Понятие радиоактивности. Виды распада

в-распадом называется самопроизвольное превращение радиоактивного ядра в ядро-изобар или. В этом процессе один из нейтронов ядра превращается в протон или один из протонов - в нейтрон. Таким образом, в-распад является не внутриядерным, а внутринуклонным процессом. Ответственным за в-распад является слабое взаимодействие нуклонов в ядре (см. рис. 1).

Существует три вида в-распада: электронный (в--распад), позитронный (в+-распад) и электронный захват.

Электронный в-распад (в--распад). В этом случае материнское ядро испускает электрон, поэтому зарядовое число дочернего ядра увеличивается на единицу. Электронный в- распад протекает по схеме

При этом распаде наряду с дочерним ядром образуется электрон и электронное антинейтрино. Здесь мы приписали электрону зарядовое число Z=-1 и массовое число А=0, чтобы подчеркнуть сохранение электрического заряда и числа нуклонов в процессе распада.

Примером электронного в-распада может служить превращение углерода в азот:

Из приведенной схемы распада видно, что массовые числа обоих ядер одинаковы, а зарядовое число дочернего ядра на единицу больше, чем у материнского.

В основе электронного в-распада, как уже отмечалось, лежит превращение в ядре нейтрона в протон:

Поэтому можно определить в -распад как процесс самопроизвольного превращения нейтрона в протон внутриатомного ядра.

Дочернее ядро, образующееся при в-распаде, может находиться в возбужденном состоянии. При переходе ядра в основное состояние испускается у-излучение, поэтому в-распад, так же как и б-распад, может сопровождаться испусканием г-квантов.

Рис.4.Энергетический спектр электронов при в--распаде

Как показывают экспериментальные исследования, электроны, образующиеся при в--распаде, имеют широкий энергетический спектр от нуля до максимального значения Еmах (рис. 4). Величина dN, определяет число электронов, энергия которых заключена в интервале от Е до E + dE. Площадь под кривой (см. рис. 4) численно равна полному числу электронов, испускаемых радиоактивным препаратом в единицу времени. Энергия Еmах определяется разностью значений массы материнского ядра и массы продуктов распада -- электрона и дочернего ядра (см. выражение (1))

Первоначально, до открытия нейтрино, казалось, что в--распад протекает с нарушением закона сохранения энергии. Действительно, если бы материнское ядро распадалось только на дочернее ядро и электрон, то энергия электрона, согласно (1), не могла быть меньше Еmах. Для того чтобы объяснить "исчезновение" энергии (?Е = Еmах -Е), В. Паули в 1932 г. выдвинул гипотезу, согласно которой при в--распаде испускается еще одна частица, которая и уносит энергию?Е. Так как эта частица никак себя не проявляла, то следовало предположить, что она электронейтральна и обладает очень малой массой. Эта частица, названная Э. Ферми нейтрино, что дословно означает "маленький нейтрон", была экспериментально обнаружена лишь в 1956 г. За проведение экспериментальных исследований по обнаружению нейтрино Ф. Райнес и К. Коуэн в 1995 г. были удостоены Нобелевской премии по физике.

Установлено, что существует несколько типов нейтрино: электронное ve, мюонное vм, тау-лептонное vф и их античастицы.

Тип нейтрино определяется заряженной частицей, вместе с которой нейтрино рождается и с которой взаимодействует. в--распад сопровождается испусканием электронного антинейтрино ve. Именно эта частица и приведена в записанных выше схемах распада. Вопрос о массе нейтрино рассмотрен в (рис.1.).

Позитронный в-распад (в+-распад). В случае позитронного в-распада ядро испускает позитрон, в результате чего его зарядовое число Z уменьшается на единицу. Позитронный в-распад осуществляется по схеме

В качестве примера приведем превращение азота в углерод

Позитронный в-распад сопровождается испусканием позитрона е+ и нейтрино ve, т. е. тех частиц, которые представляют собой античастицы по отношению к частицам, испускаемым при электронном в-распаде (е -- и ve).

