Лазерный микроскоп. Как построить лазерный микроскоп из указки и бумаги

Двухфотонный микроскоп является разновидностью мультифотонного флуоресцентного микроскопа . Его преимущества по сравнению с конфокальным микроскопом - большая проникающая способность и низкая степень фототоксичности .

Двухфотонный микроскоп был впервые сконструирован Винфредом Денком в лаборатории В. В. Вебба в Корнеллском университете . Он скомбинировал идею двухфотонного возбуждения с лазерным сканированием.

Процесс двухфотонного возбуждения происходит следующим образом: два фотона , обладающие низкой энергией, возбуждают флюорофор (способную к флюоресценции молекулу или часть молекулы) в течение одного квантового события. Результатом этого возбуждения является последующее испускание возбужденными молекулами флюоресцентного фотона. Энергия флуоресцентного фотона больше энергии возбуждающих фотонов.

Вероятность того, что оба фотона возбуждения будут поглощены одной молекулой, очень мала. Поэтому необходим большой поток возбуждающих фотонов, который можно получить при помощи лазера, испускающего фотоны с большой частотой следования импульсов (80 МГц). Наиболее часто используемые флюорофоры имеют спектр возбуждения в промежутке 400-500 нм, в то время как длина волны возбуждающего лазера находится в промежутке 700-1000 нм (область инфракрасных волн). Если флюорофор поглотит одновременно два фотона, то он получит достаточно энергии, чтобы перейти в возбужденное состояние. Далее возбужденный флюорофор испустит один фотон (в видимой части спектра), длина волны которого зависит от типа флюорофора.

Поскольку для того, чтобы флюорофор перешёл в возбуждённое состояние, необходимо поглощение двух фотонов, вероятность испускания флюорофором вторичного фотона пропорциональна квадрату интенсивности возбуждения. Поэтому флуоресценция будет сильнее в случае, когда луч лазера четко сфокусирован, а не рассеян. Максимальная флуоресценция наблюдается в фокальном объёме (объёме, где сфокусирован луч лазера) и демонстрирует резкое уменьшение в области вне фокуса.

Конструкция

В двухфотонном микроскопе луч инфракрасного лазера сфокусирован с помощью собирающей линзы объектива . Обычно используется высокочастотный 80 МГц сапфировый лазер, испускающий импульс с длительностью 100 фемтосекунд, обеспечивающей высокую плотность фотонного потока, которая необходима для двухфотонного поглощения.

Свет, испускаемый флюоресцирующим образцом, усиливается с помощью высокочувствительного фотоумножителя . Поскольку приёмник света является одноканальным, наблюдаемая в данном фокальном объёме интенсивность света формирует один пиксел изображения. Для того чтобы получить двухмерное пиксельное изображение, производится сканирование в фокальной плоскости образца.

Преимущества и недостатки

Использование инфракрасного света для возбуждения флюорофора в исследуемых тканях имеет свои преимущества :

  • Длинные волны рассеиваются меньше, чем короткие, что обеспечивает высокое пространственное разрешение.
  • Возбуждающие фотоны имеют маленькую энергию, следовательно, они менее разрушительны для тканей (что продлевает жизнь исследуемой ткани).

Но есть и некоторые недостатки:

  • Для работы лазера требуются дорогие оптические приборы для обеспечения интенсивности импульса.
  • Двухфотонный спектр поглощения флюорофора может сильно меняться в отличие от однофотонного спектра поглощения.
  • Луч с длиной волны более 1400 нм значительно поглощается водой в живых тканях.


Конфокальный лазерный сканирующий микроскоп с уникальной оптической схемой и системой детектирования, которые позволяют получать оптические срезы с максимальной эффективностью. Вы можете работать с мультиканальной флуоресценцией вплоть до десяти красителей и использовать непрерывную спектральную детекцию во всем видимом диапазоне длин волн.

LSM 710 на инвертированном штативе микроскопа Axio Observe Z1 - это непревзойденный конфокальный микроскоп для клеточной биологии и биологии развития. Совместно с прямым штативом AxioImager или AxioEmainer - LSM 710 превращается в инструмент для работы в нейробиологии, физиологии и изучении биовзаимодействий в самом широком спектре экспериментов.

Оптическая схема предполагает использование до восьми лазерных портов и любую комбинацию лазерных линий от близкого УФ спектра до ИК. 34-канальный модуль детекции QUASAR позволяет оптимальную стратегию захвата для различных спектров излучения, без привязки к фильтрам и дихроичным зеркалам. Вы всегда можете направить любую часть спектра сигнала на любой выбранный Вами детектор.

Спектральное сканирование предполагает эксперименты с высоким разрешением и обнаружением до 10 каналов одновременно.

