Биохимия эндокринной системы. Общие свойства гормонов

Это биологически активные вещества, которые синтезируются в малых количествах в специализированнных клетках эндокринной системы и через циркулирующие жидкости (например, кровь) доставляются к клеткам-мишеням, где оказывают свое регулирующее действие.

Гормоны, как и другие сигнальные молекулы, обладают некоторыми общими свойствами.

  1. выделяются из вырабатывающих их клеток во внеклеточное пространство;
  2. не являются структурными компонентами клеток и не используются как источник энергии;
  3. способны специфически взаимодействовать с клетками, имеющими рецепторы для данного гормона;
  4. обладают очень высокой биологической активностью - эффективно действуют на клетки в очень низких концентрациях (около 10-6-10-11 моль/л).

Механизмы действия гормонов

Гормоны оказывают влияние на клетки-мишени.

Клетки-мишени - это клетки, которые специфически взаимодействуют с гормонами с помощью специальных белков-рецепторов. Эти белки-рецепторы располагаются на наружной мембране клетки, или в цитоплазме, или на ядерной мембране и на других органеллах клетки.

Биохимические механизмы передачи сигнала от гормона в клетку-мишень.

Любой белок-рецептор состоит, минимум из двух доменов (участков), которые обеспечивают выполнение двух функций:

  1. узнавание гормона;
  2. преобразование и передачу полученного сигнала в клетку.

Каким образом белок-рецептор узнает ту молекулу гормона, с которой он может взаимодействовать?

Один из доменов белка-рецептора имеет в своем составе участок, комплементарный какой-то части сигнальной молекулы. Процесс связывания рецептора с сигнальной молекулой похож на процесс образования фермент-субстратного комплекса и может определяется величиной константы сродства.

Большинство рецепторов изучены недостаточно, потому что их выделение и очистка очень сложные, а содержание каждого вида рецепторов в клетках очень низкое. Но известно, что гормоны взаимодействуют со своими рецепторами физико-химическим путем. Между молекулой гормона и рецептором формируются электростатические и гидрофобные взаимодействия. При связывании рецептора с гормоном происходят конформационные изменения белка-рецептора и комплекс сигнальной молекулы с белком-рецептором активируется. В активном состоянии он может вызывать специфические внутриклеточные реакции в ответ на принятый сигнал. Если нарушен синтез или способность белков-рецепторов связываться с сигнальными молекулами, возникают заболевания - эндокринные нарушения.

Есть три типа таких заболеваний.

  1. Связанные с недостаточностью синтеза белков-рецепторов.
  2. Связанные с изменением структуры рецептора - генетических дефекты.
  3. Связанные с блокированием белков-рецепторов антителами.

Механизмы действия гормонов на клетки-мишени. В зависимости от строения гормона существуют два типа взаимодействия. Если молекула гормона липофильна, (например, стероидные гормоны), то она может проникать через липидный слой наружной мембраны клеток-мишеней. Если молекула имеет большие размеры или является полярной, то ее проникновение внутрь клетки невозможно. Поэтому для липофильных гормонов рецепторы находятся внутри клеток-мишеней, а для гидрофильных - рецепторы находятся в наружной мембране.

Для получения клеточного ответа на гормональный сигнал в случае гидрофильных молекул действует внутриклеточный механизм передачи сигнала. Это происходит с участием веществ, которых называют вторыми посредниками. Молекулы гормонов очень разнообразны по форме, а "вторые посредники" - нет.

Надежность передачи сигнала обеспечивает очень высокое сродство гормона к своему белку-рецептору.

Что такое посредники, которые участвуют во внутриклеточной передаче гуморальных сигналов?

Это циклические нуклеотиды (цАМФ и цГМФ), инозитолтрифосфат, кальций-связывающий белок - кальмодулин, ионы кальция, ферменты, участвующие в синтезе циклических нуклеотидов, а также протеинкиназы - ферменты фосфорилирования белков. Все эти вещества участвуют в регуляции активности отдельных ферментных систем в клетках-мишенях.

Разберем более подробно механизмы действия гормонов и внутриклеточных посредников.

Существует два главных способа передачи сигнала в клетки-мишени от сигнальных молекул с мембранным механизмом действия:

  1. аденилатциклазная (или гуанилатциклазная) системы;
  2. фосфоинозитидный механизм.

Аденилатциклазная система.

Основные компоненты: мембранный белок-рецептор, G-белок, фермент аденилатциклаза, гуанозинтрифосфат, протеинкиназы.

Кроме того, для нормального функционирования аденилатциклазной системы, требуется АТФ.

Белок-рецептор, G-белок, рядом с которым располагаются ГТФ и фермент (аденилатциклаза) встроены в мембрану клетки.

До момента действия гормона эти компоненты находятся в диссоциированнном состоянии, а после образования комплекса сигнальной молекулы с белком-рецептором происходят изменения конформации G-белка. В результате одна из субъединиц G-белка приобретает способность связываться с ГТФ.

Комплекс "G-белок-ГТФ" активирует аденилатциклазу. Аденилатциклаза начинает активно превращать молекулы АТФ в ц-АМФ.

ц-АМФ обладает способностью активировать особые ферменты - протеинкиназы, которые катализируют реакции фосфорилирования различных белков с участием АТФ. При этом в состав белковых молекул включаются остатки фосфорной кислоты. Главным результатом этого процесса фосфорилирования является изменение активности фосфорилированного белка. В различных типах клеток фосфорилированию в результате активации аденилат-циклазной системы подвергаются белки с разной функциональной активностью. Например, это могут быть ферменты, ядерные белки, мембранные белки. В результате реакции фосфорилирования белки могут становятся функционально активными или неактивными.

Такие процессы будут приводить к изменениям скорости биохимических процессов в клетке-мишени.

Активация аденилатциклазной систтемы длится очень короткое время, потому что G-белок после связывания с аденилатциклазой начинает проявлять ГТФ-азную активность. После гидролиза ГТФ G-белок восстанавливает свою конформацию и перестает активировать аденилатциклазу. В результате прекращается реакция образования цАМФ.

Кроме участников аденилатциклазной системы в некоторых клетках-мишенях имеются белки-рецепторы, связанные с G-белками, которые приводят к торможению аденилатциклазы. При этом комплекс "GTP-G-белок" ингибирует аденилатциклазу.

Когда останавливается образование цАМФ, реакции фосфорилирования в клетке прекращаются не сразу: пока продолжают существовать молекулы цАМФ - будет продолжаться и процесс активации протеинкиназ. Для того, чтобы прекратить действие цАМФ, в клетках существует специальный фермент - фосфодиэстераза, который катализирует реакцию гидролиза 3",5"-цикло-АМФ до АМФ.

Некоторые вещества, обладающие ингибирующим действием на фосфодиэстеразу, (например, алкалоиды кофеин, теофиллин), способствуют сохранению и увеличению концентрации цикло-АМФ в клетке. Под действием этих веществ в организме продолжительность активации аденилатциклазной системы становится больше, т. е. усиливается действие гормона.

Кроме аденилатциклазной или гуанилатциклазной систем существует также механизм передачи информации внутри клетки-мишени с участием ионов кальция и инозитолтрифосфата.

Инозитолтрифосфат - это вещество, которое является производным сложного липида - инозитфосфатида. Оно образуется в результате действия специального фермента - фосфолипазы "С", который активируется в результате конформационных изменений внутриклеточного домена мембранного белка-рецептора.

Этот фермент гидролизует фосфоэфирную связь в молекуле фосфатидил-инозитол-4,5-бисфосфата и в результате образуются диацилглицерин и инозитолтрифосфат.

Известно, что образование диацилглицерина и инозитолтрифосфата приводит к увеличению концентрации ионизированного кальция внутри клетки. Это приводит к активации многих кальций-зависимых белков внутри клетки, в том числе активируются различные протеинкиназы. И здесь, как и при активации аденилатциклазной системы, одной из стадий передачи сигнала внутри клетки является фосфорилирование белков, которое в приводит к физиологическому ответу клетки на действие гормона.

В работе фосфоинозитидного механизма передачи сигналов в клетке-мишени принимает участие специальный кальций-связывающий белок - кальмодулин. Это низкомолекулярный белок (17 кДа), на 30 % состоящий из отрицательно заряженных аминокислот (Глу, Асп) и поэтому способный активно связывать Са+2. Одна молекула кальмодулина имеет 4 кальций-связывающих участка. После взаимодействия с Са+2 происходят конформационные изменения молекулы кальмодулина и комплекс "Са+2-кальмодулин" становится способным регулировать активность (аллостерически угнетать или активировать) многие ферменты - аденилатциклазу, фосфодиэстеразу, Са+2,Мg+2-АТФазу и различные протеинкиназы.

В разных клетках при воздействии комплекса "Са+2-кальмодулин" на изоферменты одного и того же фермента (например, на аденилатциклазу разного типа) в одних случаях наблюдается активация, а в других - ингибирование реакции образования цАМФ. Такие различные эффекты происходят потому, что аллостерические центры изоферментов могут включать в себя различные радикалы аминокислот и их реакция на действие комплекса Са+2-кальмодулин будет отличаться.

Таким образом, в роли "вторых посредников" для передачи сигналов от гормонов в клетках-мишенях могут быть:

  1. циклические нуклеотиды (ц-АМФ и ц-ГМФ);
  2. ионы Са;
  3. комплекс "Са-кальмодулин";
  4. диацилглицерин;
  5. инозитолтрифосфат.

