Гипотермия мозга. Терапевтическая гипотермия

Терапевтическая гипотермия - лечебное воздействие на температуру тела пациента с целью снижению риска ишемического повреждения тканей после периода недостаточного кровоснабжения. Периоды недостаточного кровоснабжения могут возникать в результате остановки сердца или закупорки артерии при эмболиях, как это обычно происходит при инсульте. Лечебную (терапевтическую) гипотермию можно осуществлять инвазивными методами, при которых специальный теплообменный катетер вводят в полую нижнюю вену пациента через бедренную вену, или неинвазивными методами, в которых обычно используют охлаждаемое водой одеяло или жилет на торс и аппликаторы на ноги, находящиеся в непосредственном контакте с кожей пациента. Как показали исследования, пациенты с риском ишемического поражения головного мозга имеют лучшие неврологические исходы при использовании лечебной гипотермии.

История вопроса

Гипотермию как лечебный метод используют ещё с античных времен. Греческий врачГиппократ (вероятно, единственный в мире врач древности, взгляды которого поддерживаются и в современности) рекомендовал обкладывание раненых солдат снегом и льдом. Хирург Наполеона барон Доминик Ларрей письменно свидетельствовал, что раненые офицеры, которых держали ближе к огню, реже выживали после тяжёлых ранений, нежели пехотинцы, не слишком изнеженные такой заботой. В новые времена первая медицинская статья, посвящённая гипотермии, была опубликована в 1945 г. Это исследование уделяло основное внимание влиянию гипотермии на пациентов, страдающих от тяжёлых травм головы.

В 1950-е годы гипотермия нашла первое медицинское применение для создания бескровного хирургического поля при операции по поводу внутричерепной аневризмы. Большинство первых исследований уделяло основное внимание применению глубокой гипотермии с температурой тела в интервале 20–25 °C (68–77 Ф). Такое крайнее снижение температуры тела порождало сонм побочных эффектов, что делало непрактичным использование глубокой гипотермии в большинстве клинических ситуаций. В этот же период появились также отдельные исследования более мягких форм терапевтической гипотермии с умеренным снижением температуры тела до интервала 32–34 °C (90–93 °Ф). В 1950-е годы доктор Росомофф продемонстрировал на собаках положительный эффект умеренной гипотермии после ишемии головного мозга и травматического поражения головного мозга. Проведённые в 1980-е годы дополнительные исследования на животных показали способность умеренной гипотермии играть роль общей нейрозащиты после блокады кровотока к головному мозгу. Эти полученные на животных данные были подтверждены двумя основополагающими исследованиями на людях, которые были одновременно опубликованы в 2002 г. в New England Journal of Medicine. Оба исследования, одно из которых было проведено в Европе, а другое в Австралии, продемонстрировали положительный эффект умеренной гипотермии после остановки сердца. Откликаясь на эти исследования, в 2003 г. Американская ассоциация кардиологии (AHA) и Международный комитет по связям в области реанимации (ILCOR) санкционировали использование лечебной гипотермии после остановки сердца. Сегодня все большее число клиник по всему миру пользуются руководствами AHA и ILCOR и включили гипотермическое лечение в стандартный пакет мер ухода за пациентами, страдающими от остановки сердца. Некоторые исследователи пошли ещё дальше и утверждают, что гипотермия обеспечивает лучшую нейрозащиту после блокады кровотока к головному мозгу, чем медикаментозные методы.

Экология познания. Наука и техника: Прорывы в области гипотермии тревожат общественность, и из-за этого служат камнем преткновения.

«Некоторые из них, бледные и изнурённые голодом, падали в обморок и умирали, растянувшись на снегу. Их видели идущими без чувств, не ведающими, куда они бредут. Когда они уже не могли продолжать идти, теряли силы тела и силы духа, они падали на колени. Их пульс был редким и незаметным; у некоторых дыхание было редким и слабо заметным, у других вырывалось в виде жалоб и стонов. Иногда глаза был открытыми, недвижными, пустыми, дикими, а мозг охватывал тихий бред».

Это изложение принадлежит французскому доктору Пьеру Жану Моришо-Бюпре , написавшему «Трактат об эффектах и свойствах холода» в 1826 году - одно из самых полных первых описаний гипотермии, состояния, в котором температура тела опускается до опасно низких величин, ниже 35°C. Он писал о своём опыте отступления Наполеона из России в 1812 году, почти за 80 лет до того, как появился этот медицинский термин.

Название гипотермия происходит из греческого ὑπο, «снизу, под» и θέρμη, «тепло». Её симптомы зависят от степени падения температуры, но изначально в них входит дрожь, плохая координация, затруднение движений и дезориентация. В крайних случаях сильно замедляются сердечные сокращения, наступает ретроградная амнезия и замешательство. При дальнейшем падении жертвы могут принимать нерациональные решения, их речь может нарушаться. Известны случаи, когда по не очень понятным причинам они начинают снимать с себя одежду и искать убежище в замкнутых пространствах перед тем, как наступает смерть.

Однако сегодня это невыносимое состояние специально вызывается врачами с тем, чтобы замедлить метаболизм и дать пациентам выжить. После десятилетий научных споров гипотермия помогает останавливать враждебные явления, приводящие к смерти. Её терапевтическая ценность заключается в возможности замедлять физиологические потребности клеток; если замершим клеткам не требуется много кислорода и других питательных веществ во время или после травмы или остановки сердца, когда кровоток останавливается, у них уйдёт гораздо больше времени на то, чтобы разрушиться и умереть. Связь между гипотермией и анабиозом, состоянием с прекращением жизненных функций, которое, как надеются многие, поможет нам оставаться в живых в космосе годами на пути к Марсу и Земле-2, не случайна. Хотя точные механизмы её протекания сложны, гипотермия замедляет метаболизм, отдаляет разрушительные эффекты недостатка кислорода до тех пор, пока не вернётся нормальная циркуляция крови.

Новая область терапевтической гипотермии даже начинает переопределять границы жизни. В прошлом Рубиконом между жизнью и смертью было отсутствие сердцебиения. Позже мы узнали, что мозг в отсутствии пульса может некоторое время выживать, и людей, испытавших остановку сердца, вытаскивали, пока их мозг оставался нетронутым. Но без циркуляции мозг не может прожить очень долго.

В последние годы передовые методы гипотермического охлаждения справляются с замедлением мозговой активности до минимума, и отодвигают границы смерти далеко за пределы момента остановки сердца. Среди прочих преимуществ эти прорывы позволили исследователям расширить своё изучение опыта, связанного с кратковременной смертью, на основании отчётов людей, переживших длительные периоды остановки сердца, и вернувшихся назад. Также они вдохнули новую жизнь в исследование гибернации человека с целью использовать гипотермическое охлаждение для космонавтов, отправляющихся в межзвёздное пространство.

Терапия холодом сначала использовалась в качестве местной терапии. Самые ранние из документированных применений включают упоминания, найденные в папирусе Эдвина Смита. Это самый древний из известных медицинских текстов, датируемый 3500 годом до н.э., названный именем его владельца, купившего его у продавца в Люксоре в 1862 году. Он описывает, как египтяне использовали холод для лечения абсцессов. Позднее, в IV-V веках до н.э. в греческой медицинской школе Гиппократа предлагали помещать пациентов в снег для остановки кровотечений, судя по всему, через сужение сосудов. Но только в конце XVIII века Джеймс Кюри, врач из Ливерпуля, провёл самые ранние из известных экспериментов, связанных с гипотермией всего тела. Он погружал здоровых добровольцев, судя по всему, безответно преданных делу, в воду температурой в 6.5°C на срок до 45 минут в попытке найти способ помочь морякам, пострадавшим от холодной воды во время кораблекрушений. Его исследованиям сильно помогли улучшения в точности термометров.

После рассвета современной медицины, когда обученные доктора стали ставить диагнозы и лечить болезни на основе научных данных, всё поменялось. Старт исследованиям положили опыты американского нейрохирурга Темпл Фэя. Ещё когда он был студентом медицины в 1920-х, ему задали вопрос, почему рак с метастазами редко появляются в конечностях. Тогда у него не было ответа, но он отметил, что у конечностей человека температура бывает относительно низкой. Он гениально связал этот факт с открытием, сделанным им на своей ферме в Мэриленде - о том, что понижение температуры подавляет рост куриных зародышей. Он выдвинул гипотезу, что холод можно использовать для лечения и предотвращения роста рака. Это был момент озарения. К 1929 году он получил профессорскую степень в нейрохирургии в Университете Темпла в Филадельфии. Вскоре он начал использовать базовые методы охлаждения всего тела, обкладывая, к примеру, пациентов льдом, и разрабатывая различные методы местного охлаждения - включая грубые и большие по сегодняшним стандартам устройства, вставлявшиеся в череп.

Но его грубые методы вызывали критику и анархию в госпитале. Он использовал гигантские ванны льда - до 70 кг в одной - в операционных на периодах до 48 часов. Таяние приводило к постоянным подтоплениям, которые нужно было чем-то впитывать. Комнаты охлаждались через открытие окон, из-за чего не только пациенты, но и сотрудники подвергались воздействию местных ледяных ветров. Кроме того, в то время было довольно трудно точно измерить температуру тела пациента без соответствующих (обычно ректальных) термометров, разработанных специально для этих целей. Тогдашние термометры не были откалиброваны для измерения температур ниже 34°C. Из-за этого Фэй был чрезвычайно непопулярен среди медперсонала, и сотрудники один раз даже взбунтовались против его «сервиса по охлаждению людей».

Однако Фэй был гением. В одном из ранних отчётов он цитирует смертность в 11,2% случаев и успех в 95,7% случаев в области облегчения болей при помощи охлаждающей терапии. Что важно, эти эксперименты показали не только, что люди могут оставаться в гипотермическом состоянии, охлаждёнными до 32°C по нескольку дней, но и что их можно вывести из него с существенным улучшением их состояния.

