Звук в различных средах — Гипермаркет знаний. Распространение звука Где быстрее распространяется звук в воде или

Интересные факты: где быстрее распространяется звук?

Во время грозы сначала видна вспышка молнии и лишь через некоторое время слышатся раскаты грома. Это запаздывание возникает из-за того, что скорость звука в воздухе значительно меньше скорости света, идущего от молнии. Любопытно вспомнить, в какой среде звук распространяется быстрее всего, а где вообще не распространяется?

Опыты и теоретические расчеты скорости звука в воздухе предпринимались ещё с XVII века, но только через два столетия французский ученый Пьер-Симон де Лаплас вывел окончательную формулу для её определения. Скорость звука зависит от температуры: с увеличением температуры воздуха она растёт, а с уменьшением - падает. При 0° скорость звука составляет 331 м/с (1192 км/ч), при +20° она уже равна 343 м/с (1235 км/ч).

Скорость звука в жидкостях, как правило, больше скорости звука в воздухе. Опыты по определению скорости впервые провели на Женевском озере в 1826 году. Два физика сели в лодки и разъехались на 14 км. На одной лодке поджигали порох и одновременно ударяли в колокол, опущенный в воду. Звук колокола с помощью специального рупора, также опущенного в воду, улавливался на другой лодке. По интервалу времени между вспышкой света и приходом звукового сигнала определили скорость звука в воде. При температуре +8° она оказалась равной примерно 1440 м/с. Люди, работающие в подводных сооружениях, подтверждают, что под водой отчетливо слышны береговые звуки, а рыбаки знают, что рыба уплывает при малейшем подозрительном шуме на берегу.

Скорость звука в твёрдых телах больше, чем в жидкостях и газах. К примеру, если приложить ухо к рельсу, то после удара по другому концу рельса человек услышит два звука. Один из них «придёт» до уха по рельсу, другой – по воздуху. Хорошей проводимостью звука обладает земля. Поэтому в стародавние времена при осаде в крепостных стенах помещали «слухачей», которые по звуку, передаваемому землёй, могли определить, ведет ли враг подкоп к стенам или нет, мчится конница или нет. Кстати, благодаря этому люди, потерявшие слух, иной раз способны танцевать под музыку, которая доходит до их слуховых нервов не через воздух и наружное ухо, а через пол и кости.

Скорость звука – скорость распространения упругих волн в среде как в продольных (в газах, жидкостях или твёрдых телах), так и в поперечных, сдвиговых (в твёрдых телах), определяется упругостью и плотностью среды. Скорость звука в твёрдых телах больше, чем в жидкостях. В жидкостях, в том числе в воде, звук мчится в 4 с лишним раза быстрее, чем в воздухе. Скорость звука в газах зависит от температуры среды, в монокристаллах - от направления распространения волны.

Звук - одна из составляющих нашей жизни, и человек слышит его везде. Чтобы более подробно рассмотреть это явление, вначале надо разобраться с самим понятием. Для этого надо обратиться к энциклопедии, где написано, что «звук - это упругие волны, распространяющиеся в какой-либо упругой среде и создающие в ней механические колебания». Говоря более простым языком - это слышимые колебания в какой-либо среде. От того, какая она, и зависят основные характеристики звука. В первую очередь - скорость распространения, например, в воде отличается от другой среды.

Любой звуковой аналог обладает определенными свойствами (физическими особенностями) и качествами (отражение этих признаков в человеческих ощущениях). Например, продолжительность-длительность, частота-высота, состав-тембр и так далее.

Скорость звука в воде значительно выше, чем, допустим, в воздухе. Следовательно, распространяется он быстрее и намного дальше слышен. Происходит такое из-за высокой молекулярной плотности водной среды. Она в 800 раз плотнее, чем воздух и сталь. Отсюда следует, что распространение звука во многом зависит от среды. Обратимся к конкретным цифрам. Так, скорость звука в воде равняется 1430м/с, в воздухе - 331,5м/с.

Низкочастотный звук, к примеру, шум, который производит работающий судовой двигатель, всегда слышится несколько раньше, чем судно появляется в зоне видимости. Его скорость зависит от нескольких вещей. Если температура воды повышается, то, естественно, повышается скорость звука в воде. То же самое происходит с повышением солености воды и давления, которое растет с увеличением глубины водного пространства. Особую роль на скорость может оказать такое явление, как термоклинья. Это такие места, в которых встречаются разной температуры слои воды.