Механизмы передачи информации от гормонов внутри клеток-мишеней с помощью перечисленных посредников имеют общие черты:

  1. одним из этапов передачи сигнала является фосфорилирование белков;
  2. прекращение активации происходит в результате специальных механизмов, инициируемых самими участниками процессов, - существуют механизмы отрицательной обратной связи.

Гормоны являются основными гуморальными регуляторами физиологических функций организма, и в настоящее время хорошо известны их свойства, процессы биосинтеза и механизмы действия.

Признаки, по которым гормоны отличаются от других сигнальных молекул следующие.

  1. Синтез гормонов происходит в особых клетках эндокринной системы. При этом синтез гормонов является основной функцией эндокринных клеток.
  2. Гормоны секретируются в кровь, чаще в венозную, иногда в лимфу. Другие сигнальные молекулы могут достигать клеток-мишеней без секреции в циркулирующие жидкости.
  3. Телекринный эффект (или дистантное действие) - гормоны действуют на клетки-мишени на больщом расстоянии от места синтеза.

Гормоны являются высокоспецифичными веществами по отношению к клеткам-мишеням и обладают очень высокой биологической активностью.

Химическая структура гормонов

Строение гормонов бывает разным. В настоящее время описано и выделено около 160 различных гормонов из разных многоклеточных организмов.

По химическому строению гормоны можно классифицировать по трем классам:

  1. белково-пептидные гормоны;
  2. производные аминокислот;
  3. стероидные гормоны.

К первому классу относятся гормоны гипоталамуса и гипофиза (в этих железах синтезируются пептиды и некоторые белки), а также гормоны поджелудочной и паращитовидной желез и один из гормонов щитовидной железы.

Ко второму классу относятся амины, которые синтезируются в мозговом слое надпочечников и в эпифизе, а также иод-содержащие гормоны щитовидной железы.

Третий класс - это стероидные гормоны, которые синтезируются в коре надпочечников и в половых железах. По количеству углеродных атомов стероиды отличаются друг от друга:

С 21 - гормоны коры надпочечников и прогестерон;

С 19 - мужские половые гормоны - андрогены и тестостерон;

С 18 - женские половые гормоны - эстрогены.

Общим для всех стероидов является наличие стеранового ядра.

Механизмы действия эндокринной системы

Эндокринная система - совокупность желез внутренней секреции и некоторых специализированных эндокринных клеток в составе тканей, для которых эндокринная функция не является единственной (например, поджелудочная железа обладает не только эндокринной, но и экзокринной функциями). Любой гормон является одним из ее участников и управляет определенными метаболическими реакциями. При этом внутри эндокринной системы существуют уровни регуляции - одни железы обладают способностью управлять другими.

Общая схема реализации эндокринных функций в организме. Данная схема включает в себя высшие уровни регуляции в эндокринной системе - гипоталамус и гипофиз, вырабатывающие гормоны, которые сами влияют на процессы синтеза и секреции гормонов других эндокринных клеток.

Из этой же схемы видно, что скорость синтеза и секреции гормонов может изменяться также под действием гормонов из других желез или в результате стимуляции негормональными метаболитами.

Мы видим также наличие отрицательных обратных связей (-) - торможение синтеза и(или) секреции после устранения первичного фактора, вызвавшего ускорение продукции гормона.

В результате содержание гормона в крови поддерживается на определенном уровне, который зависит от функционального состояния организма.

Кроме того, организм обычно создает небольшой резерв отдельных гормонов в крови (на представленной схеме этого не видно). Существование такого резерва возможно потому, что в крови многие гормоны находятся в связанном со специальными транспортными белками состоянии. Например, тироксин связан с тироксин-связывающим глобулином, а глюкокортикостероиды - с белком транскортином. Две формы таких гормонов - связанная с транспортными белками и свободная - находятся в крови в состоянии динамического равновесия.

Это значит, что при разрушении свободных форм таких гормонов будет происходить диссоциация связанной формы и концентрация гормона в крови будет поддерживаться на относительно постоянном уровне. Таким образом, комплекс какого-либо гормона с транспортным белком может рассматриваться как резерв этого гормона в организме.

Эффекты, которые наблюдаются в клетках-мишенях под влиянием гормонов. Очень важно, что гормоны не вызывают никаких новых метаболических реакций в клетке-мишени. Они лишь образуют комплекс с белком-рецептором. В результате передачи гормонального сигнала в клетке-мишени происходит включение или выключение клеточных реакций, обеспечивающих клеточный ответ.

При этом в клетке-мишени могут наблюдаются следующие основные эффекты:

  1. изменение скорости биосинтеза отдельных белков (в том числе белков-ферментов);
  2. изменение активности уже существующих ферментов (например, в результате фосфорилирования - как уже было показано на примере аденилатциклазной системы;
  3. изменение проницаемости мембран в клетках-мишенях для отдельных веществ или ионов (например, для Са +2).

Уже было сказано о механизмах узнавания гормонов - гормон взаимодействует с клеткой-мишенью только при наличии специального белка-рецептора. Связывание гормона с рецептором зависит от физико-химических параметров среды - от рН и концентрации различных ионов.

Особое значение имеет количество молекул белка-рецептора на наружной мембране или внутри клетки-мишени. Оно изменяется в зависимости от физиологического состояния организма, при заболеваниях или под влиянием лекарственных средств. А это означает, что при разных условиях и реакция клетки-мишени на действие гормона будет различной.

Разные гормоны обладают различными физико-химическими свойствами и от этого зависит местонахождение рецепторов для определенных гормонов.

Принято различать два механизма взаимодействия гормонов с клетками-мишенями:

  1. мембранный механизм - когда гормон связывается с рецептором на поверхности наружной мембраны клетки-мишени;
  2. внутриклеточный механизм - когда рецептор для гормона находится внутри клетки, т. е. в цитоплазме или на внутриклеточных мембранах.

Гормоны обладающие мембранным механизмом действия:

  • все белковые и пептидные гормоны, а также амины (адреналин, норадреналин).

Внутриклеточным механизмом действия обладают:

  • стероидные гормоны и производные аминокислот - тироксин и трийодтиронин.

Передача гормонального сигнала на клеточные структуры происходит по одному из механизмов. Например, через аденилатциклазную систему или с участием Са +2 и фосфоинозитидов. Это справедливо для всех гормонов с мембранным механизмом действия. Но стероидные гормоны с внутриклеточным механизмом действия, которые обычно регулируют скорость биосинтеза белков и имеют рецептор на поверхности ядра клетки-мишени, не нуждаются в дополнительных посредниках в клетке.

Особенности строения белков-рецепторов для стероидов. Наиболее изученным является рецептор для гормонов коры надпочечников - глюкокортикостероидов (ГКС).

В этом белке имеется три функциональных участка:

  1. для связывания с гормоном (С-концевой);
  2. для связывания с ДНК (центральный);
  3. антигенный участок, одновременно способный модулировать функцию промотора в процессе транскрипции (N-концевой).

Функции каждого участка такого рецептора ясны из их названий очевидно, что такое строение рецептора для стероидов позволяет им влиять на скорость транскрипции в клетке. Это подтверждается тем, что под действием стероидных гормонов избирательно стимулируется (или тормозится) биосинтез некоторых белков в клетке. В этом случае наблюдается ускорение (или замедление) образования мРНК. В результате изменяется количество синтезируемых молекул определенных белков (часто - ферментов) и меняется скорость метаболических процессов.

Биосинтез и секреция гормонов различного строения

Белково-пептидные гормоны. В процессе образования белковых и пептидных гормонов в клетках эндокринных желез происходит образование полипептида, не обладающего гормональной активностью. Но такая молекула в своем составе имеет фрагмент(ы), содержащий(е) аминокислотную последовательность данного гормона. Такая белковая молекула называется пре-про-гормоном и имеет в своем составе (обычно на N-конце) структуру, которая называется лидерной или сигнальной последовательностью (пре-). Эта структура представлена гидрофобными радикалами и нужна для прохождения этой молекулы от рибосом через липидные слои мембран внутрь цистерн эндоплазматического ретикулума (ЭПР). При этом, во время перехода молекулы через мембрану в результате ограниченного протеолиза лидерная (пре-) последовательность отщепляется и внутри ЭПР оказывается прогормон. Затем через систему ЭПР прогормон транспортируется в комплекс Гольджи и здесь заканчивается созревание гормона. Вновь в результате гидролиза под действием специфических протеиназ отщепляется оставшийся (N-концевой) фрагмент (про-участок). Образованная молекула гормона, обладающая специфической биологической активностью поступает в секреторные пузырьки и накапливается до момента секреции.

При синтезе гормонов из числа сложных белков гликопротеинов (например, фолликулостимулирующего (ФСГ) или тиреотропного (ТТГ) гормонов гипофиза) в процессе созревания происходит включение углеводного компонента в структуру гормона.

Может происходить и внерибосомальный синтез. Так синтезируется трипептид тиролиберин (гормон гипоталамуса).

Производные аминокислот. Из тирозина синтезируются гормоны мозгового слоя надпочечников адреналин и норадреналин, а также йодсодержащие гормоны щитовидной железы. В ходе синтеза адреналина и норадреналина тирозин подвергается гидроксилированию, декарбоксилированию и метилированию с участием активной формы аминокислоты метионина.