В основе в+-распада, как уже отмечалось, лежит превращение в ядре протона в нейтрон:

Поскольку масса протона меньше массы нейтрона, то для свободного протона такой процесс невозможен по энергетическим соображениям (см. выражение (1)). Однако протон, находящийся в ядре, может получать необходимую энергию от других нуклонов ядра.

Электронный захват. Третий вид в-распада -- электронный захват -- представляет собой поглощение ядром одного из электронов электронной оболочки своего атома. Чаще всего поглощается электрон из K-оболочки, поэтому электронный захват называют еще К-захватом. Реже поглощаются электроны из L- или М-оболочек.

В результате К-захвата происходит превращение одного из протонов ядра в нейтрон, сопровождающееся испусканием нейтрино:

Схема К-захвата имеет следующий вид:

На освободившееся в результате К-захвата место в электронной оболочке атома могут переходить электроны из вышележащих слоев, в результате чего возникает рентгеновское излучение. При исследовании этого излучения был открыт К-захват американским физиком Л.Альваресом в 1937 г.

Примером электронного захвата может служить превращение калия в аргон

Подводя итог описанию б- и в-распадов, следует отметить, что б-распад наблюдается только у тяжелых ядер и некоторых ядер редкоземельных элементов. Напротив, в-активные ядра более многочисленны. Практически для каждого атомного номера Z существуют нестабильные изотопы, обладающие в±-активностью.

Энергия, выделяющаяся при в-распаде, лежит в пределах от 0,0186 МэВдо 16 МэВ. Период полураспада в-активных ядер меняется от 10-2с (для) до 4*1012 лет (для).

Спонтанное деление тяжелых ядер.

Самопроизвольное деление тяжелых ядер было впервые обнаружено советскими физиками Г.Н. Флеровым и К.А. Петржаком в 1940 г. у ядер урана. Оно осуществляется по схеме т. е. ядро урана распадается на ядра ксенона и стронция с испусканием трех нейтронов.

Спонтанное деление, так же как и б-распад, происходит за счет туннельного эффекта. Пользуясь капельной моделью ядра, т. е. считая, что ядро подобно капле жидкости, можно выделить стадии, которые проходит ядро в процессе деления (рис. 5, а). Соответствующий вид потенциальной энергии ядра U для различных деформаций ядра представлен на рис. 5,б.

Рис. 5. Спонтанное деление тяжелого ядра: а -- схема деления; б -- потенциальный барьер деления

Как и при всяком туннельном эффекте, вероятность спонтанного деления очень сильно (по экспоненциальному закону) зависит от высоты барьера деления?U. Для изотопов урана и соседних с ним элементов высота барьера деления составляет?U ? 6 МэВ.

Спонтанное деление является основным каналом распада сверхтяжелых ядер. Осколки деления ядер урана U и плутония Рu асимметричны по массе. С ростом массового числа распадающегося ядра осколки деления становятся более симметричными.

Бета-распад становится возможным тогда, когда замена в атомном ядре нейтрона на протон (или, наоборот, протона на нейтрон) энергетически выгодна и получающееся новое ядро имеет меньшую массу покоя, т. е. большую энергию связи. Избыток энергии распределяется между продуктами реакции.

Бета-распад бывает трех видов:

1. Один из нейтронов (n) в ядре превращается в протон (р). При этом излучается электрон (е-) и антинейтрино (ṽ e) (см. Нейтрино, Антивещество). Это - β - -распад.

A(Z,N) → A(Z+1,N-1) + е - + ṽ e

(n → р + е - + ṽ e),

где A(Z,N) - обозначение ядра с числом протонов Z и нейтронов N. Заряд ядра увеличивается на 1. Простейший вид из всех видов β - -распада - распад свободного нейтрона, который тяжелее протона и поэтому нестабилен.

2. Протон, входящий в состав ядра, распадается на нейтрон (N), позитрон (е+) и нейтрино (v e). Это - β + -распад.

