Принципы качественного и количественного определения витамина с. Количественное определение

Незаменимые вещества пищи, объединяемые под общим названием «витамины», относятся к различным классам химических соединений, что само по себе исключает возможность использования единого метода их количественного определения. Все известные для витаминов аналитические методы основаны либо на определении специфических биологических свойств этих веществ (биологические, микробиологические, ферментативные), либо на использовании их физико-химических характеристик (флуоресцентные, хроматографические и спектрофотометрические методы), либо на способности некоторых витаминов вступать в реакции с некоторыми реагентами с образованием окрашенных соединений (колориметрические методы).

Несмотря на достигнутые успехи в области аналитической и прикладной химии методы определения витаминов в пищевых продуктах еще трудоемки и длительны. Это обусловлено рядом объективных причин, основные из которых следующие.

1.Определение ряда витаминов часто осложняется тем, что многие из них находятся в природе в связанном состоянии в виде комплексов с белками или пептидами, а также в виде фосфорных эфиров. Для количественного определения необходимо разрушить эти комплексы и выделить витамины в свободном виде, доступном для физико-химического или микробиологического анализа. Это достигается обычно путем использования особых условий обработки (кислотным, щелочным или ферментативным гидролизом, автоклавированием).

2.Почти все витамины – соединения весьма неустойчивые, легко подвергающиеся окислению, изомеризации и полному разрушению под воздействием высокой температуры, кислорода воздуха, света и других факторов. Следует соблюдать меры предосторожности: максимально сокращать время на предварительную подготовку продукта, избегать сильного нагрева и воздействия света, использовать антиоксиданты и др.

3.В пищевых продуктах, как правило, приходится иметь дело с группой соединений, имеющих большое химическое сходство и одновременно различающихся по биологической активности. Например, витамин Е включает 8 токоферолов, сходных по химическим свойствам, но отличающихся по биологическому действию; группа каротинов и каротиноидных пигментов насчитывает до 80 соединений, из которых только 10 в той или иной степени обладают витаминными свойствами.

4.Витамины принадлежат к различным классам органических соединений. Поэтому для них не могут существовать общие групповые реакции и общие методы исследования.

5.Кроме того, анализ затрудняет присутствие в исследуемом образце сопутствующих веществ, количество которых может во много раз превышать содержание определяемого витамина (например, стерины и витамин D). Для устранения возможных погрешностей при определении витаминов в пищевых продуктах обычно проводят тщательную очистку экстрактов от сопутствующих соединений и концентрирование витамина. Для этого используют различные приемы: осаждение мешающих анализу веществ, методы адсорбционной, ионобменной или распределительной хроматографии, избирательную экстракцию определяемого компонента и др.



В последние годы для определения витаминов в пищевых продуктах с успехом стали использовать метод ВЭЖХ. Этот метод является наиболее перспективным, так как позволяет одновременно разделять, идентифицировать и количественно определять различные витамины и их биологически активные формы, что позволяет сократить время анализа.

Физико-химические методы исследования витаминов. Методы основаны на использовании физико-химических характеристик витаминов (их способности к флуоресценции, светопоглощению, окислительно-восстановительным реакциям и др). Благодаря развитию аналитической химии, приборостроения физико-химические методы почти полностью вытеснили длительные и дорогостоящие биологические методы.

Определение витамина С. Витаминб С (аскорбиновая кислота) может присутствовать в пищевых продуктах как в восстановленной, так и в окисленной форме. Дегидроаскорбиновая кислота (ДАК) может образовываться при обработке и хранении пищевых продуктов в результате окисления, что вызывает необходимость ее определения. При определении витамина С в пищевых продуктах используют различные методы: колориметрические, флуоресцентные, методы объемного анализа, основанные на окислительно-восстановительных свойствах АК, и ВЭЖХ.

Ответственный момент количественного определения АК – приготовление экстракта образца. Извлечение должно быть полным. Наилучшим экстрагентом является 6% раствор метафосфорной кислоты, обладающей способностью осаждать белки. Используются также уксусная, щавелевая и соляная кислоты, а также их смеси.

1. Для суммарного и раздельного определения окисленной и восстановленной форм АК часто используют метод Роэ с применением 2,4-динитрофенилгидразинового реактива. АК (гулоновая кислота) под действием окислителей переходит в ДАК, а затем в 2,3-дикетогулоновую кислоту, которая образует с 2,4-динитрофенилгидразином соединения, имеющие оранжевую окраску. Сам 2,4-динитрофенилгидразин представляет собой основание, неспособное существовать в аци-форме. Однако соответствующие гидразоны под влиянием щелочей превращаются в интенсивно окрашенные аци-соли. При определении витамина С этим методом мешает присутствие восстановителей (глюкоза, фруктоза и др). Поэтому при большом содержании сахаров в исследуемом продукте используют хроматографию, что осложняет определение.

Нитроформа Ацидоформа

2. В последнее время для определения общего содержания витамина С (сумма АК и ДАК) получил признание весьма чувствительный и точный флуоресцентный метод. ДАК конденсируясь с о-фенилендиамином, образует флуоресцирующее соединение хиноксалин, обладающее максимальной флуоресценцией при длине волны возбуждающего света 350 нм.

о-Фенилендиамин ДАК Хиноксалин

Интенсивность флуоресценции хиноксалина в нейтральной среде при комнатной температуре прямо пропорциональна концентрации ДАК. Для количественного определения АК ее предварительно окисляют в ДАК. Недостатком метода является достаточно дорогое оборудование.

Методы, основанные на окислительно-восстановительных свойствах АК.

3. Из методов, основанных на окислительно-восстановительных свойствах АК, наибольшее применение нашел метод титрования раствором 2,6-дихлорфенолиндофенола, имеющим синюю окраску. Продукт взаимодействия АК с реактивом – бесцветный. Метод может быть использован при анализе всех видов продуктов. При анализе продуктов, не содержащих естественных пигментов, в картофеле, молоке используют визуальное титрование. В случае присутствия естественных красителей, используют потенциометрическое титрование или метод индофенол-ксилоловой экстракции. Последний метод основан на количественном обесцвечивании 2,6-дихлорфенолиндофенола аскорбиновой кислотой. Избыток краски экстрагируется ксилолом и измеряется оптическая плотность экстракта при 500 нм.

В реакцию вступает только АК. ДАК предварительно восстанавливают цистеином. Для отделения АК от восстановителей, присутствующих в пищевых продуктах, подвергшихся тепловой обработке, или длительно хранившиеся экстракты обрабатывают формальдегидом. Формальдегид в зависимости от рН среды избирательно взаимодействует с АК и посторонними примесями восстановителей (рН = 0). Указанным методом определяют сумму АК и ДАК.

2,6-дихлорфенолиндофенол может быть использован и для фотометрического определения АК. Раствор реактива имеет синюю окраску, а продукт взаимодействия с АК – бесцветен, т.е. в результате реакции уменьшается интенсивность синей окраски. Оптическую плотность измеряют при 605 нм (рН = 3,6).

4. Еще одним методом, основанным на восстановительных свойствах АК, является колориметрический метод, в котором используется способность АК восстанавливать Fe(3+) до Fe(2+) и способность последнего образовывать с 2,2’-дипиридилом соли, интенсивно окрашенные в красный цвет. Реакцию проводят при рН 3,6 и температуре 70ºС. Оптическую плотность раствора измерят при 510 нм.

5. Фотометрический метод, основанный на взаимодействии АК с реактивом Фолина. Реактив Фолина представляет собой смесь фосфорномолибденовой и фосфорновольфрамовой кислот, т.е. это – известный метод, основанный на образовании молибденовых синей, поглощающих при 640–700 нм.

6. Для определения витамина С во всех пищевых продуктах с успехом может быть использован высоко чувствительный и специфичный метод ВЭЖХ. Анализ достаточно прост, лишь при анализе продуктов, богатых белками, необходимо предварительно удалить их. Детектирование осуществляется по флуоресценции.

Кроме названных методов определения витамина С существует еще целый ряд способов, например, окисление хлоридом золота и образование гидроксамовых кислот, но эти методы не имеют практического значения.

Определение тиамина (В 1 ). В большинстве природных продуктов тиамин встречается в виде дифосфорного эфира – кокарбоксилазы. Последняя, являясь активной группой ряда ферментов углеводного обмена, находится в определенных связях с белком. Для количественного определения тиамина необходимо разрушить комплексы и выделить исследуемый витамин в свободном виде, доступном для физико-химического анализа. С этой целью проводят кислотный гидролиз или гидролиз под воздействием ферментов. Объекты, богатые белком, обрабатывают протеолитическими ферментами (пепсином) в среде соляной кислоты. Объекты, с высоким содержанием жира (свинина, сыры), для его удаления обрабатывают эфиром (тиамин практически нерастворим в эфире).

1. Для определения тиамина в пищевых продуктах используют, как правило, флуоресцентный метод, основанный на окислении тиамина в щелочной среде гексацианоферратом калия (3+) с образованием сильно флуоресцирующего в ультрафиолетовом свете соединения тиохрома. Интенсивность его флуоресценсции прямо пропорциональна содержанию тиамина (длина волны возбуждающего света 365 нм, испускаемого – 460–470 нм (синяя флуоресценция)). При использовании этого метода возникают трудности, связанные с тем, что в ряде объектов присутствуют флуоресцирующие соединения. Их удаляют очисткой на колонках с ионообменными смолами. При анализе мяса, молока, картофеля, пшеничного хлеба и некоторых овощей очистка не требуется.

Тиамин Тиохром

2. Тиамин характеризуется собственным поглощением в УФ области (240 нм – в водном растворе, 235 нм – в этаноле), а значит он может быть определен методом прямой спектрофотометрии.

3. Для одновременного определения тиамина и рибофлавина используют ВЭЖХ.

Определение рибофлавина (В 2 ). В пищевых продуктах рибофлавин присутствует главным образом в виде фосфорных эфиров, связанных с белками, и, следовательно, не может быть определен без предварительного протеолитического расщепления. Свободный рибофлавин в значительном количестве содержится в молоке.

При определении рибофлавина наибольшее распространение получили микробиологический и физико-химический (флуоресцентный) методы анализа. Микробиологический метод специфичен, высоко чувствителен и точен; применим ко всем продуктам, но длителен и требует специальных условий.

Физико-химический метод разработан в двух вариантах, которые отличаются способом оценки флуоресцирующих веществ:

· вариант прямой флуоресценции (определение интенсивности флуоресценции рибофлавина) и

· люмифлавиновый вариант.

1. Свободный рибофлавин и его фосфорные эфиры обладают характерной желто-зеленой флуоресценцией при длине волны возбуждающего света 440–500 нм. На этом свойстве основан наиболее широко используемый флуоресцентный метод определения рибофлавина. Рибофлавин и его эфиры дают очень сходные спектры флуоресценции с максимумом при 530 нм. Положение максимума не зависит от рН. Интенсивность флуоресценции значительно зависит от рН и от растворителя (по-разному для рибофлавина и его эфиров), поэтому предварительно разрушают эфиры и анализируют свободный рибофлавин. Для этого используют гидролиз с соляной и трихлоруксусной кислотами, автоклавирование, обработку ферментными препаратами.

Интенсивность желто-зеленой флуоресценции рибофлавина в УФ-свете зависит не только от его концентрации, но и от значения рН раствора. Максимальная интенсивность достигается при рН=6-7. Однако измерение проводят при рН от 3 до 5, так как в этом интервале интенсивность флуоресценции определяется только концентрацией рибофлавина и не зависит от других факторов – значения рН, концентрации солей, железа, органических примесей и др.

Рибофлафин легко разрушается на свету, определение проводят в защищенном от света месте и при рН не выше 7. Следует отметить, что метод прямой флуоресценции не применим к продуктам с низким содержанием рибофлавина.

2. Люмифлавиновый вариант основан на использовании свойства рибофлавина при облучении в щелочной среде, переходить в люмифлавин, интенсивность флуоресценции которого измеряют после извлечения его хлороформом (голубая флуоресценция, 460–470 нм). Поскольку при определенных условиях в люмифлавин переходит 60–70% общего рибофлавина, при проведении анализа необходимо соблюдать постоянные условия облучения, одинаковые для испытуемого и стандартного раствора.

Рибофлавин Люмифлавин

Определение витамина В 6 . Для определения витамина могут быть использованы следующие методы:

1. Прямая спектрофотометрия. Пиридоксина гидрохлорид характеризуется собственным поглощением при 292 нм (e = 4,4·10 3) при рН = 5.

2. Метод Кьельдаля. Определение осуществляется по аммиаку, образующемуся при окислении витамина.

3. Фотометрический метод, основанный на реакции с 2,6-дихлорхинонхлоримином (реактив Гиббса) при рН 8–10, в результате которой образуются индофенолы, имеющие синюю окраску. Индофенолы экстрагируют метил-этилкетоном и измеряют оптическую плотность экстракта при 660–690 нм (реакцию Гиббса дают фенолы со свободным пара-положением).

Индофенол

4. Флуоресцентный метод, основанный на том, что при облучении пиридоксина и пиридоксамина наблюдается синяя, а пиридоксаля – голубая флуоресценция.

Определение витамина В 9 . Определение фолатов в пищевых продуктах в тканях и жидкостях организма представляет значительные трудности, т.к. в этих объектах они обычно присутствуют в связанной форме (в виде полиглютаматов); кроме того, большинство форм чувствительно к воздействию кислорода воздуха, света и температуры. Для предохранения фолатов от гидролиза рекомендуется вести гидролиз в присутствии аскорбиновой кислоты.

В пищевых продуктах фолаты могут быть определены физическими, химическими и микробиологическими методами. Колориметрический метод основан на расщеплении птероилглутаминовой кислоты с образованием п-аминобензойной кислоты и родственных ей веществ и дальнейшем превращении их в окрашенные соединения. Однако из-за недостаточной специфичности этот метод применяется в основном для анализа фармацевтических препаратов.

Для разделения, очистки и идентификации фолатов разработаны также методы хроматографии на колонках, бумаге и в тонком слое адсорбента.

Определение витамина РР. В пищевых продуктах никотиновая кислота и ее амид находятся как в свободной, так и в связанной форме, входя в состав коферментов. Химические и микробиологические методы количественного определения ниацина предполагают наиболее полное выделение и превращение его связанных форм, входящих в состав сложного органического вещества клеток, в свободную никотиновую кислоту. Связанные формы ниацина освобождают воздействием растворов кислот или гидрооксида кальция при нагревании. Гидролиз с 1 М раствором серной кислоты в автоклаве в течение 30 минут при давлении 0,1 МПа приводит к полному освобождению связанных форм ниацина и превращению никотинамида в никотиновую кислоту. Установлено, что этот способ обработки дает менее окрашенные гидролизаты и может быть использован при анализе мясных и рыбных продуктов. Гидролиз с гидрооксидом кальция предпочтителен при определении ниацина в муке, крупах, хлебобулочных изделиях, сырах, пищевых концентратах, овощах, ягодах и фруктах. Ca(OH) 2 образует с сахарами и полисахаридами, пептидами и гликопептидами соединения, почти полностью нерастворимые в охлажденных растворах. В результате гидролизат, полученый при обработке Ca(OH) 2 , содержит меньше веществ, мешающих химическому определению, чем кислотный гидролизат.

1. В основе химического метода определения ниацина лежит реакция Кенига, протекающая в две стадии. Первая стадия – реакция взаимодействия пиридинового кольца никотиновой кислоты с бромцианом, вторая – образование окрашенного производного глутаконового альдегида в результате взаимодействия с ароматическими аминами. (Сразу после добавления к никотиновой кислоте бромистого циана появляется желтая окраска глутаконового альдегида. В результате взаимодействия его с ароматическими аминами, вводимыми в реакционную смесь, образуются дианилы, которые интенсивно окрашены в желтый, оранжевый или красный цвет, в зависимости от амина (бензидин – красный, сульфаниловая кислота – желтый). Реакцию Кенига применяют для фотометрического определения пиридина и его производных со свободным a-положением. Недостатком метода является его длительность, так как скорость реакций мала.

Количественное определение аскорбиновой кислоты в исследуемом материале часто осуществляют с помощью раствора 2,6-дихлофенолиндофенола натрия, который в щелочной среде имеет синюю окраску, в кислой – розовую. Химизм реакции можно выразить в виде следующего уравнения.