К несчастью, события повернулись так внезапно и прискорбно, что его ранние отчёты попали в руки нацистов, и знания использовались в сотнях жестоких экспериментов, проводимых во время Второй Мировой войны. Заключённых заставляли погружаться в цистерны с ледяной водой, а в экспериментах использовался подход «подождём и посмотрим, что будет». Эти данные были объявлены ненаучными. Ассоциация с пытками замедлила последующие исследования на десятилетия. В то время существовало такое понятие, как «температурный барьер», согласно которому понижения температуры тела необходимо было избегать всеми средствами.

Только в середине 1980-х пионер анестезиологии Питер Сафар, родившийся в 1924 году в Вене, отважился проводить исследования по терапевтической гипотермии, несмотря на её плохую репутацию. Он работал в Питсбургском университете с собаками, и подтвердил, что после остановки сердца небольшая гипотермия мозга (33-36°C) значительно улучшала нейробиологический исход лечения и предотвращала повреждения мозга. Сафар успешно воскресил исследования гипотермии. Изобретённое им лечение называли «замедлением жизнедеятельности с целью отложенной реанимации».

Науку терапевтической гипотермии мотивировали исключительные истории пациентов, выживших после того, как они утонули в холодной воде. Взять, допустим, медицинскую практикантку Анну Багенхолм, испытавшую остановку сердца после несчастного случая во время катания на лыжах на севере Норвегии в 1999-м. Она выжила, находившись в ледяной воде под коркой льда в течение 80 минут, и несколько часов провела без пульса перед тем, как у неё возобновилось сердцебиение.

После наступления нового тысячелетия Джозеф Варон, сегодня - глава отделения интенсивной терапии в больничной системе центрального университета Хьюстона, отправил терапевтическую гипотермию к новым высотам. В 2005 году человека, отдыхавшего в отпуске, самолётом везли из Мексики в Хьюстон после того, как он утонул. Варон рассказал мне: «Я летел вместе с ним в Хьюстон. Парень был мёртв уже пару часов. Они восстановили работу сердца, и мы в результате смогли охладить его и не просто вернуть к жизни мозг - он ещё и выздоровел». Об этом случае рассказали в журнале Resuscitation. «Когда папа Римский Иоанн Павел II пережил остановку сердца в том же году, меня попросили слетать в Ватикан и охладить его».

Варон, среди своих известный, как «доктор Мороз», как и Фэй, изначально испытывал скептическое отношение со стороны медперсонала. «Когда я начинал заниматься этим в Хьюстоне, я использовал очень много льда. Температура в комнате падала чрезвычайно сильно», - сказал он. Уже скоро он использовал гипотермию для защиты пациентов от повреждения мозга в результате различных травм, включая остановку сердца, инфаркт и отказ печени. Его пациентов регулярно охлаждают до низких температур, вплоть до 32°C - и на срок вплоть до 11 дней. В 2014 году он использовал гипотермию, чтобы спасти себя самого после инфаркта. «Первое, что пришло мне в голову, это: охладите меня!» - сказал мне Варон.

Со временем его техника улучшилась. Сегодня Варон использует множество разнообразных устройств для применения как локальной гипотермии, так и охлаждения всего тела, обычно для понижения температуры пациентов до 32°C во время восстановления от остановки сердца, после того, как их сердце снова запустилось. В этой технологии используются машины с гидрогелевыми подушками, с циркулирующей в них холодной водой для охлаждения пациентов, механизмы биологической обратной связи для контроля температуры, компьютеризированный катетер, вставляемый в ногу и позволяющий пациенту охлаждаться и оставаться в сознании - ключевой момент для точной оценки нейробиологических параметров.

Более того, в некоторых случаях, связанных с тяжёлыми травмами, от, допустим, огнестрельного или холодного оружия, пациентов ждут чрезвычайные клинические испытания. Их охлаждают до 10°C, часто, когда у них уже нет пульса или дыхания. Да, получается, что врачи охлаждают «мёртвых» - с тем, чтобы спасти их жизнь.

Охлаждение может продлить чрезвычайно короткий в иных случаях временной промежуток, во время которого пострадавшим можно оказать необходимую хирургическую помощь, особенно в целях предотвращения потери крови. Примечательные испытания под названием сохранение и реанимация в чрезвычайных ситуациях проходит в Питтсбурге и Балтиморе в тех местах, где наблюдается наибольшее количество травм, полученных от огнестрельного и холодного оружия. EPR используется как последнее средство, когда стандартные методы реанимации не работают, и у жертвы остаётся 5% шанс на выживание. В процедуру входит замена крови пациента на циркулирующий по телу охлаждающий физраствор, предотвращающий кислородное голодание клеток и тканей. При его использовании у пациентов может снова забиться сердце после отсутствия пульса вплоть до одного часа. Цель эксперимента - сравнить 10 пациентов, прошедших EPR, с 10 теми, кто его не прошёл, и увидеть, влияет ли оно на выживаемость. Официальные результаты пока не разглашаются.

Но Сэмуэль Тишерман, руководящий испытаниями, чрезвычайно оптимистичен. Он давно уже пытается выйти за границы возможного, и работал с Сафаром над анабиозом в 1980-х, когда учился в медицинской школе. Теперь его подопытных регулярно охлаждают от нормальной температуры в 37°C до ошеломительных 10°C в течение 20 минут. Тишерман поясняет: «Нам нужно делать это быстро, поскольку у человека уже пропал пульс; сама идея состоит в том, чтобы уменьшить потребность тела в кислороде». В частности, необходимо охладить сердце и мозг, поскольку эти органы более других подвержены кислородному голоданию. Охладившись, пациента без пульса и кровяного давления перемещают в операционную. Наконец, в таких экстремальных условиях хирург пытается устранить источники потери крове и исправить остальные травмы. После этого пациента медленно нагревают. «Мы надеемся, что после нагрева у них начнёт биться сердце», - сказал Тишерман.

На вопрос по поводу текущего прогресса в экспериментах, связанных с такими проблемами, Тишерман задумался, а затем с негромким смешком сказал: «Мы этим занимаемся. Это уже прогресс!» Нужно будет подождать формальных результатов клинических испытаний, но, кажется, критическая веха уже близко.

Гипотермию, кроме медицинской помощи смертельно больным, когда-нибудь смогут использовать для того, с чем большинство из нас познакомилось в научно-фантастической литературе - для анабиоза. Идея получила толчок в 1960-х годах, во время космической гонки между СССР и США, и недавно воскресла в виде, известном сегодня, как торпор [оцепенение, характерное для впадающих в спячку животных / прим. перев.]. Торпор предполагает множество преимуществ для длительных космических путешествий. Он может предотвратить медицинские проблемы, включая атрофию мускулов и потерю костной ткани, которые, как известно, происходят во время длительного пребывания в невесомости. Кроме подобных превентивных мер её можно использовать и в психологических целях. Потеря сознания предотвращает излишний стресс и излишнюю скуку, которая может прийти вместе с месяцами космических путешествий в замкнутом пространстве, не говоря уже о межличностных конфликтах, которые наверняка возникнут в малой команде за такой длительный период.

Такие предприятия, как SpaceWorks из Атланты, получают новое финансирование от агентств вроде НАСА для программ типа «Инновационные передовые концепции», исследующих анабиоз у человека. Инновационный подход SpaceWorks упирает на огромную экономию в еде, переработке мусора, хранении и требованиям к пространству, которые в иных случаях будут оказывать огромное влияние на массу судна и стоимость миссии. «Мы преподнесли им реалистичную идею и показали денежные преимущества и всю математику», - сказал Дуглас Толк, директор департамента хирургических услуг военно-морской базы в Лимуре, шт. Калифорния. Он работает над эти проектом для SpaceWorks с 2013 года. Он сказал мне: «Я врач, и огромный фанат НФ - а это идеальное объединение для этих миров!»

Текущий план SpaceWorks включает в себя краткосрочный период торпора, в который космические путешественники входят с периодом в две недели, с уменьшением метаболизма на 7% на каждый градус цельсия. «Нам известно, что многие млекопитающие способны на спячку, поэтому у нас нет вопроса „могут ли млекопитающие впадать в спячку?“, - сказал Толк. - У нас есть вопрос: Можем ли мы вызвать её у людей, и как? Мы знаем, что способны на это в краткосрочных периодах, и у нас даже есть исследования, показывающие, что мы можем продлить её на две недели». Толк говорит о случае, произошедшем в Китае в 2008-м, когда женщину в коме после аневризмы охлаждали 14 дней подряд, чтобы предотвратить дальнейшие повреждения мозга и ускорить выздоровление. Удивительно, но она полностью выздоровела.

Существует чёткая концепция пути от наших сегодняшних знаний о гипотермическом стазисе во время путешествия к Марсу. Толк сказал, что это путешествие должно начинаться на лунной станции, куда «космонавты будут отправляться, чтобы поближе познакомиться с торпором и узнать, чего ожидать от впадания в спячку и выхода из неё». SpaceWorks планирует поддерживать жизнь космонавтов при помощи хирургически внедрённого внутривенного устройства, «медипорта», похожего на то, что используется сегодня для химиотерапии у пациентов, больных раком. Также у них будут пищеводные трубки, идущие прямо в желудок, для кормления. «У этих приспособлений крайне малая степень побочных эффектов. Когда команда пройдёт все проверки, она отправится в модуль для стазиса, ляжет в кроватки и подключит свои системы мониторинга и кормления. А затем мы уменьшим температуру в помещении. Инициировать торпор мы будем не так, как это делают в больницах, при помощи седативных препаратов. Мы будем использовать фармацевтические средства, понижающие температуру тела до 32°C и замедляющие метаболизм».