В щитовидной железе происходит синтез йодсодержащих гормонов трийодтиронина и тироксина (тетрайодтиронина). В ходе синтеза происходит йодирование фенольной группы тирозина. Особый интерес представляет метаболизм иода в щитовидной железе. Молекула гликопротеина тиреоглобулина (ТГ) имеет молекулярную массу более 650 кДа. При этом в составе молекулы ТГ около 10 % массы - углеводы и до 1 % - йод. Это зависит от количества иода в пище. В полипептиде ТГ - 115 остатков тирозина, которые иодируются окисленным с помощью специального фермента - тиреопероксидазы - йодом. Эта реакция называется органификацией йода и происходит в фолликулах щитовидной железы. В результате из остатков тирозина образуются моно- и ди-иодтирозин. Из них примерно 30 % остатков в результате конденсации могутпревратитьться в три- и тетра- иодтиронины. Конденсация и иодирование идут с участием одного и того же фермента - тиреопероксидазы. Дальнейшее созревание гормонов щитовидной железы происходит в железистых клетках - ТГ поглощается клетками путем эндоцитоза и образуется вторичная лизосома в результате слияния лизосомы с поглощенным белком ТГ.

Протеолитические ферменты лизосом обеспечивают гидролиз ТГ и образование Т 3 и Т 4 , которые выделяются во внеклеточное пространство. А моно- и дииодтирозин деиодируются с помощью специального фермента деиодиназы и иод повторно может подвергаться органификации. Для синтеза тиреоидных гормонов характерным является механизм торможения секреции по типу отрицательной обратной связи (Т 3 и Т 4 угнетают выделение ТТГ).

Стероидные гормоны. Стероидные гормоны синтезируются из холестерина (27 углеродных атомов), а холестерин синтезируется из ацетил-КоА.

Холестерин превращается в стероидные гормоны в результате следующих реакций:

  1. отщепление бокового радикала;
  2. образование дополнительных боковых радикалов в результате реакции гидроксилирования с помощью специальных ферментов монооксигеназ (гидроксилаз) - чаще всего в 11-м, 17-м, и 21-м положениях (иногда в 18-м). На первом этапе синтеза стероидных гормонов сначала образуются предшественники (прегненолон и прогестерон), а затем другие гормоны (кортизол, альдостерон, половые гормоны). Из кортикостероидов могут образоваться альдостерон, минералокортикоиды.

Секреция гормонов. Регулируется со стороны ЦНС. Синтезированные гормоны накапливаются в секреторных гранулах. Под действием нервных импульсов или под влиянием сигналов из других эндокринных желез (тропные гормоны) в результате экзоцитоза происходит дегрануляция и выход гормона в кровь.

Механизмы регуляции в целом были представлены в схеме механизма реализации эндокринной функции.

Транспорт гормонов

Транспорт гормонов определяется их растворимостью. Гормоны, имеющие гидрофильную природу (например, белково-пептидные гормоны) обычно транспортируются кровью в свободном виде. Стероидные гормоны, йодсодержащие гормоны щитовидной железы транспортируются в виде комплексов с белками плазмы крови. Это могут быть специфические транспортные белки (транспортные низкомолекулярные глобулины, тироксинсвязывающий белок; транспортирующий кортикостероиды белок транскортин) и неспецифический транспорт (альбумины).

Уже говорилось о том, что концентрация гормонов в кровяном русле очень низка. И может меняться в соответствии с физиологическим состоянием организма. При снижении содержания отдельных гормонов развивается состояние, характеризуемое как гипофункция соответствующей железы. И, наоборот, повышение содержания гормона - это гиперфункция.

Постоянство концентрации гормонов в крови обеспечивается также процессами катаболизма гормонов.

Катаболизм гормонов

Белково-пептидные гормоны подвергаются протеолизу, распадаются до отдельных аминокислот. Эти аминокислоты вступают дальше в реакции дезаминирования, декарбоксилирования, трансаминирования и распадаются до до конечных продуктов: NH 3 , CO 2 и Н 2 О.

Гормоны подвергаются окислительному дезаминированию и дальнейшему окислению до СО 2 и Н 2 О. Стероидные гормоны распадаются иначе. В организме нет ферментных систем, которые обеспечивали бы их распад.

В основном происходит модификация боковых радикалов. Вводятся дополнительные гидроксильные группы. Гормоны становятся более гидрофильными. Образуются молекулы, представляющие собой структуру стерана, у которого в 17-м положении находится кетогруппа. В таком виде продукты катаболизма стероидных половых гормонов выводятся с мочой и называются 17-кетостероиды. Определение их количества в моче и крови показывает содержание в организме половых гормонов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Биохимия гормонов

Введение

Гормоны - органические биологические вещества, вырабатываемые в эндокринных железах или клетках, транспортируемые кровью и оказывающие регуляторное действие на обменные процессы и физиологические функции.

Гормоны являются первичными посредниками между центральной нервной системой и тканевыми процессами. Термин гормоны 1905 году ввели ученые Бейлис и Старлинг. К эндокринным железам относится гипоталамус, гипофиз, эпифиз, тимус, щитовидная железа, паращитовидная железа, поджелудочная железа, надпочечники, половые железы и диффузная нейроэндокринная система. Единый принцип номенклатуры гормонов отсутствует. Их называют по месту образования (инсулин от insula-островок), по физиологическому эффекту (вазопрессин), гормоны передней доли гипофиза имеют окончание - тропин, окончание - либерин и - статин указывает на гипоталамические гормоны.

1. Классификация гормонов по их химической природе

По химической природе гормоны делят на 3 группы.

I. Белково-пептидные гормоны.

a) Простые белки (соматотропин, инсулин)

b) Пептиды (кортикотропин, меланотропин, кальцитонин)

c) Сложные белки (чаще гликопротеиды - тиреотропин, гонадотропин)

II. Гормоны - производные отдельных аминокислот (тироксин, адреналин)

III. Стероидные гормоны (производные холестерина - кортикостероиды, андрогены, эстрогены)

Химическая природа гормонов определяет особенности их метаболизма.

2. Обмен гормонов

Синтез гормонов. Гормоны белковой природы синтезируются по законам трансляции. Гормоны - производные аминокислот синтезируются путём химической модификации аминокислот. Стероидные гормоны образуются путём химической модификации холестерина. Некоторые гормоны синтезируются в активной форме(адреналин), другие синтезируются в виде неактивных предшественников (препроинсулин). Некоторые гормоны могут активироваться за пределами эндокринной железы. Например, тестостерон в предстательной железе переходит в более активный дигидротестостерон. Синтез большинства гормонов регулируется по принципу обратной связи (авторегуляция)

Под действием импульсов ЦНС в гипоталамусе синтезируется либерины (кортиколиберин, тиреолиберин, соматолиберин, пролактолиберин, гонадолиберин), которые активируют функцию передней доли гипофиза, и статины, тормозящие функцию передней доли гипофиза (соматостатин, пролактостатин, меланостатин). Либерины и статины регулируют выработку тропных гормонов передней доли гипофиза. Тропины передней доли гипофиза, в свою очередь, активируют функцию периферических эндокринных желез, которые вырабатывают соответствующие гормоны. Высокая концентрация гормонов тормозит либо выработку тропных гормонов, либо выработку либеринов (отрицательная обратная связь).

При нарушении регуляции синтеза гормонов может возникать либо гиперфункция, либо гипофункция.

Транспорт гормонов. Водорастворимые гормоны (белково-пептидные гормоны, гормоны - производные аминокислот (исключая тироксин)) транспортируются свободно в виде водных растворов. Водонерастворимые (тироксин, стероидные гормоны) транспортируются в комплексе с транспортными белками. Например, кортикостероиды транспортируются белком транскортином, тироксин - тироксинсвязывающим белком. Белковосвязанные формы гормона расцениваются как определённое депо гормонов. Концентрация гормонов в плазме крови очень мала, находится в диапазоне 10 -15 -10 -19 моль.

Циркулирующие в крови гормоны оказывают эффект на определенные ткани - мишени , в которых имеются рецепторы к соответствующим гормонам. Рецепторы чаще всего являются олигомерными гликопротеидами или липопротеидами. Рецепторы к различным гормонам могут располагаться или на поверхности клеток, или внутри клеток. Количество рецепторов, их активность может изменяться под действием различных факторов.

Катаболизм гормонов. Гормоны белковой природы распадаются до аминокислот, аммиака, мочевины. Гормоны - производные аминокислот инактивируются различными способами - дезаминирование, отщепление йода, окисление, разрыв кольца. Стероидные гормоны инактивируются путём окислительно-восстановительных превращений без разрыва стероидного кольца, путём реакции конъюгирования с серной кислотой и глюкуроновой кислотой.

3. Механизмы действия гормонов

Различают несколько механизмов реализации гормонального сигнала для водорастворимых и водонерастворимых гормонов.

Все гормоны оказывают три конечных эффекта :

1) изменение количества белков и ферментов за счёт изменения скорости их синтеза.

2) изменение активности имеющихся в клетки ферментов

3) изменение проницаемости клеточных мембран

Цитозольный механизм действия гидрофобных (липофильных) гормонов. . Липофильные гормоны способны проникать в клетку через клеточную мембрану, поэтому рецепторы для них располагаются внутриклеточно в цитозоле, на митохондриях, на поверхности ядра. Рецепторы гормонов чаще всего включают 2 домена: для связывания с гормоном и для связывания с ДНК. Рецептор при взаимодействии с гормоном изменяет свою структуру, освобождается от шаперонов, в результате чего гормон - рецепторный комплекс приобретает способность проникать внутрь ядра и взаимодействовать с определёнными участками ДНК. Это, в свою очередь, ведёт к изменению скорости транскрипции (синтез РНК), а вследствие этого меняется и скорость трансляции (синтез белка).