Принцип метода основан на способности аскорбиновой кислоты восстанавливать индофеноловый реактив. При титровании вытяжки исследуемого материала раствором 2,6-дихлорфенолиндофенола происходит окисление аскорбиновой кислоты в дегидроаскорбиновую и восстановление индофенолового реактива. Конец титрования можно установить по изменению окраски. Окисленная форма 2,6-дихлорфенолиндофенола имеет синюю окраску в нейтральной и щелочной среде, восстановленная форма – приобретает розовую окраску в кислой среде.

Аскорбиновую кислоту извлекают из исследуемого материала 1 % раствором соляной кислоты и титруют раствором индофенолового реактива. По количеству краски, затраченной на титрование, рассчитывают содержание аскорбиновой кислоты.

Следует заметить, что точному определению содержания аскорбиновой кислоты в биологических объектах мешают другие, легко окисляемые вещества: глютатион, цистеин и т.п.

7.7.1. ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ВИТАМИНА С В

РАСТИТЕЛЬНОМ МАТЕРИАЛЕ

Берут навеску исследуемого материала 5-20 г (в зависимости от предполагаемого содержания аскорбиновой кислоты), нарезают мелкими кусочками (картофель, морковь, черемша, яблоки и т.п.) тщательно растирают в ступке со щепоткой стекла или кварцевого песка, добавляя порциями по 4-5 мл раствора с массовой долей метафосфорной или соляной кислоты 2 % до получения однородной жидкой кашицы. Смесь из ступки количественно, с помощью раствора используемой при растирании кислоты, переносят в мерную колбу вместимостью 100 мл и общий объем экстракта доводят до метки тем же раствором кислоты. Содержимое хорошо перемешивают, настаивают 5-7 мин и фильтруют через бумажный фильтр. Полученный фильтрат должен быть совершенно прозрачным.

Используемые для экстракции кислоты (соляная, метафосфорная, щавелевая) извлекают из исследуемого материала как свободную, так и связанную аскорбиновую кислоту, а также способствуют устойчивости аскорбиновой кислоты в экстрактах.

Берут две конические колбочки вместимостью 100-150 мл и в одну пипеткой вносят 20 мл полученного фильтрата, в другую – 20 мл раствора кислоты, используемой для растирания исследуемого материала. Содержимое колбочек титруют индофеноловым реактивом до слабо-розового цвета, удерживающегося 30 секунд. Результаты записывают, и титрование повторяют с новыми порциями того же фильтрата. На основании средней величины, полученной из 2-3 определений, рассчитывают содержание аскорбиновой кислоты по формуле:

,

(a-b) – разность между объемами индофенолового реактива, пошедшими на титрование опытной (а) и контрольной (b) проб, мл;

u - общий объем экстракта, мл;

u 1 – объем фильтрата, взятого для титрования, мл;

m – масса исследуемого материала, г,

100 – пересчет на 100г материала.

В растительных тканях в некоторых количествах содержатся и другие редуцирующие вещества, восстанавливающие 2,6-дихлорфенолиндофенол, поэтому при необходимости проведения особо точного анализа следует принять это в расчет. Для этого к двум другим порциям по 10-20 мл исследуемой вытяжки прибавляют по 0,1 или 0,2 мл 10 % раствора сернокислой меди и нагревают в термостате или сушильном шкафу 10 мин при температуре 110 ˚С. Охлаждают и титруют индофеноловым реактивом. В присутствии солей меди и при нагревании аскорбиновая кислота разрушается полностью. Полученную поправку вычитают из данных титрования опытных проб.

При анализе многих плодов и ягод, некоторых овощей получают окрашенные экстракты, что затрудняет определение аскорбиновой кислоты. Для определения аскорбиновой кислоты, окрашенную вытяжку переносят в широкую пробирку, приливают 2-5 мл дихлорэтана или хлороформа и титруют при взбалтывании раствором индофенолового реактива до появлении в слое дихлорэтана или хлороформа розового окрашивания, не исчезающего 30 сек.

При определении необходимо учитывать редуцирующую способность применяемых для экстракции кислот (смесь 20 мл 1 % соляной кислоты и 80 мл 2 % метафосфорной или 1 % щавелевой кислоты). Для этого две порции смеси кислот по 10 мл титруют индофеноловым реактивом до розового окрашивания. Полученную поправку (обычно не превышающую 0,08-0,10 мл раствора краски) вычитают из данных титрования опытных растворов.

+
7.7.2. ОПРЕДЕЛЕНИЕ КОНЦЕНТРАЦИИ РАСТВОРА

2,6-ДИХЛОРФЕНОЛИНДОФЕНОЛА НАТРИЯ (ПО АСКОРБИНОВОЙ КИСЛОТЕ)

: R 4 – CH | NH | CO | R 3 – CH | NH | CO | R 2 – CH | NH | CO | R 1 – CH | NH | CO:

NaOH (избыток) Сu 2+
В две колбочки вносят по 5 мл раствора с массовой долей метафосфорной или соляной кислоты 2 % и по 2 мл стандартного раствора аско­рбиновой кислоты (основной опыт). Содержимое каждой колбочки титруют индофеноловым реактивом до слабо-розового окрашивания, сохраняющегося 30 секунд. Параллельно с основным опытом проводят контрольное определение, где также берут две колбочки и в каждую вносят по 7 мл раствора с массовой долей метафосфорной или соляной кислоты 2 % и воду в объеме, равном объему индофенолового реактива, пошедшего на титрование в основном опыте. Содержимое этих колб титруют индофеноловым реактивом до слабо-розового цвета, сохраняющегося 30 секунд.

Мaccy аскорбиновой кислоты (в мг), соответствующую 1 мл индофенолового реактива (раствора 2,6-дихлорфенолиндофенола натрия), рассчитывают пo формуле:

где М – масса аскорбиновой кислоты в мг, соответствующая 1 мл индофенолового реактива;

(u-u 1) - разность между объемами индофенолового реактива, пошедшими на титрование пробы с аскорбиновой кислотой (u) и пробы без аскорбиновой кислоты (u 1), мл;

2 – масса аскорбиновой кислоты в мг, содержащаяся в опытной пробе (основной опыт).

7.7.3. ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ВИТАМИНА С В МОЛОКЕ

Для определения аскорбиновой кислоты в молоке предварительно осаждают белки.

В колбочку наливают 50 мл молока и добавляют 4 мл насыщенного раствора щавелевой кислоты, взбалтывают, приливают 10 мл насыщенного раствора хлорида натрия, взбалтывают и оставляют при комнатной температуре на 5 мин. Затем содержимое колбочки фильтруют через бумажный складчатый фильтр, отмеривают пипеткой 20 мл фильтрата и титруют его индофеноловым реактивом до слабо-розового цвета, сохраняющегося 30 секунд. Берут еще 20 мл фильтрата и титрование повторяют. Для расчета берут средний результат.

Параллельно проводят контрольное определение, для чего в колбочке смешивают 50 мл воды, 4 мл насыщенного раствора щавелевой кислоты и 10 мл насыщенного раствора хлорида натрия. Далее поступают как в основном опыте.

,

где (a-b) – разность между объемами индофенолового реактива, пошедшего на титрование опытной и контрольной проб, мл;

64 – общий объем молока после добавления осадителей белка и жира;

М – масса аскорбиновой кислоты, соответствующая 1 мл индофенолового реактива (см. пункт 7.7.2.), мг;

u - объем фильтрата, взятого для титрования, мл;

u 1 - объем молока, взятого для анализа, мл.

РЕАКТИВЫ. Вода дистиллированная; молоко свежее; картофель (лимоны,морковь, яблоки, капуста, черемша и т.п.); раствор с массовой долей метафосфорной или соляной кислоты 2 %; насыщенный раствор щавелевой кислоты; насыщенный раствор хлорида натрия; свежеприготов­ленный стандартный раствор аскорбиновой кислоты (в мерную колбу вме­стимостью 100 мл вносят 100 мг аскорбиновой кислоты квалификации «медицинская» и, растворяя, объем доводят до метки раствором с массо­вой долей метафосфорной или соляной кислоты 2 %; индофеноловый реак­тив (в мерную колбу вместимостью 500 мл вносят 140-150 мг 2,6-дихлорфенолиндофенола натрия и 200-300 мл воды, энергично встряхивают до растворения краски, объем доводят до метки водой, перемешивают и фильтруют через бумажный фильтр в сухую склянку из темного стекла; раствор хранят в холодильнике не более трех суток).

1

В статье представлены результаты экспериментальных исследований по выбору метода и разработке методики количественного определения филлохинона (витамина К1) в растениях. Обосновано преимущество хроматографического метода (обращенно-фазовой ВЭЖХ) перед спектрофотометрическим при определении филлохинона в составе комплекса БАВ растений. В соответствии с рекомендациями Международной конференции по гармонизации технических требований к регистрации лекарственных средств для применения у человека (International Conference Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use) была проведена валидация разработанной методики по показателям специфичность, линейность, воспроизводимость и точность. Установлено, что предложенная методика является специфичной, линейной, воспроизводимой и точной. На примере фармакопейных видов сырья, содержащих витамин К1, доказана универсальность применения методики при анализе растительных объектов.

филлохинон

витамин К1

крапивы листья

калины кора

кукурузы столбики с рыльцами

пастушьей сумки трава

валидация

1. Абышев А. З. Синтез, свойства и контроль качества витаминных препаратов и витаминоподобных веществ: учебно-методическое пособие / А. З. Абышев, С.Н. Трусов, Н.И. Котова, М. П. Блинова. – СПб. : Изд-во СПФХА, 2010. – 136 с.

2. ГОСТ Р ИСО 5725-2002 «Точность (правильность и прецизионность) методов и результатов измерений» В 6 ч. – Введ. 23.04.02. – М.: Госстандарт России; Изд-во стандартов, 2002.

3. Государственная фармакопея СССР. Вып. 2 Общие методы анализа. Лекарственное растительное сырье / МЗ СССР. – 11-е изд., доп. – М., 1989. – 400 с.

4. Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации. Методические рекомендации МР 2.3.1.2432 -08

5. Носов А. М. Лекарственные растения. – М.: ЭКСМО-Пресс, 1999. – 350 с.

6. Погодин И.С., Лукша Е.А. Разработка методики количественного определения сесквитерпеновых лактонов в траве соссюреи горькой // Современные проблемы науки и образования. – 2013. – № 1; URL: www.сайт/107-8426

Введение

Витамин К относится к классу жирорастворимых витаминов, влияющих на систему гемостаза. К природным витаминам группы К относятся два типа метилированных хиноидных соединений с боковыми цепями, представленными изопреноидными звеньями: витамины К 1 и К 2 . В основе структуры указанных витаминов лежит система 1,4-нафтохинона. Витамин К1 (филлохинон) синтезируется всеми фотосинтезирующими организмами. Витамин К 2 (менахинон) синтезируется микрофлорой толстого кишечника. Биологическая роль витаминов группы К заключается в активации факторов свертывающей и противосвертывающей систем млекопитающих .

В настоящее время определена физиологическая потребность в витамине К для взрослых - 120 мкг/сутки и для детей - от 30 до 75 мкг/сутки .

В медицинской практике препараты растительного происхождения, содержащие филлохинон, используются для коррекции геморрагических осложнений. В Государственную фармакопею 11 издания включены следующие виды лекарственного растительного сырья, обладающие гемостатическим витамин К-зависимым эффектом: кора калины (Соrtex Viburni), столбики с рыльцами кукурузы (Styli cum stigmatis Zeae maydis), листья крапивы (Folia Urticae), трава пастушьей сумки (Herba Bursae pastoris) . Установлено, что витамин К 1 также содержится в траве тысячелистника, горца перечного, горца почечуйного и спорыша, что определяет возможность применения указанного сырья при желудочных, маточных и геморроидальных кровотечениях . В Государственной фармакопее, в настоящее время, отсутствуют методики определения филлохинона в растительном сырье. Для оценки целесообразности использования лекарственного растительного сырья в качестве источников витамина К1, актуальной проблемой является решение вопросов стандартизации и разработки методик, направленных на определение содержания филлохинона в растительных объектах.

Цель работы : разработка методики определения витамина К1 в лекарственном растительном сырье.

Материалы и методы исследования

Объектами исследования являлись официнальные виды лекарственного растительного сырья: кора калины, столбики с рыльцами кукурузы, листья крапивы, трава пастушьей сумки. Все виды сырья были приобретены через аптечные сети. Выбор рационального способа определения витамина К 1 проводили на основании оценки валидационных характеристик, полученных с помощью хроматографических и спектрофотометрических методов анализа. Для разработки методики количественного определения филлохинона в растительном сырье использовали метод обращенно-фазовой высокоэффективной хроматографии высокого давления (ВЭЖХ) с диодно-матричным детектором на приборе Shimadzu LC-20 Prominence в изократическом режиме в следующих условиях: аналитическая колонка, заполненная сорбентом PerfectSil 300 ODS C18, 4,6х250 мм, с размером частиц 5 мкм; состав подвижной фазы: ацетонитрил-изопропанол-вода в соотношении 75:20:5; детектирование при длине волны 254 нм; температура колонки - комнатная; скорость подвижной фазы 1 мл/мин; объем вводимой пробы 20 мкл. Оценку результатов проводили по величине времени удерживания (t r) филлохинона, совпадающим с показателем t r РСО (20.00±1.00 мин.) и по величине площади пика филлохинона. Обработку результатов производили с использованием программного обеспечения LC Solutions.

Спектрофотометрическое определение содержания витамина К 1 проводили на приборе UNICO 2802S в кварцевой кювете с толщиной слоя 1 см.

Обработку результатов выполняли с использованием программы STATISTICA 8.0. Для описания полученных результатов, после проверки нормальности распределения, приводили значение среднего (X ср), стандартного отклонения (S), относительного стандартного отклонения (RSD), дисперсии (S 2), доверительного интервала среднего (Δx ср) при уровне значимости α=0,05.

В качестве стандартного образца использовали рабочий стандартный образец (РСО) витамина К 1 , выделенного методом препаративной колоночной хроматографии из гексанового извлечения листьев крапивы двудомной. Рабочий стандартный образец представляет собой желтую вязкую невысыхающую маслянистую жидкость, практически не растворимую в воде, растворимую в органических растворителях и растительных маслах, температура плавления -20ºС. Спектральные характеристики спиртового раствора рабочего стандартного образца (после удаления гексана) представлены на рис. 1.

Рис. 1. Спектр в УФ- и видимой области раствора РСО филлохинона (витамина К1)

Для максимального извлечения витамина К1 из исследуемых образцов подбирали следующие параметры пробоподготовки: степень измельченности сырья, вид экстрагента, количественные соотношения сырья и экстрагента, время и кратность экстракции, температурный и световой режим экстрагирования.

Результаты и обсуждение . С целью разработки рационального метода определения содержания витамина К 1 были подобраны условия для его извлечения из сырья. В качестве объекта для разработки методики служили листья крапивы. С учетом неустойчивости филлохинона к воздействию световой энергии, все этапы исследования проводили в условиях, предполагающих защиту извлечений от света. Полноту извлечения определяли методом ВЭЖХ по величине площади пика с t r 20.00±2.00 мин. В результате оценки влияния факторов пробоподготовки на полноту извлечения филлохинона были подобраны следующие параметры и условия: измельченность сырья - частицы, проходящие сквозь сито с величиной диаметра отверстий 0,5 мм; экстрагент - гексан; количественное соотношение «сырье:экстрагент» - 1:25; однократная экспозиция в течение 60 мин.; температурный режим - комнатная температура (20-22ºС).

Для разработки методики определения витамина К 1 в растениях спектрофотометрическим методом, предварительно был проведен сравнительный анализ спектров поглощений извлечений из фармакопейного сырья (рис. 2) и раствора РСО филлохинона (рис. 1). В результате было установлено, что доказать присутствие витамина К1 в сырье по референтному максимуму (249 нм) не представляется возможным, ввиду отсутствия данного максимума в спектре всех исследуемых объектов. Следовательно, методика определения витамина К1 в суммарном комплексе биологически активных веществ растительного сырья прямым спектрофотометрическим методом изначально не может быть положительно провалидирована по показателю «специфичность». Повысить показатель специфичности методики при использовании спектрофотометрии возможно при условии извлечения из сырья очищенного филлохинона, что требует введения дополнительных препаративных манипуляций на стадии пробоподготовки объекта исследования. Дополнительная очистка извлечения может отрицательно повлиять на экспрессность и точность методики в конечном результате.