В сканирующем модуле LSM 710 используется передовое техническое решение: возвратный контур спектральной переработки (Spectral Recycling Loop), обеспечивающий усиление сигнала за счет многократного повторного пропускания через спектральную решетку всех неразделенных частей флуоресцентного сигнала. Коррекция плоскости поляризации части флуоресценции увеличивает суммарный эмиссионный сигнал в среднем на 15 -17 %!

Модификация LSM 710 NLO - это лазерный сканирующий микроскоп, оснащенный фемтосекундным мультифотонным лазером, генерирующим излучение высокой плотности в инфракрасной области 680-1080 нм. Благодаря свойствам такого лазера мы можем проникать на глубину до 500 мкм, при этом возбуждение происходит только внутри фокального микрообъема, менее 0,1 мкм 3 , что позволяет бережно воздействовать на живую ткань.

Технические характеристики:

  • Сканирующий модуль с двумя, тремя одноканальными высокочувствительными детекторами или с 34-х канальным спектральным детектором для быстрого параллельного захвата полного эмиссионного профиля;
  • Произвольный выбор спектрального диапазона регистрации сигнала с разрешением до 3 нм (последовательное сканирование) и 10 нм (параллельное сканирование);
  • Детектор проходящего света;
  • Независимых гальванометрических сканирующих зеркала Два;
  • Сканирующее разрешение от 4 х 1 до 6144 х 6144 пикселей;
  • Скорость сканирования - 14 х 2 скоростей сканирования; 5 рамок/сек при 512 х 512 пикселей; 0.38 мсек/линию из 512 пикселей (2619 линий/сек);
  • Сканирующее увеличение ZOOM от 0.6х до 40х с шагом 0.1х;
  • Свободное вращение на 360° сканирующей рамки;
  • Конфокальный pinhole - моторизованный конфокальный pinhole плавной регулировкой диаметра и координат;
  • Разрядность данных - 8, 12 или 16 бит;
  • Лазерные линии - 355, 405, 458, 488, 514, 543, 561, 594, 633; перестраиваемый 488-640;
  • Варианты штативов - инвертированный AxioObserver ; прямой AxioImager ; прямой с фиксированным столиком AxioExaminer .

Развитие генной инженерии, протеомики, биотехнологии, современной фармацевтики и биомедицины способствовало быстрому внедрению новых методов конфокальной микроскопии, и в настоящее время они широко используются в клеточной биологии.

Конфокальную флуоресцентную микроскопию можно рассматривать как разновидность традиционной флуоресцентной микроскопии, которая позволяет исследовать внутреннюю микроструктуру клеток, причем не только фиксированных, но и живых, идентифицировать микроорганизмы, структуры клетки и отдельные молекулы, наблюдать динамические процессы в клетках. Конфокальная флуоресцентная микроскопия в дополнение к этому обеспечила возможность трехмерного субмикронного разрешения объекта и существенно расширила возможность неразрушающего анализа прозрачных образцов. Повышение разрешающей способности достигается благодаря использованию в конфокальных микроскопах лазеров в качестве источников света и конфокальной диафрагмы для фильтрации внефокусной флуоресценции. Преимущество лазеров по сравнению с ртутными или ксеноновыми лампами заключается в монохроматичности и высокой параллельности испускаемого пучка света. Эти свойства лазерного излучения обеспечивают более эффективную работу оптической системы микроскопа, уменьшают число бликов, улучшают точность фокусировки пучка света. На образце лазер освещает не все поле зрения, как в ламповом флуоресцентном микроскопе, а фокусируется в точку. Конечно, при этом лазерный луч возбуждает флуоресценцию как в точке фокуса, так и во всех слоях образца, через которые проходит. И если эта внефокусная флуоресценция, излучаемая слоями, расположенными выше и ниже фокальной плоскости, регистрируется вместе с основным сигналом из фокуса объектива, это ухудшает разрешение оптической системы. Избавиться от внефокусной флуоресценции позволяет конфокальная диафрагма. Изменяя диаметр конфокальной диафрагмы, можно определять толщину оптического слоя вблизи фокуса лазерного луча, поэтому флуоресценция, испускаемая выше и ниже фокуса, оказывается дефокусированной на конфокальной диафрагме и не регистрируется. Благодаря этому конфокальная микроскопия обеспечивает улучшенное разрешение, в первую очередь вдоль оси Z.

Современная конфокальная микроскопия позволяет решать три основные задачи: изучение тонкой структуры клетки, колоколизации (пространственного взаиморасположения) в клетке двух или более веществ, а так же исследование динамических процессов, протекающих в живых клетках.

Благодаря улучшенному разрешению, особенно повышенному разрешению по оси Z, и возможности создавать серии «оптических» срезов, конфокальный микроскоп позволяет исследовать тонкую структуру объекта в трехмерном пространстве. Специальные программы позволяют создать из серии оптических срезов объемное изображение объекта (3D) и как бы рассматривать его под разными углами зрения, что может дать ценную информацию о форме клеток, цитоскелете, структуре ядра, хромосомах и даже локализации в них отдельных генов, а так же о взаиморасположении этих элементов.

