ОФС.1.2.3.0017.15 Методы количественного определения витаминов. Витаминам, минеральным веществам и пищевым волокнам Контрольный упрощенный метод определения витамина С

Введение……………………………………………………………2

1. Общий обзор методов определения витаминов…………………3

2. Хроматографические методы определения витаминов…………5

3. Электрохимические методы определения витаминов…………10

4. Инверсионно вольтамперометрический метод определения

водорасторимых витаминов B 1 B 2 в пищевых продуктах………..13

Заключение………………………………………………………...18

Введение

В настоящее время на рынке появилось огромное количество витаминизированных продуктов питания для человека и кормов для животных, представляющих собой сухие многокомпонентные смеси. Ассортимент таких продуктов представлен достаточно широко. Это, прежде всего, биологически активные добавки к пище, премиксы, комбикорма для животных и птиц, поливитаминные препараты. Критерием качества таких продуктов может являться их анализ на содержание витаминов и, особенно, таких жизненно необходимых, как водорастворимые и жирорастворимые витамины, количество которых регламентируется нормативными документами и санитарными нормами качества.

Для определения витаминов применяют различные методы. Широко используемые оптические методы анализа трудоемки, требуют больших затрат времени и дорогостоящих реактивов, применение хроматографических методов осложнено использованием дорогостоящего оборудования. С каждым годом расширяется ассортимент и увеличивается производство продуктов питания, совершенствуется рецептура детского питания. Это в свою очередь предъявляет повышенные требования к контролю за качеством выпускаемой продукции и совершенствованию методов определения витаминов. Медико-биологические требования и санитарные нормы качества продовольственного сырья и пищевых продуктов характеризуют пищевую ценность большинства видов и групп продуктов детского питания различного назначения.

1. Общий обзор методов определения витаминов

Почти все витамины легко подвергаются окислению, изомеризации и разрушаются под воздействием высокой температуры, света, кислорода воздуха, влаги и других факторов.

Из существующих методов определения витамина С (аскорбиновой кислоты) наиболее широко применяют метод визуального и потенциометрического титрования раствором 2,6-ди-хлорфенолиндофенола по ГОСТ 24556-81, основанный на редуцирующих свойствах аскорбиновой кислоты и ее способности восстанавливать 2,6-ДХФИФ. Темно-синяя окраска этого индикатора при добавлении аскорбиновой кислоты переходит в бесцветную. Важное значение имеет приготовление экстракта исследуемого продукта. Наилучшим экстрагентом является 6 %-ный раствор метафосфорной кислоты, который инактивирует аскорбинотоксидазу и осаждает белки.

Каротин в растительном сырье, концентратах и безалкогольных напитках контролируют физико-химическим методом по ГОСТ 8756.22-80. Метод основан на фотометрическом определении массовой доли каротина в растворе, полученном в процессе экстрагирования из продуктов органическим растворителем. Предварительно раствор очищают от сопутствующих красящих веществ с помощью колоночной хроматографии. Каротин легко растворяется в органических растворителях (эфир, бензин и др.) и придает им желтую окраску. Для количественного определения каротина используют адсорбционную хроматографию на колонках с окисью алюминия и магния. Такое определение пигментов на колонке зависит от активности адсорбента, количества пигментов, а также присутствия других компонентов в разделяемой смеси. Сухая смесь окиси алюминия задерживает каротин, а влажная пропускает в раствор другие красящие вещества.

Тиамин в основном находится в связанном состоянии в виде дифосфорного эфира - кокарбоксилазы, которая является активной группой ряда ферментов. С помощью кислотного гидролиза и под воздействием ферментов тиамин освобождается из связанного состояния. Этим способом определяют количество тиамина. Для расчета содержания витамина B1 используют флюрометрический метод, который применяют для определения тиамина в пищевых продуктах. Он основан на способности тиамина образовывать в щелочной среде с феррнцианндом калня тиохром, который дает интенсивную флюоресценцию в бутиловом спирте. Интенсивность процесса контролируют на флюорометре ЭФ-ЗМ.

В продуктах питания и напитках рибофлавин присутствует в связанном состоянии, т. е. в форме фосфорных эфиров, связанных с белком. Чтобы определить количество рибофлавина в продуктах, необходимо освободить его из связанного состояния путем кислотного гидролиза и обработки ферментными препаратами. Витамин B1 в безалкогольных напитках рассчитывают с помощью химического метода для определения количества легкогидролизуемых и прочно связанных форм рибофлавина в тканях. Метод основан на способности рибофлавина к флюоресценции до и после восстановления его гипосульфитом натрия. Определение общего содержания фенольных соединений. Для этого используют колориметрический метод Фолина - Дениса, который основан на образовании голубых комплексов при восстановлении вольфрамовой кислоты под действием полифенолов с реагентом в щелочной среде. Фенольные соединения определяют по хлорогеновой кислоте методом пламенной фотометрии на приборе ЕКФ-2.

2. Хроматографические методы определения витаминов

В последнее время за рубежом бурное развитие переживает метод высокоэффективной жидкостной хроматографии. Это связано, прежде всего, с появлением прецизионных жидкостных хроматографов, совершенствованием техники выполнения анализа. Широкое использование метода ВЭЖХ при определении витаминов нашло отражение и в числе публикаций. На сегодняшний день более половины всех опубликованных работ по анализу как водо- так и жирорастворимых витаминов посвящено применению этого метода.Широкое распространение при определении витаминов получили различные варианты хроматографии.

Для очистки токоферола от посторонних примесей используют метод тонкослойной хроматографии В сочетании со спектрофотометрическими и флуориметрическими методами этим способом проводят и количественное определение витамина Е. При разделении используют пластинки с силуфолом, кизельгелем

Анализ изомеров токоферола в оливковом масле проводится методом газо-жидкостной хроматографии. Методики анализа ГХ и ГЖХ требуют получения летучих производных, что крайне затруднительно при анализе жирорастворимых витаминов. По этой причине данные способы определения не получили большого распространения. Определение витамина Е в пищевых продуктах, фармпрепаратах и биологических объектах проводят в градиентном и изократическом режимах как в нормально-фазовых, так и в обращенно-фазовых условиях. В качестве адсорбентов используют силикагель (СГ), кизельгур, силасорб, ODS-Гиперсил и другие носители. Для непрерывного контроля состава элюата в жидкостной хроматографии при анализе витаминов и увеличения чувствительности определения используют УФ (А,=292 нм), спектрофотометрический (Х=295нм), флуоресцентный (Х,=280/325нм), электрохимический, ПМР- и масс-спектроскопический детекторы.

Большинство исследователей для разделения смесей всех восьми изомеров токоферолов и их ацетатов предпочитают использовать адсорбционную хроматографию. В этих случаях подвижной фазой обычно служат углеводороды, содержащие незначительные количества какого-либо простого эфира. Перечисленные методики определения витамина Е, как правило, не предусматривают предварительного омыления образцов, что существенно сокращает время выполнения анализа.