Мембранный механизм действия водорастворимых гормонов.

Водорастворимые гормоны не способны проникать через цитоплазматическую мембрану. Рецепторы для данной группы гормонов располагаются на поверхности клеточной мембраны. Поскольку гормоны не проходят внутрь клеток, между ними и внутриклеточными процессами необходим вторичный посредник, который передаёт гормональный сигнал внутрь клетки. В качестве вторичных посредников могут служить инозитолсодержащие фосфолипиды, ионы кальция, циклические нуклеотиды.

Циклические нуклеотиды - цАМФ, цГМФ - вторичные посредники

Гормон взаимодействует с рецептором и образует гормон - рецепторный комплекс, в котором меняется конформация рецептора. Это, в свою очередь, изменяет конформацию мембранного ГТФ - зависимого белка (G-белка) и ведёт к активации мембранного фермента аденилатциклазы, который переводит АТФ в цАМФ. Внутриклеточный циклический АМФ служит вторичным посредником. Он активирует внутриклеточные ферменты протеинкиназы, которые катализируют фосфорилирование различных внутриклеточных белков (ферментов, мембранных белков), что приводит к реализации конечного эффекта гормона. Эффект гормона «выключается» под действием фермента фосфодиэстеразы, разрушающей цАМФ, и ферментов фосфатаз, дефосфорилирующих белки.

Ионы кальция - вторичные посредники.

Взаимодействие гормона с рецептором повышает проницаемость кальциевых каналов клеточной мембраны, и внеклеточный кальций поступает в цитозоль. В клетках ионы Са 2+ взаимодействуют с регуляторным белком кальмодулином. Комплекс кальций-кальмодулин активирует кальцийзависимые протеинкиназы, которые активируют фосфолирирование различных белков и приводят к конечным эффектам.

Инозитолсодержащие фосфолипиды - вторичные посредники.

Образование гормон-рецепторного комплекса активирует в клеточной мембране фосфолипазу С, которая расщепляет фосфатидилинозит на вторичные посредники диацилглицерин (ДАГ) и инозитол-трифосфат (ИФ 3). ДАГ и ИФ 3 активируют выход Са 2+ из внутриклеточных депо в цитозоль. Ионы кальция взаимодействуют с кальмодулином, что активирует протеинкиназы и последующее фосфолирирование белков, сопровождающееся конечными эффектами гормона.

4. Краткая характеристика гормонов

Белково-пептидные гормоны

Гормоны гипофиза

Гормонами передней доли гипофиза являются соматотропин, пролактин (простые белки), тиреотропин, фоллиторопин, лютропин (гликопротеиды), кортикотропин, липотропин (пептиды).

Соматотропин - белок, включающий около 200 аминокислот. Обладает выраженным анаболическим действием, активирует глюконеогенез, синтез нуклеиновых кислот, белков, в частности, коллагена, синтез гликозаминогликанов. Соматотропин вызывает гипергликемический эффект, усиливает липолиз.

Гипофункция у детей ведёт к гипофизарной карликовости (нанизм). Гиперфункция у детей сопровождается гигантизмом, а у взрослых акромегалиёй.

Пролактин - гормон белковой природы. Его продукция активируется в период лактации. Пролактин стимулирует: маммогенез, лактопоэз, эритропоэз

Фоллитропин - гликопротеид, определяет цикличность созревания фолликулов, выработку эстрогенов у женщин. В мужском организме он стимулирует сперматогенез.

Лютропин - гликопротеид, в женском организме способствует формированию желтого тела и выработке прогестерона, в мужском организме стимулирует сперматогенез и продукцию андрогенов.

Тиреотропин - гликопротеид, стимулирует развитие щитовидной железы, активирует синтез белков, ферментов.

Кортикотропин - пептид, включающий 39 аминокислот, активирует созревание надпочечников и выработку кортикостероидов из холестерина. Гиперфункция - синдром Иценко-Кушинга, проявляется гипергликемией, гипертензией, остеопорозом, перераспределением жиров с накоплением их на лице и груди.

Липотропин включает в свой состав около 100 аминокислот, стимулирует распад жиров, служит источником эндорфинов. Гиперфункция сопровождается гипофизарной кахексией, гипофункция - гипофизарным ожирением.

К гормонам средней доли гипофиза относится меланотропин (меланоцитостимулирующий гормон). Он является пептидом, стимулирует формирование меланоцитов и синтез в них меланинов, которые обладают фотопротекторным действием и являются антиоксидантами.

К гормонам задней доли гипофиза относятся вазопрессин (антидиуретический гормон) и окситоцин. Данные гормоны являются нейросекретами, они синтезируются в гипоталамических ядрах, а затем перемещаются в заднюю долю гипофиза. Оба гормона состоят из 9 аминокислот.

Вазопрессин регулирует водный обмен, усиливает в почках синтез белка аквапорина и реабсорбцию воды в почечных канальцах. Вазопрессин суживает сосуды и повышает артериальное давление. Недостаток гормона приводит к заболеванию несахарный диабет, проявляющийся резким увеличением диуреза.

Окситоцин стимулирует сокращение мускулатуры матки, сокращает гладкую мускулатуру молочных желез, усиливает отделения молока. Окситоцин активирует синтез липидов.

Гормоны паращитовидных желез

Гормонами паращитовидных желез являются паратгормон, кальцитонин, участвующие в регуляции кальций - фосфорного обмена.

Паратгормон - белок, включает в свой состав 84 аминокислоты, синтезируется в виде неактивного предшественника. Паратгормон повышает уровень кальция в крови и снижает содержание фосфора. Повышение уровня кальция в крови под действием паратгормона происходит благодаря его трём основным эффектам:

Усиливает «вымывание» кальция из костной ткани с одновременным обновлением органического матрикса кости,

Повышает задержку кальция в почках,

Вместе с витамином D 3 усиливает синтез в кишечнике кальций-связывающего белка и всасывание кальция из пищевых продуктов.

При гипофункции паратгормона наблюдается гипокальциемия, гиперфосфатемия, мышечные судороги, нарушение работы дыхательной мускулатуры.

При гиперфункции паратгормона наблюдаются гиперкальциемия, остеопороз, нефрокальциноз, фосфатурия.

Кальцитонин - пептид, включающий в свой состав 32 аминокислоты. В отношении кальциевого обмена он является антагонистом паратгормона, т.е. снижает уровень кальция и фосфора в крови в основном за счёт уменьшения резорбции кальция из костной ткани

Гормоны поджелудочной железы

В поджелудочной железе вырабатываются гормоны инсулин, глюкагон, а также соматостатин, панкреатический полипептид

Инсулин - белок, состоит из 51 аминокислоты, входящие в 2 полипептидные цепи. Он синтезируется в в - клетках островков в виде предшественника препроинсулина, а затем подвергается частичному протеолизу. Инсулин регулирует все виды обмена (белковый, липидный, углеводный), в целом оказывает анаболическое действие. Влияние инсулина на углеводный обмен проявляется в увеличении проницаемости тканей для глюкозы, активировании фермента гексокиназы, усилении использования глюкозы в тканях. Инсулин повышает окисление глюкозы, её использование на синтез белков, жиров, вследствие чего развивается гипогликемия. Инсулин активирует липогенез, тормозит липолиз, проявляет антикетогенное действие. Инсулин усиливает синтез белков и нуклеиновых кислот.

Гипофункция сопровождается развитием сахарного диабета, который проявляется гипергликемией, глюкозурией, ацетонурией, отрицательным азотистым балансом, полиурией, обезвоживанием организма (смотри также «Патология углеводного обмена»).

Глюкагон - гормон пептидной природы, состоит из 29 аминокислот, синтезируется в б - клетках островков поджелудочной железы. Он обладает гипергликемическим действием, в основном за счёт усиления фосфоролитического распада гликогена печени до глюкозы. Глюкагон активирует липолиз, активирует катаболизм белков.

Гормоны вилочкой железы

Тимус является органом лимфопоэза, тимопоэза и органом выработки гормонов, определяющих иммунные процессы в организме. Эта железа активна в детском возрасте, а к отрочеству происходит её инволюция. Основные гормоны вилочковой железы имеют пептидную природу. К ним относятся:

· б, в - тимозины - определяют пролиферацию Т-лимфоцитов;

· I, II - т имопоэтины - усиливают созревание Т-лимфоцитов, блокируют нервно - мышечную возбудимость;

· тимусный гуморальный фактор - способствует дифференцировке Т-лимфоцитов на киллеры, хелперы, супрессоры;

· лимфоцитостимулирующий гормон - усиливает образование антител;

· тимусный гомеостатический гормон - является синергистом соматотропина и антагонистом кортикотропина и гонадотропина, и поэтому тормозит преждевременное половое созревание.

При гипофункции тимуса развиваются иммунодефицитные состояния. При гиперфункции возникают аутоиммунные заболевания.

Гормоны щитовидной железы

В щитовидной железе синтезируются тиреоидные гормоны трийодтиронин (Т 3), тироксин (Т 4) и пептидный гормон кальцитонин.