Использование мультиспектрального (с несколькими флуорохромами) режима работы лазерного сканирующего конфокального микроскопа позволяет исследовать колоколизацию (пространственное взаиморасположение) в клетке двух или более разных веществ, например, белков, помеченных разными флуоресцентными красителями. Исследуя такие препараты в обычном флуоресцентном микроскопе, нельзя с уверенностью утверждать, находятся эти вещества рядом или одно под другим. С помощью метода оптических срезов и дальнейшей 3D-реконструкции объекта можно воссоздать объемное распределение веществ. Мультиспектральный режим так же позволяет проводить на конфокальном микроскопе исследования методом FISH.

Возможность получать временные серии изображений с высоким пространственным разрешением позволяет исследовать изменения, происходящие в клетках и их структурах во времени (4D реконструкция). Кроме того, благодаря наличию лазеров и системы сканирования можно осуществлять не только регистрацию временных изменений, но и осуществлять воздействие на клеточные структуры лазерным излучением с одновременным наблюдением протекающих процессов.

Новые методы лазерной сканирующей конфокальной микроскопии получили широкое распространение в фундаментальных науках, а также все шире применяются в практических исследованиях и диагностической медицине.

Методы конфокальной микроскопии позволяют выявить способность веществ накапливаться в цитоплазме, ядре или других структурах клетки, зарегистрировать образование метаболитов, измерить кинетику накопления и метаболизма веществ в клетке, скорость выведения веществ из клетки, сравнить интенсивность метаболизма в различных клеточных линиях и в различных условиях. Эти методы все шире применяются в исследованиях механизмов действия как канцерогенов, так и лекарственных препаратов и противоопухолевых соединений, позволяют рассчитывать их эффективные концентрации.

Анализ интенсивности и формы спектров собственной флуоресценции позволяет распознавать нормальные и воспаленные клетки, и такой метод, в частности, предложен в качестве нового способа ранней диагностики шейки матки.

Подобрав комбинацию фильтров для нескольких типов собственной флуоресценции, возможно без проведения гистохимического окрашивания и трудоемкого получения и исследования множества срезов различать злокачественные и нормальные тканевые структуры в биопсийных пробах лимфоузлов пациентов с лимфоаденопатией различного происхождения.

Методы конфокальной микроскопии широко применяются в эмбриологии и гидробиологии, ботанике, зоологии при изучении структуры гамет, развития и формирования организмов.

Конфокальная микроскопия постоянно развивается, и в практику внедряются все новые методы исследований для изучения механизмов функционирования организмов на клеточном, субклеточном и молекулярном уровнях, которые с каждым днем становятся все более востребованными в прикладных исследованиях и диагностике. Появление персонального конфокального лазерного сканирующего микроскопа FV10i позволяет расширить границы применения конфокальных методик. Микроскоп FV10i выполняет те же функции, что и высокотехнологичные исследовательские конфокальные сканирующие системы FV1000 . В компактный корпус интегрированы все основные компоненты: 4 диодных лазера, спектральный сканирующий детектор, интуитивно понятное программное обеспечение, инкубатор, моторизованный столик, антивибрационная платформа и даже «темная комната». Этот микроскоп идеален для тех, кто только начинает работать с конфокальным методиками, для тех, кто хотел бы освободить исследовательские конфокальные микроскопы от рутинных задач, для диагностических лабораторий, лабораторий с ограниченным бюджетом, для обучающих задач и случаев проведения исследований в условиях ограниченного комфорта, например, на биологических станциях.



Владельцы патента RU 2285279:

Изобретение относится к оптическим устройствам для измерения оптической разности фаз методами интерферометрии, измерения поляризации света, а также для управления интенсивностью, фазой и поляризацией излучения. Микроскоп содержит источник лазерного излучения, на пути следования луча которого последовательно установлены светоделительный элемент, сканирующая система с двумя зеркальными дефлекторами и объектив, а на пути следования луча, отраженного от исследуемого образца и светоделительного элемента, размещен приемник излучения с системой обработки сигнала. Перед светоделительным элементом установлен преобразователь поляризации излучения вкруговую, а между светоделительным элементом и сканирующей системой размещен лучеразводящий элемент, преобразующий входной пучок излучения в два пучка с ортогональными направлениями поляризации и пространственным смещением, при этом в качестве приемника излучения применен измеритель мощности компонент скрещенных поляризаций излучения. Изобретение позволяет улучшить соотношение сигнал-шум за счет применения дифференциального контраста, а также повысить чувствительность к слабым перепадам оптической плотности объектов и увеличить линейность измерения высоты профиля исследуемого объекта. 8 з.п. ф-лы, 1 ил.

Изобретение относится к оптическим устройствам для измерения оптической разности фаз методами интерферометрии, измерения поляризации света, а также для управления интенсивностью, фазой и поляризацией излучения.