Разделение с одновременным количественным определением содержания жирорастворимых витаминов (А, Д, Е, К) при их совместном присутствии в поливитаминных препаратах проводят как на прямой, так и на обращенной фазах. При этом большинство исследователей предпочитают использовать обращенно-фазовый вариант ВЭЖХ. Метод ВЭЖХ позволяет анализировать водорастворимые витамины В1 и В2 как одновременно, так и отдельно. Для разделения витаминов используют обращенно-фазный, ион-парный и ионообменный варианты ВЭЖХ. Применяют как изократический, так и градиентный режимы хроматографирования. Предварительное отделение определяемых веществ от матрицы осуществляют путем ферментативного и кислотного гидролиза пробы.

Преимущества метода жидкостной хроматографии:

Одновременное определение нескольких компонентов

Устранение влияния мешающих компонентов

Комплекс можно быстро перестроить на выполнение других анализов.

Состав и характеристика оборудования и программного обеспечения для жидкостного хроматографа "Хромос ЖХ-301":

Таблица 1

Достоинства хроматографа "Хромос ЖХ-301":

Высокая стабильность и точность поддержания расхода элюента обеспечивается конструкцией насосов высокого давления.

Легкий доступ к колонкам обеспечивается конструкцией прибора.

Эффективность разделения обеспечивается применением высокоэффективных хроматографических колонок.

Широкий линейный диапазон измерительного сигнала детекторов без переключений предела измерения, что позволяет с высокой точностью измерять пики как большой, так и малой концентрации.

Хроматограмма анализа водорастворимых витаминов:

1 аскорбиновая кислота (C),
2 никотиновая кислота (Niacin),
3 пиридоксин (B6),
4 тиамин (B1),
5 никотинамид (B3),
6 фолиевая кислота (M),
7 цианокобаламин (B12),
8 рибофлавин (B2).

МОТИВАЦИОННАЯ ХАРАКТЕРИСТИКА ТЕМЫ

Рациональное питание человека требует сбалансированности не только по содержанию белков, жиров, углеводов, но и по содержанию микронутриентов. Результаты изучения фактического питания различных групп населения свидетельствуют о значительной распространенности полигиповитаминозов, недостаточности основных минеральных веществ и пищевых волокон. Устранение недостаточностей микронутриентов не может быть достигнуто простым увеличением потребления продуктов питания. Современные условия жизни и труда большинства населения приводят к уменьшению энергетических затрат, что обусловливает необходимость снижения количества потребляемой пищи и влечет за собой недостаточное потребление содержащихся в ней микронутриентов. Знания клинических проявлений недостаточностей микронутриентов, источников витаминов, минеральных веществ и пищевых волокон в питании, способах сохранения витаминной ценности продуктов, приемах профилактической витаминизации позволяют врачу оптимизировать статус питания пациентов.

ЦЕЛЬ ЗАНЯТИЯ: ознакомить с биологической ролью, нормированием и источниками в питании микронутриентов и пищевых волокон; научить определению химического состава рациона питания по содержанию витаминов, минеральных веществ, пищевых волокон расчетным методом (на примере анализа меню-раскладки суточного рациона питания студента-медика), витаминосберегающим способам хранения и кулинарной обработки продуктов, профилактической витаминизацией.

САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ НА ЗАНЯТИИ

1. Определение качественного состава суточного рациона питания студента по содержанию витаминов, минеральных веществ, пищевых волокон расчетным методом (по меню-раскладке, составленной к теме 3.2.) с использованием «Таблиц химического состава и энергетической ценности пищевых продуктов».

2. Решение ситуационных профессионально ориентированных задач двух типов, оформление решения в протоколе.

3. Лабораторная работа по определению содержания витамина С в овощах. 3.1. Определение содержания витамина С в сыром и вареном картофеле; расчет процента потери витамина С при кулинарной обработке.

3.2. Определение содержания витамина С в капусте; расчет процента потери витамина С при хранении.

4. Заслушивание и обсуждение рефератов, подготовленных студентами

по индивидуальному заданию преподавателя.

ЗАДАНИЕ ДЛЯ САМОПОДГОТОВКИ

1.Биологическая роль, нормирование, источники в питании водорастворимых витаминов.

2.Биологическая роль, нормирование, источники в питании жирорастворимых витаминов.

3. Виды витаминных недостаточностей.

4. Причины гиповитаминозов, их проявления.

5.Приемы сохранения и повышения витаминной ценности рационов питания, профилактика гиповитаминозов.

6.Биологическая роль, нормирование, источники в питании минеральных веществ.

7.Биологическая роль, нормирование, источники в питании пищевых волокон.

ПРОТОКОЛ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

"_____"___________20___г.

Таблица 46

Качественный состав суточного рациона питания студента

Наименования блюд меню, набор продуктов на порцию Масса, г Витамины Минеральные вещества Пище-вые волок- на, г
С мг В мг В мг А мкг D мкг Ca мг P мг К мг Fe мг J мкг
ЗАВТРАК:
2-ой ЗАВТРАК:
ОБЕД:
УЖИН:
ВСЕГО ЗА СУТКИ:

2. Решение ситуационной задачи (тип 1) №____

__________________________________________________________________

______________________________________________________________________________________________________________________________________________________________________________________________________

__________________________________________________________________

__________________________________________________________________

Решение ситуационной задачи (тип2) №___

__________________________________________________________________

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

__________________________________________________________________

__________________________________________________________________

3. Определение содержания витамина С в овощах:

вид продукта _____________, навеска продукта ____________г,

количество 0,0001н. раствора иодноватокислого калия, пошедшего на тит-

рование пробы _____мл;

Формула для расчета:

а) сырой картофель _______ м, вареный картофель _______ мг,

потеря витамина С при кулинарной обработке _________%

б) капуста ______ мг, среднее содержание в капусте _____ мг,

потеря витамина С при хранении _____ %.

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________

Работу выполнил __________________

Подпись преподавателя _____________

СПРАВОЧНЫЙ МАТЕРИАЛ

Дефиниции темы

АВИТАМИНОЗ - полное истощение витаминных ресурсов организма.

АНТИВИТАМИНЫ - соединения, частью или полностью выключающие витамины из обменных реакций организма путем их разрушения, инактивации или препятствуя их ассимиляции. Антивитамины делятся на 2 группы:

а) структуроподобные соединения (конкурентные ингибиторы; вступают с витаминами или их производными в конкурирующие отношения в соответствующих биохимических реакциях обмена веществ), к ним относятся сульфаниламиды, дикумарин, мегафен, изониазид и др.

б) структуроразличные соединения (природные антивитамины; вещества,

которые путем изменения молекулы или комплексного соединения с метаболитами частично или полностью лишают витамин его действия), к ним относятся тиаминаза, аскорбиназа, авидин и др.