Создание таких средств - основная цель Толка и его коллег. Они уже достигли успеха со свиньями, который, по его словам, был ключевым, поскольку «впервые что-то похожее на спячку было получено при помощи фармакологии у млекопитающих, ей не подверженных». После тренировки на Луне члены команды будут по очереди входить и выходить из стазиса, так, чтобы кто-то всегда бодрствовал и мог наблюдать за безопасностью остальных.

Изменение природы сна в пространстве и времени может изменить и человеческую природу. Появление возможности включения «спячки по требованию» может означать, что мы переросли наши внутренние циркадные ритмы, привязанные к таким элементам космоса, как день и ночь. Наши генетические основы диктуют биологию, привязанную к ритмам вращения Земли. Такая настройка необходима для регулирования расписания сна, принятия пищи, выделения гормонов, кровяного давления и температуры тела. Эти ритмы - одна из основных частей нашей человечности. Если гипотермическая спячка замедляет метаболические процессы и подавляет наши ритмичные биологические потребности, может ли она, к примеру, отсрочить эффекты старения? Смогут ли путешественники на Марс восполнить время, потраченное на гибернацию в долгих вояжах туда и обратно? Или, если представить себе отдалённое будущее, могут ли исследователи звёзд вернуться на Землю через сотни и тысячи лет после того, как убыли с неё?

Толк не был уверен, перевернёт ли человеческая спячка циркадные потребности с ног на голову, но сказал, что возможно найти фундаментальный, генетический переключатель спячки у людей. «Передовые исследования говорят о наличии такого переключателя, как HIT (hibernation-inducing trigger), - сказал он. - Это некий химикат, подготавливающий тело и включающий спячку вместе с возможностью переносить это состояние. Я думаю, что где-то в нашем ДНК есть способность включать спячку, и что эта возможность была утеряна в процессе эволюции».

Ещё один вызов нашей идентичности может поступить от расширения границ жизни. Когда-то смерть определялась остановкой сердца. Когда сердце останавливалось, человека больше не было. Затем мы расширили понятие до «смерти мозга» - отсутствие мозговых волн означает точку невозврата. Теперь гипотермические пациенты демонстрируют одновременно смерть сердца и мозга, однако их реанимируют, что снова расширяет границы жизни.

Возьмём норвежскую больницу, где лечили Багенхолм после её несчастного случая на лыжах в 1999-м. До её поступления все пациенты с гипотермией и отсутствием пульса умирали - процент выживания был нулевым. Однако когда в больнице поняли, что у пациентов мозговая активность может сохраняться часы, и, возможно, даже дни после остановки сердца, они начали применять более агрессивные попытки реанимации, и увеличили выживаемость до 38%.

Чрезвычайные случаи пациентов, поступавших в замёрзшем состоянии, изменили наш подход к смерти. В 2011-м году 55-летний человека с остановкой сердца привезли в госпиталь Эмори в Атланте, и привели в гипотермическое состояние для защиты мозга. После неврологического обследования доктора объявили о смерти его мозга, и через 24 часа его привезли в операционную для извлечения органов. Однако согласно отчёту в журнале Critical Care Medicine затем доктора зафиксировали у него роговичные и кашлевые рефлексы и спонтанное дыхание. Хотя надежды на его реанимацию не было, и оживить его не удалось, такие случаи бросают тень сомнения на давно устоявшиеся неврологические тесты, до сих пор использующиеся для определения времени смерти.

Ещё более необычные перспективы рисуют пациенты, которых вернули к жизни при помощи новых техник. Один из самых удивительных случаев описал Сэм Парния, директор реаниматологических исследований в медицинской школе Лэнгона в Нью-Йорке. Парния исследовал реанимацию через гипотермию не только для спасения пациентов, но и для поиска ответы на глубокие вопросы: когда смерть бывает окончательной и бесповоротной? Что мы чувствуем на той стороне смерти? Когда останавливается работа сознания? Его последние работы говорит о том, что сознание живёт многие минуты после остановки сердца - и его можно задержать, охлаждая мозг, замедляя смерть клеток и давая шанс докторам обратить процесс вспять и вытащить пациента обратно. Исследования Парнии, многие из которых были улучшены благодаря гипотермии, показывают, что умирающий мозг находится в «спокойном, умиротворённом состоянии»; согласно собранных с годами отчётам, многие пациенты описывают ощущение доброжелательного яркого света.

Прорывы в области гипотермии тревожат общественность, и из-за этого служат камнем преткновения. Часть сопротивляющихся им людей прагматична: терапевтическая гипотермия увеличивает риск понижения свёртываемости крови и повреждения тканей от недостатка кислорода, что приводило к смерти многих жертв ненамеренной гипотермии. Эти симптомы известны, как «смертельная триада». Поэтому согласия в том, как именно работать с этой техникой, пока нет, говорит Варон. «Споры о температуре и продолжительности будут идти и далее. Каждый человек особенный, поэтому нельзя найти какой-то рецепт, подходящий для всех», - сказал он.

С самого начала своих экспериментов по EPR Тишерман борется со стойкой критикой со стороны медиков. Особенно его коллег волнует невозможность крови свёртываться в таких экстремально холодных условиях, и эту проблему для пациентов, рискующих умереть от травм и потери крови, сложно переоценить. И всё же Тишерман возражает, что его пациенты и так уже подвержены высокому риску умереть. «Их шанс выжить составляет 5%, - говорит он, - так что отчего бы не попробовать что-то новое?»

Другая критика связана с неврологическими последствиями. Что, если пациент переживёт огнестрельную или колотую рану благодаря EPR, но получит необратимое повреждение мозга из-за длительного отсутствия кислорода? «Такая проблема присутствует при любой остановке сердца, есть там травма, или нет, - говорит Тишерман. - Если у вас остановилось сердце, то неважно, участвуете вы в испытаниях EPR, или нет - есть шанс, что вы выживете, но получите значительные повреждения мозга, и это риск есть вне зависимости от охлаждения. Мы пока не знаем, увеличивает или уменьшает этот риск то, чем мы занимаемся». Он описывает эту проблему как вопрос выживания. «Часто пациенты реанимации просыпаются и живут, и с ними всё в порядке, или они просто не живут. Нам это неизвестно. Да, риск есть. Они умирают, и нам нужно работать над тем, чтобы они выжили и очнулись».

Работа идёт быстро. Продвижения в области гипотермии ставят вопрос об определении природы человека, раздвигая границы сознания и смерти, и могут приблизить наше посещение иных миров. На извилистой дороге, то заходящей в труднопроходимые места, то возвращающейся на равнину, у гипотермии постоянно открываются и разрабатываются новые терапевтические преимущества. Моришо-Бюпре был бы восхищён. опубликовано

РЦРЗ (Республиканский центр развития здравоохранения МЗ РК)
Версия: Клинические протоколы МЗ РК - 2014

Другие нарушения терморегуляции у новорожденного (P81)

Неонатология

Общая информация

Краткое описание


Утверждено на Экспертной комиссии

По вопросам развития здравоохранения

Министерства здравоохранения Республики Казахстан

Умеренная терапевтическая гипотермия - контролируемое индуцируемое снижение центральной температуры тела у больного до 32 —34°С, с целью снижению риска ишемического повреждения тканей головного мозга после периода нарушения кровообращения

Доказано, что гипотермия оказывает выраженный нейропротективный эффект. В настоящий момент терапевтическая гипотермия рассматривается как основной физический метод нейропротекторной защиты головного мозга, поскольку не существует ни одного, с позиций доказательной медицины, метода фармакологической нейропротекции. Терапевтическая гипотермия входит в стандарты лечения: Международного Комитета Взаимодействия по Реанимации (ILCOR), Американской Ассоциации Кардиологов (AHA), а также клинические рекомендательные протоколы: Ассоциации Нейрохирургов России.

Применение умеренной терапевтическая гипотермии, для снижения рисков возникновения необратимых изменений в мозге, рекомендуется при следующих патологических состояниях:

Энцефалопатии новорожденных

Остановка сердца

Инсульты

Травматических поражений головного или спинного мозга без лихорадки

Травмы головного мозга с нейрогенной лихорадкой

I. ВВОДНАЯ ЧАСТЬ


Название протокола: Гипотермия (лечебная) новорожденного

Код протокола:


Код(ы) МКБ-10:

P81.0 Гипотермия новорожденного, вызванная факторами внешней среды

P81.8 Другие уточненные нарушения терморегуляции у новорожденного

P81.9 Нарушение терморегуляции у новорожденного неуточненное


Сокращения, используемые в протоколе:

ГИЭ - гипоксически-ишемическая энцефалопатия

КП - клинический протокол

CFM - мониторинг церебральных функций путем αЭЭГ

ЭЭГ - электроэнцефалография

αЭЭГ - амплитудно-интегрированная ЭЭГ

ЯМР - ядерно-магнитный резонанас


Дата разработки протокола: 2014 год


Пользователи протокола: неонатологи, анестезиологи-реаниматологи (детский) педиатры, врачи общей практики


Классификация

Клиническая классификация:

Терапевтическая гипотермия новорожденных - метод контролируемого охлаждения тела ребенка. Различают:

Системная гипотермия;

Краниоцеребральная гипотермия;


Терапевтическая гипотермия проводится детям с гестационным возрастом более 35 недель и массой тела более 1800 г.


Терапевтическая гипотермия снижает смертность и частоту неврологических нарушений у детей с гипоксически-ишемическим поражением головного мозга


Диагностика


II. МЕТОДЫ, ПОДХОДЫ И ПРОЦЕДУРЫ ДИАГНОСТИКИ И ЛЕЧЕНИЯ

Перечень основных и дополнительных диагностических мероприятий


Основные (обязательные) диагностические обследования, проводимые на амбулаторном уровне: нет.

Дополнительные диагностические обследования, проводимые на амбулаторном уровне: нет.

Минимальный перечень обследования, который необходимо провести при направлении на плановую госпитализацию: нет.