Рисунок 2 - Спектры поглощения извлечений из лекарственного растительного сырья, содержащего филлохинон (Кр - листья крапивы, К - кора калины, Ку - столбики с рыльцами кукурузы, П - трава пастушьей сумки)

Наиболее приемлемым вариантом для определения витамина К 1 в растительном сырье представляется использование метода обращенно-фазовой высокоэффективной хроматографии высокого давления (ВЭЖХ) с диодно-матричным детектором. По разработанным параметрам пробоподготовки сырья к анализу была разработана следующая методика: аналитическую пробу сырья измельчают до размера частиц, проходящих сквозь сито с отверстиями диаметром 0,5 мм. Около 1,0 г (точная навеска) измельченного сырья помещают в коническую колбу вместимостью 50 мл, заливают 25 мл гексана, закрывают пробкой и перемешивают на механическом встряхивателе в течение 60 минут. Извлечение фильтруют через бумажный фильтр в круглодонную колбу и отгоняют гексан на ротационном испарителе. Остаток количественно переносят в мерную колбу на 5 мл (пикнометр) с помощью 4 мл этанола. Доводят объем раствора до метки тем же растворителем и перемешивают. 0,02 мл раствора вводят в хроматограф.

Приготовление стандартного образца: К 0,0005 г (точная навеска) РСО филлохинона приливают 4 мл этанола, переносят в мерную колбу вместимостью 5 мл. Доводят объем раствора до метки растворителем и перемешивают. 0,02 мл раствора вводят в хроматограф.

Содержание филлохинона (X) в абсолютно сухом сырье в процентах вычисляют по формуле:

где S o - площадь пика на хроматограмме раствора РСО филлохинона; S - площадь пика филлохинона на хроматограмме испытуемого раствора; m o - навеска РСО филлохинона, в г; m - навеска сырья, в г; W - потеря в массе при высушивании сырья, в %; Р - содержание филлохинона в РСО филлохинона, в %.

По результатам количественного определения филлохинона методом обращенно-фазовой ВЭЖХ было определено содержание витамина К1 в листьях крапивы (табл. 1).

Таблица 1 - Метрологическая характеристика метода количественного определения филлохинона в листьях крапивы (%) (n=6)

Xср ± Δхср

0,00425 ± 0,00021

Ввиду малого содержания витамина К1 в сырье предлагаем производить расчеты в мг%, для этого необходимо внести изменения в расчетную формулу для перевода единиц измерения (г в мг):

Валидационную оценку методики проводили по показателям - специфичность, линейность, прецизионность (воспроизводимость) и точность .

Специфичность. Идентификация филлохинона подтверждалась совпадением времени удерживания анализируемого компонента в сырье и РСО филлохинона (рис. 3). Пики сопутствующих соединений, входящих в состав извлечений растительного сырья, хорошо разделяются с пиком филлохинона, и не влияют на аналитическое определение.

Рис. 3. Хроматограмма извлечения листьев крапивы (А - пик 17,tr =20.37 мин соответствует филлохинону) и рабочего стандартного образца филлохинона (Б - пик 22 ,tr =20.71 мин)

Линейность и аналитическая область методики была подтверждена анализом 7 проб разных концентраций в диапазоне от 13 до 417 % от концентрации (0,12 мг/мл), принятой за 100 %. Сравнение зависимости между содержанием филлохинона (мг/мл) в испытуемых растворах и величинами площадей хроматографических пиков показало, что она имеет линейный характер и описывается уравнением y = 5104417,9 x + 10944,88. Коэффициент корреляции (rxy) равен 0,999, что позволяет использовать данную методику для количественного определения филлохинона в растительных объектах в диапазоне концентраций от 0,016 до 0,5 мг/мл.

Воспроизводимость (прецизионность) определялась путем проведения анализа разными (двумя) аналитиками на одной серии сырья в разное время. Число повторностей для каждого аналитика - 3, общее число повторностей - 6. Относительное стандартное отклонение, выраженное в процентах (RSD, %), не должно превышать 5 % . По результатам проведенных исследований RSD составило 1,21 %, что характеризует надежность анализа в выбранных условиях (табл. 2).

Таблица 2 - Результаты определения прецизионности методики

Повторность

Аналитик

Определено в образце, мг%

Метрологические характеристики

Xср = 4,00525 мг %

S = 0,04850 мг %

Для определения точности методики анализировали образцы листьев крапивы из одной партии сырья в 3 уровнях навесок (по 0,5, 1,0 и 1,5 г), трижды проводя отбор проб для каждого уровня. Содержание витамина К1 определяли в мг в навеске сырья. Предварительно рассчитывали ожидаемую (теоретическую) величину, исходя из установленного среднего показателя по содержанию витамина К1 в листьях крапивы, равного 4,1 мг%. Теоретический показатель значения сравнивали с фактическим. Для оценки полученных результатов использовали показатель «открываемость» (R), критерий приемлемости для которого принят в пределах 98-102 % от расчетной величины .

Таблица 3 - Результаты определения точности методики

Навеска сырья,

Фактическое

Расчетное

Открываемость

Метрологические

характеристики

Результаты определения точности методики, представленные в таблице 3, показали, что открываемость R составляет 98,73 %, величина относительного стандартного отклонения (RSD) не превышает 5 %, что характеризует точность методики как удовлетворительную.

Таким образом, установлено, что предлагаемая методика количественного определения витамина К1 методом ВЭЖХ в листьях крапивы является специфичной, воспроизводимой и точной. Данная методика была воспроизведена для определения витамина К1 в других видах лекарственного растительного сырья (табл. 4).

Таблица 4 - Содержание витамина К1 (мг%) в лекарственном растительном сырье

Объект (n=6)

Xср ± Δхср

Столбики с рыльцами кукурузы

Трава пастушьей сумки

Кора калины

Проведенные исследования показали целесообразность использования метода обращенно-фазовой ВЭЖХ для определения филлохинона в растительном сырье. Преимуществом метода ВЭЖХ является возможность проведения оценки качественного и количественного содержания филлохинона в одной навеске сырья, что существенно экономит временные затраты на анализ. Разработанная методика может быть использована для определения содержания витамина К1 в растительных объектах.

Рецензенты:

Гришин А.В. д.фарм.н., профессор, зав. кафедрой фармации ГБОУ ВПО ОмГМА Минздрава России, г.Омск.

Пеньевская Н.А. д.м.н., доцент, зав. кафедрой фармацевтической технологии с курсом биотехнологии ГБОУ ВПО ОмГМА Минздрава России, г.Омск.

Библиографическая ссылка

Лукша Е.А., Погодин И.С., Калинкина Г.И., Коломиец Н.Э., Величко Г.Н. РАЗРАБОТКА МЕТОДИКИ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ФИЛЛОХИНОНА (ВИТАМИНА К1) В РАСТИТЕЛЬНЫХ ОБЪЕКТАХ // Современные проблемы науки и образования. – 2014. – № 3.;
URL: http://science-education.ru/ru/article/view?id=13736 (дата обращения: 02.09.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Введение

морепродукт витамин антиоксидантный

С древнейших времен человека интересовало все, что связано с пищей и питанием. Вначале главным было добывание любой пищи, затем последовали столетия, когда люди расширяли источники пищи, развивая сельское хозяйство, а заодно и совершенствовали способы приготовления различных блюд, доводя их до подлинного искусства (вспомним французскую или китайскую кулинарию). Лишь в середине прошлого века с началом промышленной и научной революции возникла наука о питании, которую теперь называют диетология или нутрициология.

Как правило, витамины поступают в наш организм вместе с пищей, которая теоретически должна содержать те или иные витамины, заложенные в её элементы самой природой. Фрукты и овощи, мясо, молоко, злаковые растения - все это, выращенное соответствующим образом, должно содержать минимальный перечень необходимых витаминов, но в наше время это происходит достаточно редко. Плохая экология, активное использование химических элементов в питании животных и производстве растительной продукции, генная инженерия - это очень часто сводит на нет, полезность продуктов, которые не содержат витамины, и является прямой причиной недостатка их содержания в организме человека.

Витамины представляют особые органические соединения, которые жизненно необходимы организму человека для его нормального функционирования, они играют важную роль в обмене веществ .

Недостаток витаминов может привести к серьезным изменениям в состоянии здоровья. К сожалению, наш организм не способен самостоятельно синтезировать витамины (исключение составляет витамин К, который за счет деятельности особых бактерий в достаточном количестве образуется в кишечнике), поэтому их дефицит необходимо обязательно восполнять .

Витамины А и Е содержащиеся в продуктах питания играют огромную роль для жизнедеятельности т.к. являются природными антиоксидантами .

В последе время очень часто используется слово антиоксиданты. Его можно услышать по телевизору, прочитать в газете или модном журнале, увидеть на упаковке продуктов питания. В связи с этим мы начинаем задаваться вопросами: «Что такое антиоксиданты, и для чего они нужны в продуктах питания?»

Целью работы является определение количественного содержания витаминов А и Е в мясе морепродуктов и морской рыбе.

Задачи исследования. Для достижения поставленной цели необходимо решить следующие задачи:

1. Определить количественное содержание витаминов А и Е и диеновых конъюгатов в мясе морепродуктов.

2. Сравнить количественное содержание витаминов А и Е и диеновых конъюгатов в мясе морепродуктов.

Объектами исследования является мясо морепродуктов (креветки, осьминога, кальмара, мидии) и мясо морской рыбы (минтая, путассу, камбалы).

Предмет исследования - количественное содержание витаминов А и Е в мясе морепродуктов и морской рыбы.

1. Аналитический обзор литературы

1.1 Общие представления о химическом составе и свойствах морепродуктов

Понятие морепродукты используется для обозначения всех съедобных обитателей мирового океана. Хотя рыба и относится к морскими жителями, этот продукт выделяют в отдельную группу и не причисляют к морепродуктам. Дары моря применяют и не только в кулинарии, но и в медицине, а так же в химической промышленности. Практически каждый вид морепродуктов обладает исключительными полезными свойствами, которые оказывают благоприятное воздействие на здоровье и самочувствие человека.

Рыба - это продукт высокой пищевой ценности, поскольку содержит белки (13-23%), жиры (0,1-33%), минеральные вещества (1-2%), витамины А, D, Е, В1, В12, РР, С, экстрактивные вещества и углеводы. Химический состав рыбы не является постоянным, он меняется в зависимости от вида, возраста, места и времени вылова

В рыбе и морепродуктах содержатся такие крайне необходимые для человека соединения, как незаменимые аминокислоты, в том числе лизин и лейцин, незаменимые жирные кислоты, включая уникальные эйкозопентаеновую и докозогексаеновую, жирорастворимые витамины, микро - и макроэлементы в благоприятных для организма человека соотношениях.

Особое значение имеет метионин, относящийся к липотропным противосклеротическим веществам. По содержанию метионина рыба занимает одно из первых мест среди белковых продуктов животного происхождения. Благодаря присутствию аргинина и гистидина, а также высокому коэффициенту эффективности белков (для мяса рыбы он составляет 1,88-1,90, а для говядины - 1,64) рыбопродукты весьма полезны для растущего организма. Белок рыбы отличается хорошей усвояемостью. По скорости переваримости рыбные и молочные продукты идентичны и занимают первое место.

Белки рыбы в основном полноценные: альбумины и глобулины (простые белки), нуклеопротеиды, фосфоропротеиды и глюкопротеиды (сложные белки). Всего в мышечной ткани рыб 85% полноценных белков. Они почти полностью (97%) усваиваются организмом человека. Поэтому рыба является источником белкового питания.

Неполноценный белок соединительной ткани коллаген (15%) под действием тепловой обработке легко переходит в глютин, поэтому мясо рыбы размягчается быстрее, чем мясо домашних животных.

Жир рыбы содержит большое количество ненасыщенных жирных кислот (линолеву, линоленову, арахидонову и др.), поэтому он жидкий при комнатной температуре, имеет низкую температуру плавления (ниже 37° С) и легко усваивается организмом человека. Жир в организме рыб распределен неравномерно.

Рыба удовлетворяет суточную потребность человека в животных белках на 7-24%, в жирах - на 0,1-12%, в том числе в полиненасыщенных жирных кислотах - на 0,1-18%.

Особенно большое количество витаминов А и D содержится в жире печени рыб. Витамином А богат в первую очередь жир печени морских рыб тресковых (треска, пикша, минтай и др.), акул, морского окуня, скумбрии и многих других. Содержание витамина D в печени рыб колеблется от 60 до 360 мкг%, но у некоторых видов горбылей достигает 700-1900 мкг%.

Водорастворимые витамины (группы В) при обычных способах обработки рыбы в значительной мере сохраняются. В процессе варки рыбы некоторая часть содержащихся в ней водорастворимых витаминов переходит в бульон, в связи с чем его целесообразно использовать для пищевых целей. Особенно много витаминов группы В в темном мясе атлантической скумбрии, сардины, тунцов (20 мкг на 100 г.), крайне необходимых в связи с увеличением белка в рационе человека.

Количество жира в мясе разных рыб неодинаковое. По содержанию жира рыбу условно делятся на следующие группы:

· нежирная (до 2%) - треска, пикша, сайда, навага, линь, судак, речной окунь, выглядел, ерш, тихоокеанская камбала;

· маложирная (2-5%) - сельдь тихоокеанский и атлантический (во время нереста), корюшка, карп, вобла, карась, кефаль, морской окунь, сом, язь;

· жирная (5-15%) - белуга, осетр, стерлядь, семга, кета, горбуша, скумбрия, ставрида, тунец, сельдь атлантическая и тихоокеанская (летом, осенью, в начале зимы);

· очень жирная (15-33%) - лосось, минога, стерлядь сибирская, осетр сибирский, сельдь тихоокеанская и атлантическая (в конце лета).

Минеральные вещества входят в состав белков, жиров, ферментов и костей рыбы. Больше всего их в костях. Это соли кальция, фосфора, калия, натрия, магния, серы, хлора. Содержание фосфора в мясе рыб составляет в среднем 0, 20-0,25%. Особенно большое физиологическое значение имеют содержащиеся в рыбе в очень малых количествах такие элементы, как железо, медь, йод, бром, фтор и др. С помощью рыбы можно удовлетворить потребность организма в железе на 25%, фосфоре - на 50-70, магнии - на 20%. Морепродукты содержат больше минеральных веществ, в частности микроэлементов, чем пресноводная рыба. Она богата йодом, который необходим для нормальной деятельности щитовидной железы. В среднем в пресноводных рыбах содержится 6,6 мкг йода на 100 г. сухого вещества, в проходных - 69,1 мкг, в полупроходных - 26 мкг, в морских - 245 мкг.

Специфический резкий запах морской рыбы обусловлен присутствием в ней азотистых веществ - аминов.

Углеводы рыбы представлены гликогеном (0,05-0,85%), который формирует вкус, запах и цвет рыбных продуктов. Сладковатый вкус рыбы после тепловой обработки обусловлен распадом гликогена до глюкозы.

Пищевая ценность рыбы зависит не только от химического состава, но и от соотношения в ее теле съедобных и несъедобных частей и органов. К съедобным частям относят мясо, кожу, икру, молочко, печень; к несъедобным - кости, плавники, чешую, внутренности. Чем больше в рыбе мяса и икры, тем выше ее пищевая ценность.

Рыба как продукт питания ценится достаточно высоко. Однако загрязненность пресноводных рыб вредными веществами стала настоящей проблемой. Правда, остаточные количества тяжелых металлов или хлорированных углеводородов большей частью ниже предельно допустимой концентрации (ПДК), но сумма всех вредных веществ может привести к нежелательным последствиям для здоровья. Концентрация этих веществ в морской рыбе в среднем значительно ниже ПДК.

Если исключить из рациона испортившеюся рыбу и рыбы из чрезмерно загрязненных водоемов, то можно сказать, что она представляет собой очень важный и высококачественный продукт питания.

Полезные свойства морепродуктов в первую очередь определяется средой их обитания. Морская вода обладает огромным количеством минеральных веществ, поэтому животные, обитающие в ней, впитывают в себя всю «пользу» морей и океанов.

В морепродуктах содержатся быстроусвояемые белки, жирные кислоты, микро- и макроэлементы. В отличии от мясных продуктов морепродукты намного питательнее и полезнее для здоровья. в мышцах морепродуктов соединительной ткани в несколько раз меньше, чем в мышцах наземных животных - это связано с особенностями их строения и среды обитания. В отличии от животных суши, в мясе морских животных нет плотного жира, зато в нем много белка и полиненасыщенных жирных кислот (ПНЖК), которые необходимы детям и взрослым. Недостаток ПНЖК грозит преждевременной старостью и хроническими заболеваниями. ПНЖК защищают сосуды, предотвращая развитие атеросклероза.