Известны растровые оптические микроскопы с оптическими схемами, реализующими сканирование луча по углу без смещения в плоскости входного окна объектива в режиме на отражение (Дюков В.Г. и Кудеяров Ю.А. «Растровая оптическая микроскопия», Москва, 1991, С.134).

Этот микроскоп включает источник лазерного излучения, на выходе которого установлены расширитель и светоделительная пластина. На пути луча, прошедшего через светоделительную пластину, установлены два зеркальных дефлектора сканирующей системы и объектив, а на пути луча, отраженного от исследуемого объекта и светоделительной пластины, установлен фотоприемник. Перед фотоприемником расположен пространственный фильтр и вводимый спектральный фильтр. Между дефлекторами добавлена телецентрическая система из двух линз.

Микроскоп оснащен цифровой техникой для обработки изображений, а также видеокамерой. Такой комбинированный прибор позволяет исследовать микрообъекты в различных областях науки и техники.

Известна конфокальная система для получения изображения, содержащая сканирующий многоцветный лазер и микроскоп (патент США №5127730, US/C1 356-318, MKU 5 G 01 №21/64). Эта система позволяет с помощью фотоумножителей получить изображение, по которому можно получить представление о свойствах исследуемого образца, подвергнутого воздействию красителей.

Известен конфокальный сканирующий микроскоп (патент США №5032720, US C1 250-236, MKU 5 G 02 B 21/06), выбранный нами в качестве прототипа, который имеет сканирующую систему с двумя дефлекторами. Каждый из этих дефлекторов сканирует отклоняющие лучи во взаимно перпендикулярных плоскостях. Система зеркал расположена между дефлекторами сканирующей системы таким образом, чтобы передать луч от одного дефлектора на другой и на микроскоп с объективом. Свет, отраженный образцом, попадает на объектив, на дефлекторы и систему зеркал до момента попадания на детектор. Апертура находится перед детектором и блокирует любой луч, который выходит из точек, пространственно удаленных от лучевого пятна. Однако конфокальные лазерные микроскопы, описание в аналогах и прототипе в отдельных случаях применения имеют недостаточно высокое соотношение сигнал-шум, что, например, важно при исследовании биологических объектов.

Техническим результатом предложенного изобретения является улучшение соотношения сигнал-шум за счет применения дифференциального контраста, кроме того достигнута более высокая чувствительность к слабым перепадам оптической плотности объектов и увеличена линейность измерения высоты профиля исследуемого объекта.

Этот результат достигается усовершенствованием известного лазерного сканирующего микроскопа, содержащего источник лазерного излучения, на пути следования луча которого последовательно установлены светоделительный элемент, сканирующая система с двумя зеркальными дефлекторами и объектив, а на пути луча, отраженного от исследуемого и светоделительного элемента, размещен приемник излучения с системой обработки сигнала.

Усовершенствование заключается в том, что перед светоделительным элементом установлен преобразователь плоскополяризованного луча в луч с круговой поляризацией, а между светоделительным элементом и сканирующей системой размещен лучеразводящий элемент, преобразующий входной пучок излучения в два пучка с ортогональными направлениями поляризации и пространственным смещением, при этом в качестве приемника излучения применен измеритель мощности компонент скрещенных поляризаций излучения.

В качестве преобразователя поляризации излучения может быть использована четвертьволновая пластина для длины волны используемого излучения.

Преобразователь излучения может быть размещен в источнике лазерного излучения.

Предусмотрены также следующие усовершенствования:

Лучеразводящий элемент выполнен в виде пластины из двулучепреломляющего материала;

Измеритель мощности состоит из призмы Волластона и двух фотопримников для раздельного измерения двух компонент, скрещенных поляризаций излучения;

Между светоделительным элементом и измерителем мощности размещен телескоп с регулируемой диафрагмой, установленной в его внутреннем фокусе;

Между двумя дефлекторами сканирующей системы введен телескоп, передний и задний фокусы которого размещены на осях качания дефлекторов;

Между сканирующей системой и объективом расположен дополнительный телескоп, один из фокусов которого совпадает с осью качания размещенного рядом с ним дефлектора сканирующей системы, а второй совпадает с задним фокусом объектива;

Между источником лазерного излучения и преобразователем поляризации излучения установлена система регулировки контроля мощности источника лазерного излучения.

Сущность изобретения поясняется прилагаемым чертежом, на котором показана структурная оптическая схема лазерного сканирующего микроскопа.

Лазерный сканирующий микроскоп содержит источник лазерного излучения 1, в качестве которого могут быть использованы непрерывный газовый (например, лазер гелий-неоновый, аргоновый, криптоновый, аргон-криптоновый и другие). На пути луча газового лазера установлен пленочный поляризатор 2 (поляризационный фильтр), предназначенный для регулирования мощности излучения, призма Глана-Томсона 3 для улучшения его поляризационных характеристик и делительная пластина 4 для отщепления части луча (около 5%) с целью осуществления контроля мощности излучения с помощью фотоприемника 5.