A(Z,N) → A(Z-1,N+1) + e + + v e

(p → рn + е + + v e).

Заряд ядра уменьшается на 1. Процесс может происходить только в ядре; свободный протон не распадается таким образом.

3. Наконец, ядро может захватить ближайший из атомных электронов (электронный захват) и превратиться в другое ядро с зарядом на 1 меньше:

A(Z,N) + е - → A(Z-1,N+1) + v e

(р + е - → n + v e).

β-частица при этом не излучается.

Когда физики начали изучать β-распад, о существовании нейтрино (v e или ṽ e)> обладающего огромной проникающей способностью, ничего не было известно.

Загадка, с которой столкнулись экспериментаторы,- сплошной энергетический спектр электронов, излучаемых при р-распаде. В этом процессе на долю дочернего ядра приходится ничтожная часть освобождающейся энергии. Вся она идет на электрон, и поэтому все β-частицы должны были бы иметь одинаковую энергию E 0 . А на опыте наблюдалась такая картина: испускались электроны любой энергии, вплоть до максимально возможной - E 0 .

Физики предположили, что виноват источник: р-частицы теряют свою энергию, когда проходят сквозь его материал. Для проверки этой гипотезы несколько групп экспериментаторов поставили калориметрические опыты. Делались они так: радиоактивный источник помещали в калориметр с такими толстыми стенками, чтобы β-частицы в них полностью поглощались. Это позволило измерить всю энергию, выделяющуюся за определенное время.

Потом рассчитали энергию, приходящуюся на одну β-частицу. Экспериментаторы ожидали, что она окажется близкой к E 0 , но всякий раз получали величину, приблизительно в 2 раза меньшую.

Выход из положения нашел швейцарский физик-теоретик В. Паули. Он высказал предположение, что при β-распаде испускается частица, обладающая несравненно большей проникающей способностью, чем электроны. Ее не могут задержать стенки калориметра, и она уносит с собой часть энергии. Так родилось представление о нейтрино.

Теория β-распада была создана в 1934 г. итальянским физиком Э. Ферми. В ней ученый предположил, что электрон и нейтрино рождаются в момент распада нуклона в ядре. Он ввел в теорию константу G, которая играла для β-распада такую же роль, что и заряд е для электромагнитных процессов, и вычислил ее величину на основании экспериментальных данных. Теория Ферми позволила рассчитать форму p-спектров и связать граничную энергию распада E 0 со временем жизни радиоактивного ядра. Нейтрино в этой теории имело заряд, равный нулю, и нулевую массу (во всяком случае, m v ~< m e).

В течение следующих лет теорию стремились видоизменить, дополнить и усложнить, поскольку казалось, что она слишком проста и не описывает всех опытных данных. Прошло несколько десятилетий, прежде чем физики убедились, что все эти дополнения основаны на ошибочных экспериментах, а путь, выбранный Ферми, правильный. Созданная сейчас теория объединенного слабого и электромагнитного взаимодействия включает его как первое приближение (см. Четность, Нейтрино, Слабые взаимодействия) .

Приведем некоторые данные о бета-распаде ядер.

Граничная энергия β-частиц (E 0) - от нескольких КэВ до - 17 МэВ.

Время жизни ядер по отношению к β-распа-ду -от 1,3x10 -2 с до ~2x10 13 лет.

Пробег β-частиц в легких веществах - несколько сантиметров. Они теряют свою энергию на ионизацию и возбуждение атомов.