ВИТАМИНЫ - необходимые для нормальной жизнедеятельности низкомолекулярные органические соединения с высокой биологической активностью, которые не синтезируются (или синтезируются в недостаточном количестве) в организме и поступают в организм с пищей. Биологическая роль водорастворимых витаминов определяется их участием в построении различных коферментов, жирорастворимых витаминов - в контроле функционального состояния мембран клетки и субклеточных структур.

ВИТАМИНЫ-АНТАГОНИСТЫ: В 1 и В 2 ; А и Д; никотиновая кислота и холин; тиамин и холин (при длительном введении с лечебными целями одного витамина обнаруживаются симптомы недостаточности другого).

ВИТАМИНЫ-СИНЕРГИСТЫ: С и Р; Р, С, К; В 12 и фолиевая кислота; С, К, В 2 ; А и Е; Е и инозит (при комплексном применении в поливитаминных препаратах могут усиливать биологический эффект друг друга). ГИПОВИТАМИНОЗ - резкое снижение обеспеченности организма тем или иным витамином.

СКРЫТАЯ (ЛАТЕНТНАЯ) ФОРМА ВИТАМИННОЙ НЕДОСТАТОЧНОСТИ не имеет каких-либо внешних проявлений и симптомов, однако, оказывает отрицательное влияние на работоспособность, устойчивость организма к различным неблагоприятным факторам, удлиняет выздоровление после перенесенного заболевания.

ПИЩЕВЫЕ ВОЛОКНА – высокомолекулярные углеводы (целлюлоза, гемицеллюлоза, пектины, лигнин, хитин и др.) главным образом растительного происхождения, устойчивые к перевариванию и усвоению в тонком кишечнике, но подвергающиеся полной или частичной ферментации в толстом кишечнике.

ВАЖНЕЙШИЕ ПРИЧИНЫ ГИПОВИТАМИНОЗОВ И АВИТАМИНОЗОВ

1. Недостаточное поступление витаминов с пищей.

1.1. Низкое содержание витаминов в рационе.

1.2. Снижение общего количества потребляемой пищи в связи с низкими энерготратами.

1.3. Потеря и разрушение витаминов в процессе технологической переработки продуктов питания, их хранения и нерациональной кулинарной

обработки.

1.4. Отклонения от сбалансированной формулы питания (преимущественно углеводное питание требует дополнительного количества тиамина;

при недостаточном введении полноценных белков витамины С, РР, В 1 быстро выводятся с мочой, не участвуют в обменных процессах, задерживается превращение каротина в витамин А).

1.5. Анорексия.

1.6. Присутствие витаминов в некоторых продуктах в неутилизируемой форме (инозит в виде фитина зерновых продуктов).

2. Угнетение кишечной микрофлоры, продуцирующей некоторые витамины (В 6 , К).

2.1. Болезни желудочно-кишечного тракта.

2.2. Последствия химиотерапии (дисбактериозы).

3. Нарушение ассимиляции витаминов.

3.1. Нарушение всасывания витаминов в желудочно-кишечном тракте

при заболеваниях желудка, кишечника, поражениях гепатобилиарной системы, а также в пожилом возрасте (нарушение секреции желчи, необходимое для всасывания жирорастворимых витаминов).

3.3. Нарушение обмена витаминов и образования их биологически активных (коферментных) форм при различных заболеваниях, действии токсических и инфекционных агентов, химиотерапии, в пожилом возрасте.

4. Повышенная потребность в витаминах.

4.1. Особые физиологические состояния организма (интенсивный рост, беременность, лактация).

4.2. Особые климатические условия (потребность в витаминах повышается на 30-60% в связи с повышенными энерготратами при низкой температуре воздуха в климатической зоне Севера).

4.4. Значительная нервно-психическая нагрузка, стрессовые состояния.

4.5. Воздействие вредных факторов производства (Рабочим горячих цехов в условиях воздействия высоких температур /32 градуса/ при одновременной физической нагрузке требуется вдвое больше витаминов С, В 1 , В 6 , пантотеновой кислоты, чем при 18 градусах).

4.6. Инфекционные заболевания и интоксикации (При тяжелых септических процессах потребность организма в витамине С достигает 300-500 мг в сутки).

4.7. Заболевания внутренних органов и эндокринных желез.

4.8. Повышенная экскреция витаминов.

5. Врожденные, генетически обусловленные нарушения обмена и функций витаминов.

5.1. Врожденные нарушения всасывания витаминов.

5.2. Врожденные нарушения транспорта витаминов кровью и через клеточные мембраны.

5.3. Врожденные нарушения биосинтеза витаминов (никотиновой кислоты из триптофана).

5.4. Врожденные нарушения превращения витаминов в коферментные

формы, простетические группы и активные метаболиты.

5.5. Нарушение включения витаминов в состав активного центра фермента.

5.6. Нарушение структуры апофермента, затрудняющее его взаимодействие с коферментом.

5.7. Нарушение структуры апофермента, приводящее к полной или частичной утрате ферментативной активности вне зависимости от взаимодействия с коферментом.

5.8. Усиление катаболизма витаминов.

5.9. Врожденные нарушения реабсорбции витаминов в почках.

Таблица 47

(в 100 г съедобной части)