Своего фосфора в морепродуктах тоже много, и это актуально для тех, кто страдает заболеваниями центральной нервной системы, интенсивно учится или занимается умственной работой.

Морепродукты не калорийны, следовательно их употребление в пищу защищает от накопления избыточного веса. Например, если сравнивать их с телятиной, которая считается диетическим мясом, то они окажутся мение калорийными, т.к. калорийность телятины - около 290 ккал на 100 г., тогда как в кальмарах, креветках и мидиях - всего около 70-85 ккал, а жиров они содержат от 0,3 до 3 г.

Польза креветок не ограничивается их низкой калорийностью. Это богатый источник животного белка и железа, а также ряда витаминов. Имеются в креветках и антиоксиданты. И важнейший из них - астаксантин - защищает от рака и атеросклероза. Это вещество близкое по строению к каротину моркови. Его образуют океанические водоросли, от них он переходит в организм креветок, крабов и красной рыбы .

Известно, что продукты моря богаты йодом (причем относится это не только к морским животным, но и к растениям), и самым доступным его натуральным источником можно считать морскую капусту. Йод необходим людям занимающимся умственной деятельностью, так как его недостаток способствует быстрой утомляемость, подросткам, так как их организм быстро растет и ему необходимо питание, беременным необходим йод как для собственного организма, так и для плода.

Морепродукты богаты также медью и цинком, которые необходимы организму для нормализации обмена веществ, выработки гормонов, образования клеток иммунной системы, половых клеток, переработки белка и других важных процессов жизнедеятельности.

Важным свойством практически всех морепродуктов является способность снижать воздействие эмоциональных перегрузок: не зря в странах, расположенных на морском побережье, население отличается спокойствием и доброжелательностью, уравновешенностью и оптимизмом - не последнюю роль здесь играет рацион питания.

Вредными могут быть морепродукты, которые выловлены в экологически неблагоприятных водах, а таких мест на Земле сегодня становится все больше. Кроме загрязнений, вызванных утечками нефти и сбросом промышленных и бытовых отходов, в океане много мест, где присутствует радиоактивное излучение, а обитатели моря плавают и живут везде.

Употреблять в пищу следует свежевыловленные или замороженные морепродукты, в консервированных сохраняется мало полезного, и к тому же в них часто бывает слишком много пищевых добавок. Продукты в вакуумных упаковках тоже могут содержать вредные химические вещества. Если морепродукты были заморожены достаточно свежими, то свои полезные свойства сохраняют почти полностью, но многое зависит и от хранения: если продукт хранился неправильно, его качество может резко ухудшиться .

Диетологи не советуют злоупотреблять морепродуктами, и рекомендуют включать их в свой рацион не чаще двух раз в неделю. Кстати, некоторые морские деликатесы богаты на холестерин, часть имеет способность накапливать избыточное количество ртути .

1.2 Перекисное окисление липидов

Перекисное окисление липидов - сложный процесс, протекающий как в животных, так и в растительных тканях. Он включает в себя активацию и деградацию липидных радикалов, встраивание в липиды предварительного активированного молекулярного кислорода, реорганизацию двойных связей в полиненасыщенных ацилах липидов и, как следствие, деструкцию мембранных липидов и самих биомембран. В результате развития свободнорадикальных реакций перекисного окисления липидов образуется целый ряд продуктов, в том числе спирты, кетоны, альдегиды, эфиры др. Так, например, только при окислении линолевой кислоты образуется около 20 продуктов ее распада. Биологические мембраны, особенно мембраны холоднокровных животных, содержат большое количество ненасыщенных жирных кислот, металлопротеины, активирующие молекулярный кислород. Поэтому неудивительно, что в них могут развиваться процессы перекисного окисления липидов.

Современные представления о механизме перекисного окисления липидов свидетельствуют о возможности непосредственного присоединения молекулярного кислорода к органическим молекулам с образованием гидроперекисей. Субстратом окисления в биологических мембранах являются полиненасыщенные жирные кислоты, входящие в состав фосфолипидов .

Перекисное окисление (автоокисление) липидов при контакте с кислородом не только приводит в негодность пищевые продукты (прогоркание), но и вызывает также повреждение тканей in vivo, способствуя развитию опухолевых заболеваний. Повреждающее действие инициируется свободными радикалами, возникающими в период образования перекисей жирных кислот, содержащих двойные связи, чередующиеся с метиленовыми мостиками (такое чередование имеется в природных полиненасыщенных жирных кислотах). Перекисное окисление липидов является цепной реакцией, обеспечивающей расширенное воспроизводство свободных радикалов, которые инициируют дальнейшее распространение перекисного окисления. Весь процесс можно представить следующим образом.

1) Инициация: образование R из предшественника

2) Развитие реакции:

3) Терминация (прекращение реакции):

Поскольку гидроперекись ROOH выступает как предшественник в процессе инициации, перекисное окисление липидов является разветвленной цепной реакцией, потенциально способной вызвать значительное повреждения. Для регулирования процесса перекисного окисления жиров и человек, и природа используют антиоксиданты. В пищевые продукты с этой целью добавляют пропилгаллат, бутилированный гидроксианизол и бутилированный гидрокситолуол. К природным антиоксидантам относятся жирорастворимый витамин Е (токоферол), а также водорастворимые ураты и витамин С. Каротин является антиоксидантом только при низких значениях.

Антиоксиданты распадаются на два класса:

1) превентивные антиоксиданты, снижающие скорость инициации цепной реакции.

2) гасящие (прерывающие цепь) антиоксиданты, препятствующие развитию цепной реакции.

К первым относятся каталаза и другие пероксидазы, разрушающие ROOH, и агенты, образующие хелатные комплексы с металлами - ДТПА (диэтилентриаминпентаацетат) и ЭДТА (этилендиаминтетраацетат). В качестве прерывающих цепь антиоксидантов часто выступают фенолы или ароматические амины. В условиях in vivo главными прерывающими цепь антиоксидантами являются супероксиддисмутаза, которая в водной фазе улавливает супероксидные свободные радикалы а также витамин Е, улавливающий свободные радикалы ROO в липидной фазе, и, возможно, мочевая кислота .

1.3 Биологическая роль витаминов А и Е

Ретиномл (истинный витамин A, транс - 9,13 - диметил-7 - (1,1,5 - триметил-циклогексен-5-ил-6) - нонатетраен - 7,9,11,13 - ол) - жирорастворимый витамин, антиоксидант (рис. 1.1)

Рис. 1.1 Формула ретинола

Витамин A получил название ретинол по причине его исключительной важности для функционирования сетчатки глаза (ретины). Но, как и в случае с другими витаминами, его роль в организме гораздо шире и завязана на многие критически важные процессы.

Биологическая роль витамина А.

· Антиоксидантная функция: нейтрализация свободных кислородных радикалов, препятствует повторному появлению (рецидиву) опухолей после операций.

· Регуляция генетических функций: повышение чувствительности клеток к ростовым стимулам, что обеспечивает нормальный рост клеток эмбриона и молодого организма, регуляцию деления и дифференцировку быстроделящихся клеток, таких как клетки плаценты, костной ткани, хряща, эпителия кожи, сперматогенного эпителия, слизистых, иммунной системы.

Все эти функции обеспечивают нормальное функционирование иммунной системы, повышают барьерную функцию слизистых оболочек, восстановление повреждённых эпителиальных тканей, стимулирует синтез коллагена, снижает опасность инфекций.

· Участие в зрительных фотохимических процессах.

Ретиналь в комплексе с белком опсином формирует зрительный пигмент родопсин, который находится в клетках сетчатки глаза, отвечающих за чёрно - белое сумеречное зрение - палочках.

· Участие в синтезе стероидных гормонов, сперматогенезе, является антагонистом тироксина - гормона щитовидной железы.

· Специфическими функциями обладают отдельные каротиноиды:

а) b - каротин особенно необходим для нейтрализации свободных радикалов полиненасыщенных жирных кислот и радикалов кислорода, обладает защитным действием у больных атеросклерозом, стенокардией, повышая содержание в крови липопротеидов высокой плотности, обладающих антиатерогенным действием (препятствует формированию атеросклеротических бляшек).

б) лютеин и зеаксетин - способствуют предупреждению катаракты, снижают риск дегенерации жёлтого пятна.

в) ликопин обладает антиатеросклеротическим действием, защищает организм от развития рака молочной железы, эндометрия, простаты. Наибольшее содержание ликопина в помидорах.

Гиповитаминоз

Причинами являются пищевая недостаточность, гиповитаминоз С, гиповитаминоз Е, дефицит цинка, снижение функции щитовидной железы (гипотиреоз), дефицит железа в организме. Железо необходимо для нормального функционирования железосодержащих ферментов, катализирующих в печени и кишечнике превращение каротиноидов в ретинол .

Недостаток витамина А приводит к возникновению в нашем организме большого количества заболеваний и других проблем со здоровьем. Самым известным признаком нехватки этого витамина считается куриная слепота - заболевание, которое характеризуется плохим зрением в местах со слабым освещением. В данном случае не только плохо видят глаза, но и человек начинает испытывать дискомфорт: пересыхает слизистая, на холоде слезятся глаза, происходит помутнение роговицы. Кроме того, возникает ощущение песка в глазах, появляются корочки и слизь в уголках.

Помимо органов зрения недостаток витамина А влияет и на другие органы. В частности, страдает кожа, которая становится слишком сухой, поэтому довольно рано начинает покрываться морщинами. На голове образуется перхоть, волосы утрачивают естественный блеск и тускнеют. Мочеполовая система и ЖКТ из-за нехватки ретинола также страдают от многочисленных патологий, а на женских репродуктивных органах могут образовываться эрозии, полипы, мастопатия и даже рак.

Недостаток витамина А объясняется в основном скудным питанием, при этом часто наблюдается отказ от жиров и белковой пищи. Кроме того, это может быть связано и с наличием болезней кишечника, печени и желудка, а также дефицитом витамина Е, который помогает ретинолу быстрее окисляться.

Гипервитаминоз.

В основном связан с избыточным приёмом различных пищевых добавок, содержащих витамин А. Гипервитаминоз, связанный с употреблением в пищу продуктов богатых витамином А, практически не встречается.

Острое отравление проявляется головной болью, слабостью, тошнотой, нарушением сознания, зрения.

Хроническое отравление характеризуется нарушением пищеварения, потерей аппетита, что ведёт к похуданию, снижается активность сальных желёз кожи, развивается сухой дерматит, возможна ломкость костей.

Особенно опасен гипервитаминоз при беременности. Доказана эмбриотоксичность препарата в высоких дозах. Описана также нефротоксичность и канцерогенность гипервитаминоза.

Суточная норма витамина А для детей дошкольного возраста от 0,5 до 1,5 мг. Норма для взрослого человека несколько выше, но низшей границей является значение в 1,5 мг, при понижении этой отметки развиваются симптомы дефицита. Беременным и кормящим грудью женщинам нужно увеличивать норму витамина А до отметки в 2-2,5 мг .

ВитаминЕ относится кгруппе природных соединений - производных токола. Светло-желтые вязкие жидкости не растворимые в воде, хорошо растворимые в хлороформе, эфире, гексане, петролейном эфире, хуже - в ацетоне и этаноле.

· Витамин встраивается в фосфолипидный бислой мембраны клеток и выполняет антиоксидантную функцию, препятствуя перекисному окислению липидов.

Особенно данная функция важна в быстроделящихся клетках, таких как эпителий, слизистые оболочки, клетки эмбриона, в сперматогенезе.

· Снижает дегенерацию клеток нервной ткани.

· Известно положительное влияние витамина Е на состояние сосудистой стенки, снижение тромбообразования.

· Витамин Е защищает витамин А от окисления.

· Местное применение кремов с витамином Е улучшает состояние кожи, предотвращает старение клеток, способствует заживлению повреждённых участков.

Гиповитаминоз.

Причинами гиповитаминоза являются пищевая недостаточность.

Клиническая картина. Патология мембран клеток ведёт к гемолизу эритроцитов, развивается анемия, возникает увеличение проницаемости мембран, мышечная дистрофия.

Со стороны нервной системы может отмечаться поражение задних канатиков спинного мозга и миелиновой оболочки нервов, что приводит к нарушению чувствительности, парезу взора.

Гиповитаминоз может привести к бесплодию .

При недостатке витамина Е человек начинает чувствовать слабость, настроение резко ухудшается и наступает апатия ко всему. Так же симптомы недостатка витамина Е выражаются в появлении пигментных пятен и ухудшении состояния кожи лица. С момента начала подготовки к беременности вплоть до окончания грудного вскармливания гинекологи назначают свои пациенткам увеличенные дозы витамина Е. Токоферол незаменим для тех, кто занимается профессиональным спортом или испытывает ежедневные физические перегрузки.

Суточная норма витамина Е зависит от возраста и пола. Детям от 0 до 7 лет достаточно от 5 до 10 мг. этого витамина. Детям от 7 до 14 лет требуется уже чуть большая доза, от 10 до 14 мг. Взрослым людям нужно в сутки получать минимум 10 мг витамина Е. Именно при таком значении не разовьется дефицит. Так же увеличивается потребность в витамине Е у беременных и кормящих грудью женщин. Для них нормой является от 15 и до 30 мг. Норма витамина Е может повышаться при нервных потрясениях, стрессах или после перенесения тяжелых заболеваний.

Антиоксидантная активность витамина А.

Биологически активные вещества выполняют в организме определенную функцию, принимая участие в сложных биохимических процессах. Как известно, ультрафиолетовое облучение, курение, стрессы, некоторые препараты (в том числе и лекарственные) способны стимулировать образование свободных радикалов и активных форм кислорода .

Кислород необходим для жизни. Снижение содержания кислорода пагубно влияет на состояние живых организмов. Но, с другой стороны, окислительная способность кислорода повреждающее действует на клеточные структуры.

Свободные радикалы кислорода появляются не только под влиянием агрессивного воздействия внешних факторов, но и могут возникать как побочные продукты биологического окисления в тканях и клетках. Свободные радикалы способны провоцировать развитие различных реакций. Самой нежелательной является реакция взаимодействия с липидами - перекисное окисление. В результате образуются перекиси. По этому механизму чаще окисляются ненасыщенные жирные кислоты - составляющие клеточных мембран. Перекисное окисление может иметь место в маслах, содержащих ненасыщенные жирные кислоты. Масло приобретает горький вкус - «прогоркает».

Окисление в тканях и клетках носит цепной характер и нарастает лавинообразно. В результате дополнительно к свободным радикалам образуются липидные перекиси, легко превращающиеся в новые свободные радикалы, реагирующие со всеми биологическими молекулами (липидными, белковыми, ДНК).

Антиоксидантная система способна блокировать реакции свободнорадикального окисления. Антиоксиданты взаимодействуют комплексно. Часть антиоксидантов расположены в органеллах клеток, другие - внеклеточно (в межклеточном пространстве). Например, СОД, каталаза, глутатионпероксидаза находятся как в цитоплазме, так и в митохондриях тех клеточных органелл, где больше всего свободных радикалов. В дополнение к внутриклеточным антиоксидантную защиту осуществляют внеклеточные антиоксиданты - глутанион, витамины Е, С, А, СОД, каталаза, глутанионпероксидаза. Кофермент Q10 (убихинон) защищает митохондрии от окислительного повреждения .

Кроме того, антиоксидантными свойствами обладают и другие биологические соединения: токоферолы, каротиноиды, женские половые гормоны, тиоловые соединения (содержащие серу), некоторые белковые комплексы, аминокислоты витамин К и др. .

Однако под действием агрессивных внешних факторов (например, ультрафиолета) антиоксидантная система кожи не всегда способна ее защитить. Тогда необходимо применять средства, усиливающие антиоксидантную защиту.

Витамин А (ретинол, Retinolum). Роль витамина А в жизнедеятельности организма разнообразна. Ретинол и его метаболиты ретиналь (цис- и трансальдегид) и ретиноловая кислота, эфиры ретинола (ретинилпальмитат, ретинилацетат и др.) претерпевают под воздействием специфических ферментов определенные превращения .

Изучение ретинола начато в 1909 г., синтезирован он в 1933 г. Паулем Каррером. Витамин А в пищевых продуктах присутствует в виде эфиров, а также в виде провитаминов: альфа, бета и гамма-каротинов и др. (в продуктах растительного происхождения). Каротин был обнаружен в 1931 г. в моркови. Самым активным является в-каротин .