Бета-распад

β-распад, радиоактивный распад атомного ядра, сопровождающийся вылетом из ядра электрона или позитрона. Этот процесс обусловлен самопроизвольным превращением одного из нуклонов ядра в нуклон другого рода, а именно: превращением либо нейтрона (n) в протон (p), либо протона в нейтрон. В первом случае из ядра вылетает электрон (е -) - происходит так называемый β - -распад. Во втором случае из ядра вылетает позитрон (е +) - происходит β + -распад. Вылетающие при Б.-р. электроны и позитроны носят общее название бета-частиц. Взаимные превращения нуклонов сопровождаются появлением ещё одной частицы - нейтрино (ν ) в случае β+-распада или антинейтрино А, равное общему числу нуклонов в ядре, не меняется, и ядропродукт представляет собой изобар исходного ядра, стоящий от него по соседству справа в периодической системе элементов. Наоборот, при β + -распаде число протонов уменьшается на единицу, а число нейтронов увеличивается на единицу и образуется изобар, стоящий по соседству слева от исходного ядра. Символически оба процесса Б.-р. записываются в следующем виде:

где -Z нейтронов.

Простейшим примером (β - -распада является превращение свободного нейтрона в протон с испусканием электрона и антинейтрино (период полураспада нейтрона ≈ 13 мин ):

Более сложный пример (β - -распада - распад тяжёлого изотопа водорода - трития, состоящего из двух нейтронов (n) и одного протона (p):

Очевидно,что этот процесс сводится к β - -распаду связанного (ядерного) нейтрона. В этом случае β-радиоактивное ядро трития превращается в ядро следующего в периодической таблице элемента - ядро лёгкого изотопа гелия 3 2 Не.

Примером β + -распада может служить распад изотопа углерода 11 С по следующей схеме:

Превращение протона в нейтрон внутри ядра может происходить и в результате захвата протоном одного из электронов с электронной оболочки атома. Чаще всего происходит захват электрона

Б.-р. наблюдается как у естественно-радиоактивных, так и у искусственно-радиоактивных изотопов. Для того чтобы ядро было неустойчиво по отношению к одному из типов β-превращения (т. е. могло испытать Б.-р.), сумма масс частиц в левой части уравнения реакции должна быть больше суммы масс продуктов превращения. Поэтому при Б.-р. происходит выделение энергии. Энергию Б.-р. Е β можно вычислить по этой разности масс, пользуясь соотношением Е = mc2, где с - скорость света в вакууме. В случае β-распада

где М - массы нейтральных атомов. В случае β+-распада нейтральный атом теряет один из электронов в своей оболочке, энергия Б.-р. равна:

где me - масса электрона.

Энергия Б.-р. распределяется между тремя частицами: электроном (или позитроном), антинейтрино (или нейтрино) и ядром; каждая из лёгких частиц может уносить практически любую энергию от 0 до E β т. е. их энергетические спектры являются сплошными. Лишь при К-захвате нейтрино уносит всегда одну и ту же энергию.

Итак, при β - -распаде масса исходного атома превышает массу конечного атома, а при β + -распаде это превышение составляет не менее двух электронных масс.

Исследование Б.-р. ядер неоднократно ставило учёных перед неожиданными загадками. После открытия радиоактивности явление Б.-р. долгое время рассматривалось как аргумент в пользу наличия в атомных ядрах электронов; это предположение оказалось в явном противоречии с квантовой механикой (см. Ядро атомное). Затем непостоянство энергии электронов, вылетающих при Б.-р., даже породило у некоторых физиков неверие в закон сохранения энергии, т.к. было известно, что в этом превращении участвуют ядра, находящиеся в состояниях с вполне определённой энергией. Максимальная энергия вылетающих из ядра электронов как раз равна разности энергий начального и конечного ядер. Но в таком случае было непонятно, куда исчезает энергия, если вылетающие электроны несут меньшую энергию. Предположение немецкого учёного В. Паули о существовании новой частицы - нейтрино - спасло не только закон сохранения энергии, но и другой важнейший закон физики - закон сохранения момента количества движения. Поскольку Спин ы (т. е. собственные моменты) нейтрона и протона равны 1 / 2 , то для сохранения спина в правой части уравнений Б.-р. может находиться лишь нечётное число частиц со спином 1 / 2 . В частности, при β - -распаде свободного нейтрона n → p + e - + ν только появление антинейтрино исключает нарушение закона сохранения момента количества движения.