Основные (обязательные) диагностические обследования, проводимые на стационарном уровне:

Методология терапевтической гипотермии

Перед началом лечения гипотермией следует ввести фармакологические средства для контроля дрожи.

Температура тела больного снижается до 32-34°С градусов и поддерживается на таком уровне 24 часа. Врачи должны избегать уменьшения температуры ниже целевого значения. Принятые медицинские стандарты устанавливают, что температура пациента не должна падать ниже порога в 32°C.

Затем температуру тела постепенно поднимают до нормального уровня в течение 12 часов, под контролем компьютера блока управления системы охлаждения/согревания. Согревание пациента должно происходить со скоростью не менее 0,2-0,3°С в час, чтобы избежать осложнений, а именно: аритмии, снижения порога коагуляции, повышения риска инфекции и увеличения риска нарушения баланса электролитов.

Методы осуществления терапевтической гипотермии:


Инвазивный метод

Охлаждение осуществляют через катетер, введенный в бедренную вену. Жидкость, циркулирующая в катетере, выводит тепло наружу, не попадая в пациента. Метод позволяет контролировать скорость охлаждения, устанавливать температуру тела в пределах 1°C от целевого значения.

Проводить процедуру должен только хорошо подготовленный и владеющий методикой врач.

Основным недостатком методики являются серьезные осложнения - кровотечения, тромбоз глубоких вен, инфекции, коагулопатия.

Неинвазивный метод

Для неинвазивного метода терапевтической гипотермии сегодня используются специализированные аппараты, состоящие из блока системы охлаждения / согревания на водной основе и теплообменного одеяла. Вода циркулирует через специальное теплообменное одеяло или облегающий жилет на торсе с аппликаторами на ноги. Для снижения температуры с оптимальной скоростью необходимо покрыть теплообменными одеялами не менее 70 % площади поверхности тела пациента. Для локального снижения температуры мозга используют специальный шлем.

Современные системы охлаждения / согревания с микропроцессорным контролем и обратной связью с пациентом, обеспечивают создание управляемой терапевтической гипо/ гипертермии. Прибор контролирует температуру тела пациента с помощью датчика внутренней температуры и корригирует ее, в зависимости от заданных целевых значений, изменяя температуру воды в системе.

Принцип обратной связи с пациентом обеспечивает высокую точность достижения и контроля температуры в первую очередь тела пациента, как во время охлаждения, так и во время последующего согревания. Это важно для минимизации побочных эффектов, связанных с гипотермией.

Нельзя проводить терапевтическую гипотермию новорожденных без инструмента для продолжительного динамического анализа мозговой активности, эффективно дополняющий систему мониторинга жизненных показателей.

Динамика изменения мозговой активности новорожденного, которую невозможно отследить при кратковременном ЭЭГ-исследовании, наглядно представляется при длительном мониторировании ЭЭГ с представлением на экране трендов амплитудно-интегрированной ЭЭГ (аЭЭГ), сжатого спектра и других количественных показателей ЦНС, а также исходного сигнала ЭЭГ по малому количеству отведений ЭЭГ (от 3 до 5).

Паттерны аЭЭГ имеют характерный вид, соответствующий различным нормальным и патологическим состояниям головного мозга.

Тренды аЭЭГ отображают динамику изменения амплитуды ЭЭГ при многочасовых исследованиях в сжатом виде (1 - 100 см/час) и позволяют оценить выраженность гипоксически-ишемических нарушений, характер сна, выявить судорожную активность и дать прогноз неврологического исхода, а также отслеживать изменения аЭЭГ при состояниях, приводящих к гипоксии мозга у новорожденных и наблюдать динамику состояния пациента при лечебных воздействиях.

Дополнительные диагностические обследования, проводимые на стационарном уровне:

АЭЭГ проводят через 3 часа и 12 часов при проведении процедуры терапевтической гипотермии.


Таблица 1. Типовые варианты схем отведений ЭЭГ при мониторинге церебральных функций

Таблица 2 . Примеры паттернов аЭЭГ

Диагностические мероприятия, проводимые на этапе скорой неотложной помощи: нет.


Диагностические критерии


Жалобы и анамнез: смотрите КП «Асфиксия новорожденного».


Физикальное обследование: смотрите КП «Асфиксия новорожденного».


Лабораторные исследования: смотрите КП «Асфиксия новорожденного».


Инструментальные исследования: смотрите КП «Асфиксия новорожденного».


Показания для консультации узких специалистов:

Консультация детского невропатолога с целью оценки динамики состояния новорожденного до и после терапевтической гипотермии.


Дифференциальный диагноз


Дифференциальный диагноз: нет.

Лечение за рубежом

Пройти лечение в Корее, Израиле, Германии, США

Получить консультацию по медтуризму

Лечение

Цели лечения:

Снижение частоты тяжелых осложнений у новорожденного со стороны центральной нервной системы, после перенесенной асфиксии и гипоксии в родах.


Тактика лечения


Немедикаментозное лечение:

Уровень охлаждения при проведении краниоцеребральной гипотермии 34,5°С±0,5°С.

Уровень охлаждения при проведении системной гипотермии 33,5°С (рис. 3).

Поддержание ректальной температуры 34,5±0,5°С в течение 72 часов.

Длительность процедуры 72 часа.

Скорость согревания не должна превышать 0,5°С/часов


Медикаментозное лечение: нет.

Другие виды лечения: нет.

Хирургическое вмешательство: нет.

Дальнейшее ведение:

Мониторинг состояния ребенка находящегося в ПИТ/ОРИТ.

Диспансерное наблюдение у невропатолога в течение 1 года.

Иммунизация профилактическими прививками по показаниям.


Индикаторы эффективности лечения и безопасности методов диагностики и лечения, описанных в протоколе:

Проведение гипотермии при лечении ГИЭ сочетается с меньшим поражением серого и белого вещества головного мозга.

У большего числа детей, которым проводится гипотермия, отсутствуют изменения при ЯМР;

Общая гипотермия в момент реанимационных мероприятий уменьшает частоту летальных исходов, и умеренных и серьезных нарушений психомоторного развития у новорождённых с гипоксически-ишемической энцефалопатией вследствие острой перинатальной асфиксии. Это подтверждено на целом ряде мультицентровых исследований в США и Европе;

Селективное охлаждение головы вскоре после рождения может применяться для лечения детей с перинатальной энцефалопатией средней и легкой степеней тяжести для предотвращения развития тяжелой неврологической патологии. Селективное охлаждение головы малоэффективно при тяжелой энцефалопатии.


Госпитализация


Показания для госпитализации с указанием типа госпитализации *** (плановая, экстренная):

Критерии группы «А»:

Оценка по шкале Апгар ≤ 5 на 10 минуте или

Сохраняющаяся потребность в ИВЛ на 10 минуте жизни или

В первом анализе крови, взятом в течение первых 60 минут жизни, (пуповинной, капиллярной или венозной) рН <7.0 или

В первом анализе крови, взятом в течение 60 минут жизни (пуповинной, капиллярной или венозной), дефицит оснований (ВЕ) ≥16 моль/л.


Критерии группы «В»:

Клинически выраженные судороги (тонические, клонические, смешанные) или

Мышечная гипотония и гипорефлексии или

Выраженный гипертонус и гипорефлексии или

Нарушения зрачкового рефлекса (сужен и не реагирует на затемнение, расширен и не реагирует на свет, слабая реакция зрачка на изменение освещения).


Критерии группы «С» основываются на результатах CFM

Верхний край зубцов кривой более 10мкВ, нижний край зубцов кривой менее 5 мкВ. Кривая может прерываться пиками или сериями пиков более 25мкВ или

Верхний край зубцов менее 10мкВ, кривая прерывается и периодически выглядит изолинией и/или прерывается сериями пиков менее 10 мкВ или

Сплошные серии пиков с вольтажом более 25 мкВ или

Протоколы заседаний Экспертной комиссии по вопросам развития здравоохранения МЗ РК, 2014
  1. 1) Jacobs S, Hunt R, Tarnow-Mordi W, Inder T, Davis P. Cooling for newborns with hypoxic ischemic encephalopathy. Cochrane Database Syst Rev 2007;(4):CD003311. 2) Hypothermia for newborns with hypoxic ischemic encephalopathy A Peliowski-Davidovich; Canadian Paediatric Society Fetus and Newborn Committee Paediatr Child Health 2012;17(1):41-3). 3) Rutherford M., et al. Assessment of brain tissue injury after moderate hypothermia in neonates with hypoxic–ischaemic encephalopathy: a nested substudy of a randomised controlled trial. Lancet Neurology, November 6, 2009. 4) Horn A, Thompson C, Woods D, et al. Induced hypothermia for infants with hypoxic ischaemic encephalopathy using a servo controlled fan: an exploratory pilot study. Pediatrics 2009;123: e1090- e1098. 5) Sarkar S, Barks JD, Donn SM. Should amplitude integrated electroencephalography be used to identify infants suitable for hypothermic neuroprotection? Journal of Perinatology 2008; 28: 117-122. 6) Kendall G. S. et al. Passive cooling for initiation of therapeutic hypothermia in neonatal encephalopathy Arch. Dis. Child. Fetal. Neonatal. Ed. doi:10.1136/adc. 2010. 187211 7) Jacobs S. E. et al. Cochrane Review: Cooling for newborns with hypoxic ischaemic encephalopathy The Cochrane Library. 2008, Issue 4. 8) Edwards А. et al. Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data. BMJ 2010; 340:c363

  2. Указание условий пересмотра протокола: Пересмотр протокола через 3 года и/или при появлении новых методов диагностики/ лечения с более высоким уровнем доказательности.


    Прикреплённые файлы

    Внимание!