Далее по ходу основного пучка лазера установлен преобразователь поляризации излучения, в частности четвертьволновая пластина для данной волны излучения. После преобразователя поляризации излучения установлены светоделительный элемент 8, лучеразводящий элемент 9, сканирующая система, включающая два зеркальных дефлектора 10, 11, объектив 12 и столик 13 для размещения исследуемого объекта. Лучеразводящий элемент 9 выполнен в виде пластины из двулучепреломляющего материала и размещен во внутреннем фокусе телескопа 14.

Ось качания дефлектора 10 совпадает с передним фокусом телескопа 14, который совпадает с передним фокусом телескопа 15.

Между дефлекторами 10 и 11 расположен телескоп 15 для осуществления сопряжения точек развертки луча в двух взаимоперпендикулярных направлениях. Ось качания дефлектора 11 находится в заднем фокусе телескопа 15. В случае необходимости для последующего увеличения диаметра лазерного луча, а также для переноса точки угловой развертки сканирования в задний фокус объектива 12, между дефлектором 11 и объективом 12 установлен дополнительный телескоп 16. Один из фокусов телескопа 16 совпадает с осью качания дефлектора 11, а другой - с задним фокусом объектива 12.

Светоделительный элемент 8 служит для перенаправления отраженного от исследуемого объекта луча в измеритель мощности, который состоит из призмы Волластона 17 и двух фотоприемников 18, 19 для раздельного измерения интенсивности или мощности компонент ортогональных поляризаций излучения. Фотоприемники 18 и 19 служат для преобразования оптической мощности в измеряемый электрический сигнал.

Светоделительный элемент 8 также может быть использован для дополнительного контроля мощности излучения с помощью фотоприемника 20. Для реализации конфокального контраста перед измерителем мощности установлена регулируемая диафрагма 21, размещенная во внутреннем фокусе телескопа 22.

Пленочный поляризатор 2, призма Глана-Томсона 3 и система регулировки мощности источника лазерного излучения, включающая фотоприемник 5 и делительную пластину 4, предусмотрены для коммерчески доступных лазеров. В случае наличия лазеров со световыми пучками удовлетворительного качества эти элементы не требуются.

Работает лазерный сканирующий микроскоп следующим образом.

Плоскопараллельный частично поляризованный луч газового лазера 1 проходит пленочный поляризатор 2 и призму Глана-Томсона 3, приобретая высокую степень поляризации 1:1000 и выше.

Плоскости поляризации 1 и 3 совпадают, тогда как положение плоскости поляризации 2 может изменяться путем его вращения. Таким образом интенсивность излучения может варьироваться от максимума до предельно малых величин.

Делительная пластина 4 отводит небольшую часть луча (около 5%) на фотодиод 5 для измерения и управления мощностью излучения.

Фазовая пластина 6 преобразует плоскополяризованный луч лазерного излучения в луч с круговой поляризацией. Это необходимо для перевода поляриметра в квазилинейный режим измерения фазы.

Делительная пластина 8 расщепляет входной луч на два с одинаковой интенсивностью излучения. При этом один луч используется для проведения измерений, а второй может использоваться для дополнительного контроля мощности.

Блок, состоящий из фазовой пластины 9 и телецентрической системы линз телескопа 14, предназначен для расщепления поляризованного по кругу луча на два линейно поляризованных со скрещенными компонентами поляризации. При этом за счет внешней конической рефракции в фазовой пластине 9 происходит пространственное смещение необыкновенного луча, зависящее от толщины пластины, ее углового положения, ориентации оптической оси и фокусного расстояния линз.

Телецентрическая система линз телескопа 15 переносит фокус угловой развертки луча из точки, лежащей на оси дефлектора 10, в точку, лежащую на оси дефлектора 11, оставляя остальные параметры луча неизменными.

Дефлектор 11 обеспечивает отклонение луча в плоскости, перпендикулярной плоскости угловой развертки дефлектора 10, завершая таким образом формирование углового растра.

Таким образом, плоскопараллельный луч с расщепленными компонентами поляризации виртуально испускается из заднего фокуса объектива 12 под разными углами, определяемыми положениями дефлекторов 10 и 11. Далее луч фокусируется на поверхности исследуемого объекта, причем геометрический фокус необыкновенного луча может быть пространственно смещен относительно фокуса обыкновенного луча за счет расщепления в фазовой пластине 9.

Отраженный от объекта луч проходит обратно по тому же самому пути, что и входной луч, вплоть до делительной пластины, где он разделяется на два луча равной мощности. Один из лучей отклоняется на дифференциальный фотоприемник, где происходит измерение его параметров.