Продукты В 1 В 2 РР В 6 С Е А В-ка-ро-тин D В 12 Фо-лие-вая кисл.
Мг/100г Мкг/100 г
Хлеб ржаной 0,18 0,11 0,67 0,17 - 2,2 - - - -
Хлеб пшенич. 0,21 0,12 2,81 0,3 - 3,8 - - - -
Крупа овсян. 0,49 0,11 1,1 0,27 - 3,4 - - - -
Крупа манная 0,14 0,07 1,0 0,17 - 2,5 - - - -
Крупа рисовая 0,08 0,04 1,6 0,18 - 0,4 - - - -
Крупа гречнев. 0,53 0,2 4,19 0,4 - 6,6 - - - -
Пшено 0,62 0,04 1,55 0,52 - 2,6 - 0,15 - -
Макароны 0,17 0,08 1,21 0,16 - 2,1 - - - -
Говядина 0,07 0,18 3,0 0,39 Сл - - - - 2,8 8,9
Свинина 0,52 0,14 2,4 0,33 Сл - - - - - 5,5
Печень говяж. 0,3 2,19 6,8 0,7 1,3 3,8 1,0 -
Колбаса варен. 0,25 0,18 2,47 0,19 - - - - - -
Куры 0,07 0,15 3,6 0,61 - - 0,1 - - - 5,8
Яйца куриные 0,07 0,44 0,2 0,14 - 0,3 - 4,7 0,1 7,5
Треска 0,09 0,16 2,3 0,17 Сл. 0,9 Сл. - - 1,6 11,3
Икра осетр. 0,3 0,36 1,5 0,29 7,8 - 0,2 - -
Молоко Пастер. 0,03 0,13 0,1 - 1,0 - Сл. 0,01 - - -
Кефир 0,03 0,17 0,14 0,06 0,7 0,1 Сл. 0,01 - 0,4 7,8
Сметана 0,02 0,1 0,07 0,07 0,2 0,5 0,2 0,1 0,1 0,36 8,5
Творог 0,04 0,27 0,4 0,11 0,5 0,4 0,1 0,03 - 1,0 35,0
Сыры твердые 0,02 0,3 0,3 0,1 1,6 0,5 0,2 0,1 - 2,5 10-45
Масло сливоч. Сл 0,01 0,1 - - - 0,5 0,34 - - -
Масло подсолнечное рафинирован. _ - - - - - - - - -
Горох 0,81 0,15 2,2 0,27 - 9,1 - 0,07 - -
Картофель 0,12 0,05 0,9 0,3 0,1 - 0,02 - -
Капуста белокачанная 0,06 0,05 0,4 0,14 0,1 - 0,02 - -
Лук зеленый 0,02 0,1 0,3 0,15 - - -
Томаты 0,06 0,04 0,53 0,1 0,4 - 1,2 - -
Огурцы 0,03 0,04 0,2 0,04 0,1 - 0,06 - -
Свекла 0,02 0,04 0,2 0,07 0,1 - 0,01 - -
Морковь 0,06 0,07 0,13 0,6 - - -
Грибы белые 0,02 0,3 4,6 0,07 0,6 - - - -
Яблоки 0,01 0,03 0,3 0,08 0,6 - 0,03 - - 1,6
Абрикосы 0,03 0,06 0,07 0,05 0,9 - 1,6 - -
Вишни 0,03 0,3 0,4 0,05 0,3 - 0,1 - -
Малина 0,02 0,05 0,6 0,07 0,6 - 0,2 - -
Земляника 0,03 0,05 0,3 0,06 0,5 - 0,03 - -
Смородина чер. 0,02 0,02 0,3 0,13 0,7 - 0,1 - -
Облепиха 0,1 0,05 0,6 0,11 - - -
Шиповник сух. 0,15 0,84 1,5 - - - 6,7 - - -
Виноград 0,05 0,02 0,3 0,09 - - Сл. - -
Лимоны 0,04 0,02 0,1 0,06 - - 0,01 - -
Апельсины 0,04 0,03 0,2 0,06 0,2 - 0,05 - -
Пирожные, торты 0,75 0,1 0,7 - - - 0,1 0,14 - - -
Дрожжи прессован. 0,6 0,68 11,4 0,58 - - - - - -

1. Витамин В 1 (тиамин)

а) с диазореактивом

Принцип метода. Сначала образуется диазобензолсульфат (диазобензолсульфокислота):

Раствор тиамина при добавлении диазобензолсульфата и щелочи дает окрашенное соединение.

Ход работы. В пробирку последовательно добавляют:

б) окисления в тиохром

Принцип метода. При действии K 3 Fe(CN) 6 в щелочной среде тиамин окисляется в желтый тиохром, обладающий голубой флуоресценцией в УФ-свете.

Ход работы. 10 мг порошка тиаминбромида или тиаминхлорида растворяют в 5 мл воды, прибавляют 1мл 5%-го раствора железосинеродистого калия K 3 Fe(CN) 6 (феррицианид калия) и 1 мл 10%-го раствора едкого натра, и перемешивают. Половину получившегося объема нагревают и наблюдают окрашивание в желтый цвет в результате превращения тиамина в тиохром. К другой половине добавляют 3 мл бутилового или изоамилового спирта, хорошо встряхивают и оставляют на несколько минут. Верхний, спиртовой слой дозатором отбирают в емкость из нефлуоресцирующего стекла и рассматривают в УФ-свете (можно – в лучах ртутно-кварцевой лампы в темном посещении). Хорошо заметна голубая флуоресценция.

в) снять спектр поглощения (модуль “спектральный”, диапазон от 350 до 220нм) и наблюдать максимум при λ=250-260 нм. График сохранить, перевести в Paint, затем вставить в файл “Графики” (документ Word), подписать и вклеить в отчет. ВНИМАНИЕ! Спектры всех витаминов сниматьодновременно , чтобы включать и прогревать спектрофотометр только один раз.

УФ-спектр тиамина гидрохлорида (8 мкг/мл) в растворе HCl 0,9%. Максимум при 246 нм.

2. Витамин В 2 (рибофлавин)

а) с металлическим цинком

Принцип метода. Рибофлавин восстанавливается выделяющимся водородом в бесцветный лейкофлавин. Наблюдается изменение окраски из желтой в зеленоватую, позже в малиновую, розовую, а затем – цвет исчезает.

Ход работы. В пробирку наливают 1мл взвеси рибофлавина в воде (0,015 - 0,025% раствор), добавляют 10 капель концентрированной HCl и опускают кусочек металическо-го цинка. Начинается бурное выделение пузырьков водорода, и жидкость постепенно окрашивается в розовый или красный цвет, затем окраска жидкости начинает бледнеть и обесцвечиваться (обратное окисление лейкофлавина в рибофлавин).

б) с азотнокислым серебром

Принцип метода. Нейтральные или слабокислые растворы рибофлавина (рН 6,5-7,2), реагируя с AgNO 3 , дают соединение розово-красных тонов. Интенсивность окраски зависит от концентрации витамина.

Ход работы. К 1 мл р-ра рибофлавина (0,015 - 0,025%) добавляют 0,5 мл р-ра AgNO 3 (0,1%). Появляется розовое окрашивание.

в) флуоресценция в УФ + ее тушение после добавления SnCl 2 +Na 2 S 2 O 4 , которые тушат флуоресценцию самого витамина, но не примесей. Флуоресценция рибофлавина максимальна при рН 3,5-7,5. Снять спектр в растворе ацетата натрия.

УФ-спектр рибофлавина (35 мкг/мл) в растворе ацетата натрия CH 3 COONa

0,01%. Максимум при 266,5 нм. Дополнительные пики при 223,0 нм, 373,5 нм и 444,5 нм.

3. Витамин В 5 (РР, никотиновая кислота)

а) с ацетатом меди

Принцип метода. При нагревании никотиновой кислоты с уксуснокислой медью образуется осадок медной соли никотиновой кислоты.

Ход работы. 5-10 мг никотиновой кислоты растворяют при нагревании в 10-20 каплях 10%-го раствора уксусной кислоты (или готовят 0,75% р-р никотиновой кислоты в горячей воде, а затем к 2 мл этого р-ра добавляют 1 мл 15%-ного р-ра уксусной к-ты). К нагретому до начала кипения раствору добавить равный объем 5%-го раствора уксуснокислой меди. Жидкость становится голубоватой мутной, а при стоянии и охлаждении выпадает осадок никотината меди синего цвета.

б) на запах пиридина

Принцип метода. При нагревании никотиновой кислоты с безводным Na 2 CO 3 ощущается неприятный запах пиридина.

Ход работы. В небольшом сухом фарфоровом тигле смешивают 0,05 г никотиновой к-ты с 0,1-0,15 г безводного углекислого натрия и подогревают. Появляется резкий запах пиридина.

