемый сигнал похож на образ, записанный на его синапсах. Когда значение свертки превышает определенный уровень и пороговая функция переключается в единицу, это можно интерпретировать как решительное заявление нейрона о том, что он узнал предъявляемый образ.

Реальные нейроны действительно неким образом похожи на нейроны Маккалока - Питтса. Амплитуды их спайков не зависит от того, какие сигналы на синапсах их вызвали. Спайк, либо есть, либо его нет. Но реальные нейроны реагируют на стимул не единичным импульсом, а импульсной последовательностью. При этом частота импульсов тем выше, чем точнее узнан характерный для нейрона образ. Это означает, что если мы построим нейронную сеть из таких пороговых сумматоров, то она при статичном входном сигнале хотя и даст какой-то выходной результат, но этот результат будет далек от воспроизведения того, как работают реальные нейроны. Для того чтобы приблизить нейронную сеть к биологическому прототипу, нам понадобится моделировать работу в динамике, учитывая временные параметры и воспроизводя частотные свойства сигналов.

Но можно пойти и другим путем. Например, можно выделить обобщенную характеристику активности нейрона, которая соответствует частоте его импульсов, то есть количеству спайков за определенный промежуток времени. Если перейти к такому описанию, то можно представить нейрон как простой линейный сумматор.


Линейный сумматор

Сигналы выхода и, соответственно, входа для таких нейронов уже не являются дихатомичными (0 или 1), а выражаются некой скалярной величиной. Функция активации тогда записывается как

Линейный сумматор не стоит воспринимать как что-то принципиально иное по сравнению с импульсным нейроном, просто он позволяет при моделировании или описании перейти к более длинным временным интервалам. И хотя импульсное описание более корректно, переход к линейному сумматору во многих случаях оправдан сильным упрощением модели. Более того, некоторые важные свойства, которые трудно разглядеть в импульсном нейроне, вполне очевидны для линейного сумматора.

Наше тело состоит из бесчисленного множества клеток. Приблизительно 100.000.000 из них являются нейронами. Что такое нейроны ? Каковы функции нейронов? Вам интересно узнать, какую задачу они выполняют и что вы можете благодаря им делать? Рассмотрим это подробнее.

Функции нейронов

Вы когда-нибудь задумывались о том, как информация проходит через наше тело? Почему, если что-то причиняет нам боль, мы сразу же неосознанно одёргиваем руку? Где и как мы распознаём эту информацию? Всё это — действия нейронов. Как мы понимаем, что это холодное, а это — горячее…а это мягкое или колючее? За получение и передачу этих сигналов по нашему телу отвечают нейроны. В этой статье мы подробно расскажем о том, что такое нейрон, из чего он состоит, какова классификация нейронов и как улучшить их формирование.

Основные понятия о функциях нейронов

Прежде, чем рассказывать о том, каковы функции нейронов, необходимо дать определение того, что такое нейрон и из чего он состоит.

Вы хотите знать, как работает ваш мозг? Каковы ваши сильные и, возможно, ослабленные когнитивные функции? Присутствуют ли симптомы, свидетельствующие о наличии какого-либо расстройства? Какие способности можно улучшить? Получите ответы на все эти вопросы менее, чем за 30-40 минут, пройдя

Нейронная пластичность: CogniFit («КогниФит»)

Недостаток сна, однообразие, постоянная рутина и высокий уровень стресса приводят к замедлению нейрогенеза.

Могут ли нейроны умереть?

Конечно, и это происходит по разным причинам.

  • По программе (Апоптоз) : В детстве, когда мы развиваемся, наш мозг производит клеток больше, чем мы используем. В определённый момент все эти незадействованные клетки программируют свою гибель. Это же происходит и в старости — с нейронами, которые уже не могут получать и передавать информацию.
  • Из-за асфиксии: Нейронам, как и нам, нужен кислород. Если они перестают его получать, то погибают.
  • Из-за болезней: Альцгеймер, Паркинсон, СПИД…
  • Из-за сильных ударов по голове: серьёзные травмы вызывают гибель нейронов. Это хорошо известно, например, в мире бокса.
  • Из-за интоксикации: Употребление алкоголя и других веществ может нанести урон нейронам, и как следствие, их разрушение.

Вы подозреваете у себя или своих близких депрессию? Проверьте, присутствуют ли симптомы депрессии с помощью инновационного нейропсихологического прямо сейчас!

Выводы о нейронных функциях

Мы с вами узнали о том, что нейроны — это маленькие связные, которые передвигаются по всему нашему телу. Таким образом, функции нейронов заключаются в получении и передаче информации, как от различных структур (мышц и желез), так и от других нейронов.

Сейчас мы уже можем ответить на вопрос, который был задан в самом начале статьи: почему, если что-то причиняет нам боль, мы сразу же неосознанно одёргиваем руку? Чувствительные нейроны получают информацию о боли, а моторные нейроны в ответ посылают сигнал убрать руку.

Мы увидели, что внутри нашего тела на протяжении всей жизни, всё время, каждую секунду, проходят бесконечные информационные, коммуникационные потоки и электрические импульсы.

Также мы с вами узнали о том, что наш организм постоянно находится в процессе развития, с момента рождения до старости. Наша нейронная структура в гиппокампе также меняется, благодаря нейрогенезу и гибели нейронов.

Призываю вас вести здоровый образ жизни, развлекаться, учиться и стремиться к личностному росту. Это поможет вам сберечь нейроны, ваших маленьких почтальонов.

В статье есть ссылки на другие материалы, в которых можно подробнее прочитать информацию по той или иной теме. Если вам интересна тема Нейрогенеза, рекомендую также прочитать вот эту интересную статью о том, .Французский



gastroguru © 2017