Фотоприемник состоит из призмы Волластона 17, расщепляющей входной луч на два со скрещенными направлениями линейной поляризации, и двух фотодиодов, измеряющих интенсивности этих компонентов. В зависимости от угловой ориентации фазовой пластины 9 и взаимной ориентации фазовой пластины 9 и призмы Волластона 17 реализуются несколько способов получения информации об исследуемом объекте, так называемых контрастов.

Для осуществления амплитудного контраста фазовая пластина 9 находится в положении, при котором расщепление луча не происходит, а сигналы фотодиодов складываются и сумма передается системе построения изображения.

Предложенное устройство позволяет осуществить дифференциальный фазовый контраст и в результате увеличить отношение сигнал/шум за счет интегрирования сигналов при построении реального профиля объекта из дифференциальных сигналов, что приводит также к повышению чувствительности к слабым перепадам оптической плотности объектов и увеличению линейности измерения высоты профиля исследуемого объекта.

1. Лазерный сканирующий микроскоп, содержащий источник лазерного излучения, на пути следования луча которого последовательно установлены светоделительный элемент, сканирующая система с двумя зеркальными дефлекторами и объектив, а на пути следования луча, отраженного от исследуемого образца и светоделительного элемента, размещен приемник излучения с системой обработки сигнала, отличающийся тем, что перед светоделительным элементом установлен преобразователь плоскополяризованного луча в луч с круговой поляризацией, а между светоделительным элементом и сканирующей системой размещен лучеразводящий элемент, преобразующий входной пучок излучения в два пучка с ортогональными направлениями поляризации и пространственным смешением, при этом в качестве приемника излучения применен измеритель мощности компонент скрещенных поляризаций излучения.

2. Лазерный сканирующий микроскоп по п.1, отличающийся тем, что преобразователем поляризации излучения является четвертьволновая пластина для длины волны используемого излучения.

3. Лазерный сканирующий микроскоп по пп.1 и 2, отличающийся тем, что преобразователь поляризации излучения размещен в источнике лазерного излучения.

4. Лазерный сканирующий микроскоп по п.1, отличающийся тем, что лучеразводящий элемент выполнен в виде пластины из двулучепреломляющего материала.

5. Лазерный сканирующий микроскоп по п.1, отличающийся тем, что измеритель мощности состоит из призмы Волластона и двух фотоприемников для раздельного измерения двух скрещенных компонент поляризации излучения.

6. Лазерный сканирующий микроскоп по п.1, отличающийся тем, что между светоделительным элементом и измерителем мощности размещен телескоп с регулируемой диафрагмой, установленной в его внутреннем фокусе.

Вновь сконструированный многопараметрический микроскоп фирмы Leitz позволяет проводить одновременно анализ поглощения гемоглобина эритроцитов и флуоресценции меченных ФИТЦ клеток, содержащих гемоглобин S, причем можно анализировать миллионы клеток. Система (LEYTAS), соединенная с анализирующим изображение компьютером, сначала фокусируется и считает все эритроциты вдоль одного ряда полей зрения, используя нижнее освещение фиолетовым светом (415 нм). После сканирования по одной линии длиной 8 см освещение по команде компьютера меняется с проходящего на падающее, и все поля зрения вдоль линии сканирования анализируются повторно, причем сканирование для определения флуоресцирующих объектов ведется в соответствии с кривой ранее определенных положений фокуса. Для каждого определенного объекта его флуоресцентное и поглощающее изображение хранятся в памяти в виде уровней серого. Из памяти изображение выводится на телевизионный экран, что позволяет визуально оценить выбранные объекты (рис. 6.9). От каждого подозрительного сигнала в памяти сохраняется одно флуоресцентное и два поглощающих изображения. Визуальное сравнение флуоресцентного и поглощающего изображений при большом увеличении позволяет определить природу данного сигнала. Таким образом артефакты можно отличить от заслуживающих внимания клеток. То, что сигнал действительно соответствует мутантной клетке, подтверждается с помощью микроскопа. Поскольку все координаты сохраняются в памяти, то выставление клеток производится автоматически. Большинство сигналов являются артефактами. На рис. 6.9 только кадр № 79 относится, вероятно, к мутантной клетке , что можно было бы подтвердить с помощью микроскопа.

Рис. 6.9. Выявление с помощью системы LEYTAS подозрительных изображений в препарате, окрашенном меченной ФИТЦ сывороткой против S-гемоглобина. Эти изображения выводятся на монитор. Слева направо: номер кадра, его флуоресцентное изображение и изображение того же кадра, формирующееся за счет поглощения при большем увеличении

Другие антитела против мутантных эритроцитов были использованы Лэнглойсом с соавт. , определявшими мутантные клетки с помощью проточной цитометрии. Можно предположить, что частота выявленных в этой работе мутантов была значительно выше, чем частота встречаемости клеток с HbS.

Помимо определения редких мутантов, анализ изображения может быть также применен для определения редких раковых клеток в период ремиссии, а также инфицированных вирусом клеток на ранней стадии инфекционного заболевания.