Б.-р. имеет место у элементов всех частей периодической системы. Тенденция к β-превращению возникает вследствие наличия у ряда изотопов избытка нейтронов или протонов по сравнению с тем количеством, которое отвечает максимальной устойчивости. Т. о., тенденция к β + -распаду или К-захвату характерна для нейтронодефицитных изотопов, а тенденция к β - -распаду - для нейтроноизбыточных изотопов. Известно около 1500 β-радиоактивных изотопов всех элементов периодической системы, кроме самых тяжёлых (Z ≥ 102).

Энергия Б.-р. ныне известных изотопов лежит в пределах от

периоды полураспада заключены в широком интервале от 1,3 · 10 -2 сек (12 N) до Бета-распад 2 10 13 лет (природный радиоактивный изотоп 180 W).

В дальнейшем изучение Б.-р. неоднократно приводило физиков к крушению старых представлений. Было установлено, что Б.-р. управляют силы совершенно новой природы. Несмотря на длительный период, прошедший со времени открытия Б.-р., природа взаимодействия, обусловливающего Б.-р., исследована далеко не полностью. Это взаимодействие назвали «слабым», т.к. оно в 10 12 раз слабее ядерного и в 10 9 раз слабее электромагнитного (оно превосходит лишь гравитационное взаимодействие; см. Слабые взаимодействия). Слабое взаимодействие присуще всем элементарным частицам (См. Элементарные частицы) (кроме фотона). Прошло почти полвека, прежде чем физики обнаружили, что в Б.-р. может нарушаться симметрия между «правым» и «левым». Это несохранение пространственной чётности было приписано свойствам слабых взаимодействий.

Изучение Б.-р. имело и ещё одну важную сторону. Время жизни ядра относительно Б.-р. и форма спектра β-частиц зависят от тех состояний, в которых находятся внутри ядра исходный нуклон и нуклон-продукт. Поэтому изучение Б.-р., помимо информации о природе и свойствах слабых взаимодействий, значительно пополнило представления о структуре атомных ядер.

Вероятность Б.-р. существенно зависит от того, насколько близки друг к другу состояния нуклонов в начальном и конечном ядрах. Если состояние нуклона не меняется (нуклон как бы остаётся на прежнем месте), то вероятность максимальна и соответствующий переход начального состояния в конечное называется разрешённым. Такие переходы характерны для Б.-р. лёгких ядер. Лёгкие ядра содержат почти одинаковое число нейтронов и протонов. У более тяжёлых ядер число нейтронов больше числа протонов. Состояния нуклонов разного сорта существенно отличны между собой. Это затрудняет Б.-р.; появляются переходы, при которых Б.-р. происходит с малой вероятностью. Переход затрудняется также из-за необходимости изменения спина ядра. Такие переходы называются запрещёнными. Характер перехода сказывается и на форме энергетического спектра β-частиц.

Экспериментальное исследование энергетического распределения электронов, испускаемых β-радиоактивными ядрами (бета-спектра), производится с помощью Бета-спектрометр ов. Примеры β-спектров приведены на рис. 1 и рис. 2 .

Лит.: Альфа-, бета- и гамма-спектроскопия, под ред. К. Зигбана, пер. с англ., в. 4, М., 1969, гл. 22-24; Экспериментальная ядерная физика, под ред. Э. Сегре, пер. с англ., т. 3, М., 1961.

Е. М. Лейкин.

Бета-спектр нейтрона. На оси абсцисс отложена кинетич. энергия электронов Е в кэв , на оси ординат - число электронов N (Е) в относительных единицах (вертикальными чёрточками обозначены пределы ошибок измерений электронов с данной энергиией).