  • Занимаясь самолечением, вы можете нанести непоправимый вред своему здоровью.
  • Информация, размещенная на сайте MedElement и в мобильных приложениях "MedElement (МедЭлемент)", "Lekar Pro", "Dariger Pro", "Заболевания: справочник терапевта", не может и не должна заменять очную консультацию врача. Обязательно обращайтесь в медицинские учреждения при наличии каких-либо заболеваний или беспокоящих вас симптомов.
  • Выбор лекарственных средств и их дозировки, должен быть оговорен со специалистом. Только врач может назначить нужное лекарство и его дозировку с учетом заболевания и состояния организма больного.
  • Сайт MedElement и мобильные приложения "MedElement (МедЭлемент)", "Lekar Pro", "Dariger Pro", "Заболевания: справочник терапевта" являются исключительно информационно-справочными ресурсами. Информация, размещенная на данном сайте, не должна использоваться для самовольного изменения предписаний врача.
  • Редакция MedElement не несет ответственности за какой-либо ущерб здоровью или материальный ущерб, возникший в результате использования данного сайта.

37. Vasyuk Yu.A., Yushchuk E.N. et al. Variabel"nost" serdechnogo ritma v otsenke kliniko-funktsional"nogo sostoyaniya i prognoza pri khronicheskoy serdechnoy nedostatochnosti. Ratsional"naya farma-koterapiya v kardiologii. 2006; 2: 61-6. (in Russian)

38. Stepura O.B., Talaeva F.E. et al. Heart rate variability in patients with chronic heart failure. Rossiyskiy nefrologicheskiy zhurnal. 2001; 2: 24-31. (in Russian)

39. Statsenko M.E., Sporova O.E. et al. Age-related features of morphological and functional parameters of heart rate variability, heart, kidney condition and quality of life in patients with chronic heart failure. Serdechnaya nedostatochnost". 2001; 3: 127-130. (in Russian)

40. Alieva A.M., Golukhova E.Z., Pinchuk T.V. Heart rate variability in patients with chronic heart failure. (literature review). Arkhiv vnu-trenney meditsiny. 2013; 6: 47-52. (in Russian)

41. Nolan J., Batin P.D., Andrews R. Prospective study of heart rate variability and mortality in chronic heart failure. Circulation. 1998; 98: 1510-6.

42. Saul J.P., Berger R.D., Chen M.N. Transfer function analysis of outo-nomic regulation II. Respiratory sinus arrhythmia. Am. J. Physiol. 1989; 256 (1): 153-61.

Поступила 09.04.14 Received 09.04.14

ТЕРАПЕВТИЧЕСКАЯ ГИПОТЕРМИЯ: ВОЗМОЖНОСТИ И ПЕРСПЕКТИВЫ

Григорьев Е.В.1, Шукевич Д.Л.1, Плотников Г.П.1, Тихонов Н.С.2

1ФГБУ «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний» СО РАМН; 2МБУЗ «Кемеровский кардиологический диспансер», 650002 Кемерово

Гипотермия занимает одно из ведущих мест в отношении защиты органов, прежде всего головного мозга. Описаны механизмы реализации защитных эффектов (модуляция метаболизма, профилактика повреждения гематоэнце-фалического барьера, модуляция локального воспалительного ответа, нормализация синтеза оксида азота, блокада апоптоза) и технологии гипотермии. В основных клинических разделах достигнут наибольший прогресс с позиции эффективности и безопасности.

Кл ючевые слова: терапевтическая гипотермия; механизмы; клиническая реализация.

THERAPEUTIC HYPOTHERMIA: THE POTENTIAL AND PROSPECTS Grigor"ev E.V.1, Shukevich D.L.1, Plotnikov G.P.1, Tikhonov N.S.2

"Research Institute of Complex Problems of Cardiovascular Diseases, Siberian Division of Russian Academy of Medical Sciences; 2Kemerovo Cardiological Dispensary, Kemerovo, Russia

Hypothermia is a most powerful tool for the protection of various organs especially brain. The review is focused on the mechanisms of protective action (modulation of metabolism and local inflammatory reaction, prevention of blood-brain barrier disorders, normalization of nitric oxide synthesis) and technology of therapeutic hypothermia. Main clinical situations in which the most effective and safe application of this technology was achieved are described.

Key words: therapeutic hypothermia; mechanisms; clinical implementation.

В течение последнего десятилетия гипотермия как наиболее перспективный метод защиты органов от гипоксии перешагнула порог лаборатории и стала активно внедряться в клиническую практику . Исторически указанный метод защиты одним из первых был предложен как иностранными (А. Лабори), так и отечественными (Е.Н. Мешалкин, Е.Е. Литасова, А.И. Арутюнов) авторами. Во многих источниках литературы подчеркнута эффективность этого метода защиты головного мозга при постгипоксической энцефалопатии вследствие остановки сердца, гипоксической ишеми-ческой энцефалопатии новорожденных, остром нарушении мозгового кровообращения (ОНМК), травме головного и спинного мозга . Точные механизмы действия терапевтической гипотермии (ТГ) до сих пор остаются неясными. Вероятно, действие ТГ связано с прерыванием/модуляцией метаболических, молекулярных и клеточных цепочек повреждения, ведущих к гибели нейронов .

Цель обзора - резюмировать основные механизмы защитного действия ТГ и определить нишу клинического использования метода.

Механизмы защитного действия терапевтической гипотермии

Уменьшение потребления кислорода мозгом, защита метаболизма и уменьшение аккумуляции молочной кислоты. Важнейшим механизмом нейропротектив-ного эффекта ТГ является уменьшение или задержка метаболических потребностей во время повреждения центральной нервной системы. Традиционно считают, что уменьшение потребления кислорода головным мозгом (СМЯ02) составляет 5% на каждый градус . В 2008 г. появилось сообщение, что использование мягкой ТГ у пациентов с тяжелой черепно-мозговой травмой (ЧМТ) обусловливало уменьшение потребности в энергии, составляющее 5,9% на каждый градус. Отмечена также прямая сильная корреляционная связь температуры тела и базального метаболизма. ТГ уменьшает потребность в энергии, что благоприятно влияет на запасы АТФ и процесс поддержания нормальных трансмембранных градиентов для ионов и нейротранс-миттеров. За счет лимитирования потребления кислорода и глюкозы головным мозгом ТГ обусловливает уменьшение риска энергетической недостаточности,

что дает не только лечебный, но и профилактический эффект .

В нормальных условиях мозговой кровоток составляет 50 мл на 100 г ткани в минуту. ТГ уменьшает его с 48 мл на 100 г ткани в минуту у нормотермичных животных до 21 и 11 мл на 100 г ткани в минуту при температуре 33 и 39°С соответственно. Эти показатели могут быть подтверждены параметрами позитронной эмиссионной томографии .

После повреждения головного мозга повышается показатель анаэробного лактата в силу различных причин неадекватного транспорта кислорода. За счет охранения энергетических запасов ТГ предупреждает последовательное накопление лактата с развитием ацидоза. Более того, мягкая ТГ снижает темп накопления лактата в цереброспинальной жидкости и микродиализате головного мозга. Хотя гипотермия и не способна уменьшать накопление лактата и расход АТФ при длительной ишемии, при наличии кратковременной ишемии ТГ более эффективна в отношении темпа расхода макроэнергетических фосфатов.

Механизм влияния умеренной ТГ на СМЯ02 до сих пор не выяснен. Последние исследования показывают, что анестезия в сочетании с ТГ безопасно снижает метаболизм, однако механизмы подобного снижения различаются. Анестетики, вызывающие снижение электрофизиологической активности головного мозга за счет уменьшения метаболических потребностей, не способны прервать нормальные метаболические пути; следовательно, они не способны вызвать полноценной церебральной протекции во время гипоксии. В другом исследовании изучено влияние умеренной ТГ на СМЯ02 и функции головного мозга при повышенном внутричерепном давлении (ВЧД) и одновременном снижении центрального пульсового давления . Исследование показало, что умеренная ТГ улучшает кислородный баланс за счет уменьшения потребности головного мозга в энергии.

Профилактика повреждения гематоэнцефаличе-ского барьера и коррекция отека головного мозга. Формирование отека головного мозга после периода повреждения является следствием повышенной проницаемости и нарушением функциональной и морфологической целостности гематоэнцефалического барьера (ГЭБ), включая белки плотных контактов, транспортные белки, базальную мембрану, эндотелио-циты, астроциты, перициты и нейроны. Модели ишемии головного мозга, черепно-мозговой травмы (ЧМТ) и внутричерепного кровоизлияния показывали, что ТГ от умеренной до глубокой защищает ГЭБ и предупреждает развитие отека головного мозга. Это может объяснить эффективность умеренной ТГ в отношении повышенного ВЧД при ЧМТ .

ТГ предотвращает активацию протеаз, которые ответственны за деградацию внеклеточного матрикса, таких как матриксные металлопротеиназы (ММП),

способные вызывать разрушение ГЭБ из-за участия в деградации матрикса. Умеренная ТГ предотвращает повреждение ГЭБ, снижает экспрессию ММП и подавляет активность ММП . ТГ также предотвращает развитие отека головного мозга за счет стабилизации водного баланса мозга. Аквапорины - семейство белков водных каналов, которые контролируют движение через мембрану клеточной стенки. Умеренная ТГ значительно снижает сверэкспрессию аквапорина 4 и защищает ГЭБ, таким образом уменьшая выраженность отека головного мозга .

Эффекты воспалительных медиаторов. Воспаление - неотъемлемая часть защитного комплекса организма. Аутоагрессия, наблюдаемая при воспалении, может быть компонентом поражения органов и систем. После повреждения головного мозга наблюдается активация каскада про- и противовоспалительных цито-кинов . Наиболее значимыми провоспалитель-ными цитокинами являются интерлейкин 1в, фактор некроза опухолей а (ФНОа), интерлейкин 6. Уравно -вешивающими их противовоспалительными цитоки-нами являются трансформирующий фактор роста в и интерлейкин 10, однако соотнести наличие про- и противовоспалительных цитокинов и их повреждающее действие на головной мозг невозможно, и разрушающими (или защитными) свойствами могут обладать цитокины с разнонаправленным типом действия.