Также в таких местах разная (из-за разности в температурном режиме). И когда волны звука проходят через такие разноплотные слои, они утрачивают большую часть своей силы. Столкнувшись с термоклином, звуковая волна частично, а иногда и полностью, отражается (степень отражения зависит от угла, под которым падает звук), после чего, по другую сторону этого места, образуется теневая зона. Если рассмотреть пример, когда звуковой источник располагается в водном пространстве выше термоклина, то уже ниже услышать вообще что-то будет не то что сложно, а практически невозможно.

Которые издаются над поверхностью, в самой воде никогда не слышны. И наоборот происходит, когда под водным слоем: над ним он не звучит. Яркий тому пример - современные дайверы. Их слух сильно снижается из-за того, что вода воздействует на а высокая скорость звука в воде снижает качество определения направления, откуда тот движется. Этим самым притупляется стереофоническая способность восприятия звука.

Под слоем воды поступают в человеческое ухо больше всего через кости черепной коробки головы, а не как в атмосфере, через барабанные перепонки. Результатом такого процесса становится его восприятие одновременно обоими ушами. Мозг человека не способен в это время различить места, откуда поступают сигналы, и в какой интенсивности. Итогом становится появление сознания, что звук как бы накатывает со всех сторон одновременно, хотя это далеко не так.

Кроме описанного выше, звуковые волны в водном пространстве имеют такие качества, как поглощение, расходимость и рассеивание. Первое - когда сила звука в соленой воде постепенно сходит на нет за счет трения водной среды и находящихся в ней солей. Расходимость проявляется в удалении звука от его источника. Он будто растворяется в пространстве как свет, и в итоге его интенсивность значительно падает. А пропадают колебания совсем из-за рассеивания на всяческих препятствиях, неоднородностях среды.

Если звуковая волна не встречает препятствий на своём пути, она распространяется равномерно по всем направлениям. Но и не всякое препятствие становится преградой для неё.

Встретив препятствие на своём пути, звук может огибать его, отражаться, преломляться или поглощаться.

Дифракция звука

Мы можем разговаривать с человеком, стоящим за углом здания, за деревом или за забором, хотя и не видим его. Мы слышим его, потому что звук способен огибать эти предметы и приникать в область, находящуюся за ними.

Способность волны огибать препятствие называется дифракцией .

Дифракция возможна, когда длина звуковой волны превышает размер препятствия. Звуковые волны низкой частоты имеют довольно большую длину. Например, при частоте 100 Гц она равна 3,37 м. С уменьшением частоты длина становится ещё больше. Поэтому звуковая волна с лёгкостью огибает объекты, соизмеримые с ней. Деревья в парке совершенно не мешают нам слышать звук, потому что диаметры их стволов значительно меньше длины звуковой волны.

Благодаря дифракции, звуковые волны проникают через щели и отверстия в препятствии и распространяются за ними.

Расположим на пути звуковой волны плоский экран с отверстием.

В случае, когда длина звуковой волны ƛ намного превышает диаметр отверстия D , или эти величины примерно равны, то позади отверстия звук достигнет всех точек области, которая находится за экраном (область звуковой тени). Фронт выходящей волны будет выглядеть как полусфера.

Если же ƛ лишь немного меньше диаметра щели, то основная часть волны распространяется прямо, а небольшая часть незначительно расходится в стороны. А в случае, когда ƛ намного меньше D , вся волна пойдёт в прямом направлении.

Отражение звука

В случае попадания звуковой волны на границу раздела двух сред, возможны разные варианты её дальнейшего распространения. Звук может отразиться от поверхности раздела, может перейти в другую среду без изменения направления, а может преломиться, то есть перейти, изменив своё направление.

Предположим, на пути звуковой волны появилось препятствие, размер которого намного больше длины волны, например, отвесная скала. Как поведёт себя звук? Так как обогнуть это препятствие он не может, то он отразится от него. За препятствием находится зона акустической тени .

Отражённый от препятствия звук называется эхом .

Характер отражения звуковой волны может быть разным. Он зависит от формы отражающей поверхности.

Отражением называют изменение направления звуковой волны на границе раздела двух разных сред. При отражении волна возвращается в среду, из которой она пришла.

Если поверхность плоская, звук отражается от неё подобно тому, как отражается луч света в зеркале.

Отражённые от вогнутой поверхности звуковые лучи фокусируются в одной точке.

Выпуклая поверхность звук рассеивает.

Эффект рассеивания дают выпуклые колонны, крупные лепные украшения, люстры и т.д.