Синтез тиреоидных гормонов проходит несколько стадий:

· поглощение I щитовидной железой за счет «йодного насоса»;

· окисление иодидов в молекулярную форму при участии фермента йодидпероксидазы

2I - + 2Н*+Н 2 О 2 >I 2

· органификация йода - т.е. включение йода в состав аминокислоты тирозина, находящейся в тиреоглобулине щитовидной железы. (сначала образуется монойодтиронин, а затем дийодтиронин);

· конденсация 2-х молекул дийодтиронина;

· гидролиз Т 4 из тиреоглобулина.

Тиреоидные гормоны влияют на энергетический обмен, повышают потребление кислорода, синтез АТФ, для многочисленных биосинтетических процессов, для работы Na-К-насоса. В целом они активируют процессы пролиферации, дифференцировки, активируют гемопоэз, остеогенез. Их действие на углеводный обмен проявляется в развитии гипергликемии. Тиреоидные гормоны влияют на липидный обмен , активируя липолиз, в - окисление жирных кислот. Действие их на азотистый обмен состоит в активировании синтеза белков, ферментов, нуклеиновых кислот.

Гипофункция тиреоидных гормонов в детском возрасте приводит к развитию кретинизма , симптомами которого являются низкий рост, умственная отсталость. У взрослых людей гипофункция тиреоидных гормонов сопровождается микседемой - слизистым отёком, нарушением обмена гликозаминогликанов соединительной ткани и задержкой воды. При недостатке тиреоидных гормонов нарушаются энергетические процессы, развивается мышечная слабость, гипотермия. Эндемический зоб возникает при дефиците йода, отмечается разрастание железы и, как правило, гипофункция.

Гиперфункция проявляется как тиреотоксикоз (базедова болезнь) , симптомами которого являются истощение организма, гипертермия, гипергликемия, поражение сердечной мышцы, неврологическая симптоматика, пучеглазие (экзофтальм)

Аутоиммунный тиреоидит связан с образованием антител к рецепторам тиреоидных гормонов, компенсаторным увеличением синтеза гормонов щитовидной железой.

Гормоны мозгового слоя надпочечников (катехоламины)

К гормонам мозгового слоя надпочечников относятся адреналин, норадреналин - производные аминокислоты тирозина.

Адреналин влияет на углеводный обмен, вызывает гипергликемию, усиливая распад гликогена в печени до глюкозы. Адреналин влияет на жировой обмен , активирует липолиз, повышает концентрацию в крови свободных жирных кислот. Адреналин усиливает катаболизм белков . Адреналин оказывает влияние многие физиологические процессы: обладает вазотоническим (сосудосуживающим), кардиотоническим эффектом является гормоном стресса,

Норадреналин - в большей степени проявляет нейромедиаторный эффект.

Гиперпродукция катехоламинов наблюдается при феохромоцитоме (опухоль хромаффинных клеток)

Гормоны эпифиза

Эпифиз продуцирует гормоны мелатонин, адреногломерулотропин, эпиталамин

Мелатонин по химической природе является производным триптофана. Мелатонин регулирует синтез тканевых пигментов (меланинов), оказывает осветляющий эффект в ночное время суток и является антагонистом меланотропина гипофиза. Мелатонин влияет на дифференцировку клеток, оказывает противоопухолевое действие, стимулирует иммунные процессы, препятствует преждевременному половому созреванию. Вместе с эпиталамином (пептид) определяет биологические ритмы организма: выработку гонадотропных гормонов, суточные ритмы, сезонные ритмы.

Адреногломерулотропин (производное триптофана) активирует в надпочечниках выработку минералокортикоидов и, таким образом, регулирует водно-минеральный обмен.

Гормоны коры надпочечников

Гормоны коры надпочечников: глюкокортикоиды, минералокортикоиды, предшественники мужских половых гормонов относятся к стероидным гормонам, являющими производными спирта холестерина.

Глюкокортикоиды

Кортикостерон, кортизон и гидрокортизон (кортизол ) влияют на все виды обмена. Влияя на углеводный обмен , вызывают гипергликемию, активируют глюконеогенез. Глюкокортикоиды регулируют липидный обмен , усиливая липолиз на конечностях, активируя липогенез на лице и груди (появляется лунообразное лицо). Влияя на белковый обмен , глюкокортикоиды активирует распад белков в большинстве тканей, но усиливают синтез белков в печени. Глюкокортиоиды оказывает выраженное противовоспалительное действие, ингибируя фософолипазу А 2 и, вследствие этого, угнетая синтез эйкозаноидов. Глюкокортикоиды обеспечивают стресс-реакцию, а в больших дозах подавляют иммунные процессы.

Гиперфункция глюкокортикостероидов может быть гипофизарного происхождения или проявлением недостаточности выработки гормонов коркового слоя надпочечников. Она проявляется заболеванием Иценко-Кушинга . Гипофункция - болезнь Аддисона (бронзовая болезнь), проявляется сниженной сопротивляемостью организма, нередко гипертензией, гиперпигментацией кожи.

Минералокортикоиды

Дезоксикортикостерон, альдостерон регулируют водно-солевой обмен, способствует задержке натрия и выведению через почки калия и протонов.

При гиперфункции наблюдается гипертензия, происходит задержка воды, повышение нагрузки на сердечную мышцу, снижение уровня калия, развивается аритмия, алкалоз. Гипофункция ведёт к гипотонии, сгущению крови, нарушению работы почек, ацидозу.

Предшественники андрогенов

Предшественником андрогенов является дегидроэпиандростерон (ДЭПС). При его гиперпродукции возникает вирилизм, при котором у женщин формируется волосяной покров по мужскому типу. В тяжелой форме развивается адреногенитальный синдром.

5. Мужские половые гормоны (андрогены)

тестостерон

гормон половой органический биологический

К андрогенам относятся андростерон, тестостерон , дигидротестостерон . Они влияют на все виды обмена, синтез белков, жиров, остеогенез, обмен фосфолипидов, определяют половую дифференцировку, поведенческие реакции, стимулируют развитие ЦНС. Гипофункция проявляется астеничной конституцией, инфантилизмом, нарушением формирования вторичных половых признаков.

6. Женские половые гормоны (эстрогены)

эстрадиол

Эстрогенами являются эстрон, эстрадиол, эстриол . Они синтезируются из андрогенов путём ароматизации первого кольца. Эстрогены регулируют овариально-менструальный цикл, протекание беременности, лактации. Они активируют анаболические процессы (синтез белков, фосфолипидов, остеогенез), проявляют гипохолестеринемическое действие. Гипофункция ведёт к аменорее, остеопорозу.

7. Гормоны плаценты

В эмбриональном периоде плацента играет роль эндокринной железы. К гормонам плаценты относятся, в частности, хорионический соматотропин, хорионический гонадотропин, эстрогены, прогестерон, релаксин.

Обмен стероидных гормонов в эмбриональном периоде происходит в единой системе «мать-плацента-плод». Холестерин из организма матери поступает в плаценту, где преобразуется в прегненолон (предшественник стероидных гормонов). У плода прегненолон трансформируется в андрогены, которые поступают в плаценту. В плаценте из андрогенов синтезируются эстрогены, которые поступают в организм беременной женщины. Экскреция ею эстрогенов служит критерием протекания беременности.

Особенности гормонального статуса у детей

Сразу после рождения активируется функция гипофиза, коры надпочечников для обеспечения стрессовой реакции. Активация функции щитовидной железы и мозгового слоя надпочечников направлены на усиление липолиза, распад гликогена и на согревание организма. В этот период наблюдается некоторая гипофункция паращитовидной железы, гипокальциемия.

В первое время после рождения ребёнок получает некоторые гормоны в составе грудного молока. В первые дни после рождения может развиваться половой криз, связанный с отсутствием эффекта половых гормонов матери. Он проявляется нагрубанием молочных желез, появлением жировых точек, гнойничков, отёком половых органов.

В дошкольном возрасте активируется щитовидная, вилочковая железа, эпифиз, гипофиз.

К периоду полового созревания эпифиз и тимус подвергаются инволюции, заметно активируется выработка гонадотропных и половых гормонов.

Литература

1. РАН, Всероссийский ин-т научной и технической информации; Сост.: Е.С. Панкратова, В.К. Финн; Под общ. ред. В.К. Финна: Автоматическое порождение гипотез в интеллектуальных системах. - М.: ЛИБЕРКОМ, 2009

2. РАН, Общество биохимиков и молекулярных биологов, Институт биохимии им. А.Н. Баха; отв. ред. Л.П. Овчинников: Успехи биологической химии. - Пущино: ОНТИ ПНЦ РАН, 2009

3. : Молчание генов. - Пущино: ОНТИ ПНЦ РАН, 2008

4. Зурабян С.Э.: Номенклатура природных соединений. - М.: ГЭОТАР-Медиа, 2008

5. Комов В.П.: Биохимия. - М.: Дрофа, 2008

6. под ред. Е.С. Северина; рец.: А.А. Терентьев, Н.Н. Чернов: Биохимия с упражнениями и задачами. - М.: ГЭОТАР-Медиа, 2008

7. Под ред.: Д.М. Зубаирова, Е.А. Пазюк; Рец.: Ф.Н. Гильмиярова, И.Г. Щербак: Биохимия. - М.: ГЭОТАР-Медиа, 2008

8. Сотников О.С.: Статика и структурная кинетика живых асинаптических дендритов. - СПб.: Наука, 2008

9. Тюкавкина Н.А.: Биоорганическая химия. - М.: Дрофа, 2008

10. Александровская Е.И.: Антропохимия. - М.: Класс-М, 2007

Размещено на Allbest.ru

...