Например ФНОа, экспрессируемый в полосатом теле, обусловливает эффекты нейродегенерации, но если подобная экспрессия реализуется в гиппокампе, то имеет место защитный эффект. Есть предположение, что в ранней фазе воспаления имеется агрессивный эффект цитокинов, в поздней фазе воспаления - репара-тивный. Также есть предположение, что растворимый ФНОа (связывающийся с рецептором 2) является сигнальной молекулой для нейропротекции. Считают, что защитный эффект ФНОа может реализовываться в зависимости от активности нейроглии, времени и выраженности экспрессии рецепторов для ФНОа и условий метаболизма конкретного региона головного мозга.

В условиях ТГ про- и противовоспалительные медиаторы проявляют разную активность. Является ли ТГ про- или противовоспалительным событием, неясно. Исследование периферических мононуклеаров человека in vitro показало, что ТГ вызывает смещение баланса цитокинов, продуцируемых лейкоцитами, в провоспа-лительную сторону . Это позволяет предположить, что будет иметь место состояние избыточного воспаления, нарушение ответа макроорганизма и повышение вероятности инфекционных осложнений. Результаты опытов на животных показывают, что умеренная ТГ смягчает воспалительный ответ и повышает противовоспалительную активность. Умеренная ТГ дополнительно снижает летальность при экспериментальной эндотоксинемии, однако клинические исследования таких доказательств не предоставили.

Активированные клетки и их продукция способны оказывать значимое влияние на вторичное поврежде-

ние головного мозга, так как часть молекул воспалительной цепочки вовлечена в процесс репарации.

Ингибирование эксайтотоксичных нейротранс-миттеров. Указанный механизм положительного ней-ропротективного влияния гипотермии известен довольно хорошо, прежде всего в отношении вторичного повреждения головного мозга. Наибольший фокус делается на 2 нейротрансмиттера - возбуждающие аминокислоты (ВАК) и оксид азота (N0).

Возбуждающие аминокислоты. Количество ВАК, включая глутамин и аспартат, значительно увеличивается после ишемии, гипоксии, травмы и отравления . Активация соответствующих рецепторов - важнейший фактор развития вторичного повреждения после первичного инсульта. Концентрация ВАК коррелирует со степенью нейронального повреждения.

Предотвращение аккумуляции или выброса глутама-та за счет ТГ может объясняться влиянием охлаждения на метаболизм, обусловливающим сохранение уровня АТФ на базовом уровне. АТФ требуется для поддержания ионного градиента и в случае его нарушения будет активировать вход ионов кальция в клетку, что приведет к повышению концентрации глутамина вне клетки. Глутаминергические рецепторы (АМРА и NMDА) также могут быть модулированы ТГ , которая способна предупреждать воздействие эксайтотоксичности путем лимитирования входа ионов кальция через АМРА-кана-лы. Глутаматный рецептор 2 как субъединица АМРА-рецептора является вероятной точкой приложения гипотермии и способен лимитировать входящий поток ионов кальция, выключение указанного рецептора может привести к избыточному потоку ионов кальция.

Существует мнение о том, что повышение уровня глутамина при ишемии головного мозга происходит не только в силу его избыточного выброса, но и за счет нарушения обратного захвата глутамина через мембрану. ТГ способна увеличить интенсивность обратного захвата глутамина.

Требуется сохранение баланса между ВАК и ингиби-торными аминокислотами после повреждения головного мозга. Умеренная гипотермия эффективно снижает степень повреждения ткани мозга путем уменьшения выброса ВАК и глицерина, повышения концентрации ингибиторной у-аминомасляной кислоты. Ингибитор-ные аминокислоты являются антагонистами ВАК, и ТГ восстанавливает баланс.

Исследования доказывают, что пенумбра и неповрежденная ткань являются теми зонами, в которых ТГ оказывает наибольшее влияние на ВАК. В отношении ядра поврежденной ткани головного мозга таких данных нет. Следовательно, при ОНМК необходимо немедленное охлаждение с целью сохранить максимальную зону неповрежденного головного мозга и пенумбры .

Оксид азота. Оксидативный стресс повреждает клетки организма в случае нарушения физиологического баланса между оксидантами и антиоксиданта-ми. Ключевым радикалом при повреждении головного мозга является супероксидный анион, продуцируе-

мый с участием ксантиноксидазы и НАДН-оксидазы. L-аргинин трансформируется в NO с участием трех типов NO-синтаз (NOS): нейрональной, эндотелиальной и индуцибельной (n, е, i). Уровень указанных NOS повышается во время ишемии головного мозга .

В условиях умеренной ТГ коррекция уровней N0 и NOS - важнейшие механизмы защиты нейронов. Протективные эффекты были апробированы на экспериментальных моделях ишемии головного мозга, внутричерепных кровоизлияний, ЧМТ. NO накапливается в нейронах немедленно после повреждения, когда имеет место повышение активности его синтаз. Умеренная ТГ способна снизить уровень NO, подавить активность NOS и тем самым защитить нейроны. Подобная активность доказывается фактом снижения уровня NO во внутренней яремной вене. Исследования эффектов ТГ на уровень NO противоречивы: есть данные о том, что ТГ не влияет на продукцию NO моноцитами периферической крови при стимуляции последних липополисахаридом.

В последние годы ученые стали активно сравнивать влияние ТГ на виды NOS. ТГ в период ишемии активно влияет на уровень iNOS, тогда как после ишемии оказывает влияние на экспрессию nNOS. Есть мнение о том, что умеренная ТГ не меняет экспрессию nNOS, но достоверно снижает ее активность.

Умеренная ТГ способна ингибировать экспрессию NOS в кортикальной пенумбре, уменьшая содержание NO и метаболитов, что аналогично влиянию на ВАК. Разница состоит в том, что ТГ, используемая при повреждении головного мозга, также способна влиять и на ядро повреждения. Считают, что влияние ТГ на iNOS является зависимым от времени, отсроченная ТГ также дает терапевтический эффект, различаться будут только точки приложения (ядро и пенумбра).

Взаимоотношения между комплексом нейротранс-миттеров довольно сложны. Повышенный уровень NO может быть только частью каскада активации посредников. Повышение уровня глутамата в коре может приводить к увеличению внеклеточного NO и его метаболитов (нитритов и нитратов), гипотермия может ингиби-ровать этот процесс. Ингибирование iNOS может быть частью ингибирования ядерного фактора каппаБ NF-kB. Вследствие церебральной ишемии активация ядерного фактора приводит к экспрессии многих воспалительных генов, вовлекаемых в патогенез церебрального воспаления. Умеренная гипотермия профилактирует транслокацию ядерного фактора и связывание ДНК путем инактивации ингибитора киназы NF-kB (IKK). IKK существует для фосфорилирования и деградации ингибитора ядерного фактора; следовательно, предотвращая вход NF-кВ в ядро, что может вызывать усиленную экспрессию генов iNOS и ФНОа. Ишемия головного мозга индуцирует активацию кальций-кальмодулинзависимой киназы II, которая участвует в активности nNOS, что также является целью ТГ .

Уменьшение входящего потока и токсичного эффекта ионов кальция на нейроны. Кальций играет

ведущую роль в нормальной физиологии мембран и клеток, равно как и в патофизиологии клеточного повреждения. Избыточное поступление кальция в клетку может инициировать процесс повреждения клетки. Проведенные исследования в опытах на животных и у людей подтверждают факт, что перегрузка кальцием клетки после действия разнообразных повреждающих факторов происходит довольно быстро, что также обусловлено и перераспределением кальция из митохондрий клеток. Перегрузка кальцием вовлечена в патогенез эпилепсии. Умеренная ТГ способна ограничивать перегрузку кальцием, выключая работу кальциевой АТФазы, сохранять энергию в митохондриях, тем самым стабилизируя митохондриальную функцию по сохранению кальция внутри митохондрий. В последние годы эксперименты in vitro подтверждают эти выводы .

Кальпаин (кальциевая протеаза) - кальций-зависимая протеаза, которая активируется ионами кальция in vitro. Основными «точками приложения» кальпаина являются белки цитоскелета, протеиновые киназы и гормональные рецепторы. После повреждения головного мозга ТГ способна «выключать» активность кальпаина за счет ингибирования активности кальпаина II и тем самым снижать активность деградации цитоскелета .

Влияние на апоптоз клеток. ТГ может влиять на процессы апоптоза клеток. Подобная активность может наблюдаться в отношении каспаззависимого и каспаз-независимого пути апоптоза .

Умеренная гипотермия способна взаимодействовать с внутренним путем апоптоза посредством изменения экспрессии белков семейства Вс1-2, уменьшения выброса цитохрома С и снижения активности каспаз. На модели глобальной ишемии ТГ приводит к редукции белков проапоптотического семейства Вс1-2, таких как ВАХ, и «выключая» активность процессов антиапоптоза.

Внешний путь апоптоза также может быть инак-тивирован ТГ. При этом наиболее часто оказывается задействованным семейство белков FAS и FASL. Оба этих белка ингибируются за счет снижения их экспрессии под влиянием ТГ.

Антиапоптотическая активность ТГ может быть опосредованной действием на NF-kB. В нормальном состоянии ядерный фактор находится в цитоплазме, будучи связанным с рядом ингибиторных цитоплаз-матических белков. Для того чтобы быть активирован-

ным, IKK должен фосфорилировать указанные ингибиторы для высвобождения ядерного фактора и позволить последнему войти в ядро клетки и индуцировать экспрессию генов. Ингибирование подобной активации ядерного фактора способно инактивировать процесс экспрессии генов апоптоза. Этот процесс может быть остановлен ТГ.