Звук не переходит из одной среды в другую, а отражается от неё, если плотности сред значительно отличаются. Так, звук, появившийся в воде, не переходит в воздух. Отражаясь от границы раздела, он остаётся в воде. Человек, стоящий на берегу реки, не услышит этот звук. Это объясняется большой разницей волновых сопротивлений воды и воздуха. В акустике волновое сопротивление равно произведению плотности среды на скорость звука в ней. Так как волновое сопротивление газов значительно меньше волновых сопротивлений жидкостей и твёрдых тел, то попадая на границу воздуха и воды, звуковая волна отражается.

Рыбы в воде не слышат звук, появляющийся над поверхностью воды, но хорошо различают звук, источником которого является тело, вибрирующее в воде.

Преломление звука

Изменение направления распространения звука называется преломлением . Это явление возникает, когда звук переходит из одной среды в другую, и скорости его распространения в этих средах различны.

Отношение синуса угла падения к синусу угла отражения равно отношению скоростей распространения звука в средах.

где i – угол падения,

r – угол отражения,

v 1 – скорость распространения звука в первой среде,

v 2 – скорость распространения звука во второй среде,

n – показатель преломления.

Преломление звука называют рефракцией .

Если звуковая волна падает не перпендикулярно поверхности, а под углом, отличным от 90 о, то преломлённая волна отклонится от направления падающей волны.

Рефракция звука может наблюдаться не только на границе раздела сред. Звуковые волны могут менять своё направление в неоднородной среде – атмосфере, океане.

В атмосфере причиной рефракции служат изменения температуры воздуха, скорость и направление перемещения воздушных масс. А в океане она появляется из-за неоднородности свойств воды – разного гидростатического давления на разных глубинах, разной температуры и разной солёности.

Поглощение звука

При встрече звуковой волны с поверхностью, часть её энергии поглощается. А какое количество энергии может поглотить среда, можно определить, зная коэффициент поглощения звука. Этот коэффициент показывает, какую часть энергии звуковых колебаний поглощает 1 м 2 препятствия. Он имеет значение от 0 до 1.

Единицу измерения звукопоглощения называют сэбин . Своё название она получила по имени американского физика Уоллеса Клемента Сэбина, основателя архитектурной акустики. 1 сэбин – это энергия, которую поглощает 1 м 2 поверхности, коэффициент поглощения которой равен 1. То есть, такая поверхность должна поглощать абсолютно всю энергию звуковой волны.

Реверберация

Уоллес Сэбин

Свойство материалов поглощать звук широко используют в архитектуре. Занимаясь исследованием акустики Лекционного зала, части построенного Fogg Museum, Уоллес Клемент Сэбин пришёл к выводу, что существует зависимость между размерами зала, акустическими условиями, типом и площадью звукопоглощающих материалов и временем реверберации .

Реверберацией называют процесс отражения звуковой волны от препятствий и её постепенное затухание после выключения источника звука. В закрытом помещении звук может многократно отражаться от стен и предметов. В результате возникают различные эхосигналы, каждый из которых звучит как бы обособленно. Этот эффект называют эффектом реверберации .

Самой важной характеристикой помещения является время реверберации , которое ввёл и вычислил Сэбин.

где V – объём помещения,

А – общее звукопоглощение.

где a i – коэффициент звукопоглощения материала,

S i - площадь каждой поверхности.

Если время реверберации велико, звуки словно "бродят" по залу. Они накладываются друг на друга, заглушают основной источник звука, и зал становится гулким. При маленьком времени реверберации стены быстро поглощают звуки, и они становятся глухими. Поэтому для каждого помещения должен быть свой точный расчёт.

По результатам своих вычислений Сэбин расположил звукопоглощающие материалы таким образом, что уменьшился «эффект эха». А Симфонический Зал Бостона, при создании которого он был акустическим консультантом, до сих пор считается одним из лучших залов в мире.

ПОДВОДНАЯ ОХОТА

Распространение звука в воде .

Звук распространяется в воде в пять раз быстрее, чем в воздухе. Средняя скорость равняется 1400 - 1500 м/сек (скорость распространения звука в воздухе 340 м/сек). Казалось бы, что слышимость в воде также улучшается. На самом деле это далеко не так. Ведь сила звука зависит не от скорости распространения, а от амплитуды звуковых колебаний и воспринимающей способности органов слуха. В улитке внутреннего уха расположен кортиев орган, состоящий из слуховых клеток. Звуковые волны колеблят барабанную перепонку, слуховые косточки и мембрану кортиевого органа. От волосяных клеток последнего, воспринимающих звуковые колебания, нервное возбуждение идет в слуховой центр, расположенный в височной доли головного мозга.