Подобные документы

    Система гормональной регуляции. Номенклатура и классификация гормонов. Принципы передачи гормонального сигнала клеткам-мишеням. Строение гидрофильных гормонов, механизм их действия. Метаболизм пептидных гормонов. Представители гидрофильных гормонов.

    реферат , добавлен 12.11.2013

    Особенности желез внутренней секреции. Методы исследования функции желез внутренней секреции. Физиологические свойства гормонов. Типы влияния гормонов. Классификация гормонов по химической структуре и направленности действия. Пути действия гормонов.

    презентация , добавлен 23.12.2016

    Гормоны коры и мозгового вещества надпочечников. Механизм действия стероидных гормонов. Функциональные взаимодействия в системе "гипоталамус - гипофиз - кора надпочечников". Гормоны щитовидной железы и их синтез. Синдромы нарушения выработки гормонов.

    презентация , добавлен 08.01.2014

    Определение понятия "гормон". Ознакомление с историей изучения эндокринных желез и гормонов, составлением их общей классификации. Рассмотрение специфических особенностей биологического действия гормонов. Описание роли рецепторов в данном процессе.

    презентация , добавлен 23.11.2015

    Основные системы регуляции метаболизма. Функции эндокринной системы по регуляции обмена веществ посредством гормонов. Организация нервно-гормональной регуляции. Белково-пептидные гормоны. Гормоны - производные аминокислот. Гормоны щитовидной железы.

    презентация , добавлен 03.12.2013

    Характеристика гормонов, особенности их образования, роль в регулировании работы организма. Функциональные группы гормонов. Гипоталамо-гипофизарная система. Эффекторные гормоны ГГС. Рилизинг-факторы гипоталамуса. Описание тропных гормонов аденогипофиза.

    презентация , добавлен 21.03.2014

    Понятие о гормонах, их основных свойствах и механизме действия. Гормональная регуляция обмена веществ и метаболизма. Гипоталамо-гипофизарная система. Гормоны периферических желез. Классификация гормонов по химической природе и по выполняемым функциям.

    презентация , добавлен 21.11.2013

    Химическая природа и классификация гормонов. Биороль простагландинов и тромбоксанов. Регуляция секреции гормонов. Гормональная регуляция углеводного, липидного, белкового и водно-солевого обмена. Роль циклазной системы в механизме действия гормонов.

    курсовая работа , добавлен 18.02.2010

    Эндокринная система человека. Железы внешней и внутренней секреции. Свойства гормонов. Гипофиз как важнейшая железа эндокринного аппарата. Гормоны щитовидной железы. Морфология женских и мужских половых желез. Гормональная активность половых желез.

    курсовая работа , добавлен 16.06.2012

    Органические вещества, предназначенные для управления функциями организма. Принцип действия гормонов. Воздействие на организм серотонина, мелатонина, адреналина, норадреналина, грелина, лептина, дофамина, эндорфина, эстрогена, прогестерона и тестостерона.

Предлагаемый материал по теме "Биохимия гормонов" отражает вопросы типовой учебной программы для студентов лечебного, педиатрического и медико-психологического факультетов. Данное издание содержит информацию о механизмах действия гормонов, их биологических эффектах, биохимических нарушениях при недостатке или избытке гормонов в организме. Пособие позволит студентам медицинского университета более эффективно готовиться к текущим занятиям и к экзаменационной сессии.

Пособие для студентов педиатрического, медико-психологического, медико-диагностического факультетов и факультета иностранных учащихся – 6-е изд.

    Список использованных сокращений 1

    Введение 1

    Гормоны 1

    Гормоны щитовидной железы 2

    Гормоны паращитовидных желёз 3

    Гормоны поджелудочной железы 4

    Гормоны мозгового вещества надпочечников 4

    Гормоны коры надпочечников 5

    Гормоны половых желёз 5

    Центральная регуляция эндокринной системы 6

    Использование гормонов в медицине 7

    Простагландины и другие эйкозаноиды 7

Алла Анатольевна Масловская
Биохимия гормонов

Список использованных сокращений

АДФ – аденозиндифосфат

АКТГ – адренокортикотропный гормон

АМФ – аденозинмонофосфат

АТФ – аденозинтрифосфат

ВНД – высшая нервная деятельность

ВМК – ванилилминдальная кислота

ГДФ – гуанозиндифосфат

ГМФ – гуанозинмонофосфат

ГТФ – гуанозинтрифосфат

ГТГ – гонадотропные гормоны

ДАГ – диацилглицерол

ИФ3 – инозитолтрифосфат

17-КС – 17-кетостероиды

ЛГ – лютеинизирующий гормон

ЛПВП – липопротеины высокой плотности

ЛПОНП – липопротеины очень низкой плотности

ЛТГ – лактотропный гормон

МСГ – меланоцитостимулирующий гормон

СТГ – соматотропный гормон

ТТГ – тиреотропный гормон

Т3 – трииодтиронин

Т4 – тетраиодтиронин (тироксин)

Фн – фосфат неорганический

ФСГ – фолликулостимулирующий гормон

цАМФ – циклический аденозинмонофосфат

цГМФ – циклический гуанозинмонофосфат

ЦНС – центральная нервная система

Введение

Имеющаяся в учебниках обширная информация по теме "Биохимия гормонов" не позволяет студентам, впервые изучающим этот раздел, правильно сориентироваться в выборе главных моментов для понимания биологических эффектов и молекулярных механизмов действия гормонов на организм. Целью настоящего издания является предоставление студентам информации о биохимии гормонов в более четкой и ясной форме, что будет способствовать овладению учебной дисциплиной.

Материал пособия содержит описание общих закономерностей действия гормонов на клетку, а также обоснование и объяснение молекулярных механизмов влияния гормонов на организм в норме и при патологических состояниях.

Предлагаемый учебный материал поможет студентам глубже понять значимость регуляторных механизмов для согласованной работы органов и систем, а также научиться разбираться в сущности биохимических процессов, лежащих в основе метаболических нарушений при патологии эндокринной системы.

Гормоны

Из всех биологически активных соединений и субстратов, принимающих участие в регуляции биохимических процессов и функций, особая роль принадлежит гормонам.

Слово "гормон" происходит из греческого языка и означает "возбуждать", "приводить в движение".

Гормоны – это органические вещества, которые образуются в тканях одного типа (эндокринные железы, или железы внутренней секреции), поступают в кровь, переносятся по кровяному руслу в ткани другого типа (ткани-мишени), где оказывают своё биологическое действие (т. е. регулируют обмен веществ, поведение и физиологические функции организма, а также рост, деление и дифференцировку клеток).

Классификация гормонов

По химической природе гормоны делятся на следующие группы:

1. пептидные – гормоны гипоталамуса, гипофиза, инсулин, глюкагон, гормоны паращитовидных желез;

2. производные аминокислот – адреналин, тироксин;

3. стероидные – глюкокортикоиды, минералокортикоиды, мужские и женские половые гормоны;

4. эйкозаноиды – гормоноподобные вещества, которые оказывают местное действие; они являются производными арахидоновой кислоты (полиненасыщенная жирная кислота).

По месту образования гормоны делятся на гормоны гипоталамуса, гипофиза, щитовидной железы, паращитовидных желёз, надпочечников (коркового и мозгового вещества), женские половые гормоны, мужские половые гормоны, местные или тканевые гормоны.

По действию на биохимические процессы и функции гормоны делятся на:

1. гормоны, регулирующие обмен веществ (инсулин, глюкагон, адреналин, кортизол);

2. гормоны, регулирующие обмен кальция и фосфора (паратиреоидный гормон, кальцитонин, кальцитриол);

3. гормоны, регулирующие водно-солевой обмен (альдостерон, вазопрессин);

4. гормоны, регулирующие репродуктивную функцию (женские и мужские половые гормоны);

5. гормоны, регулирующие функции эндокринных желёз (адренокортикотропный гормон, тиреотропный гормон, лютеинизирующий гормон, фолликулостимулирующий гормон, соматотропный гормон);

6. гормоны стресса (адреналин, глюкокортикоиды и др.);

7. гормоны, влияющие на ВНД (память, внимание, мышление, поведение, настроение): глюкокортикоиды, паратиреоидный гормон, тироксин, адренокортикотропный гормон)

Свойства гормонов

Высокая биологическая активность . Концентрация гормонов в крови очень мала, но их действие сильно выражено, поэтому даже небольшое увеличение или уменьшение уровня гормона в крови вызывает различные, часто значительные, отклонения в обмене веществ и функционировании органов и может привести к патологии.

Короткое время жизни , обычно от нескольких минут до получаса, после чего гормон инактивируется или разрушается. Но с разрушением гормона его действие не прекращается, а может продолжаться в течение часов и даже суток.

Дистантность действия. Гормоны вырабатываются в одних органах (эндокринных железах), а действуют в других (тканях- мишенях).

Высокая специфичность действия . Гормон оказывает своё действие только после связывания с рецептором. Рецептор – это сложный белок-гликопротеин, состоящий из белковой и углеводной частей. Гормон связывается именно с углеводной частью рецептора. Причём строение углеводной части имеет уникальную химическую структуру и соответствует пространственному строению гормона. Поэтому гормон безошибочно, точно, специфично связывается только со своим рецептором, несмотря на малую концентрацию гормона в крови.