Электронная микроскопия позволила доказать значимые морфологические изменения в нейронах коры головного мозга после ишемии/реперфузии, конденсацию хроматина, отграничение, изменение внешнего вида ядра, уменьшение размеров клетки, концентрирование цитоплазмы и иные подтверждения морфологии апоптоза.

Технологии терапевтической гипотермии. Устройства для реализации ТГ могут быть разделены на 3 большие группы: традиционные способы охлаждения (и, следовательно, согревания или, при необходимости, поддержания температурного баланса), неинвазивные системы для охлаждения и инвазивные (внутрисосуди-стые) системы .

Традиционный метод охлаждения. Этот метод охлаждения является наиболее легким вариантом достижения гипотермии путем использования холодного физиологического раствора или льда, что может быть осуществлено как путем внутривенного или внутриже-лудочного введения растворов, так и обкладыванием тела человека или отдельных участков тела льдом (проекция магистральных сосудов, голова). Считают, что данный способ является относительно безопасным, однако его использование наиболее применимо на этапе догоспитальной помощи или в неспециализированной клинике . Авторы отмечают, что этот метод эффективен в отношении индукции ТГ, однако в случае поддержания определенного уровня температуры и согревания традиционный способ критикуют за неуправляемость и непредсказуемость, что объясняет дополняющий характер ТГ подобного рода. Наибольшими преимуществами являются абсолютная доступность этого метода гипотермии и низкая стоимость .

Методы охлаждения поверхности тела. Неинва-зивные устройства для охлаждения поверхности тела отличаются от инвазивных аппаратов. Кардинальным отличием подобных устройств являются темп достижения необходимой температуры, точная «дозировка»

Техническая реализация ТГ (цит. по Storm С., 2012)

Фирма-производитель Устройство Вариант достижения гипотермии Темп достижения охлаждения, "О/ч Обратная связь Возможность повторного использования устройства (охлаждающих элементов)

Philips (Нидерланды) InnerCool RTx Катетер 4-5 Есть Нет

Zoll (США) Thermogard XP Катетер 2-3 Есть Нет

CR Bard (США) ArcticSun 5000 Поверхностные адгезивные накладки 1,2-2 Есть Нет

CSZ (США) Blanketrol III Одеяла 1,5 Есть Есть

EMCOOLS (Австрия) FLEX.PAD Поверхностные адгезивные накладки 3,5 Нет Нет

MTRE (США) CritiCool Одеяла 1,5 Есть Нет

температуры поддержания и согревания больного. Несмотря на эффект адгезии материала, не описано каких-либо серьезных кожных повреждений. Система Arctic Sun имеет больший потенциал по сравнению с иными устройствами за счет возможности поддержания и нор-мотермии .

Эндоваскулярные устройства. Подобные устройства имеют компьютерное управление с обязательной обратной связью; изменение температуры осуществляется за счет циркуляции воды по закрытой системе с рециркуляцией. Основными достоинством использования подобных устройств является возможность исключения временного градиента периферия-ядро, который неизменно создается в процессе охлаждения/согревания при применении внешних устройств. В такой ситуации требуется весьма тщательный контроль температуры, что достигается за счет использования прямых датчиков устанавливаемых или в просвет сосудистого русла, или в мочевой пузырь. Сочетание этих особенностей позволяет обеспечить наиболее оптимальный процесс согревания и профилактику избыточного охлаждения. Предельная длительность процедуры по данной методик не ясна, но она явно меньше, чем это может быть при использовании внешних устройств .

Клиническая апробация и сбор доказательств

Остановка сердца. Как на экспериментальных моделях, так и в клинических исследованиях были доказаны преимущества ТГ по восстановлению функциональной целостности головного мозга после возобновления спонтанного кровообращения . На сегодняшний день ТГ включена в ряд национальных и международных руководств по лечению больных, находящихся в коме после остановки сердца и эффективных реанимационных мероприятий . Ключевые моменты доказательства эффективности ТГ в подобных клинических ситуациях были опубликованы в 2002 г. , когда авторы охлаждали своих больных на период 12-24 ч до 32-34oC. Исследование было посвящено больным с остановкой сердца на догоспитальном этапе, с наличием первичной фибрилляции желудочков и с известной «кардиальной» причиной остановки сердца; иные причины остановки сердца были исключены из исследования. Критичным была небольшая по размеру выборка больных, однако за счет очень четкого дизайна исключены возможные ошибочные выводы и следствия. Предприняты попытки повторить подобные исследования на других когортах больных, однако четких доказательств в других группах больных не получено. Post-hoc-анализ показал, что имеется ряд преимуществ и в группе с нормотермией (в сравнении с гипертермией), однако большими достоинствами обладает все-таки способ именно гипотермической защиты .

Черепно-мозговая травма. Наиболее значительной особенностью всех терапевтических стратегий при ЧМТ является тот факт, что способов с доказанной эффективностью до сих пор не существует. Обычно использование ТГ отсрочено в связи с необходимостью проведения

первичных реанимационных мероприятий и необходимого комплекса диагностических процедур .

Проведено 8 метаанализов, доказавших неэффективность ТГ в комплексе терапии при тяжелой ЧМТ . Показано, что серьезных рандомизированных исследований не проводилось, исследования различались по протоколу терапии, и характер рандомизации был вне всякой критики. Обзор Кохрейновской группы в 2009 г. показал, что существует ряд преимуществ в отношении использования гипотермии при тяжелой ЧМТ со снижением летальности и уменьшением тяжести заболевания , однако уровень подобных исследования был низким, тогда как многоцентровые исследования подобных достоинств не показали, в частности не показано различий частоты летального исхода. Все эти исследования объединялись фактом раннего (в первые 6 ч) использования ТГ с целью обеспечения нейропротекции. В клинической практике ТГ используют обычно для снижения повышенного ВЧД, однако доказательных исследований не проведено и в отношении этого тезиса.

Острое нарушение мозгового кровообращения. На данный момент однозначно доказано, что при ОНМК будут эффективны тромболизис и антиагрегационная терапия. На сегодняшний момент ТГ может быть компонентом комплексной терапии, но не противопоставляется тромболизису, однако использование ТГ в качестве ней-ропротективной стратегии позволяет улучшить характеристику локального снабжения головного мозга кислородом за счет уменьшения потребления и создания условий для лучшего восстановления. В экспериментальных моделях эффективность ТГ доказана за счет снижения объема пораженной зоны головного мозга до 40%. Не существует работ, которые бы определили клиническую эффективность и повышение выживаемости .

Имеется ряд особенностей, которые необходимо учитывать при использовании ТГ при ОНМК. Так, многие больные имеют элементы сознания и не находятся в глубокой коме; следовательно, они плохо переносят процесс индукции и поддержания ТГ в отличие от больных с остановкой сердца или тяжелой ЧМТ в коме. Результатом является тот факт, что мышечная дрожь повышает основной обмен и увеличивает потребность в кислороде, что требует седации и/или ней-ромышечной блокады.

Гипоксическая ишемическая энцефалопатия новорожденных. Исходя из того факта, что гипоксическое повреждение головного мозга у недоношенных новорожденных является ведущей причиной инвалидности у выживших детей, исследователи довольно активно пытаются использовать ТГ для улучшения функционального исхода. S. Shankaran и соавт. использовали метод ТГ всего тела с охлаждением до 33,5оС в первые 6 ч с момента рождения; период поддержания ТГ составил 72 ч. Кроме того, были изучены результаты воздействия и разные подходы к охлаждению на все тело или только на голову. Получены значимые цифры уменьшения тяжести инвалидности при длительном наблюдении в течение нескольких лет за больными в

группе с использованием общего охлаждения, также были демонстрированы эффективность и безопасность метода нейропротекции .

Побочные эффекты

Дрожь. Это явление ассоциируется с повышением активности симпатической нервной системы и основного обмена, что является критическим для больного, который требует обратного отношения к основному обмену - подавлению за счет использования седации и нейромышечных блокаторов.

Пневмония. В единственном обзоре, касающимся тяжелой ЧМТ, не отмечено достоверного повышения частоты развития пневмонии у больных после ТГ .

Нестабильность функции сердца. ТГ ассоциируется с артериальной гипотензией и аритмиями (бра-диаритмиями), однако авторы отмечают, что эффект, подобный действию Р-блокаторов, положительно сказывается на функции сердца у больных с остановкой сердца и наличием фибрилляции желудочков.

Гипергликемия. Наиболее частое побочное явление ТГ - гипергликемия; имеются данные о корреляции с повышением летальности .

Электролитные расстройства. Наиболее частое расстройство - гипокалиемия. Рутинное исследование уровня калия и натрия в плазме крови позволяет адекватно отреагировать на указанные расстройства.

Рикошет-синдром в виде повышения ВЧД на фоне согревания. Этот феномен описан при многих вариантах ТГ, что требует дополнительных мер для коррекции повышения ВЧД на фоне согревания .

1. На сегодня имеется достаточный объем знаний о механизмах действия терапевтической гипотермии.

2. Стратегия умеренной терапевтической гипотермии - перспективный способ защиты головного мозга при критических состояниях, что доказывается прежде всего экспериментальными разработками и меньше - клиническими исследованиями.

3. Обоснованы дальнейшие разработки в отношении широкого спектра исследований: отбор пациентов, терапевтическое «окно» инициации терапевтической гипотермии, показатели адекватности защиты (нейрофизиологические, биохимические, нейровизуализаци-онные).

НИИ комплексных проблем сердечно-сосудистых заболеваний СО РАМН

Григорьев Евгений Валерьевич - д-р мед. наук, проф., зам. директора по научной и лечебной работе, вед. науч. сотр. лаб. критических состояний; e-mail: [email protected]

Шукевич Дмитрий Леонидович - д-р мед. наук, зав. лаб. критических состояний. Плотников Георгий Павлович - д-р мед. наук, вед. науч. сотр. лаб. критических состояний. Кемеровский кардиологический диспансер

Тихонов Николай Сергеевич - врач отделения реанимации и интенсивной терапии.