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Бета-распад" в других словарях:

    Бета распад, радиоактивные превращения атомных ядер, в процессе к рьхх ядра испускают электроны и антинейтрино (бета распад) либо позитроны и нейтрино (бета+ распад). Вылетающие при Б. р. электроны и позитроны носят общее назв. бета частиц. При… … Большой энциклопедический политехнический словарь

    Современная энциклопедия

    Бета-распад - (b распад), вид радиоактивности, при котором распадающееся ядро испускает электроны или позитроны. При электронном бета распаде (b) нейтрон (внутриядерный или свободный) превращается в протон с испусканием электрона и антинейтрино (смотри… … Иллюстрированный энциклопедический словарь

    Бета-распад - (β распад) радиоактивные превращения атомных ядер, в процессе которых ядра испускают электроны и антинейтрино (β распад) либо позитроны и нейтрино (β+ распад). Вылетающие при Б. р. электроны и позитроны носят общее название бета частиц (β частиц) … Российская энциклопедия по охране труда

    - (b распад). самопроизвольные (спонтанные) превращения нейтрона n в протон р и протона в нейтрон внутри ат. ядра (а также превращение в протон свободного нейтрона), сопровождающиеся испусканием эл на е или позитрона е+ и электронных антинейтрино… … Физическая энциклопедия

    Самопроизвольные превращения нейтрона в протон и протона в нейтрон внутри атомного ядра, а также превращение свободного нейтрона в протон, сопровождающееся испусканием электрона или позитрона и нейтрино или антинейтрино. двойной бета распад… … Термины атомной энергетики

    - (см. бета) радиоактивное превращение атомного ядра, при котором испускаются электрон и антинейтрино или позитрон, и нейтрино; при бета распаде электрический заряд атомного ядра изменяется на единицу, массовое число не меняется. Новый словарь… … Словарь иностранных слов русского языка

    бета-распад - бета лучи, бета распад, бета частицы. Первая часть произносится [бэта] … Словарь трудностей произношения и ударения в современном русском языке

    Сущ., кол во синонимов: 1 распад (28) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    Бета распад, бета распада … Орфографический словарь-справочник

    БЕТА-РАСПАД - (ß распад) радиоактивное превращение атомного ядра (слабое взаимодействие), при котором испускаются электрон и антинейтрино или позитрон и нейтрино; при Б. р. электрический заряд атомного ядра изменяется на единицу, массовое (см.) не меняется … Большая политехническая энциклопедия

Э. Резенфорд вместе с с английским радиохимиком Ф. Содди доказал, что радиоактивность сопровождается самопроизвольным превращением одного химического элемента в другой.
Причем в результате радиоактивного излучения изменения претерпевают ядра атомов химических элементов.

ОБОЗНАЧЕНИЕ ЯДРА АТОМА

ИЗОТОПЫ

Среди радиоактивных элементов были обнаружены элементы, неразличимые химически, но разные по массе. Эти группы элементов были названы "изотопами" ("занимающими одно место в табл. Менделеева") . Ядра атомов изотопов одного и того же химического элемента различаются числом нейтронов.

В настоящее время установлено, что все химические элементы имеют изотопы.
В природе все без исключения химические элементы состоят из смеси нескольких изотопов, поэтому в таблице Менделеева атомные массы выражены дробными числами.
Изотопы даже нерадиоактивных элементов могут быть радиоактивны.

АЛЬФА - РАСПАД

Альфа-частица (ядро атома гелия)
- характерен для радиоактивных элементов порядковым номером больше 83
.- обязательно выполняется закон сохранения массового и зарядового числа.
- часто сопровождается гамма-излучением.

Реакция альфа-распада:

При альфа-распаде одного химического элемента образуется другой химический элемент, который в таблице Менделеева расположен на 2 клетки ближе к её началу, чем исходный

Физический смысл реакции:

В результате вылета альфа-частицы заряд ядра уменьшается на 2 элементарных заряда и образуется новый химический элемент.

Правило смещения:

При бета-распаде одного химического элемента образуется другой элемент, который расположен в таблице Менделеева в следующей клетке за исходным (на одну клетку ближе к концу таблицы).