Не все ткани одинаково реагируют на действие гормона. Высокой чувствительностью к гормону обладают те ткани, в которых имеются рецепторы к данному гормону. В таких тканях гормон вызывает наиболее выраженные сдвиги в обмене веществ и функциях. Если рецепторы к гормону есть во многих, или почти во всех тканях, то такой гормон оказывает общее действие (тироксин, глюкокортикоиды, соматотропный гормон, инсулин). Если рецепторы к гормону присутствуют в весьма ограниченном числе тканей, то такой гормон обладает избирательным действием. Ткани, в которых имеются рецепторы к данному гормону, называются ткани-мишени. В тканях-мишенях гормоны могут воздействовать на генетический аппарат, мембраны, ферменты.

Типы биологического действия гормонов

1. Метаболическое – действие гормона на организм проявляется регуляцией обмена веществ (например, инсулин, глюкокортикоиды, глюкагон).

2. Морфогенетическое – гормон действует на рост, деление и дифференцировку клеток в онтогенезе (например, соматотропный гормон, половые гормоны, тироксин).

3. Кинетическое или пусковое – гормоны способны запускать функции (например, пролактин – лактацию, половые гормоны – функцию половых желёз).

4. Корригирующее . Гормонам принадлежит важнейшая роль в адаптации человека к различным факторам внешней среды. Гормоны изменяют обмен веществ, поведение и функции органов так, чтобы приспособить организм к изменившимся условиям существования, т.е. осуществляют метаболическую, поведенческую и функциональную адаптацию, тем самым поддерживают постоянство внутренней среды организма.

К гормонам относят разнообразные по химической природе соединения, вырабатываемые в эндокринных железах, секретируемые непосредственно в кровь, оказывающие дистанционный биологический эффект. Они являются гуморальными посредниками, которые обеспечивают поступление сигнала в клетки-мишени и вызывают специфические изменения в сенситивных к ним тканях и органах. Отдельно выделяют тканевые гормоны, синтезируемые особыми эндокринными или рабочими клетками внутренних органов (почек, кишечника, легких, желудка и так далее), крови и оказывающие действие преимущественно в месте выработки.

Гормоны оказывают свой эффект в очень малых концентрациях (10 -3 –10 -12 моль/л). У каждого из них существует свой ритм секреции в течение суток, месяца или времени года, специфический для каждого гормона период жизни, как правило, очень короткий (секунды, минуты, редко часы).

По химической природе гормональные молекулы относят к трем группам соединений:

  • белки и пептиды;
  • производные аминокислот;
  • стероиды и производные жирных кислот.

Регуляция

Регуляцию деятельности эндокринных органов осуществляет центральная нервная система посредством прямых иннервационных воздействий (нейро-проводниковый компронент), а также через управление работой гипофиза гипоталамическими рилизинг-факторами: стимулирующими либеринами и тормозящими статинами (нейро-эндокринный компонент). Гипофиз транслирует эти сигналы в виде своих тропных гормонов соответствующим эндокринным железам. Гормоны влияют на работу нервной системы попосредством изменения содержания глюкозы, регуляции синтеза белка в мозге, потенцирования действия медиаторов и т. д. Чаще всего это влияние осуществляется по механизму отрицательной обратной связи. Тот же механизм действует внутри эндокринной системы: гормоны периферических желез снижают активность центральной железы – гипофиза.

Синтез

Синтез гормонов в эндокринных железах и клетках завершается, как правило, на стадии образования активной формы. Иногда синтезируются малоактивные или вообще неактивные молекулы, называемые прогормонами. В таком виде может осуществляться резервирование или транспортировка к месту рецепции (например, после ферментативного отщепления C‑пептида от проинсулина освобождается активный инсулин).

Секреция

Секреция гормонов в кровь осуществляется посредством активного выброса и зависит от нервных, эндокринных, метаболических воздействий. В эндокринных опухолях такая зависимость может быть нарушена и гормоны секретируются спонтанно.

Молекулы гормонов способны депонироваться в клетках эндокринных желез (иногда – рабочих органов) за счет образования комплекса с белками, ионами двухвалентных металлов, РНК или накопления внутри субклеточных структур.

Транспорт

Транспорт гормона от места синтеза к месту действия, метаболизма или выведения осуществляется кровью. В свободной форме циркулирует до 10% общего количества гормона, остальной пул ‑ в комплексе с белками плазмы и форменными элементами крови. С неспецифическим транспортным белком – альбумином связано менее 10% гормона, со специфическими белками более 90%. Специфическими белками являются: транскортин для кортикостероидов и прогестерона, секс-стероидсвязывающий глобулин для андрогенов и эстрогенов, тироксинсвязывающий и интер-a‑глобулины для тиреоидов, инсулинсвязывающий глобулин и другие. Вступив в комплекс с белками, гормоны депонируются в кровяном русле, временно выключаясь из сферы биологического действия и метаболических превращений (обратимая инактивация). Активной становится свободная форма гормона. С учетом этого факта разработаны методы определения общего количества гормона, свободной и связанной с белками форм и самих белков-переносчиков.

Рецепция

Рецепция и эффект гормона на органы-мишени является основным звеном эндокринной регуляции. Способность гормона к передаче регуляторного сигнала обусловлена наличием в клетках-мишенях специфических рецепторов.

Рецепторы в большинстве случаев – белки, преимущественно гликопротеиды, имеющие специфическое фосфолипидное микроокружение. Связывание гормона с рецептором определяется законом действующих масс по кинетике Михаэлиса. При рецепции возможно проявление положительного или отрицательного кооперативных эффектов, когда ассоциация первых молекул гормона с рецептором облегчает или затрудняет связывание последующих.

Рецепторный аппарат обеспечивает избирательный прием гормонального сигнала и инициацию специфического эффекта в клетке. Локализация рецепторов в определенной мере обусловливает тип действия гормона. Выделяют несколько групп рецепторов :

1) Поверхностные : при взаимодействии с гормоном меняют конформацию мембран, стимулируя перенос ионов или субстратов в клетку (инсулин, ацетилхолин).

2). Трансмембранные : имеют контактный участок на поверхности и внутримембранную эффекторную часть, связанную с аденилат- или гуанилатциклазой. Образование внутриклеточных мессенджеров – цАМФ и цГМФ – стимулирует специфические протеинкиназы, влияющие на синтез белка, активность ферментов и т.д. (полипептиды, амины).

3) Цитоплазматические : связываются с гормоном и в виде активного комплекса поступают в ядро, где контактируют с акцептором, приводя к усилению синтеза РНК и белка (стероиды).

4) Ядерные : существуют в виде комплекса негистонового белка и хроматина. Контакт с гормоном напрямую включает механизм его действия (гормоны щитовидной железы).

Величина эффекта гормона зависит от концентрации гормонального рецептора, поступающего к клеткам-мишеням, от числа специфических рецепторов, степени их сродства и избирательности к гормону. На величину эффекта может влиять действие других гормонов, как антагонистическое (инсулин и глюкокортикоиды разнонаправленно действуют на поступление глюкозы в клетку), так и потенцирующее (глюкокортикоиды усиливают влияние катехоламинов на сердце и мозг).

Изучение функционирования рецепторного аппарата актуально в клинике, особенно при сахарном диабете, вызванном рецепторной инсулинорезистентностью, при синдроме тестикулярной феминизации или определении гормон-чувствительных опухолей молочной железы.

Инактивация

Инактивация гормонов происходит под влиянием соответствующих ферментных систем в самих железах внутренней секреции, в органах-мишенях, а также в крови, печени и почках.

Основные химические превращения гормонов:

  • образование эфиров серной или глюкуроновой кислот;
  • отщепление участков молекул;
  • изменение структуры активных участков с помощью метилирования, ацетилирования и т.д.;
  • окисления, восстановления или гидроксилирования.

Катаболизм является важным механизмом регуляции активности гормонов. Через влияние на концентрацию свободного гормона в крови, по механизму обратной связи, контролируется скорость его секреции железой. Усиление катаболизма смещает в крови динамическое равновесие между свободным и связанным гормоном в сторону его свободной формы, тем самым, повышая доступ гормона в ткани. Длительное усиление распада некоторых гормонов может подавлять биосинтез специфических транспортных белков, увеличивая пул свободного ‑ активного гормона. Скорость разрушения гормона – его метаболический клиренс – оценивают величиной объема плазмы, очищенной от исследуемых молекул за единицу времени.

Выведение

Выведение гормонов и их метаболитов осуществляется почками с мочой, печенью с желчью, желудочно-кишечным трактом с пищеварительными соками, кожей с потом. Продукты распада пептидных гормонов поступают в общий пул аминокислот организма.

Способ выведения зависит от свойств гормона или его метаболита: структуры, растворимости и т.д.

Приоритетным материалом при изучении выведения гормонов в клинике является моча . Исследование порционной или суммарной величины экскреции гормонов и метаболитов с мочой дает представление об общей величине секреции гормона за сутки или в отдельные их периоды.

Таким образом, эндокринная функция представляет собой сложную, многокомпонентную систему взаимосвязанных процессов, определяющих на различных уровнях как специфику и силу гормонального сигнала, так и чувствительность клеток и тканей к данному гормону.

Нарушения в системе эндокринной регуляции могут быть связаны с любым из названных звеньев.

  • Вперёд >

Глава VI . БИОЛОГИЧЕСКИ АКТИВНЫЕ ВЕЩЕСТВА

§ 17. ГОРМОНЫ

Общие представления о гормонах

Слово гормон происходит от греч. гормао - возбуждать.