4. Витамин В 6 (пиридоксин)

а) с хлорным железом

Принцип метода. Витамин В 6 образует с хлорным железом комплекс кроваво-красного цвета.

Ход работы. 4 мл 0,5-1% р-ра пиридоксина + 0,5мл 1%-ного FeCl 3 встряхнуть и наблюдать красный цвет.

б) ДОПОЛНИТЕЛЬНО –

в) снять спектр в 0,1М NaOH (наблюдать максимумы при λ=245 и 308 нм) или воде (см.рис).

УФ-спектр пиридоксина гидрохлорида (15мкг/мл) в воде (рН≈6,0). Максимум при 291 нм.

5. Витамин В 12 – оформить в отчете, на практике не делаем в связи с высокой токсичностью действующего реактива.

Витамин В 12 реагирует с цианидом при рН=10 с образованием пурпурного дицианкобаламина, так как Со окисляется до 3х-валентного и 5’-дезоксиаденозин замещается на анион CN.

6. Витамин Р (на примере рутина)

К веществам Р-витаминного действия относится ряд соединений фенольной природы, основное физиологическое действие которых – уменьшение проницаемости и повышение прочности капилляров. Они способствуют усвояемости вит.С в организме человека и животных, активно участвуют в окислительно-восстановительных процессах, обладают антиокислительными свойствами, залерживая, среди прочего, и окисление адреналина. Они также инактивируют фермент гиалуронидазу, тем самым тормозя распад гиалуроновой кислоты – гетерополисахарида в основном веществе соединительных тканей. Вит. Р угнетают активность холинэстеразы, сукцинатдегидрогеназы и ряда других ферментов.

Витаминными свойствами обладает ряд флавонолов (рутин, кверцетин), флаванонов, катехинов, кумаринов, галловая кислота и ее производные, антоцианы (красящие вещества из плодов, ягод, цветков).

Многие вещества Р-витаминного действия – это гликозиды флавонолов и флаванонов или агликоны (неуглеводные компоненты гликозидов). Например, рутин – это гликозид, в котором к дисахариду рутинозе присоединен агликон фенольного строения флавонол кверцетин.

а) с хлорным железом

б) с серной кислотой

Принцип: Конц серная к-та образует с флавонами (рутином) оксониевые соли, обладающие в растворе желтой окраской. Флаваноны (например, гесперидин) дают с серной к-той малиновое окрашивание.

7. Витамин С

а) качественно - с K 3 Fe(CN) 6

Принцип метода: восстановление феррицианида калия витамином С с изменением окраски до синей из-за образования берлинской лазури.


Ход работы. В двух пробирках смешивают 5 капель 5%-го раствора К 3 Fe(CN) 6 c 5 каплями 1%-го раствора FeCl 3 . В одну из пробирок к зеленовато-бурой жидкости прибавляют 20 капель 1%-го раствора аскорбиновой кислоты или сока капусты, а в другую - столько же дистиллированной воды. Жидкость в первой пробирке приобретает зеленовато-синюю окраску, выпадает синий осадок берлинской лазури; во второй пробирке (контроль) зеленовато-бурая окраска жидкости остается без изменения.

Термин «Витамины» в переводе означает «амины жизни». Ныне таких веществ насчитывается более 30, и все они жизненно необходимы человеческому организму, входя в состав всех тканей и клеток, активизируя и определяя ход многих процессов.

Потребность в витаминах неодинакова и разнится в зависимости от возрастного периода жизни человека, заболевания, погодных условий. Повышается потребность в витаминах во время беременности, при физической и умственной нагрузках, при гиперфункции щитовидной железы, надпочечной недостаточности, стрессовых ситуациях.

Следует отметить, что гипервитаминизация, то есть повышенное поступление витаминов в организм человека, также неблагоприятна для обменных функций. Передозировка витаминов происходит в основном при использовании концентрированных препаратов. Большая часть витаминов поступает в организм человека из растений и незначительная часть – из продуктов животного происхождения. Более 20 витаминных веществ не могут быть синтезированы в организме человека, а другие синтезируются во внутренних органах, причем доминирующее значение в таких процессах имеет печень.

Поэтому мы выбираем данную тему для своего исследования.

Ведь в наше время все больше приоритетным становиться здоровье человека, здоровый образ жизни. Сейчас выпускается много различных биологических добавок (БАД), стимулирующих и лекарственных препаратов, помогающих укреплению здоровья.

Но, к сожалению, приходиться признать, что в аптечную сеть попадает и много фальсифицированной, некачественной продукции. После торговли оружием, наркотиками, фальсификация лекарственных препаратов занимает постыдное третье место. Следует отметить, что витаминные препараты и витаминные комплексы отнюдь не дешевая продукция, стоят они дорого. Интересно было узнать, что скрывается за этикетками лекарственных препаратов, продаваемых в аптеках нашего города. Провести качественный анализ всех абсолютно препаратов мы не можем, нужны определенные реактивы, средства, методики. В основу своей исследовательской деятельности мы использовали методики качественного анализа Кучеренко Н. Е. , Северина С. Е. по определению витаминов.

Гипотеза: предполагаем, что за этикетками лекарственных витаминных препаратов скрываются, не фальсифицированные витамины, а натуральные препараты, так как здоровье человека и наших амурчан – наивысшая ценность.

Объект исследования: витаминные препараты, приобретенные в аптеках города.

Цель нашей работы: провести качественный анализ витаминов, купленных в аптеках г. Амурска и Комсомольска – на – Амуре.

Соответственно теме были поставлены следующие задачи:

1. Познакомиться с характеристикой основных витаминов.

2. Провести качественный анализ препаратов.

3. Сопоставить полученные результаты с ходом исследования.

4. Сделать выводы.

Материалы и оборудование: набор витаминов, химические реактивы, методики качественного анализа Кучеренко Н. Е. , Северина С. Е. по определению витаминов.

1. Характеристика витаминов.

Чтобы человек был сильным и здоровым, ему нужны витамины. Это все мы знаем с раннего детства. Но вот что это за вещества такие – витамины, редко задумываемся. А когда о них идет речь, просто представляем себе коробочку с цветными драже или вазу с фруктами. Нужно ли человеку, далекому от медицины, знать о витаминах больше? Да, нужно – хотя бы для того, чтобы

Еще раз осознать, насколько важно разнообразное питание. Сегодня даже врачи призывают делать ставку не на аптечные витаминные препараты, а на богатые витаминами натуральными продукты (в первую очередь это овощи и фрукты, но не только). Итак, что же такое витамины, и откуда их черпать для нужд организма?

Витамины образуются путём биосинтеза в растительных клетках и тканях. Большинство из них связано с белковыми носителями. Обычно в растениях они находятся не в активной, но высокоорганизованной форме и, по данным исследований, в самой подходящей форме для использования организмом, а именно – в виде провитаминов.

Витамины обеспечивают экономичное и оптимальное использование организмом основных питательных веществ.