БЕТА - РАСПАД

Бета-частица (электрон).
- часто сопровождается гамма-излучением.
- может сопровождаться образованием антинейтрино (легких электрически нейтральных частиц, обладающих большой проникающей способностью).
- обяэательно должен выполняться закон сохранения массового и зарядового числа.

Реакция бета-распада:

Физический смысл реакции:

Нейтрон в ядре атома может превращаться в протон, электрон и антинейтрино, в результате ядро излучает электрон.

Правило смещения:

ДЛЯ ТЕХ, КТО ЕЩЁ НЕ УСТАЛ

Предлагаю написать реакции распада и сдать работу.
(составьте цепочку превращений)

1. Ядро какого химического элемента является продуктом одного альфа-распада
и двух бета-распадов ядра данного элемента?

1вин – это одна из популярных букмекерских контор, которая предлагает большой выбор ставок на спорт в режиме онлайн. На официальном сайте букмекера можно найти порядка 20 разделов различных видов спорта.

Перейти на зеркало

  • Что такое зеркало 1win

На данный момент игроки совершают ставки, используя зеркала «1вин». Зеркало – это своего рода дубликат основного сайта, который имеет тот же интерфейс и функции за исключением доменного имени.

Имя домена подбирается, как правило, схожим с адресом основного сайта. Зеркало позволяет букмекеру снижать нагрузку на свой основной сервер путем распределения игроков, что помогает обеспечивать стабильный и непрерывный игровой процесс.

К тому же, в случае блокировки основного сайта «1вин» провайдером или контролирующими органами, клиенты могут обратиться к зеркальному сайту и спокойно продолжить заключать выгодные пари. Бывают случаи, что и основной сайт и зеркала перестают работать, но букмекер быстро решает эту проблему, создавая еще 1-3 новых страницы. Таким образом, зеркало – это полностью аналогичный основному сайт, который создается для решения сразу нескольких задач.

  • Почему блокировали зеркало 1win

Согласно новому Федеральному Закону Российской Федерации, тотализатор относится к запрещенным видам деятельности, поэтому все букмекерские компании должны иметь лицензию на осуществление соответствующей деятельности. Если таковой лицензии у букмекера нет, то Роскомнадзор выдает постановление о блокировке сайтов.

Причина, по которой «1вин» не спешит приобретать лицензию РФ – это введение законодательством обязательного налога на доходы в виде 13% от всей прибыли, при чем, налог обязан уплачивать не только сам букмекер, но и его клиенты.

Разумеется, такие меры могут спровоцировать отток клиентов, ведь никто не хочет делиться своим честно заработанным выигрышем, по этой причине конторы и прибегают к созданию зеркальных сайтов. Но отсутствие лицензии РФ не означает, что букмекерская контора не имеет права осуществлять свою деятельность, у «1вин» есть зарубежная лицензия, которая обеспечивает безопасность для клиентов.

Для того чтобы зарегистрироваться на одном из зеркал, необходимо, в первую очередь найти в сети Интернет одно из актуальных на текущий момент времени зеркал. Регистрация доступна только для совершеннолетних лиц. Регистрация состоит из следующих этапов:

  • необходимо найти и нажать в правом верхнем углу поле «Регистрация»
  • выбрать подходящий вам способ регистрации (в 1 клик, используя социальные сети, используя электронную почту)

Для того чтобы зарегистрироваться в 1 клик достаточно выбрать страну проживания и подтвердить ознакомление со всеми условиями. Для регистрации в социальных сетях необходимо выбрать подходящую сеть (Вконтакте, Одноклассники, Google) и подтвердить ознакомление с соглашением. Для регистрации с использованием адреса электронной почты необходимо указать следующие данные:

  • дата рождения
  • страна
  • номер мобильного телефона
  • адрес электронной почты
  • пароль
  • повторить пароль
  • подтвердить ознакомление с необходимыми условиями

После основной регистрации нужно пройти процедуру идентификации, после чего можно будет приступать к пополнению игрового счета.



gastroguru © 2017