7. Сканирующая лазерная микроскопия

Обычно в микроскопии изображения очень мелких структур получают путем освещения всего препарата и увеличения изображения объективом. При использовании вместе с микроскопом телевизионной камеры принцип получения изображения не изменяется - изображение также создается объектом, и лишь затем сканируется телекамерой. Фактически все методы сканирования применялись в основном в весьма ограниченной области микрофотометрии - для определения величин поглощения, флуоресценции или отражения. Недавно техника сканирования была применена для создания высококачественных изображений с помощью мощных и хорошо сколлимированных лазерных пучков. В оптической лазерной сканирующей микроскопии объект не освещается целиком, а сканируется шаг за шагом . В каждой освещенной точке измеряется прошедший, отраженный или испускаемый свет. Изображение создается за счет накопления результатов этих измерений для каждой точки после их аналоговой или цифровой обработки, как матрица в памяти компьютера.

В приборе, имеющемся в нашей лаборатории (Zeiss, ФРГ), сканирование выполняется с помощью гальванометров с сервоприводами. Время сканирования сравнительно короткое (2 с на поле из 512x512 пикселов). Процесс сканирования контролируется микропроцессором. В качестве фотодетектора используется ФЭУ. Его сигнал проходит через блок аналоговой обработки, который контролирует яркость и контрастность.

После оцифровки этот сигнал попадает в буферную память, куда он записывается с видеочастотой. Соответственно стационарное изображение на мониторе получается при условии, что во время считывания столик стоит неподвижно. Плавно меняющееся увеличение может быть получено с помощью блока переменного увеличения. Сканирующий лазерный микроскоп можно использовать как с обычным, так и с лазерным источником света. С помощью лазера можно получить как падающее освещение (для отражения и флуоресценции), так и проходящее освещение (для поглощения, фазового или дифференциального интерференционного контраста). В качестве обычного источника света можно использовать только лампу накаливания, снабженную световодом. Для обеспечения лучшей фокусировки и возможностей поиска на препарате, а также для исследования препаратов с двойным окрашиванием, мы добавили к лазерному сканнеру обычный блок эпиосвещения. Принципиальными преимуществами лазерного сканирования являются:

1) низкий уровень аутофлуоресценции в оптическом пути, который достигается благодаря точечному освещению;

2) высокая чувствительность микроскопа, возникающая вследствие использования мощного лазерного света, сфокусированного в точке. Можно наблюдать даже слабо флуоресцирующие ДНК-зонды;

3) использование оптики с малым увеличением. Интенсивность флуоресценции достаточно высока, что позволяет работать с объективом Х2,5. Это является важным преимуществом при проведении исследований мозга;

4) низкий уровень выцветания, так как время освещения каждой точки очень короткое;

5) возможность проведения многофакторного анализа;

6) последовательное сканирование на разных уровнях при конфокальной сканирующей микроскопии. Данный метод применяется в тех исследованиях, где надо работать с очень слабой флуоресценцией,

например при проведении реакции гибридизации. Лазерная сканирующая микроскопия много дала также для исследований мозга, поскольку она позволяет использовать оптику с малым увеличением, необходимую при исследовании связей в нервных сетях. На рис. 6.10 представлены нервные клетки из гиппокампа крысы. Эти клетки были маркированы для выявления специфических молекул. По сравнению с нормальной флуоресцентной микроскопией контраст между изображением и фоном, получаемый с помощью лазерного сканирования, намного выше: здесь остается только очень низкий уровень нежелательного фонового свечения. С помощью лазерного сканирования реакцию можно также оценить количественно, поскольку данная техника позволяет установить порог между клетками и фоном для улучшения контраста изображения, получаемого с препаратов с очень низким содержанием продукта реакции.

Кроме того, лазерное сканирование открывает новые возможности для исследования с помощью световой микроскопии без дополнительного окрашивания ультратонких срезов, изготовленных для электронной микроскопии .

Рис. 6.10. Флуоресцентное изображение гиппокампа крысы, полученное с помощью лазерного сканирующего микроскопа. Срезы были обработаны флуоресцентно меченными антителами к гуанинмонофосфату. Увеличение: объектив Х40; окуляр ХЮ. Шкала 100 мкм.

8. Литература

1. Yong, M. R. (1961) Quart. J. Microsc. Sci., 102, 419.

2. Price, Z. H. (1965) Am. J. Med. Technol., 31, 45.

3. Rost, F. W. (1972) In Histochemistry, Theoretical and Applied. Everson Pearse, A. G (ed.), Churchill Livingstone, Edinburgh, Vol. 2, p. 1171,

4. Siegel, J. I. (1982) Int. Lab., 12, 46.

5. Ploem, J. S. and Tanke, H. (1987) Introduction to Fluorescence Microscopy. Royal Microscopical Society, University Press, Oxford.