Витамин А широко распространен. Он содержится в продуктах животного происхождения, печени крупного рогатого скота и свиней, яичном желтке, в цельном молоке, сметане, в печени морского окуня, трески, палтуса и др.

Каротины также являются источником витамина А (красно-мякотные овощи: морковь, томаты, перец и др.). Расщепление каротинов происходит преимущественно в энтероцитах под действием специфического фермента (в-каротиндиоксигеназы (не исключена возможность аналогичного превращения в печени) до ретиналя. Под действием специфической кишечной рефуктазы ретиналь восстанавливается в ретинол. Усвоение улучшается в присутствии жиров и при наличии ненасыщенных жирных кислот. Витамин А обладает иммуностимулирующим свойством.

При авитаминозе А наряду с общими явлениями отмечается специфическое поражение кожи, слизистых оболочек и глаз. Отмечается поражение эпителия кожи, сопровождающееся пролиферацией и патологическим его ороговением. Наблюдается гиперкератоз, кожа усиленно шелушится, образуются трещины, появляются угри, кисты сальных желез, обострение бактериальной и микотической инфекции. Имеет место поражение слизистых оболочек ЖКТ, мочеполовой системы, дыхательного аппарата, что нарушает их функцию и способствует развитию заболеваний (гастритов, циститов, пиелитов, ларинготрахеобронхитов, пневмоний). Характерно поражение глазного яблока - ксерофтальмия, нарушение остроты зрения, способности различать предметы в сумерках (нарушение темновой адаптации), при выраженном авитаминозе может нарушаться цветовое восприятие .

При дефиците витамина А нарушается рост костей, так как витамин А необходим для синтеза хондроитинсульфатов костной и других тканей. Витамин А и каротиноиды обладают выраженным антиоксидантным свойством благодаря способности тормозить перекисное окисление липидов.

Каротиноиды - в-каротин (накапливается в яичниках, защищая яйцеклетки от перекисей), резерватол (находится в красном вине и арахисе - мощный антиоксидант), ликопин (обладает выраженным антиоксидантным свойством в отношении липо-протеидов, содержится в помидорах) и др. (лютеин, зеаксантин, кантаксантин накапливаются в сетчатке).

В современных косметических средствах особое место уделяется ретиноидам (синтетические и натуральные соединения, по действию аналогичны ретинолу). Витамин А, как отмечалось, регулирует биохимические процессы в коже, способен воздействовать на клетки кожи (регулирует процессы пролиферации, дифференцировки и межклеточных взаимодействий).

Ретиноиды при местном применении (в концентрациях 0,001-1% - ретин-А, айрол, радевит, ретиноевая кислота, дифферин и др.) способствуют обновлению эпидермиса, нормализации функционирования сальных желез, восстановлению дермального матрикса, применяются в программах лечения угревой сыпи и замедления процессов старения .

Не следует использовать данные препараты при приеме некоторых лекарственных средств, обладающих фотосенсибилизирующим свойством (тетрациклинов, сульфаниламидов, тиазидов и др.). Препараты обладают тератогенным свойством, их не рекомендуются применять у беременных. Использование препаратов для общего применения изложено в разделе «Лечение акне» .

Антиоксидантная активность витамина Е.

Витамин Е (токоферола ацетат, Tocopheroli acetas). Токоферола ацетат является синтетическим препаратом витамина Е. Наибольшей биологической активностью обладает а-токоферол. Под названием «витамин Е» известны и другие токоферолы, они близки по химической природе и биологическому действию. Витамин Е обладает выраженным антиоксидантным свойством. Он захватывает неспаренные электроны активных форм кислорода, блокирует перекисное окисление липидов (а именно тормозит перекисное окисление ненасыщенных жирных кислот), стабилизируя состояние клеточных мембран. Это свойство - предотвращение окисления ненасыщенных жирных кислот - используется в косметических средствах, дает возможность избежать прогоркания жиров.

Кроме того, витамин Е участвует в биосинтезе гемоглобина крови и белков, в делении клеток, в тканевом дыхании и других сложных и важных процессах. Витамин Е восстанавливает витамин А и кофермент Q10 (убихинон). Кроме того, действие витамина Е связано с действием микроэлементов (в частности, селена, который входит в состав фосфолипидглутатионпероксидазы и глутатионпероксидазы, активность которых зависит от витамина С) .

Токоферолы в природе содержатся в зеленых частях растений, особенно в молодых ростках злаков, некоторое количество их содержится в жире, мясе животных, яйцах, молоке, креветках, кальмарах и др.

В медицине и косметологии используют экстракты из злаков, пророщенных зерен, растительные масла, полученные холодным отжимом. Богаты токоферолом следующие растительные масла:

· соевое (1140 мг/кг);

· хлопковое (990 мг/кг);

· кукурузное (930 мг/кг);

· оливковое (130 мг/кг)

и другие (арахисовое, облепиховое, пальмовое, миндальное, масло лесного ореха).

1.4 Неферментативная антиоксидантная система

В качестве компонентов неферментативной АОС могут выступать низкомолекулярные вещества, имеющие высокую константу скорости взаимодействия с АФК.

Неферментативная АОС включает различные по химическому строению и свойствам соединения: водорастворимые - глутатион, аскорбат, цистеин, эрготионеин, и гидрофобные - - токоферол, витамин А, каротиноиды, убихиноны, витамины группы К, которые снижают скорость образования свободных радикалов и уменьшают концентрацию продуктов реакций, протекающих с участием радикалов .

Основная направленность действия низкомолекулярных АО связана с защитой белков, нуклеиновых кислот, полисахаридов, а также биомембран от окислительного разрушения при свободнорадикальной процессах. Важное значение низкомолекулярные АО приобретают в условиях окислительного стресса, когда ферментативная АОС оказывается менее эффективной в сравнении с их протекторным действием. Причины этого - быстрая инактивация конститутивного пула ферментов свободными радикалами и значительное время, необходимое для индукции их синтеза .

В липидах содержатся природные антиоксиданты (АО), существенно влияющие на скорость реакции обрыва цепей окисления. К гидрофобным АО фенольного типа относятся три группы веществ: токоферолы, убихиноны и витамины группы К. Каждое из этих веществ образует группу структурно-родственных соединений, включающую хиноны, хинолы, хроманолы и хроменолы. В липидном бислое мембран эти формы могут переходить одна в другую. Каждая группа природных АО присутствует в липидах преимущественно в одной, наиболее стабильной для данных соединений форме: витамины группы К находятся в виде хинонов, токоферолы находятся в липидах, в основном, в циклической форме 6-оксихроманов как в виде свободного токоферола, так и в виде его эфиров, для убихинонов наиболее устойчивой является хинонная форма. Гидрохинонная форма убихинонов довольна нестабильна и окисляется кислородом воздуха, однако в клетках до 70% убихинона может находится в восстановленной форме. Более стабильными являются циклические формы - убихроменолы, не участвующие в процессе переноса электрона по дыхательной цепи. Предполагают, что эта форма выполняет в липидах роль АО .

Характерной особенностью вышеназванных соединений является наличие в их структуре боковых алифатических заместителей, состоящих из нескольких изопреноидных звеньев, различающихся степенью ненасыщенности.

В состав природных АО, содержащихся в липидах, входят восстановленные фенольные формы, активно реагирующие с пероксирадикалами липидов (ROO) и окисленные хинонные формы, взаимодействующие с алкильными радикалами (R). Значительным сродством к пероксирадикалам обладают витамины группы К и токоферол, константы скоростей реакций составляют 5,8106 и 4,7106 М-1с-1 соответственно. Убихинолы и убихроменолы в 10 раз менее активны, чем токоферолы. Высокое сродство природных АО к пероксирадикалам обусловлено наличием в их молекулах лабильных гидроксильных групп, а длина и степень ненасыщенности боковых цепей не оказывает существенного влияния .

Хиноны легко реагируют с алкильными радикалами липидов (R), доля которых в общем количестве свободных радикалов при ПОЛ велика, по механизму:

R + Q RQ; RQ + R RQR и могут эффективно тормозить окисление.

Хиноны и их производные способны реагировать с АФК, в частности, хиноны способны связывать радикалы супероксид-аниона, участвующие в инициировании цепей свободнорадикального окисления липидов, с образование семихинонов. Вместе с тем предполагают, что убисемихиноны и убихиноны могут, подобно менасемихинону и менадиолу, реагировать с молекулярным кислородом с образованием супероксидных анион-радикалов.

2. Материалы и методы исследования

2.1 Общий обзор методов определения содержания витаминов А и Е

В области изучения витаминов накоплен громадный и разнообразный материал и он свидетельствует о том, что витамины являются органическими соединениями разной химической природы, необходимыми для обеспечения обмена веществ, лежащего в основе всех жизненных процессов. В связи с этим интерес к витаминам со временем не ослабевает, а возрастает еще больше. Особенно важной является разработка методов определения витаминов в различных объектах с целью контроля за их содержанием в продуктах питания, косметических средствах, лекарственных препаратах.

Методы определения содержания витамина А в продуктах.

При количественном определении витамина А в пищевых продуктах используют различные методы: колориметрический, флуоресцентный, способ прямой спектроскопии и ВЭЖХ. Выбор метода определяется наличием той или иной аппаратуры, целью исследования, свойствами анализируемого материала, предполагаемым содержанием витамина А и характером сопутствующих примесей.

Выделение витамина осуществляют кипячением со спиртовым раствором КОН в среде азота; и последующей экстракцией петролейным эфиром.

1. Для количественного определения веществ, обладающих А-витаминной активностью, может быть использован метод прямой спектрофотометрии, основанный на способности этих соединений к избирательному светопоглощению на разных длинах волн в УФ области спектра. Поглощение пропорционально концентрации вещества при измерении на тех длинах волн, где наблюдается свойственный данному соединению максимум абсорбции в используемом растворителе. Метод - наиболее простой, быстрый, достаточно специфичный. Дает надежные результаты при определении витамина А в объектах, не содержащих примесей, обладающих поглощением в той же области спектра. При наличии таких примесей метод может быть использован в сочетании со стадией хроматографического разделения.

2. Перспективным является флуоресцентный метод, основанный на способности ретинола флуоресцировать под действием УФ лучей (длина волны возбуждающего света 330-360 нм). Максимум флуоресценции наблюдается в области 480 нм. Определению витамина А этим методом мешают каротиноиды и витамин D. Для устранения мешающего влияния используют хроматографию на оксиде алюминия. Недостаток флуоресцентного метода - дорогостоящая аппаратура.

3. Ранее наиболее распространенным являлся колориметрический метод определения витамина А по реакции с хлоридом сурьмы. Используют раствор хлорида сурьмы в хлороформе (реактив Карр-Прайса). Механизм реакции точно не установлен и предполагают, что в реакцию вступает примесь SbCL5 в SbCl3. Образующееся в реакции соединение окрашено в синий цвет. Измерение оптической плотности проводят при длине волны 620 нм в течение 3-5 секунд. Существенным недостатком метода является неустойчивость развивающейся окраски, а также высокая гидролизуемость SbCl3. Предполагается, что реакция протекает следующим образом:

Эта реакция для витамина А не специфична, аналогичное окрашивание дают каратиноиды, но хроматографическое разделение этих соединений позволяет устранить их мешающее влияние.

Определению витамина А перечисленными методами, как правило, предшествует подготовительная стадия, включающая щелочной гидролиз жироподобных веществ и экстракцию неомыляемого остатка органическим растворителем. Часто приходится проводить хроматографическое разделение экстракта.

4. В последнее время вместо колоночной хроматографии находит все более широкое применение ВЭЖХ, которая позволяет разделить жирорастворимые витамины (A, D, E, K), обычно присутствующие одновременно в пищевых продуктах, и количественно их определить с большой точностью. ВЭЖХ облегчает определение различных форм витаминов (витамин А-спирт, его изомеры, эфиры ретинола), что особо необходимо при контроле за внесением витаминов в пищевые продукты.

Методы определения содержания витамина Е в продуктах.

К группе веществ, объединяемых общим названием «витамин Е» относятся производные токола и триенола, обладающие биологической активностью a-токоферолла. Кроме a-токоферолла, известно еще семь родственных ему соединений, обладающих биологической активностью. Все они могут встречаться в продуктах. Следовательно, главная трудность при анализе витамина Е состоит в том, что во многих случаях приходится рассматривать группу соединений, имеющих большое химическое сходство, но одновременно различающихся по биологической активности, оценить которую можно только биологическим методом. Это трудно и дорого, поэтому физико-химические методы почти полностью вытеснили биологические.

Основные стадии определения витамина Е: подготовка образца, щелочной гидролиз (омыление), экстракция неомыляемого остатка органическим растворителем, отделение витамина Е от мешающих анализу веществ и разделение токоферолов с помощью различных видов хроматографии, количественное определение. Токоферолы очень чувствительны к окислению в щелочной среде, поэтому омыление и эктсракцию проводят в атмосфере азота и в присутствии антиоксиданта (аскорбиновой кислоты). При омылении могут разрушаться ненасыщенные формы (токотриенолы). Поэтому при необходимости определения всех форм витамина Е, содержащихся в продукте, омыление заменяют другими видами обработки, например, кристаллизацией при низких температурах.

1. Большинство физико-химических методов определения витамина Е основано на использовании окислительно-восстановительных свойств токоферолов. Для определения суммы токоферолов в пищевых продуктах наиболее часто используют реакцию восстановления трехвалентного железа в двухвалентное токоферолами с образованием окрашенного комплекса Fe (2+) с органическими реагентами. Наиболее часто используют 2,2" - дипиридил, с которым Fe (2+) дает комплекс, окрашенный в красный цвет (лmax = 500 нм). Реакция не специфична. В нее также вступают каротины, стиролы, витамин А и др. Кроме того, интенсивность окраски существенно зависит от времени, температуры, освещения. Поэтому для повышения точности анализа токофероллы предварительно отделяют от соединений, мешающих определению, методом колоночной, газожидкостной хроматографии, ВЭЖХ. При определении Е-витаминной ценности продуктов, в которых a-токоферол составляет более 80% общего содержания токоферолов (мясо, молочные продукты, рыба и др.), часто ограничиваются определением суммы токоферолов. Когда в значительных количествах присутствуют другие токоферолы (растительные масла, зерно, хлебобулочные изделия, орехи), для их разделения используют колоночную хроматографию.

2. Для определения суммы токоферолов может быть использован также флуоресцентный метод. Гексановые экстракты имеют максимум флуоресценции в области 325 нм при длине волны возбуждающего света 292 нм.

3. Для определения индивидуальных токоферолов несомненный интерес представляет метод ВЭЖХ, обеспечивающий в одном процессе как разделение, так и количественный анализ. Метод также характеризуется высокой чувствительностью и точностью. Детектирование проводят по поглощению или по флуоресценции.

2.2 Определение количественного содержания витаминов А и Е в морепродуктах

Определение количественного содержания витаминов А и Е проводилось на образцах четырех видов замороженных морепродуктов (креветка, осьминог, кальмар, мидия) и трех видах замороженной морской рыбы (минтай, путассу, камбала). Исследовали по пять параллельных образцов каждого объекта, в которых определяли содержание витаминов А и Е.

Методика определения количественного содержания витаминов А и Е.

В центрифужные пробирки помещается растертое мясо морепродукта (навеска 1 г), 1 мл спирта и 1 мл дистиллированной воды. Пробирки закрывают крышками и перемешивают содержимое осторожными встряхиваниями. Затем добавляют по 5 мл гексана и еще раз производят встряхивание. Затем центрифугируют в течении 10 минут при 1500 об/мин.

Четко отделившийся гексановый слой используют для проведения измерений.

Определение содержания витаминов А и Е проводили на анализаторе «Флюорат».

Градуировку прибора «Флюорат» осуществляли путем измерения сигналов флуоресценции, приготовленных растворов. Контроль стабильности градуировочной характеристики состоит в проведении измерений концентрации витаминов в нескольких смесях. Градуировка признается стабильной, если полученное значение концентрации витаминов в смеси отличается от известного не более, чем на 10% в диапазоне 0,5 -2,0 мг/дм 3 и 20% при более низких концентрациях. При несоответствии полученных результатов указанным нормативам процесс градуировки необходимо повторить.

В основу работы прибора положен флуориметрический метод измерения содержания органических и неорганических веществ в области спектра 250-900 нм (например, витамин Е диапазон 300-320 нм). Для анализа использовались кюветы 10х20 мм. Во время работы на «Флюорате» необходимо выбрать из меню необходимую методику, затем измерить фоновый сигнал, после установить кювету с пробой и запустить процесс измерения.