Гормоны – это органические вещества, выделяемые железами внутренней секреции в небольших количествах, транспортируемые кровью к клеткам-мишеням других органов, где они проявляют специфическую биохимическую или физиологическую реакцию. Некоторые гормоны синтезируются не только в эндокринных железах, но и клетками других тканей.

Для гормонов характерны следующие свойства:

a) гормоны секретируются живыми клетками;

b) секреция гормонов осуществляется без нарушения целостности клетки, они поступают непосредственно в кровяное русло;

c) образуются в очень малых количествах, их концентрация в крови составляет 10 -6 – 10 -12 моль/л, при стимуляции секреции кокого-либо гормона его концентрация может возрасти на несколько порядков;

d) гормоны обладают высокой биологической активностью;

e) каждый гормон действует на определенные клетки-мишени;

f) гормоны связываются со специфическими рецепторами, образуя гормон-рецепторный комплекс, который определяет биологический ответ;

g) гормоны имеют небольшой период полужизни, обычно несколько минут и не более одного часа.

Гормоны по химическому строению делятся на три группы: белковые и пептидные гормоны, стероидные гормоны и гормоны, являющиеся производными аминокислот.

Пептидные гормоны представлены пептидами с небольшим числом аминокислотных остатков. Белки-гормоны содержат до 200 аминокислотных остатков. К их числу относятся гормоны поджелудочной железы инсулин и глюкагон, гормон роста и др. Большинство белковых гормонов синтезируются в виде предшественников – прогормонов , не обладающих биологической активностью. В частности, инсулин синтезируется в виде неактивного предшественника препроинсулина , который в результате отщепления 23 аминокислотных остатков со стороны N-конца превращается в проинсулин и при удалении еще 34 аминокислотных остатков – в инсулин (рис. 58).

Рис. 58. Образование инсулина из предшественника.

К производным аминокислот относятся гормоны адреналин, норадреналин, тироксин, трииодтиронин. К стероидным принадлежат гормоны коры надпочечников и половые гормоны (рис. 3).

Регуляция секреции гормонов

Верхнюю ступень в регуляции секреции гормонов занимает гипоталамус – специализированная область мозга (рис. 59). Этот орган получает сигналы из центральной нервной системы. В ответ на эти сигналы гипоталамус выделяет ряд регуляторных гипоталамических гормонов. Их называют рилизинг-факторы . Это пептидные гормоны, состоящие из 3 – 15 аминокислотных остатков. Рилизинг-факторы поступают в переднюю долю гипофиза – аденогипофиз, расположенный непосредственно под гипоталамусом. Каждый гипоталамический гормон регулирует секрецию какого-либо одного гормона аденогипофиза. Одни рилизинг-факторы стимулируют секрецию гормонов, их называют либеринами , другие, наоборот, тормозят, это – статины . В случае стимуляции гипофизом в кровь выделяются так называемые тропные гормоны , стимулирующие деятельность других желез внутренней секреции. Те в свою очередь начинают выделять собственные специфические гормоны, которые воздействуют на соответствующие клетки-мишени. Последние в соответствии с полученным сигналом вносят коррективы в свою деятельность. Надо отметить, что циркулирующие в крови гормоны в свою очередь тормозят деятельность гипоталамуса, аденогипофиза и желез, в которых они образовались. Такой способ регуляции носит название регуляции по принципу обратной связи .

Рис. 59. Регуляция секреции гормонов

Интересно знать! Гипоталамические гормоны, по сравнению с другими гормонами, выделяются в наименьших количествах. Например, для получения 1 мг тиролиберина (стимулирующего деятельность щитовидной железы) потребовалось 4 т ткани гипоталамуса.

Механизм действия гормонов

Гормоны отличаются по своему быстродействию. Одни гормоны вызывают быстрый биохимический или физиологический ответ. Например, печень начинает выделять глюкозу в кровь после появления адреналина в кровяном русле уже через несколько секунд. Ответ же на действие стероидных гормонов своего максимума достигает через несколько часов и даже дней. Столь значительные различия в скорости ответа на введение гормона связаны с различным механизмом их действия. Действие стероидных гормонов направлено на регуляцию транскрипции. Стероидные гормоны легко проникают через клеточную мембрану в цитоплазму клетки. Там они связываются со специфическим рецептором, образуя гормон-рецепторный комплекс. Последний, попадая в ядро, взаимодействует с ДНК и активирует синтез иРНК, которая далее транспортируется в цитоплазму и инициирует синтез белка (рис. 60.). Синтезированный белок определяет биологический ответ. Аналогичным механизмом действия обладает и гормон щитовидной железы тироксин.

Действие пептидных, белковых гормонов и адреналина направлено не на активацию синтеза белка, а на регуляцию активности ферментов или других белков. Эти гормоны взаимодействуют с рецепторами, находящимися на поверхности клеточной мембраны. Образовавшийся гормон-рецепторный комплекс запускает серию химических реакций. В результате происходит фосфорилирование некорых ферментов и белков, вследствие которого изменяется их активность. В итоге наблюдается биологический ответ (рис. 61).

Рис. 60. Механизм действия стероидных гормонов

Рис. 61. Механизм действия пептидных гормонов

Гормоны – производные аминокислот

Как отмечалось выше, к гормонам, являющимся производными аминокислот, относятся гормоны мозгового слоя надпочечников (адреналин и норадреналин) и гормоны щитовидной железы (тироксин и трииодтиронин) (рис. 62). Все эти гормоны являются производными тирозина.

Рис. 62. Гормоны – производные аминокислот

Органами–мишенями адреналина являются печень, скелетные мышцы, сердце и сердечно-сосудистая система. Близок по структуре к адреналину и другой гормон мозгового слоя надпочечников – норадреналин. Адреналин ускоряет ритм сердца, повышает кровяное давление, стимулирует расщепление гликогена печени и увеличивает содержание глюкозы в крови, обеспечивая, таким образом, мышцы топливом. Действие адреналина направлено на то, чтобы подготовить организм к экстремальным условиям. В состоянии тревоги концентрация адреналина в крови может увеличиться почти в 1000 раз.

Щитовидная железа, как отмечали выше, секретирует два гормона – тироксин и трииодтиронин, их соответственно обозначают Т 4 и Т 3 . Главным результатом действия этих гормонов является увеличение скорости основного обмена.

При повышенной секреции Т 4 и Т 3 развивается так называемая Базедова болезнь . В таком состоянии скорость обмена веществ увеличена, пища сгорает быстро. Больные выделяют больше тепла, им свойственна повышенная возбудимость, у них наблюдаются тахикардия, потеря массы тела. Дефицит гормонов щитовидной железы у детей приводит к задержке роста и умственного развития – кретинизму . Недостаточность иода в пище, а иод входит в состав этих гормонов (рис. 62), вызывает увеличение щитовидной железы, развитие эндемического зоба . Добавление иода в пищу приводит к уменьшению зоба. С этой целью в Беларуси в состав пищевой соли вводят иодид калия.

Интересно знать! Если поместить головастиков в воду, не содержащую иод, то их метаморфоз задерживается, они достигают гигантских размеров. Добавление иода в воду приводит к метаморфозу, начинается редукция хвоста, появляются конечности, они превращаются в нормальную взрослую особь.

Пептидные и белковые гормоны

Это наиболее разнообразная группа гормонов. К ним относятся рилизинг-факторы гипоталамуса, тропные гормоны аденогипофиза, гормоны эндокринной ткани поджелудочной железы инсулин и глюкагон, гормон роста и многие другие.

Главной функцией инсулина является поддержание определенного уровня глюкозы в крови. Инсулин способствует поступлению глюкозы в клетки печени и мышц, где она в основном превращается в гликоген. При недостатке выработки инсулина или полном его отсутствии развивается заболевание сахарный диабет . При этом заболевании ткани больного не могут поглощать глюкозу в достаточных количествах, несмотря на ее повышенное содержание в крови. У больных происходит выведение глюкозы с мочой. Это явление получило название «голод среди изобилия».

Глюкагон оказывает противоположное инсулину действие, он повышает содержание глюкозы в крови, способствует распаду гликогена в печени с образованием глюкозы, поступающей затем в кровь. В этом его действие сходно с действием адреналина.

Секретируемый аденогипофизом гормон роста, или соматотропин, ответствен за рост скелета и увеличение массы тела человека и животных. Недостаточность этого гормона приводит к карликовости , избыточная же его секреция выражается в гигантизме, или акромегалии , при которой происходит усиленный рост кистей рук, ступней ног, лицевых костей.

Стероидные гормоны

Как отмечено выше, к стероидным гормонам принадлежат гормоны коры надпочечников и половые гормоны (рис. 3).

В коре надпочечников синтезируются свыше 30 гормонов, их называют также кортикоидами. Кортикоиды делят на три группы. Первая группа – это глюкокортикоиды , они регулируют углеводный обмен, оказывают противовоспалительное и антиаллергическое действие. Вторую группу составляют минералокортикоиды , они поддерживают, главным образом, водно-солевой баланс в организме. К третьей группе относятся кортикоиды, занимающие промежуточное положение между глюкокортикоидами и минералокортикоидами.

Среди половых гормонов различают андрогены (мужские половые гормоны) и эстрогены (женские половые гормоны). Андрогены стимулируют рост и созревание, поддерживают функционирование репродуктивной системы и формирование вторичных половых признаков. Эстрогены регулируют активность женской репродуктивной системы.



gastroguru © 2017