6. Lansing Taylor, D., Waggoner, A. S., Murphy, R. F., Lanni, F. and Birge, R. R. (1986) Applications of Fluorescence in the Biomedical Sciences. Alan Liss, New York.

7 Patzett, W. (1972) Lietz-Mitt. Wiss. und Techn., Bd V, Nr 7, 226.

8 Giloh, H. and Sedat, J. W. (1982) Science, 217, 1252.

9 Johnson, G. D. and de C. Nogueira Araujo, G. M. (1981) J. Immunol. Methods, 43, 349.

10 Ploem, J. S. (1967) Zeitschrift Wiss. Microskopie, 68, 129.

11 Nairn R. С (1976) Fluorescent Protein Tracing. Livingstone, Edinburgh.

12. Kraft, W. (1973) Leitz Techn. Inform., 2, 97.

NS-3500 представляет собой высокоскоростной конфокальный лазерный сканирующий микроскоп (CLSM) для проведения высокоточных и надежных трехмерных измерений топографии поверхности. Получение конфокального микроскопического изображения в реальном времени достигается за счет использования быстрых сканирующих оптических модулей и алгоритмов обработки данных.

Данная система является перспективным решением для измерения и проверки трехмерных микроскопических структур, таких как полупроводниковые подложки, FPD панели, MEMS устройства, стеклянные подложки и просто различные поверхности. Микроскоп NS-3500 позволяет проводить измерения в различных областях (область сканирования размером до 10 × 10 мм) образцов с размерами до 150×150 мм за счет большого диапазона перемещения предметного столика. Также имеется опциональная возможность расширения платформы до 200×200 мм.

При необходимости измерения различных точек/областей более габаритных образцов доступна модификация измерительной головки промышленного типа (см. NS-3800).

  • Неразрушающий оптический 3D-контроль с высоким разрешением
  • Получение конфокального изображения в реальном времени
  • Различное оптическое увеличение для наблюдаемой области
  • Одновременная конфокальная микроскопия и микроскопия белого света
  • Автоматический поиск усиления для тонкой фокусировки
  • Компенсация наклона
  • Простота анализа полученных данных
  • Высокоточное и высокоскоростное измерение высоты
  • Возможность качественного анализа толщины полупрозрачных материалов
  • Отсутствие пробоподготовки
  • Режим двойного сканирования вдоль вертикальной оси Z
  • Сшивание изображений для анализа больших областей

Области применения

Лазерный сканирующий микроскоп NS-3500 является идеальным решением для измерения высоты, ширины, глубины, углов, площади, а также объемной визуализации микроструктур, таких как:

  • Полупроводники - IC подложки, высота выступов/ступеней и проволочных петлей, анализ дефектов, CPM процессы (химико-механическая планаризация)
  • Плоскопанельные дисплеи (FPD) - анализ сенсорных панелей, ITO подложек, высота разделительной колонны в ЖК-дисплее
  • МЭМС устройства - трехмерный профиль структуры, шероховатость поверхности, подложки
  • Стеклянные поверхности - тонкопленочные солнечные элементы, текстура солнечного элемента, анализ рисунка после лазерного воздействия
  • Исследование материалов - анализ опорных поверхностей зажимного устройства, шероховатости и сколов

Программное обеспечение NSWorks & NSViewer

  • Простое и интуитивное управление даже для новых пользователей
  • ПЗС изображение, конфокальное изображение, а также основная панель управления одновременно отображаются на одном экране
  • Разные параметры настройки предназначены для передовых приложений
  • Построение конфокального изображения в режиме реального времени обеспечивает немедленную обратную связь с оборудованием
  • Отдельное окно анализа с удобными графическими инструментами для создания отчетности
  • Объемный графический вид позволяет пользователю легко распознать микроскопическую структуру образца

Сшивание изображения

При необходимости анализа большой области сканирования (до 15×15 мм макс.) доступно последовательное поточечное измерение мелких областей с их последующим сшиванием. Данная особенность реализована за счет использования моторизированного предметного столика и программной утилиты NSMosaic. После сшивания полученное изображения может быть проанализировано как единое целое со всеми доступными функциями из NSViewer.

Видео-обзор: Сшивание изображений на конфокальном лазерном сканирующем микроскопе NS-3500

Примеры измерений с помощью NS-3500



Измерение высоты стандарта VLSI


Анализ выступающей части на OLED


Анализ результатов
лазерной обработки OLED


Кварцевая подложка


Поверхность бриллианта


Дефект на металлическом зеркале


Неровность на выпуклой поверхности


Графен


Подложка оксида индия и олова


Анализ структуры микролинзы


Анализ узкой области подложки


Вид исследуемого образца
при различном оптическом увеличении


Постобработка изображения профиля поперечного сечения


Сшивание изображения при анализе монеты


Анализ профиля поверхности капли воды


gastroguru © 2017