В качестве светофильтров при измерения витамина Е применяют светофильтр возбуждения Е-1 (292 нм) и светофильтр регистрации Е-2 (320 нм). В качестве светофильтров при анализе витамина А используют светофильтр возбуждения А-1 (335) нм) и светофильтр регистрации А-2 (460 нм).

Этот метод определения содержания витаминов был выбран в связи с наличием необходимого оборудования и простотой использования.

2.3 Определение содержания диеновых конъюгатов в морепродуктах

Помимо того что о антиоксидантной активности морепродуктов можно судить по содержанию витаминов А и Е так и по содержанию диеновых конъюгатов.

К первичным продуктам перекисного окисления липидов относятся циклические эндоперекиси и алифатические моно- и гидроперекиси, так называемые липопероксиды и диеновые конъюгаты .

Свободнорадикальное, или перекисное, окисление липидов (ПОЛ) представляет собой самоподдерживающуюся цепную реакцию, продукты которой в умеренных количествах необходимы для осуществления таких функций организма, как обновление биологических мембран, фагоцитоз, регуляция артериального давления и т.д., но в больших - вредны, поскольку нарушают структуру клеточных мембран .

При свободнорадикальном окислении арахидоновой кислоты происходит отрыв водорода в б-положении по отношению к двойной связи, что приводит к перемещению этой двойной связи с образованием ДК .

Диеновые конъюгаты относятся к токсическим метаболитам, которые оказывают повреждающее действие на липопротеиды, белки, ферменты и нуклеиновые кислоты .

Определение диеновых конъюгатов имеет значительное преимущество для оценки ПОЛ, поскольку отражает раннюю стадию окисления. Обычным субстратом для определения диеновых конъюгатов выступает любое вещество, содержащее полиненасыщенные жирные кислоты.

Диеновые конъюгаты обладают поглощением в УФ-области (л = 232 нм), коэффициент молярной экстинкции 2,2 10 5 см -1 М -1 . Пробоподготовка для анализа диеновых конъюгатов обязательно включает в себя экстрагирование липидов органическими растворителями.

а) Экстракция диеновых конъюгатов из сыворотки крови или ткани гептан-изопропанольной смесью, с последующим измерением оптической плотности в гептановой или изопропанольной фазе (л= 232-234 нм).

б) При анализе с использованием ВЭЖХ, установлено, что диеновые конъюгаты, образующиеся в организме человека, в основном представлены изомерами линолевой кислоты, октодека-9 цис -, транс - диеновой кислоты.

В данной работе степень диеновой конъюгации ненасыщенных высших жирных кислот определяли по методике И.Д. Стальной (1977).

Принцип. Процесс пероксидного окисления полиненасыщенных жирных кислот сопровождается перегруппировкой двойных связей и возникновением системы сопряженных диеновых структур, имеющих максимум поглощения при 232-234 нм с плечом в области 260-280 нм, соответствующим сопряженным кетодиенам.

Реактивы:

1) гептанн

2) изопропанол

3) этиловый спирт

Ход исследования:

Для определения диеновых конъюгатов 300 мг мяса морской рыбы гомогенизировали с 3 мл смеси гептан: изопропан в соотношении 1:1 и центрифугировали 10 мин при 6000 об/мин. К супернатанту добавили 0,25 мл воды. К 0,5 мл гептановой фазы добавили 2,5 мл этилового спирта. Оптическую плотность измеряют при л=233 нм против контроля (гептан: изопропан 1:1) .

В ходе ПОЛ на стадии образования свободных радикалов в молекулах НЖК возникает система сопряженных двойных связей, что сопровождается появлением нового максимума в спектре поглощения при 233 нм.

Расчет ДК производили по формуле:

ДК=Д233/(Е*с)

где Д233 - оптическая плотность;

Е - коэффициент молярной экстинкции, 2,2*10 5 см -1 *М -1 ;

С - концентрация липидов, мг / мл.

Диеновые конъюгаты выражали в мкмоль ДК/мг липидов.

3. Результаты и обсуждения

По выбранным методам определения витаминов А и Е и диеновых конъюгатов были проведены эксперименты, в результате которых представлены в рисунках.

Примечание* - Р < 0,05 по сравнению с мясом осьминога

Рисунок 3.1 - Содержание витамина А в морепродуктах

Руководствуясь данными рисунка 3.1, исследуемые образцы морепродуктов можно расположить в следующей последовательность, по увеличению содержания витамина А: осьминог, кальмар, мидия, креветка. Содержание витамина А в мясе кальмара в 2,3 раза больше чем в мясе осьминога, в мясе мидии витамина А содержится больше в 4,6 раз, а в мясе креветки в 6,9 раз больше.

Рисунок 3.2 - Содержание витамина А в морской рыбе

По результатам опытов на количественное содержание витамина А в мясе морской рыбы видно что в исследуемых образцах содержится практически одинаковое количество витамина А (рис. 3.2).

Примечание* - Р < 0,05 по сравнению с мясом осьминога

Рисунок 3.3- Содержание витаминов Е в морепродуктах

Подобные документы

    Методы обогащения продуктов питания и готовых блюд витаминами. Стабильность витаминов в основных пищевых продуктах. Определение витаминов в продуктах питания, их безопасность. Рекомендуемые нормы потребления витаминов (рекомендуемая суточная потребность).

    реферат , добавлен 14.06.2010

    Характеристика отдельных групп водорастворимых витаминов, накопление и содержание их в растительных продуктах. Синтез витаминов в зависимости от экологических условий, потери витаминов при уборке и хранении продукции. Вещества вторичного синтеза.

    реферат , добавлен 05.01.2012

    Понятие рационального, сбалансированного питания и его основные принципы. Определение необходимого количества жиров в рационе. Болезни, связанные с неправильным питанием. Таблица содержания витаминов в продуктах. Раздельное питание: плюсы и минусы.

    реферат , добавлен 16.09.2011

    Общие понятие о макроэлементах и их влияние на организм человека. Концентрация в продуктах питания кальция, магния, калия, натрия, хлора, сера и фосфора. Методы определения качественного и количественного содержания макроэлементов в пищевых продуктах.

    реферат , добавлен 11.05.2011

    Биологическая роль витаминов, история открытия, классификация. Хлеб, молоко, молочные, кисломолочные, мясные и рыбные продукты. Как сохранить витаминную ценность данных продуктов. Роль витаминов в обмене веществ. Рациональное использование витаминов.

    презентация , добавлен 26.05.2015

    Пища - разнообразные продукты питания, обеспечивающие существование человека. Строение, физические, химические свойства, содержание белков в продуктах питания. Значение и пищевая ценность жиров. Глюкоза, сахароза, крахмал, целлюлоза. Значение витаминов.

    презентация , добавлен 18.03.2012

    Формирование классической теории сбалансированного питания. Роль белков, жиров и углеводов в живой системе. Минеральный обмен организма: основные источники кальция, фосфора, железа. Ферментативное (каталитическое) и гормональное действие витаминов.

    практическая работа , добавлен 12.07.2011

    Рассмотрение рекомендуемых норм потребления пищевых веществ. Вычисление энергетической ценности сырокопченой колбасы "Зернистая" и хлеба ржаного. Сравнение содержания витаминов, минеральных веществ, белков, жиров и углеводов в данных продуктах питания.

    курсовая работа , добавлен 27.11.2014

    Вычисление пищевой ценности блюда. Оценка питания населения. Изменение меню рациона и приведение его в соответствие с формулой сбалансированного питания. Оценка продуктового набора. Рекомендуемое суточное потребление витаминов, белков, жиров и углеводов.

Введение

Глава 1. Общая характеристика витамина С

1.1 Краткая историческая справка

2 Место витамина С в современной классификации витаминов

3 Химическое строение и свойства витамина С

4 Биологическая роль витамина С

1.4.2 Признаки гипо-, гипер- и авитоминоза

4.3 Суточная потребность в витамине С

Глава 2. Экспериментальное определение количественного содержания витамина С в пищевых продуктах и витаминных препаратах

1 Общая характеристика применяемых количественных методов анализа

1.1 Метод Тильманса

1.2 Метод Йодометрии

2 Химический анализ содержания витамина С по методу Тильманса в яблоках отечественных и импортных сортов

3 Йодометрическое определение содержания витамина С

3.1 Йодометрическое определение содержания витамина С в витаминных препаратах

3.2 Йодометрическое определение содержания витамина С во фруктовых соках

Заключение

Список литературы

Приложение

Введение

«Трудно найти такой раздел физиологии и биохимии, который бы не соприкасался с учением о витаминах; обмен веществ, деятельность органов чувств, функции нервной системы, явления роста и размножения - все эти и многие другие разнообразные и коренные по своей важности области биологической науки теснейшим образом связаны с витаминами»

А.Н. Бах

Актуальность темы. Рациональное питание человека складывается из пищи животного и растительного происхождения и одним из его условий является присутствие достаточного количества витаминов.

Витамины - низкомолекулярные органические соединения различной химической природы, которые необходимы человеку для нормальной жизнедеятельности. Одним из важнейших природных антиоксидантов является витамин С (аскорбиновая кислота), который, кроме того, принимает участие в целом ряде биохимических процессов. Каждому из нас необходимы витаминные и минеральные добавки каждый день для поддержания нормальной жизнедеятельности организма.

Во-первых, человеческий организм самостоятельно вырабатывает лишь очень немногие из витаминов, к тому же в малых количествах. А витамин С мы можем получать только с пищей или в качестве специальных препаратов.

Во-вторых, сложно получать витамин С в натуральном виде. Как отмечают специалисты, даже в самой здоровой и сбалансированной диете легко обнаружить дефицит витаминов - приблизительно 20-30% от рекомендуемой нормы. Лишь немногие люди и особенно дети едят достаточно фруктов и овощей, которые являются главными пищевыми источниками витамина С. Тепловая обработка, хранение и биохимическая переработка приводят к разрушению большей части витамина С, который мы в ином случае могли бы получать из пищи. Еще больше его сгорает в организме под влиянием стресса, курения и других источников повреждения клеток, наподобие дыма и смога. Повсеместно используемые медикаменты, такие как аспирин или противозачаточные средства, в огромной степени лишают наш организм тех количеств витамина, которые нам все-таки удалось получить.

В-третьих, в России только 20% населения принимают витаминные препараты. Цифра неутешительная, особенно если учесть, что недостаток витаминов наблюдается у 60-80% населения (по данным Института питания РАМН). Но в каких же продуктах и сколько содержится витамина С? Ответ на этот вопрос можно найти в различных справочниках. Однако там говорится о фруктах или овощах вообще, а сколько витамина С содержится в данном продукте? Ответ на этот вопрос может дать лишь количественное определение с помощью различных методов окислительно-восстановительного титрования.

Цель работы: изучить биохимическую природу витамина С и определить его количественное содержание в некоторых пищевых продуктах и витаминных препаратах.

Объект исследования - химическое строение и свойства витамина С, его биологическая и валеологическая роли.

Предмет исследования - пищевые продукты, содержащие витамин С и некоторые витаминные препараты.

Провести анализ научно-популярной и учебной литературы по выбранной теме;

Рассмотреть общую характеристику, химическое строение и свойства витамина С;

Изучить биологическую и валеологическую роли витамина С;

Овладеть методами качественного и количественного определения витамина С и экспериментально определить его содержание в некоторых пищевых продуктах и витаминных препаратах;

Обобщить результаты исследования и сформулировать выводы по работе.

Методы исследования: теоретические (анализ учебной и научно-популярной литературы по теме исследования, методический анализ, сравнение, теоретическое обобщение), экспериментальное (химический эксперимент), статистические (статистическая обработка результатов и их интерпретация).

Теоретическая значимость: изучены общая характеристика, химическое строение, свойства витамина С и его биологическая роль, определено место данного витамина в общей классификации.

Практическая значимость: проведен количественный анализ (йодометрия, метод Тильманса) содержания витамина С в яблоках, фруктовых соках и наиболее распространенных витаминных препаратах; возможность использования собранного материала и полученных данных при изучении биологических и химических дисциплин в школе и в вузе.

Глава 1. Общая характеристика витамина С

В данной главе остановимся на рассмотрении вопросов истории изучения, классификации, химическом строении, свойствах и биологической роли витамина С , .

1 Краткая историческая справка

Учение о витаминах начало развиваться сравнительно недавно и относится к концу XIX века и началу XX столетия. Однако заболевания, впоследствии названные авитаминозами, были известны давно. Так, 2500 лет назад китайцы описали заболевание бери-бери (авитаминоз B 1). Упоминание о гемеролопии (авитаминоз А) встречается в рукописях древних греков. Первые сведения о цинге (авитаминоз С) относят к XIII столетию. Когда римские легионы вторглись во владения своих северных соседей и надолго задержались за Рейном, им пришлось познакомиться с заболеванием, поразившим многих воинов и, судя по описанию древнеримского историка Плиния, весьма похожим на цингу. Интересно, что врачи, не имея истинного представления о природе бедствия, постигшего подопечное им воинство, быстро нашли спасительное средство. Им оказалось какое-то растение, названное римлянами «британская трава». К сожалению, более определенных сведений об этом целебном растении история не сохранила, и мы не можем сейчас точно указать, какой именно представитель европейской флоры оказал столь ценную услугу древнему Риму. Так римляне, возможно впервые, познакомились с авитаминозом. Картье в 1953 году очень живо описал эту болезнь, поразившую его спутников во время путешествия по реке Св. Лаврентия: «Они лишились всех своих сил и не могли стоять на ногах...Да к тому же появились на коже багровые пятна крови, которые покрывали голени, колени, бедра, ягодицы, плечи, руки, изо рта стал идти зловонный запах, десны так загнили, что было видно всё мясо до корней зубов, а сами зубы почти все выпали» .

В дальнейшем цинга, или скорбут, стала довольно частым гостем в странах Европы. Так, например, по подсчетам некоторых историков, с 1556 по 1856 г. в Европе имело место 114 эпидемий, унесших в могилу многие тысячи человеческих жизней. В России было зарегистрировано 101 тыс. случаев цинги. Большой вред цинга наносила экипажам флотов европейских стран, особенно в период открытия морских путей в Индию и Америку. В 1848 году Васко да Гама, прокладывая путь в страну душистого перца и корицы, потерял от цинги 100 из 160 членов своей команды.

Рис.1 Васко да Гама Рис. 2Морской путь в Индию (1497-1499)

В 1775 году английский врач Линд заявил, что цинга нанесла большой ущерб британскому морскому могуществу, чем флоты Франции и Испании вместе взятые. В конце концов, моряки нашли средство от этого «бича рода человеческого». Старые морские волки рассказывали, цинга - страшна только в море, но стоит кораблю пристать и пополнить запасы продовольствия свежими фруктами и овощами, как цинга покидала корабль. Они не могли толком объяснить, почему это происходит, но на всякий случай имели в своем рундуке бутылочку лимонного сока. Эти сведения заинтересовали английского врача Линда, и он решил провести сравнительное изучение противоцинготных свойств различных фруктов и овощей. Опытным путем Линд установил ежедневную дозу лимонного сока, предохраняющего человека от цинги, она оказалась равной 30т., т.е. двум столовым ложкам.

О причинах цинги высказывались самые различные предположения. Виновником этого заболевания считали вначале дурной запах, затем испорченную воду, солонину и даже каких-то не установленных наукой возбудителей из мира микробов. Ясность в этот вопрос внесли работы норвежских ученых Хольста и Фрелиха . Ученые пришли к выводу, что цинга у морских свинок вызывается особым фактором, который почти отсутствует в зернах злаков, солонине, но в большом количестве содержится в свежих овощах, фруктах и лимонном соке. Работы Хольста и Фрелиха были опубликованы в 1912 году, они оказали большое влияние на формирование теории Функа о витаминах и позволили ему причислить цингу к авитаминозным заболеваниям. Начались поиски способов выделения противоцинготного витамина, которые с переменным успехом продолжались до 1932 года. В 1932 г. витамин, предотвращающий цингу, был выделен из лимонного сока американскими исследователями С.Гленом, а также венгерским биохимиком Сент-Дьерди (рис.3).