Недостаток витаминов вызывает тяжёлые расстройства. Скрытые формы витаминной недостаточности не имеют ярких внешних проявлений и симптомов. Часто все, на что жалуется человек,- это быстрая утомляемость, снижение работоспособности, общая слабость. Также при гиповитаминозе

Организм мене устойчив к воздействию всевозможных неблагоприятных факторов. Он дольше восстанавливает нормальные функции после перенесенных заболеваний и более подвержен разного рода осложнениям.

Все витамины делят на две большие группы: водорастворимые и жирорастворимые. К водорастворимым относятся все витамины группы B , витамины PP, H, C, P, а также в жирорастворимым – витамины A, E, K, D.

А теперь поближе познакомимся с наиболее известными витаминами.

Рибофлавин(B2)

Рибофлавин – витамин для «кожи». Он отвечает за то, чтобы кожа была здоровой, мягкой гладкой. Кроме того, этот витамин необходим глазам (например, при воспалении глаз рекомендуют принимать по 3 мг рибофлавина 3 раза в день перед едой).

Дефицит рибофлавина вызывает не только кожные болезни, но также расстройства пищеварения, хронические колиты и гастриты, заболевания нервной системы и общую слабость, приводит к снижению сопротивляемости организма инфекциям.

Пиридоксин (B6)

Этот витамин очень важен для организма, поскольку способствует лучшему усвоению ненасыщенных жирных кислот.

Кроме того, пиридоксин необходим для работы мышц: совместно с кальцием он способствует их эффективному функционированию и полноценному расслаблению. Установлено, что дефицит пиридоксина может стать фактором, провоцирующим развитие отита.

Аскорбиновая кислота (витамин С)

Этот витамин выполняет в организме множество разных функций. Без его участия не обходятся окислительно-восстановительные процессы, он повышает эластичность и прочность кровеносных сосудов, вместе с витамином А защищает организм от инфекций, блокирует токсичные вещества в крови, необходим для укрепления зубов и десен.

Кроме того, достаточное поступление аскорбиновой кислоты необходимо и для увеличения продолжительности жизни, поскольку она участвует в создании и оздоровлении соединительных тканей.

Нетрудно понять, что дефицит витамина С очень опасен. А между тем, организм не имеет возможности запастись им впрок, поэтому принимать аскорбиновую кислоту (в составе пищи и даже в виде аптечного препарата) нужно регулярно. Не бойтесь передозировки: витамин не токсичен, и избыток его легко выводится и организмов.

Никотиновая кислота (РР)

Этот витамин участвует во многих окислительных реакциях. Его недостаток, часто связанный с однообразием рациона (например, при питании исключительно зерновыми культурами), способствует развитию пеллагры.

Ретинол (витамин А)

Витамин А продлевает молодость, нормализует обмен веществ, участвует в процессе роста, предохраняет от поражений кожу и слизистые оболочки. В организме животных и человека образуется из каротина (так называемого провитамина А).

При дефиците этого витамина ухудшается зрение, изменяется состояние кожи (она становится сухой, может появиться мелкая сыпь), начинается интенсивное выпадение волос.

Кальциферол (витамин D)

Основные задачи витамина D в организме – способствовать усвоению кальция и регулировать фосфорно-кальциевый баланс. Он активно участвует в процессе образования и роста костной ткани.

Кроме того, витамин D необходим для нормальной свертываемости крови и работы сердца. Также он участвует в регуляции возбудимости нервной системы.

Несмотря на то, что витамин D содержат очень немногие продукты питания, да и то в небольшом количестве, его дефицит встречается не так уж часто. Дело в том, что организм умеет производить его самостоятельно под воздействием ультрафиолета (поэтому витамин D называют также «солнечным витамином»). Причем, для этого совсем не нужно часами загорать под палящими лучами солнца, достаточно всего лишь на несколько минут в день выбираться на улицу в светлое время суток.

Кстати, в организме светлокожих людей витамин D образуется в 2 раза быстрее, чем у людей со смуглой кожей.

Токоферол (витамин E)

Витамин Е известен как «витамин плодовитости», поскольку необходим для воспроизведения потомства. Кроме того, он обеспечивает нормальное функционирование сердечной мышцы и препятствует образованию тромбов в кровеносных сосудах.

С недавнего времени токоферол эффективно используется при лечении диабета и астмы.

Витамин Е нетоксичен, однако избыточное его содержание в организме приводит к повышению артериального давления.

Принимать токоферол следует только в сочетании с ретинолом (витамином А).

Укрепляет проницаемость стенок сосудов, снижает окисление аскорбиновой кислоты, способствует лучшей переносимости стрессовых ситуаций.

Теперь, когда мы многое узнали о том, какова роль витаминов и насколько они полезны, у нас возникает вопрос: «А откуда их можно получить?» Вопрос этот далеко не праздный. Можно потреблять аптечные синтетические витамины, но специалисты предупреждают: такие витамины усваиваются далеко не всегда. И потом, зачем прибегать к искусственным средствам, если можно получать витамины непосредственно с пищей.

2. Описание лекарственных препаратов.

Витамины – это незаменимые для организма вещества, присутствие которых имеет принципиальное значение для нормального обмена веществ и поддержания жизнедеятельности вообще. Это низкомолекулярные соединения органической природы. Большинство витаминов не синтезируется в организме человека, а потому исключительно важно их поступления с пищей. (Исключение составляет витамин D). По сравнению с основными питательными веществами, витамины должны поступать в ничтожно малых дозах. В то же время дефицит или отсутствие того или иного витамина вызывает различные заболевания и физиологические расстройства.

1

В статье представлены результаты экспериментальных исследований по выбору метода и разработке методики количественного определения филлохинона (витамина К1) в растениях. Обосновано преимущество хроматографического метода (обращенно-фазовой ВЭЖХ) перед спектрофотометрическим при определении филлохинона в составе комплекса БАВ растений. В соответствии с рекомендациями Международной конференции по гармонизации технических требований к регистрации лекарственных средств для применения у человека (International Conference Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use) была проведена валидация разработанной методики по показателям специфичность, линейность, воспроизводимость и точность. Установлено, что предложенная методика является специфичной, линейной, воспроизводимой и точной. На примере фармакопейных видов сырья, содержащих витамин К1, доказана универсальность применения методики при анализе растительных объектов.

филлохинон

витамин К1

крапивы листья

калины кора

кукурузы столбики с рыльцами

пастушьей сумки трава

валидация

1. Абышев А. З. Синтез, свойства и контроль качества витаминных препаратов и витаминоподобных веществ: учебно-методическое пособие / А. З. Абышев, С.Н. Трусов, Н.И. Котова, М. П. Блинова. – СПб. : Изд-во СПФХА, 2010. – 136 с.

2. ГОСТ Р ИСО 5725-2002 «Точность (правильность и прецизионность) методов и результатов измерений» В 6 ч. – Введ. 23.04.02. – М.: Госстандарт России; Изд-во стандартов, 2002.