Звуковая волна может попасть во внутреннее ухо человека двумя путями: воздушной проводимостью через наружный слуховой проход, барабанную перепонку и слуховые косточки среднего уха и посредством костной проводимости - вибрации костей черепа. На поверхности преобладает воздушная, а под водой костная проводимость. В этом убеждает простой опыт. Закройте ладонями рук оба уха. На поверхности слышимость резко ухудшится, под водой же этого не отмечается.

Итак, под водой звуки воспринимаются преимущественно путем костной проводимости. Теоретически это объясняется тем, что акустическое сопротивление воды приближается к акустическому сопротивлению тканей человека. Поэтому потери энергии при переходе звуковых волн из воды в кости головы человека меньше, чем в воздухе. Воздушная же проводимость под водой почти исчезает, так как наружный слуховой проход заполнен водой, а небольшая прослойка воздуха возле барабанной перепонки слабо передает звуковые колебания.

Опытами установлено, что костная проводимость на 40% ниже воздушной. Поэтому слышимость под водой в общем ухудшается. Дальность слышимости при костной проводимости звука зависит не столько от силы, сколько от тональности: чем выше тон, тем дальше слышен звук.

Подводный мир для человека - это мир тишины, где отсутствуют посторонние шумы. Поэтому простейшие звуковые сигналы могут восприниматься под водой на значительных расстояниях. Человек слышит удар по металлическому баллончику, погруженному в воду, на расстоянии 150-200 м, звук трещотки-на 100 м, колокольчика - на 60 м.

Звуки, издаваемые под водой, обычно не слышны на поверхности, так же как под водой не слышно звуков извне. Для восприятия подводных звуков необходимо хотя бы частично погрузиться. Если войти в воду по колени, начинаешь воспринимать звук, который до этого не был слышен. По мере погружения громкость увеличивается. Особенно хорошо слышно при погружении головы.

Для подачи звуковых сигналов с поверхности обязательно нужно опустить источник звука в воду хотя бы наполовину, и сила звука изменится. Ориентировка под водой по слуху крайне затруднена. В воздушной среде звук приходит в одно ухо раньше на 0,00003 сек., чем в другое. Это позволяет определить нахождение источника звука с ошибкой всего в 1-3°. Под водой же звук одновременно воспринимается обоими ушами и поэтому четкого, направленного восприятия не происходит. Ошибка в ориентировке бывает 180°.

В специально поставленном опыте только отдельные легкие водолазы после долгих блужданий и. поисков выходили к месту расположения источника звука, находившегося от них в 100-150 м. Отмечено, что систематические тренировки в течение длительного времени позволяют выработать способность довольно точно ориентироваться по звуку под водой. Однако как только тренировка прекращается, ее результаты сводятся на нет.

К основным законам распространения звука относятся законы его отражения и преломления на границах различных сред, а также дифракция звука и его рассеяние при наличии препятствий и неоднородностей в среде и на границах раздела сред.

На дальность распространения звука оказывает влияние фактор поглощения звука, то есть необратимый переход энергии звуковой волны в другие виды энергии, в частности, в тепло. Важным фактором является также направленность излучения и скорость распространения звука, которая зависит от среды и её специфического состояния.

От источника звука акустические волны распространяются во все стороны. Если звуковая волна проходит через сравнительно небольшое отверстие, то она распространяется во все стороны, а не идёт направленным пучком. Например, уличные звуки, проникающие через открытую форточку в комнату, слышны во всех её точках, а не только против окна.

Характер распространения звуковых волн у препятствия зависит от соотношения между размерами препятствия и длиной волны. Если размеры препятствия малы по сравнению с длиной волны, то волна обтекает это препятствие, распространяясь во все стороны.

Звуковые волны, проникая из одной среды в другую, отклоняются от своего первоначального направления, то есть преломляются. Угол преломления может быть больше или меньше угла падения. Это зависит от того, из какой среды в какую проникает звук. Если скорость звука во второй среде больше, то угол преломления будет больше угла падения, и наоборот.

Встречая на своём пути препятствие, звуковые волны отражаются от него по строго определённому правилу – угол отражения равен углу падения – с этим связано понятие эха. Если звук отражается от нескольких поверхностей, находящихся на разных расстояниях, возникает многократное эхо.

Звук распространяется в виде расходящейся сферической волны, которая заполняет всё больший объём. С увеличением расстояния, колебания частиц среды ослабевают, и звук рассеивается. Известно, что для увеличения дальности передачи звук необходимо концентрировать в заданном направлении. Когда мы хотим, например, чтобы нас услышали, мы прикладываем ладони ко рту или пользуемся рупором.