Рис.3 Альберт Сент-Дьёрди

В опытах на морских свинках он показал, что гексуроновая кислота предохраняет животных от цинги. Но глубокое изучение химической природы гексуроновой кислоты показало, что она все-таки не является изомером глюкуроновой кислоты, а представляет собой вполне самостоятельное соединение, в связи с чем Сент-Дьерди в 1933 г. дал ему название - аскорбиновая (противоскорбутная) кислота. В 1933 году двумя учеными Хирстом и Эйлером независимо друг от друга была установлена структурная формула аскорбиновой кислоты .

2 Место витамина С в современной классификации витаминов

Современная классификация витаминов не является совершенной. Она может быть основана на их физико-химических свойствах (в частности, растворимости) и химической природе , .

В зависимости от растворимости все витамины делятся на две большие группы: водорастворимые (энзимовитамины) и жирорастворимые (гормоновитамины). Это позволяет выявить в каждой из этих групп свои особенности и определить присущие им индивидуальные свойства. Водорастворимые витамины участвуют в структуре и функции ферментов, жирорастворимые витамины входят в структуру мембранных систем, обеспечивая их функциональное состояние.

Помимо этих двух главных групп витаминов, различают группу разнообразных химических веществ, частично синтезирующихся в организме и обладающих витаминными свойствами. Для человека и ряда животных эти вещества принято объединять в группу - витаминоподобных (см. табл. 1).

Таблица 1 Общая классификация витаминов и витаминоподобных веществ

Жирорастворимые витамины

Водорастворимые витамины

Витаминоподобные вещества

Витамин А (ретинол)

Витамин B1 (тиамин)

Пангамовая кислота (витамин В12)

Провитамины А (каротины)

Витамин В2 (рибофлавин)

Парааминобензойная кислота (витамин H1)

Витамин Д (кальциферолы)

Витамин РР (никотиновая кислота)

Оротовая кислота (витамин В13)

Витамин Е (токоферолы)

Витамин В6 (пиридоксин)

Холин (витамин В4)

Витамин К (филлохиноны)

Витамин В12 (цианкобаламин)

Инозит (витамин В8)


Фолиевая кислота, фолацин (витамин Вс)

Карнитин (витамин Вт)


Пантотеновая кислота, (витамин В3)

Полиненасыщенные жирные кислоты (витамин F)


Биотин (витамин Н)

S - метилметионин- сульфоний-хлорид (витамин U)


Липоевая кислота, (витамин N)



Витамин С, (аскорбиновая кислота)



В основе так называемой химической классификации витаминов лежит их химическая природа . Однако витамины представляют собой сборную в химическом отношении группу органических соединений, поэтому с точки зрения химического строения им нельзя дать общего определения (см. табл. 2).

Таблица 2 Химическая классификация витаминов

Витамины алифатического ряда

Витамины алициклического ряда

Витамины ароматического ряда

Витамины гетероциклического ряда

Ненасыщенные алифатические кислоты (F)

Циклогексановые витамины (ипозит)

Аминозамещенные ароматические кислоты (витамин Н1)

Хромановые витамины (гр.Е)

Производные лактонов ненасыщенных полиоксикарбоновых кислот (аскорбиновая кислота)

Циклогексановые витамины с полиеновой цепью изопреноидного характера (ретинолы, витамины гр.А)

Производные нафтохиноинов (гр. К)

Фенолхромановые витамины (гр.Р)

Аминоспирты (холин)

Циклогексанолэтиленгидростериновые витамины гр.Д


Пиридинкарбоновые (гр. РР)

Пангамовые кислоты (В15)



Оксиметилен-пиридиновые (гр. В6)




Пиримидинотиазоловые (гр.В1)




Птериновые (гр. Фолиевой кислоты)




Изоаллксазиновые (гр. В2)

Итак, по двум приведенным классификациям витамин С является водорастворимым витамином, относящимся к группе производных лактонов ненасыщенных полиоксикарбоновых кислот.

3 Химическое строение и свойства витамина С

Аскорбиновая кислота (С 6 Н 8 О 6) имеет следующую химическую формулу , , :


По физическим свойствам является бесцветным кристаллическим веществом с приятным острым кислым вкусом, температура плавления 192ºС. Аскорбиновая кислота легко растворима в воде, плохо растворима в этаноле и почти нерастворима в других органических растворителях. Наличие двух асимметричных атомов углерода в 4-м и 5-м положениях, свидетельствует о возможности <#"605263.files/image006.gif">

Рис. 4. Этапы окисления аскорбиновой кислоты

На рис. 4 показано, что продукт окисления аскорбиновой кислоты - L-дегидроаскорбиновая кислота, которая является обратимо окисленной формой аскорбиновой кислоты и обладает сильными кислотными свойствами, дегидроаскорбиновая кислота утрачивает их вместе с двумя диенольными атомами водорода. Отсутствие двойной связи между атомами углерода делает молекулу дегидроаскорбиновой кислоты довольно неустойчивой к гидролизу, особенно в щелочной и даже слабокислой среде, лактонного кольца с образование 2,3-дикето-L-гулоновой кислоты, которая затем окисляется с разрывом углеродного скелета молекулы и образованием L-треоновой и щавелевой кислот. Ни 2,3- дикето-L-гулоновая кислота, ни продукты ее разложения не обладают свойствами витамина С.

Изучение процесса окисления аскорбиновой кислоты показало, что в водных растворах в присутствии кислорода воздуха этот процесс не идет без катализаторов-ионов меди и серебра. Однако в обычной водопроводной воде ионы этих металлов всегда присутствуют, во всяком случае ионы меди, в достаточном для каталитического действия количестве.

Растворенный в водопроводной воде хлор также оказывает окисляющее действие и приводит к разрушению витамина С.

Существует целый ряд веществ, предохраняющий аскорбиновую кислоту от окисления. К ним относятся различные сернистые соединения и некоторые производные пурина, такие, как ксантин, мочевина.

При хранении или сушке плодов и овощей для большей сохранности витамина С их подвергают обработке сернистым газом. Проникая в клетки и растворяясь в клеточном соке, сернистый газ образует с водой сернистую кислоту, которая подавляет активность фермента (аскорбиноксидазы), катализирующего процесс окисления аскорбиновой кислоты. Сахар также способствует большей сохранности витамина С.

4 Биологическая роль витамина С

Аскорбиновая кислота присутствует в тканях всех животных и высших растений. Только люди и некоторые другие позвоночные должны получать ее с пищей, большинство же животных и, вероятно, все растения могут синтезировать это соединение из глюкозы , . Микроорганизмы не содержат аскорбиновой кислоты и не нуждаются в ней. L-аскорбиновая кислота синтезируется в растениях и у тех животных, которые обеспечивают себя этим витамином в процессе превращения: Д- глюкоза - L -гулонат - L -гулолактан - L-аскорбат (см. рис. 5).

Рис. 5. Синтез аскорбиновой кислоты у животных и высших растений

У человека и других животных, не могущих синтезировать витамин С, отсутствует фермент гулонолактоноксидаза. Видимо, некогда все организмы располагали набором ферментов, необходимых для синтеза аскорбиновой кислоты, но затем какие-то виды утратили эту способность к синтезу вследствие мутации, которая однако не оказалась для них летальной, поскольку обычную пищу данного вида составляли богатые витамином С растения.

Биохимическая функция витамина С мало известна , . Аскорбиновая кислота, по-видимому, играет роль кофактора в реакции ферментативного гидроксилирования, при котором остатки пролина и лизина в коллагене соединительной ткани позвоночных превращаются в остатки 4-гидроксопролина и 5-гидроксолизина. Гидроксипролиновые и гидроксилизиновые остатки обнаружены только в коллагене и не встречаются ни в одном другом белке животных. Аскорбиновая кислота принимает обязательное участие в образовании основного компонента соединительной ткани высших животных, стимулирует заживление ран, но пока не ясно, является ли это ее единственной и даже главной функцией. По мнению ряда ученых витамин С принимает весьма активное участие в биохимических процессах, :

1) Аскорбиновая кислота является поставщиком водорода для образования ядерной ДНК.

) Аскорбиновая кислота принимает участие в биохимических превращениях других витаминов. Установлено, что аскорбиновая кислота снижает потребность животного организма в витаминах комплекса В.

) Витамин С оказывает влияние на синтез еще одного весьма важного белка, недостаток которого в организме приводит к нарушению эластичности и проницаемости кровеносных сосудов.

4) Аскорбиновая кислота необходима для образования и обмена гормона адреналина в мозговом слое надпочечников и норадреналина (предшественника адреналина).

5) Аскорбиновая кислота повышает устойчивость организма к различным инфекционным заболеваниям, т.к. недостаток витамина С приводит к снижению иммунобиологической сопротивляемости организма. В своей книге «Витамин С и здоровье» лауреат Нобелевской премии Л.Полинг предлагает принимать витамин С в больших дозах- до 10 г в день для профилактики и лечения простудных заболеваний. При первых же признаках простуды целесообразно принять 1-1,5 г аскорбиновой кислоты в виде таблеток или порошка, через 4 часа еще столько же - и так в течение первых суток (есть сведения о том, что аскорбиновая кислота активирует действие интерферона, который защищает нас от вирусов). Если эффект налицо, то лечение продолжают и в последующие сутки (1 г витамина С 4-5 раз в день), а затем в течение нескольких дней постепенно снижают дозы до обычных. Но если после первых суток лучше не стало, то это значит, что патологический процесс зашел слишком далеко, защитные барьеры дали «сбой» и физиологическое лекарство - витамин С тут уже бессилен. В таком случае принимают обычные лекарственные препараты и витамины в обычных дозах.

6) Установлено, что витамин С оказывает влияние на активность лейкоцитов.

7) Витамин С способствует лучшему усвоению железа и тем самым усиливает образование гемоглобина и созревание эритроцитов.

) Аскорбиновая кислота не только активизирует защитные силы организма, но и способствует обезвреживанию токсина, выделяемых патогенными микроорганизмами.

9) Витамин С применяется в медицине при лечении целого ряда заболеваний не только инфекционных, но и при туберкулезе, в хирургической практике как средство, ускоряющее заживление ран, срастание костей и послеоперационных швов.

1.4.1 Пищевые источники витамина С

При употреблении пищевых продуктов, богатых белками и другими витаминами, потребность в витамине С значительно снижается и наоборот. Усиленная трата витамина С наблюдается также при охлаждении организма и при потоотделении, так как вместе с потом и мочой выделяется некоторая часть витамина С.

Если человек полностью зависит от поступления витамина С извне, то многие животные в этом не нуждаются. И все же несмотря на то, что организм многих животных способен вырабатывать витамин С, животные продукты довольно бедны этим витамином. В мышцах, например, содержится всего 0,9 мг% витамина С, в надпочечниках его содержится 130-150 мг%. Коровье молоко значительно беднее витамином С, чем женское молоко. Пастеризованное, т.е. нагретое до 80-85°С молоко практически не содержит витамина С. Наиболее богатыми источниками витамина С являются растения. Аскорбиновая кислота обнаруживается во всех зеленых частях растений, но в разных количествах. Много витамина С в большинстве овощей и фруктов, и только семена растений, как правило, бедны этим витамином (см. прил.). Плоды облепихи, актинидии, шиповника и грецкого ореха, цитрусовые, помидоры, капуста содержат большое количество витамина С .

Плоды шиповника оказались настоящими фабриками витамина С, и не только витамина С. В них обнаружены витамины В 2 , Р, К и каротин. Плоды шиповника - настоящий поливитаминный препарат, созданный самой природой. Приведем несколько примеров: в черной смородине (100 мг) содержится 200 мг витамина С, в шиповнике -1200 мг, в клубнике-60 мг, в апельсинах-60 мг.

Хранение овощей и фруктов в холодильнике снижает скорость процесса окисления и тем самым способствует более длительной сохранности витамина С.

Замораживание растительных продуктов приводит к нарушению целостности оболочек растительных клеток кристалликами льда и более свободному доступу кислорода воздуха к содержимому клеток. Пока растительные ткани находятся в замороженном состоянии, низкая температура в значительной степени сдерживает окислительные процессы, но при размораживании тканей их скорость возрастает по мере повышения температуры, и витамин С при этом быстро разрушается. Если при размораживании прекратить доступ кислорода клетки, например, производить его в атмосфере инертного газа, то содержание в нем витамина С остается на том же уровне, что и в замороженных продуктах. Вот почему при приготовлении первых блюд замороженные овощи следует сразу класть в кипящую воду, так как она содержит значительно меньше растворенного кислорода, чем холодная вода. Кроме того, высокая температура кипящей воды активирует растительные ферменты, в том числе и аскорбиноксидазу, что также является фактором, способствующим лучшей сохранности витамина.

Первый сухой препарат витамина С был получен А.Н.Бессоновым из сока капусты в 1922 году. Путем довольно сложной обработки ученому удалось получить светло-желтый порошок, который наряду с массой балластных веществ содержал 1% витамина С. Метод выделения витамина С, что дало возможность более чем в 50 раз повысить биологическую активность получаемого продукта.

4.2 Признаки гипо-, гипер- и авитаминоза

Витаминная недостаточность возникает при дефиците витаминов в пище или если поступающие с пищей витамины не всасываются из кишечника, не усваиваются или разрушаются в организме. Витаминная недостаточность может проявляться в виде авитаминозов, гиповитаминозов и скрытых форм , . Под авитаминозами понимают полное истощение запасов витаминов в организме; при гиповитаминозах отмечается та или иная степень снижения обеспеченности организма одним или несколькими (полигиповитаминозы).

Недостаточность аскорбиновой кислоты развивается, как правило, на почве недостаточного поступления витамина С с пищей, однако может возникнуть и эндогенно, при нарушениях всасывания витамина, обусловленных заболеваниями желудочно-кишечного тракта, печени и поджелудочной железы.

Полное прекращение в течение длительного витамина С вызывает цингу, основными симптомами которой являются мелкие кожные и крупные полостные кровоизлияния (в плевральную и брюшную полости, суставы и др.) (см.рис.6). К ранним симптомам цинги относятся кровоизлияния в окружности волосяных фолликулов (85% в области нижних конечностей, кровоточивость десен, ороговение кожных покровов и др.). При цинге возможно развитие анемии, а также нарушение желудочной секреции. С-витаминная недостаточность сопровождается снижением содержания аскорбиновой кислоты в крови до 22,7 мкмоль/л (0,4 мг %) и резким уменьшением ее выделения с мочой.

Рис.6. Поражение десен и слизистой оболочки ротовой полости при скорбуте

В современных условиях массовое развитие цинги вряд ли возможно и появление выраженного авитаминоза возможно только при каком-либо народном бедствии - изнурительной войне, сопровождаемой продовольственной недостаточностью и голодом. Цинга, как правило, возникает и развивается на фоне общей и особенно белковой недостаточности питания.

В настоящее время более вероятна неполная, частичная недостаточность аскорбиновой кислоты (гиповитаминоз С), не имеющая выраженных клинических симптомов. Гиповитаминозные состояния развиваются медленно и длительное время могут протекать в скрытой форме.

Начальная форма недостаточности аскорбиновой кислоты проявляется рядом общих симптомов: пониженной работоспособностью, быстрой утомляемостью, снижением устойчивости организма к холоду, склонностью к «простудным» заболеваниям (насморк, катар верхних дыхательных путей, острые респираторные заболевания и др.).

Витаминная недостаточность, приняв скрытую форму, представляет собой благоприятный фон для формирования и развития ряда патологических состояний - атеросклероза, астенических состояний, пероксидации, неврозов, стрессовых состояний и др. Изучается роль скрытой витаминной недостаточности в развитии избыточной массы тела.

Витаминная недостаточность в современных условиях протекает не изолированно в виде самостоятельного, специфического, выраженного симптомокомплекса, а преимущественно в сочетании с какой-либо другой патологией, способствуя ее развитию и осложнению, отягощая процесс выздоровления. Так, витаминная недостаточность является фактором, осложняющим течение ишемической болезни сердца и реабилитацию после перенесенного инфаркта миокарда. Возможно, что все виды лечения, особенно у пожилых людей, а также у людей с избыточной массой тела, следует начинать с ликвидации витаминной недостаточности, используя для этого высокоэффективные поливитаминные комплексы и комбинированные гериатрические средства.

Сегодня все больше людей, задумываясь о правильном питании, стараются разнообразить свой рацион употреблением всевозможных витаминных комплексов. Однако последствия влияния таких добавок на организм изучено недостаточно, и переизбыток витаминов порой может оказаться гораздо более опасным, чем их недостаточное употребление.