3. Государственная фармакопея СССР. Вып. 2 Общие методы анализа. Лекарственное растительное сырье / МЗ СССР. – 11-е изд., доп. – М., 1989. – 400 с.

4. Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации. Методические рекомендации МР 2.3.1.2432 -08

5. Носов А. М. Лекарственные растения. – М.: ЭКСМО-Пресс, 1999. – 350 с.

6. Погодин И.С., Лукша Е.А. Разработка методики количественного определения сесквитерпеновых лактонов в траве соссюреи горькой // Современные проблемы науки и образования. – 2013. – № 1; URL: www.сайт/107-8426

Введение

Витамин К относится к классу жирорастворимых витаминов, влияющих на систему гемостаза. К природным витаминам группы К относятся два типа метилированных хиноидных соединений с боковыми цепями, представленными изопреноидными звеньями: витамины К 1 и К 2 . В основе структуры указанных витаминов лежит система 1,4-нафтохинона. Витамин К1 (филлохинон) синтезируется всеми фотосинтезирующими организмами. Витамин К 2 (менахинон) синтезируется микрофлорой толстого кишечника. Биологическая роль витаминов группы К заключается в активации факторов свертывающей и противосвертывающей систем млекопитающих .

В настоящее время определена физиологическая потребность в витамине К для взрослых - 120 мкг/сутки и для детей - от 30 до 75 мкг/сутки .

В медицинской практике препараты растительного происхождения, содержащие филлохинон, используются для коррекции геморрагических осложнений. В Государственную фармакопею 11 издания включены следующие виды лекарственного растительного сырья, обладающие гемостатическим витамин К-зависимым эффектом: кора калины (Соrtex Viburni), столбики с рыльцами кукурузы (Styli cum stigmatis Zeae maydis), листья крапивы (Folia Urticae), трава пастушьей сумки (Herba Bursae pastoris) . Установлено, что витамин К 1 также содержится в траве тысячелистника, горца перечного, горца почечуйного и спорыша, что определяет возможность применения указанного сырья при желудочных, маточных и геморроидальных кровотечениях . В Государственной фармакопее, в настоящее время, отсутствуют методики определения филлохинона в растительном сырье. Для оценки целесообразности использования лекарственного растительного сырья в качестве источников витамина К1, актуальной проблемой является решение вопросов стандартизации и разработки методик, направленных на определение содержания филлохинона в растительных объектах.

Цель работы : разработка методики определения витамина К1 в лекарственном растительном сырье.

Материалы и методы исследования

Объектами исследования являлись официнальные виды лекарственного растительного сырья: кора калины, столбики с рыльцами кукурузы, листья крапивы, трава пастушьей сумки. Все виды сырья были приобретены через аптечные сети. Выбор рационального способа определения витамина К 1 проводили на основании оценки валидационных характеристик, полученных с помощью хроматографических и спектрофотометрических методов анализа. Для разработки методики количественного определения филлохинона в растительном сырье использовали метод обращенно-фазовой высокоэффективной хроматографии высокого давления (ВЭЖХ) с диодно-матричным детектором на приборе Shimadzu LC-20 Prominence в изократическом режиме в следующих условиях: аналитическая колонка, заполненная сорбентом PerfectSil 300 ODS C18, 4,6х250 мм, с размером частиц 5 мкм; состав подвижной фазы: ацетонитрил-изопропанол-вода в соотношении 75:20:5; детектирование при длине волны 254 нм; температура колонки - комнатная; скорость подвижной фазы 1 мл/мин; объем вводимой пробы 20 мкл. Оценку результатов проводили по величине времени удерживания (t r) филлохинона, совпадающим с показателем t r РСО (20.00±1.00 мин.) и по величине площади пика филлохинона. Обработку результатов производили с использованием программного обеспечения LC Solutions.

Спектрофотометрическое определение содержания витамина К 1 проводили на приборе UNICO 2802S в кварцевой кювете с толщиной слоя 1 см.

Обработку результатов выполняли с использованием программы STATISTICA 8.0. Для описания полученных результатов, после проверки нормальности распределения, приводили значение среднего (X ср), стандартного отклонения (S), относительного стандартного отклонения (RSD), дисперсии (S 2), доверительного интервала среднего (Δx ср) при уровне значимости α=0,05.

В качестве стандартного образца использовали рабочий стандартный образец (РСО) витамина К 1 , выделенного методом препаративной колоночной хроматографии из гексанового извлечения листьев крапивы двудомной. Рабочий стандартный образец представляет собой желтую вязкую невысыхающую маслянистую жидкость, практически не растворимую в воде, растворимую в органических растворителях и растительных маслах, температура плавления -20ºС. Спектральные характеристики спиртового раствора рабочего стандартного образца (после удаления гексана) представлены на рис. 1.

Рис. 1. Спектр в УФ- и видимой области раствора РСО филлохинона (витамина К1)

Для максимального извлечения витамина К1 из исследуемых образцов подбирали следующие параметры пробоподготовки: степень измельченности сырья, вид экстрагента, количественные соотношения сырья и экстрагента, время и кратность экстракции, температурный и световой режим экстрагирования.

Результаты и обсуждение . С целью разработки рационального метода определения содержания витамина К 1 были подобраны условия для его извлечения из сырья. В качестве объекта для разработки методики служили листья крапивы. С учетом неустойчивости филлохинона к воздействию световой энергии, все этапы исследования проводили в условиях, предполагающих защиту извлечений от света. Полноту извлечения определяли методом ВЭЖХ по величине площади пика с t r 20.00±2.00 мин. В результате оценки влияния факторов пробоподготовки на полноту извлечения филлохинона были подобраны следующие параметры и условия: измельченность сырья - частицы, проходящие сквозь сито с величиной диаметра отверстий 0,5 мм; экстрагент - гексан; количественное соотношение «сырье:экстрагент» - 1:25; однократная экспозиция в течение 60 мин.; температурный режим - комнатная температура (20-22ºС).

Для разработки методики определения витамина К 1 в растениях спектрофотометрическим методом, предварительно был проведен сравнительный анализ спектров поглощений извлечений из фармакопейного сырья (рис. 2) и раствора РСО филлохинона (рис. 1). В результате было установлено, что доказать присутствие витамина К1 в сырье по референтному максимуму (249 нм) не представляется возможным, ввиду отсутствия данного максимума в спектре всех исследуемых объектов. Следовательно, методика определения витамина К1 в суммарном комплексе биологически активных веществ растительного сырья прямым спектрофотометрическим методом изначально не может быть положительно провалидирована по показателю «специфичность». Повысить показатель специфичности методики при использовании спектрофотометрии возможно при условии извлечения из сырья очищенного филлохинона, что требует введения дополнительных препаративных манипуляций на стадии пробоподготовки объекта исследования. Дополнительная очистка извлечения может отрицательно повлиять на экспрессность и точность методики в конечном результате.