Большое влияние на дальность распространения звука оказывает дифракция, то есть искривление звуковых лучей. Чем разнороднее среда, тем больше искривляется звуковой луч и, соответственно, тем меньше дальность распространения звука.

Распространение звука

Звуковые волны могут распространяться в воздухе, газах, жидкостях и твердых телах. В безвоздушном пространстве волны не возникают. В этом легко убедиться на простом опыте. Если электрический звонок поместить под воздухонепроницаемый колпак, из которого откачен воздух, мы никакого звука не услышим. Но как только колпак наполнится воздухом, возникает звук.

Скорость распространения колебательных движений от частицы к частице зависит от среды. В далекие времена воины прикладывали ухо к земле и таким образом обнаруживали конницу противника значительно раньше, чем она появлялась в поле зрения. А известный ученый Леонардо да Винчи в 15 веке писал: «Если ты, будучи на море, опустишь в воду отверстие трубы, а другой конец ее приложишь к уху, то услышишь шум кораблей, очень отдаленных от тебя».

Скорость распространения звука в воздухе впервые была измерена в 17 веке Миланской академией наук. На одном из холмов установили пушку, а на другом расположился наблюдательный пункт. Время засекли и в момент выстрела (по вспышке) и в момент приема звука. По расстоянию между наблюдательным пунктом и пушкой и времени происхождения сигнала скорость распространения звука рассчитать уже не составляло труда. Она оказалась равной 330 метров в секунду.

В воде скорость распространения звука впервые была измерена в 1827 году на Женевском озере. Две лодки находились одна от другой на расстоянии 13847 метров. На первой под днищем подвесили колокол, а со второй опустили в воду простейший гидрофон (рупор). На первой лодке одновременно с ударом в колокол подожгли порох, на второй наблюдатель в момент вспышки запустил секундомер и стал, ждать прихода звукового сигнала от колокола. Выяснилось, что в воде звук распространяется в 4 с лишним раза быстрее, чем в воздухе, т.е. со скоростью 1450 метров в секунду.

Скорость распространения звука

Чем выше упругость среды, тем больше скорость: в каучуке50, в воздухе330, в воде1450, а в стали - 5000 метров в секунду. Если бы мы, находились в Москве, могли крикнуть так громко, чтобы звук долетел до Петербурга, то нас услышали бы там только через полчаса, а если бы звук на это же расстояние распространялся в стали, то он был бы принят через две минуты.

На скорость распространения звука оказывает влияние состояние одной и той же среды. Когда мы говорим, что в воде звук распространяется со скоростью 1450 метров в секунду, это вовсе не означает, что в любой воде и при любых условиях. С повышением температуры и солености воды, а так же с увеличением глубины, а следовательно, и гидростатического давления скорость звука возрастает. Или возьмем сталь. Здесь тоже скорость звука зависит как от температуры, так и от качественного состава стали: чем больше в ней углерода, тем она тверже, тем звук в ней распространяется быстрее.

Встречая на своем пути препятствие, звуковые волны отражаются от него по строго определенному правилу: угол отражения равен углу падения. Звуковые волны, идущие из воздуха, почти полностью отразятся от поверхности воды вверх, а звуковые волны, идущие от источника, находящегося в воде, отражаются от нее вниз.

Звуковые волны, проникая из одной среды в другую, отклоняются от своего первоначального положения, т.е. преломляются. Угол преломления может быть больше или меньше угла падения. Это зависит от того, из какой среды, в какую проникает звук. Если скорость звука во второй среде больше чем в первой, то угол преломления будет больше угла падения и наоборот.

В воздухе звуковые волны распространяются в виде расходящийся сферической волны, которая заполняет все больший объем, так как колебания частиц, вызванные источниками звука, передаются массе воздуха. Однако с увеличением расстояния колебания частиц ослабевают. Известно, что для увеличения дальности передачи, звук необходимо концентрировать в заданном направлении. Когда мы хотим, чтобы нас лучше было слышно, мы прикладываем ладони ко рту или пользуемся рупором. В этом случае звук будет ослабляться меньше, а звуковые волны - распространяются дальше.

При увеличении толщины стенки звуколокация на низких средних частотах увеличивается, но «коварный» резонанс совпадения, вызывающий удушение звуколокации, начинает проявляться, более низких частотах и захватывает более широкую их область.



gastroguru © 2017