Гипервитаминоз - это реакция на передозировку витаминов, проявляющаяся в различных расстройствах и дисфункциях организма человека. Существует ошибочное мнение, что переизбыток витаминов невозможен: организм возьмет то, что ему необходимо, а остальное выведет с мочой. Это не так. Только некоторые элементы выводятся самостоятельно (водорастворимые), но и они могут нанести определенный вред. Постоянная передозировка витаминов группы С <#"605263.files/image010.gif">

х = ,

где А - объем краски, пошедшей на титрование вытяжки, мл; В - объем краски, пошедшей на контрольное титрование, мл; Т кр/аск - титр краски по аскорбиновой кислоте, мг/мл (0,05 г аскорбиновой кислоты соответствует 1 мл краски Тильманса); V к - общий объем экстракта, мл; V п - объем экстракта, взятого для титрования, мл; m - масса исследуемого материала в г.

1.2 Метод йодометрии

Аскорбиновая кислота легко окисляется благодаря наличию ендиольной группировки, поэтому для ее определения можно использовать различные методы редоксиметрии, в том числе и такой относительно слабый окислитель, как йод. Метод йодометрии в данном случае также является наиболее простым и доступным при организации исследовательской работы со школьниками.

Количественное определение аскорбиновой кислоты основано на окисленни ее раствором йода:


Стандартный потенциал окисления аскорбиновой кислоты Е = -0,71В

С 6 Н 8 О 6 - 2е → С 6 Н 6 О 6 + 2Н +

Стандартный потенциал восстановления йода Е = 0,53В

2 + 2e → 2I -

Разность потенциалов аскорбиновой кислоты и йода будет достаточно большой ЭДС = 0,53 - (-0,71) = 1,24В, поэтому йод может быть использован для ее количественного определения.

Йодометрическое определение аскорбиновой кислоты представляет собой характерный пример способа прямого титрования анализируемого вещества стандартным раствором йода в иодиде калия.

Титрование проводят методом отдельных навесок, сущность которого заключается в следующем. Несколько (3-5) приблизительно равных навесок анализируемого вещества, взятых на аналитических весах, растворяют в произвольном минимальном (приблизительно 10 мл) объеме растворителя и полностью титруют.

Несколько навесок анализируемого материала помещают в пронумерованные конические колбы для титрования, в которые предварительно налито около 10 мл дистиллированной воды. Затем добавляют 1-2мл 6н раствора серной кислоты и титруют при комнатной температуре 0,1н раствором йода в иодиде калия в присутствии индикатора крахмала до появления синей окраски раствора.

где С э - нормальная концентрация рабочего раствора, моль/л; V - объем рабочего раствора, пошедшего на титрование, мл; М Э - эквивалентная масса аскорбиновой кислоты, г/моль; m - масса навески исследуемого материала, г.

2 Химический анализ содержания витамина С по методу Тильманса в яблоках отечественных и импортных сортов

Одним из главных источников витамина С являются свежие фрукты и овощи (см. прил.). В ходе работы было проведено исследование количественного содержания аскорбиновой кислоты в яблоках отечественных и импортных сортов. Выбор данного объекта обусловлен наибольшей доступностью яблок для российского потребителя по сравнению с другими фруктами. Методика данного определения описана в п. 2.1.1. Результаты исследования приведены в табл. 4 и рис. 7.

Таблица 4 Количественное содержание витамина С (мг/%) в яблоках различных сортов

Сорт яблок

Т краски/ аск. к-те

V кр. опыт.

V кр. контр.

Вит.С мг/%



Т кр/аск к-те




Звездочка (Россия)

Антоновка (Россия)

Айдаред (Польша)

Грени (ЮАР)

Фуджи (Япония)

Гала (Китай)

Джонаголд (Бельгия)

Брэберн (Новая Зеландия)

Гольден делишес (США)

Джонатан (США)


Рис.7 Количественное содержание витамина С (мг/%) в яблоках различных сортов

Анализируя полученные данные, можно констатировать, что в яблоках отечественных производителей содержание витамина С существенно больше, чем в импортных.

3 Йодометрическое определение содержания витамина С

3.1 Йодометрическое определение содержания витамина С в витаминных препаратах

Наиболее эффективным методом коррекции витаминной обеспеченности человека является регулярный прием поливитаминных препаратов профилактического назначения ("Ревит", "Гексавит", "Ундевит" и др.). Препараты этого типа содержат более или менее полный набор основных витаминов в дозах, близких к физиологической потребности или немного превышающих ее. Регулярный прием таких препаратов (по 1 драже или таблетке в день или через день), не создавая избытка, гарантирует оптимальное обеспечение организма витаминами. Для оптимизации витаминной обеспеченности детей дошкольного возраста можно рекомендовать "Ревит" или "Гексавит", для школьников младших классов - "Гексавит", для старшеклассников, студентов, взрослого населения - "Гексавит" или "Ундевит". Во время беременности и кормления грудью целесообразно принимать "Гендевит", "Ундевит" или "Глутамевит". Последний препарат, содержащий кроме витаминов медь и железо, препятствует развитию анемии и может быть рекомендован в этих целях женщинам детородного возраста, а также донорам крови. В пожилом возрасте обычно назначают "Ундевит" или "Декамевит", содержащий широкий спектр В. в дозах, превышающих физиологическую потребность практически здорового человека в 2-10 раз. Этот же препарат показан при нарушениях всасывания и утилизации витаминов, при подготовке к хирургическим операциям, в послеоперационном периоде, а также в течение длительного времени после выписки из стационара.

Для проведения анализа на количественное содержание витамина С были выбраны наиболее известные, часто применяемые и распространенные на потребительском рынке г. Арзамаса витаминные препараты средней стоимости. Методика исследования приведена в п. 2.1.2. Результаты показаны в табл. 5 и рис. 8.

Таблица 5 Количественное содержание витамина С (мг/%) в различных витаминных препаратах

Исследуемый препарат

V раб. раствора, мл.

Вит.С мг/%

Вит.С сред., мг/%

Другие витамины, входящие в состав витам. препарата

1. Драже кислоты аскорбиновой, ЗАО «Алтайвитамины», г.Бийск.









2. Аскорбиновая кислота, ОАО «Марбиофарм», г.Йошкар-Ола.









3. Аскорбиновая кислота с глюкозой, ОАО «Марбиофарм», г.Йошкар-Ола.









4. Аскорбиновая кислота, вкус - черная смородина, «Марбиофарм», г.Йошкар-Ола.

не указано









5. Аскорбиновая кислота, аптечный препарат, 2010г.









6. Аскорбиновая кислота, аптечный препарат, .2009г.









7. Ревит, ОАО «Марбиофарм», г. Йошкар-Ола.









8. Аэровит, ОАО «Фармстандарт - УфаВИТА»

А, В1, В2, В5, В6, В9, В12, Р









9. Гексавит, ОАО «Фармстандарт - УфаВИТА»

А, В1, В2, В5, В6










Таким образом, установлено, что наибольшее количество витамина С (мг%) содержит препарат - драже кислоты аскорбиновой, г.Бийск, а среди исследованных поливитаминных препаратов - аэровит, г.Уфа. Чаще всего, содержание витамина С, указанное на упаковке производителем, не соответствует фактическому и завышено.

В литературных данных неоднократно указывается на тот факт, что аскорбиновая кислота легко окисляется кислородом воздуха , . В связи с этим, был исследован свежий аптечный препарат аскорбиновой кислоты и препарат годичной давности. Результаты приведены на рис.9.

Драже кислоты аскорбиновой, г.Бийск;

Аскорбиновая кислота, г.Йошкар- Ола;

Аскорбиновая кислота с глюкозой, г. Йошкар - Ола;

Аскорбиновая кислота, вкус - черная смородина, г.Йошкар-Ола;

Ревит, г. Йошкар-Ола,

Аэровит, г.Уфа;

Гексавит, г.Уфа.

Рис.9 Изменение содержания витамина С в аптечном препарате аскорбиновой кислоты в ходе хранения

В ходе анализа аптечного препарата аскорбиновой кислоты выявлено значительное снижение содержания витамина С в ходе хранения, что вероятнее всего связано с постепенным окислением его кислородом воздуха.

2.3.2 Йодометрическое определение содержания витамина С во фруктовых соках

Свежие фрукты и овощи как источники витаминов не всегда доступны. Поэтому большой популярностью пользуются соки. Наиболее полезны свежевыжатые соки. Они содержат все витамины и микроэлементы, а также клетчатку и другие биологически активные вещества, которые содержит и свежий фрукт или овощ. Соки нашему организму усвоить проще, чем фрукт или овощ. К сожалению, возможность пить свежеприготовленные соки есть не у всех. Тогда стоить обратить внимание на консервированные соки. В процессе промышленной обработки соков часть витаминов, и прежде всего аскорбиновая кислота, разрушаются. Но в большинство соков промышленного производства все утерянные витамины вводятся дополнительно. Если продолжить разговор о полезных веществах, то в соках есть и калий, и железо. В них содержатся и такие важные вещества, как органические кислоты. Все это и составляет всем известную пользу соков. Кроме того, в ряде случаев сок служит хорошим подспорьем для стимуляции аппетита. К тому же, он достаточно питателен, в нем много углеводов, в основном сахаров фруктов и ягод. В соки, предназначенные специально для детского питания, запрещено добавлять какие-либо консерванты, кроме лимонной кислоты. Наиболее полезны соки с мякотью. Они содержат больше полезных веществ.

В связи с этим, нами было исследовано содержание витамина С в некоторых свежеприготовленных и консервированных соках. Методика исследования описана в п. 2.1.2. Результаты представлены в табл. 6 и рис. 10, 11.

Таблица 6 Количественное содержание витамина С (мг/%) в свежеприготовленных и консервированных соках

Вит. С мг/%

Вит.С, указанное производителем, мг/%

срок годности

1.смородиновый сок (из свежемороженых ягод)

2.сок облепихи (из свежемороженых ягод)

3.сок лимона (свежевыжатый)

4.апельсиновый сок (свежевыжатый)

5.шиповник (отвар)

6. сок "Тонус" (мультифрукт.)

7. сок "Тонус" (яблочн.)

8.сок J - 7 100% (мультифрукт.)

9.мультифрукт. сок "Моя семья"

10. персиковый нектар "Моя семья"

11. яблочный сок "Моя семья"

12. яблочный сок - нектар

13.сок - нектар яблоко - мультифрукт.

14.сок - нектар яблоко - персик


1. сок "Тонус" (мультифрукт.)

2. сок "Тонус" (яблочн.)

Сок J - 7 100% (мультифрукт.)

Мультифрукт. сок "Моя семья"

Персиковый нектар "Моя семья"

Яблочный сок "Моя семья"

Яблочный сок - нектар

Сок - нектар яблоко - мультифрукт.

Сок - нектар яблоко - персик

Анализируя полученные данные, можно констатировать, что в свежеприготовленных соках содержание витамина С значительно больше, чем в консервированных. Наибольшее (мг%) выявлено - из исследуемых - в смородиновом соке. Низкое содержание витамина С в отваре шиповника, по сравнению с литературными данными, указывает на разрушение его в ходе термической обработки.

Заключение

В ходе проведенного исследования можно сделать следующие выводы:

Витамин С является водорастворимым витамином, относящимся к группе производных лактонов ненасыщенных полиоксикарбоновых кислот. По химической природе является легко окисляющейся слабой кислотой за счет присутствия ендиольной группировки.

Аскорбиновая кислота - необходимый компонент в ежедневном рационе человека, так как выполняет целый ряд незаменимых биохимических функций, но при этом не способна синтезироваться самим организмом. Ее дефицит может быть восполнен за счет целого ряда пищевых источников и витаминных препаратов.

Проведенный количественный анализ (метод Тильманса) показал, что содержание витамина С в яблоках отечественных сортов колеблется в пределах от 13,5 до 15,5 мг%, а в импортных - от 1,34 до 6,5 мг%. В целом, содержание витамина С в яблоках отечественных сортов выше.

4. В ходе йодометрического определения содержания аскорбиновой кислоты в витаминных препаратах было установлено, что содержание витамина С в них колеблется в пределах 22,42 - 0,85мг% для моновитаминных и в пределах 12,66 - 6,91мг% для поливитаминных препаратов. В ходе анализа аптечного препарата аскорбиновой кислоты выявлено значительное снижение содержания витамина С в ходе хранения, что вероятнее всего связано с постепенным окислением его кислородом воздуха.

5. В ходе йодометрического определения в соках установлено, что содержание аскорбиновой кислоты в свежеприготовленных соках значительно выше, чем в консервированных. Однако и консервированные соки могут служить хорошим источником витамина в рационе в условиях их дефицита.

Список литературы

1. Абрамова Ж.И. Справочник по лечебному питанию для диет-сестер и поваров. - М.: Медицина, - 1984. - 304с.

Авакумов В.М. Современное учение о витаминах. М.: Химия, 1991. - 214 с.

3. Алексенцев В.Г. Витамины и человек. - М.: Дрофа, 2006.- 156 с.

4. Афиногенова С.Г. Витамины. Учебно-методическое пособие для студентов биолого-химического факультета / С.Г. Афиногенова, Э.А. Сидорская. - Арзамас: АГПИ им. А.П. Гайдара, 1990.- 65 с.

Ванханен В.Д. Гигиена питания. - М.: Медицина, - 1982.- 345 с.

Витамины и методы их определения. - Горький, ГГУ,1981.- 212 с.

7. Ленинджер А. Основы биохимии. М.: Мир, 1985.- Т.1-3.

Марри Р. Биохимия человека/ Р. Марри, Д. Греннер, П. Майес.- М.: 1993. -Т. 2. - 414 с.

Ольгин О. Опыты без взрывов. - М.: Химия, 1986.- 130 с.

10. В.А. Волков, Л.А. Волкова. Определение витамина С //Химия в школе. - 2002. - № 6. - С.63-66.

11. Романовский В.Е. Витамины и витаминотерапия. Серия "Медицина для вас"/ В.Е. Романовский., Е.А. Синькова - Ростов н/Д. "Феникс", 2000.- 320 с.

12. Страйер Л. Биохимия. М.: Мир, 1984. - Т.1-3.

Филлипович Ю.Б. Основы биохимии. М.: Высшая школа, 1985.- 450 с.

Филлипович Ю.Б. Практикум по общей биохимии/ Ю.Б. Филлипович, Т.А. Егорова, Г.А. Севастьянова. М.: Химия, 1982.- 330 с.

Химия биологически активных природных соединений / Под ред. Преображенского Н.А., Евстигнеевой Р.П. - М.: Химия, 1970. - 320 с.

16. Чухрай Е.С. Молекула, жизнь, организм. М.: Просвещение, 1991.-276 с.

Шульпин Г.Б. Химия для всех. - М.: Знание. 1997. - 135 с.

Эйдельман М.М. Сверхдозы аскорбиновой кислоты - кому и когда // Химия и жизнь.- 1985.- №1.- С. 66-69.

Яковлева Н.Б. Химическая природа нужных для жизни витаминов. - М.: Просвещение, 2006. - 120 с.

Приложение

Таблица 1. Содержание витамина С в овощах

Наименование продукта

Количество аскорбиновой кислоты

Баклажаны

Горошек зеленый консервированный

Горошек зеленый свежий

Капуста белокочанная

Капуста квашеная

Капуста цветная

Картофель лежалый

Картофель свежесобранный

Лук зеленый

Перец зеленый сладкий

Перец красный

Томатный сок

Томат-паста

Томаты красные


Таблица 2. Содержание витамина С в некоторых фруктах и ягодах

Наименование продукта

Количество аскорбиновой кислоты

Абрикосы

Апельсины

Брусника

Виноград

Земляника садовая

Крыжовник

Мандарины

Смородина красная

Смородина черная

Шиповник сушеный

Яблоки, антоновка

Яблоки северных сортов

Яблоки южных сортов

Таблица 3. Сохранность витамина С при кулинарной обработке

Наименование блюд

Сохранность витамина по сравнению с исходным сырьем в %

Капуста вареная с отваром (варка 1 час)

Щи, простоявшие на горячей плите при 70-75° 3 часа

То же при подкислении

Щи, простоявшие на горячей плите при 70-75° 6 часов

Щи из кислой капусты (варка 1 час)

Капуста тушеная

Картофель, жаренный сырым, мелко нарезанным

Картофель, варившийся 25-30 минут в кожуре

То же, очищенный

Картофель очищенный, пролежавший 24 часа в воде при комнатной температуре

Картофельное пюре

Картофельный суп

То же, простоявший на горячей плите при 70-75° 3 часа

То же, простоявший 6 часов

Морковь отварная




gastroguru © 2017