Рисунок 2 - Спектры поглощения извлечений из лекарственного растительного сырья, содержащего филлохинон (Кр - листья крапивы, К - кора калины, Ку - столбики с рыльцами кукурузы, П - трава пастушьей сумки)

Наиболее приемлемым вариантом для определения витамина К 1 в растительном сырье представляется использование метода обращенно-фазовой высокоэффективной хроматографии высокого давления (ВЭЖХ) с диодно-матричным детектором. По разработанным параметрам пробоподготовки сырья к анализу была разработана следующая методика: аналитическую пробу сырья измельчают до размера частиц, проходящих сквозь сито с отверстиями диаметром 0,5 мм. Около 1,0 г (точная навеска) измельченного сырья помещают в коническую колбу вместимостью 50 мл, заливают 25 мл гексана, закрывают пробкой и перемешивают на механическом встряхивателе в течение 60 минут. Извлечение фильтруют через бумажный фильтр в круглодонную колбу и отгоняют гексан на ротационном испарителе. Остаток количественно переносят в мерную колбу на 5 мл (пикнометр) с помощью 4 мл этанола. Доводят объем раствора до метки тем же растворителем и перемешивают. 0,02 мл раствора вводят в хроматограф.

Приготовление стандартного образца: К 0,0005 г (точная навеска) РСО филлохинона приливают 4 мл этанола, переносят в мерную колбу вместимостью 5 мл. Доводят объем раствора до метки растворителем и перемешивают. 0,02 мл раствора вводят в хроматограф.

Содержание филлохинона (X) в абсолютно сухом сырье в процентах вычисляют по формуле:

где S o - площадь пика на хроматограмме раствора РСО филлохинона; S - площадь пика филлохинона на хроматограмме испытуемого раствора; m o - навеска РСО филлохинона, в г; m - навеска сырья, в г; W - потеря в массе при высушивании сырья, в %; Р - содержание филлохинона в РСО филлохинона, в %.

По результатам количественного определения филлохинона методом обращенно-фазовой ВЭЖХ было определено содержание витамина К1 в листьях крапивы (табл. 1).

Таблица 1 - Метрологическая характеристика метода количественного определения филлохинона в листьях крапивы (%) (n=6)

Xср ± Δхср

0,00425 ± 0,00021

Ввиду малого содержания витамина К1 в сырье предлагаем производить расчеты в мг%, для этого необходимо внести изменения в расчетную формулу для перевода единиц измерения (г в мг):

Валидационную оценку методики проводили по показателям - специфичность, линейность, прецизионность (воспроизводимость) и точность .

Специфичность. Идентификация филлохинона подтверждалась совпадением времени удерживания анализируемого компонента в сырье и РСО филлохинона (рис. 3). Пики сопутствующих соединений, входящих в состав извлечений растительного сырья, хорошо разделяются с пиком филлохинона, и не влияют на аналитическое определение.

Рис. 3. Хроматограмма извлечения листьев крапивы (А - пик 17,tr =20.37 мин соответствует филлохинону) и рабочего стандартного образца филлохинона (Б - пик 22 ,tr =20.71 мин)

Линейность и аналитическая область методики была подтверждена анализом 7 проб разных концентраций в диапазоне от 13 до 417 % от концентрации (0,12 мг/мл), принятой за 100 %. Сравнение зависимости между содержанием филлохинона (мг/мл) в испытуемых растворах и величинами площадей хроматографических пиков показало, что она имеет линейный характер и описывается уравнением y = 5104417,9 x + 10944,88. Коэффициент корреляции (rxy) равен 0,999, что позволяет использовать данную методику для количественного определения филлохинона в растительных объектах в диапазоне концентраций от 0,016 до 0,5 мг/мл.

Воспроизводимость (прецизионность) определялась путем проведения анализа разными (двумя) аналитиками на одной серии сырья в разное время. Число повторностей для каждого аналитика - 3, общее число повторностей - 6. Относительное стандартное отклонение, выраженное в процентах (RSD, %), не должно превышать 5 % . По результатам проведенных исследований RSD составило 1,21 %, что характеризует надежность анализа в выбранных условиях (табл. 2).

Таблица 2 - Результаты определения прецизионности методики

Повторность

Аналитик

Определено в образце, мг%

Метрологические характеристики

Xср = 4,00525 мг %

S = 0,04850 мг %

Для определения точности методики анализировали образцы листьев крапивы из одной партии сырья в 3 уровнях навесок (по 0,5, 1,0 и 1,5 г), трижды проводя отбор проб для каждого уровня. Содержание витамина К1 определяли в мг в навеске сырья. Предварительно рассчитывали ожидаемую (теоретическую) величину, исходя из установленного среднего показателя по содержанию витамина К1 в листьях крапивы, равного 4,1 мг%. Теоретический показатель значения сравнивали с фактическим. Для оценки полученных результатов использовали показатель «открываемость» (R), критерий приемлемости для которого принят в пределах 98-102 % от расчетной величины .

Таблица 3 - Результаты определения точности методики

Навеска сырья,

Фактическое

Расчетное

Открываемость

Метрологические

характеристики

Результаты определения точности методики, представленные в таблице 3, показали, что открываемость R составляет 98,73 %, величина относительного стандартного отклонения (RSD) не превышает 5 %, что характеризует точность методики как удовлетворительную.

Таким образом, установлено, что предлагаемая методика количественного определения витамина К1 методом ВЭЖХ в листьях крапивы является специфичной, воспроизводимой и точной. Данная методика была воспроизведена для определения витамина К1 в других видах лекарственного растительного сырья (табл. 4).

Таблица 4 - Содержание витамина К1 (мг%) в лекарственном растительном сырье

Объект (n=6)

Xср ± Δхср

Столбики с рыльцами кукурузы

Трава пастушьей сумки

Кора калины

Проведенные исследования показали целесообразность использования метода обращенно-фазовой ВЭЖХ для определения филлохинона в растительном сырье. Преимуществом метода ВЭЖХ является возможность проведения оценки качественного и количественного содержания филлохинона в одной навеске сырья, что существенно экономит временные затраты на анализ. Разработанная методика может быть использована для определения содержания витамина К1 в растительных объектах.

Рецензенты:

Гришин А.В. д.фарм.н., профессор, зав. кафедрой фармации ГБОУ ВПО ОмГМА Минздрава России, г.Омск.

Пеньевская Н.А. д.м.н., доцент, зав. кафедрой фармацевтической технологии с курсом биотехнологии ГБОУ ВПО ОмГМА Минздрава России, г.Омск.

Библиографическая ссылка

Лукша Е.А., Погодин И.С., Калинкина Г.И., Коломиец Н.Э., Величко Г.Н. РАЗРАБОТКА МЕТОДИКИ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ФИЛЛОХИНОНА (ВИТАМИНА К1) В РАСТИТЕЛЬНЫХ ОБЪЕКТАХ // Современные проблемы науки и образования. – 2014. – № 3.;
URL: http://science-education.ru/ru/article/view?id=13736 (дата обращения: 02.09.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

gastroguru © 2017