ЛИТЕРАТУРА (REFERENCES)

1. Choi H.A., Badjatia N., Mayer S.A. Hypothermia for acute brain injury-mechanisms and practical aspects. Nature Rev. Neurol. 2012; 8: 214-22.

2. Dietrich W.D., Bramlett H.M. The evidence for hypothermia as a neuroprotectant in traumatic brain injury. Neurotherapeutics. 2010; 7: 43-50.

3. Dine C.J., Abella B.S. Therapeutic hypothermia for neuroprotection. Emerg. Med. Clin. N. Am. 2009; 27: 137-49.

4. Liu L., Kim J.Y., Koike M.A., Yoon Y.J., Tang X.N., Ma H. et al. FasL shedding is reduced by hypothermia in experimental stroke. J. Neurochem. 2008; 106: 541-50.

5. Peterson K., Carson S., Cairney N. Hypothermia treatment for traumatic brain injury: a systematic review and meta-analysis. J. Neuro-trauma. 2008, 25: 62-71.

6. Benson D.W., Williams G.R., Spencer F.C., Yates A.J. The use of hypothermia after cardiac arrest. Anesth. Analg. 1959; 38: 423-8.

7. Hypothermia After Cardiac Arrest Study Group: Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N. Engl. J. Med. 2002; 346: 549-56.

8. Kim F., Olsufka M., Longstreth W.T., Maynard C., Carlbom D., Deem S. et al. Pilot randomized clinical trial of prehospital induction of mild hypothermia in out-of-hospital cardiac arrest patients with a rapid infusion of 4 degrees C normal saline. Circulation. 2007, 115: 3064-3070.

9. McIntyre L.A., Fergusson D.A., Hebert P.C., Moher D., Hutchison J.S. Prolonged therapeutic hypothermia after traumatic brain injury in adults: a systematic review. J.A.M.A. 2003; 289: 2992-9.

10. Nolan J.P., Morley P.T., Hoek T.L.V., Hickey R.W. Therapeutic hypothermia after cardiac arrest. An advisory statement by the advancement life support task force of the international liaison committee on resuscitation. Resuscitation. 2003; 57: 231-5.

11. Sadaka F., Veremakis C. Therapeutic hypothermia for the management of intracranial hypertension in severe traumatic brain injury: a systematic review. Brain Inj. 2012; 26: 899-908.

12. Shankaran S., Laptook A.R., Ehrenkranz R.A., Tyson J.E., McDonald S.A., Donovan E.F. et al. Whole-body hypothermia for neonates

with hypoxic-ischemic encephalopathy. N. Engl. J. Med. 2005; 353: 1574-84.

13. Sinclair H.L., Andrews P.J. Bench-to-bedside review: Hypothermia in traumatic brain injury. Crit. Care. 2010, 14: 204.

14. Williams G.R., Spencer F.C. The clinical use of hypothermia following cardiac arrest. Ann. Surg. 1958; 148: 462-8.

15. Chihara H., Blood A.B., Hunter C.J., Power G.G. Effect of mild hypothermia and hypoxia on blood flow and oxygen consumption of the fetal sheep brain. Pediatr. Res. 2003; 54: 665-71.

16. Drury P.P., Bennet L., Gunn A.J. Mechanisms of hypothermic neuroprotection. Semin. Fetal Neonatal Med. 2010; 15: 287-92.

17. Matsui T., Ishikawa T., Takeuchi H., Okabayashi K., Maekawa T. Mild hypothermia promotes pro-inflammatory cytokine production in monocytes. J. Neurosurg. Anesthesiol. 2006; 18: 189-93.

18. Zhang H., Zhou M., Zhang J., Mei Y., Sun S., Tong E. Therapeutic effect of post-ischemic hypothermia duration on cerebral ischemic injury. Neurol. Res. 2008; 30: 332-6.

19. Zhao H., Wang J.Q., Shimohata T., Sun G., Yenari M.A., Sapolsky R.M., Steinberg G.K. Conditions of protection by hypothermia and effects on apoptotic pathways in a rat model of permanent middle cerebral artery occlusion. J. Neurosurg. 2007; 107: 636-41.

20. Masaoka H. Cerebral blood flow and metabolism during mild hypothermia in patients with severe traumatic brain injury. J. Med. Dent. Sci. 2010; 57: 133-8.

21. van der Worp H.B., Sena E.S., Donnan G.A., Howells D.W., Macleod M.R. Hypothermia in animal models of acute ischaemic stroke: a systematic review and meta-analysis. Brain. 2007; 130: 3063-74.

22. Amantea D., Nappi G., Bernardi G., Bagetta G., Corasaniti M.T. Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J. 2009; 276: 13-26.

23. Choi H.A., Badjatia N., Mayer S.A. Hypothermia for acute brain injury- mechanisms and practical aspects. Nature Rev. Neurol. 2012; 8: 214-22.

24. Kawanishi M., Kawai N., Nakamura T., Luo C., Tamiya T., Nagao S. Effect of delayed mild brain hypothermia on edema formation after intracerebral hemorrhage in rats. J. Stroke Cerebrovasc. Dis. 2008; 17: 187-95.

25. van der Worp H.B., Sena E.S., Donnan G.A., Howells D.W., Macleod M.R. Hypothermia in animal models of acute ischaemic stroke: a systematic review and meta-analysis. Brain. 2007; 130: 3063-74.

26. Dietrich W.D., Atkins C.M., Bramlett H.M. Protection in animal models of brain and spinal cord injury with mild to moderate hypothermia. J. Neurotrauma. 2009; 26: 301-12.

27. Ceulemans A.G., Zgavc T., Kooijman R., Hachimi-Idrissi S., Sarre S., Michotte Y. The dual role of the neuroinflammatory response after ischemic stroke: modulatory effects of hypothermia. J. Neuroinflammation. 2010; 7: 74.

28. MacLellan C.L., Davies L.M., Fingas M.S., Colbourne F. The influence of hypothermia on outcome after intracerebral hemorrhage in rats. Stroke. 2006; 37: 1266-70.

29. Seo J.W., Kim J.H., Kim J.H., Seo M., Han H.S., Park J., Suk K. Time-dependent effects of hypothermia on microglial activation and migration. J. Neuroinflammation. 2012; 9: 164.

30. Lee J.E., Yoon Y.J., Moseley M.E., Yenari M.A. Reduction in levels of matrix metalloproteinases and increased expression of tissue inhibitor of metalloproteinase-2 in response to mild hypothermia therapy in experimental stroke. J. Neurosurg. 2005; 103: 289-97.

31. Nagel S., Su Y., Horstmann S., Heiland S., Gardner H., Koziol J. et al. Minocycline and hypothermia for reperfusion injury after focal cerebral ischemia in the rat: effects on BBB breakdown and MMP expression in the acute and subacute phase. Brain Res. 2008; 1188: 198-206.

32. Wu T.C., Grotta J.C. Hypothermia for acute ischaemic stroke. Lancet Neurol. 2013; 12: 275-84.

33. Correale J., Villa A. The neuroprotective role of inflammation in nervous system injuries. J. Neurol. 2004; 251: 1304-16.

34. Ishikawa M., Sekizuka E., Sato S., Yamaguchi N., Inamasu J., Berta-lanffy H. et al. Effects of moderate hypothermia on leukocyte-endo-thelium interaction in the rat pial micro-vasculature after transient middle cerebral artery occlusion. Stroke. 1999; 30: 1679-86.

35. Kadhim H.J., Duchateau J., Sebire G. Cytokines and brain injury: invited review. J. Intensive Care Med. 2008; 23: 236-49.

36. Huet O., Kinirons B., Dupic L., Lajeunie E., Mazoit J.X., Benhamou D. et al. Induced mild hypothermia reduces mortality during acute inflammation in rats. ActaAnaesthesiol. Scand. 2007; 51: 1211-6.

37. Asai S., Zhao H., Kohno T., Takahashi Y., Nagata T., Ishikawa K. Quantitative evaluation of extracellular glutamate concentration in postischemic glutamate re-uptake, dependent on brain temperature, in the rat following severe global brain ischemia. Brain Res. 2000; 864: 60-8.

38. Friedman L.K., Ginsberg M.D., Belayev L., Busto R., Alonso O.F., Lin B., Globus M.Y. Intraischemic but not postischemic hypothermia prevents non-selective hippocampal downregulation of AMPA and NMDA receptor gene expression after global ischemia. Brain Res. Mol. Brain Res. 2001; 86: 34-47.

39. Dietrich W.D., Busto R., Halley M., Valdes I. The importance of brain temperature in alterations of the blood-brain barrier following cerebral ischemia. J. Neuropathol. Exp. Neurol. 1990, 49: 486-97.

40. Karabiyikoglu M., Han H.S., Yenari M.A., Steinberg G.K. Attenuation of nitric oxide synthase isoform expression by mild hypothermia after focal cerebral ischemia: variations depending on timing of cooling. J. Neurosurg. 2003; 98: 1271-6.

41. Han H.S., Karabiyikoglu M., Kelly S., Sobel R.A., Yenari M.A. Mild hypothermia inhibits nuclear factor-kappaB translocation in experimental stroke. J. Cereb. Blood Flow Metab. 2003; 23: 589-98.

42. Bright R., Raval A.P., Dembner J.M., Perez-Pinzon M.A., Steinberg G.K., Yenari M.A., Mochly-Rosen D. Protein kinase C delta mediates cerebral reperfusion injury in vivo. J. Neurosci. 2004; 24: 6880-8.

43. Liebetrau M., Burggraf D., Martens H.K., Pichler M., Hamann G.F. Delayed moderate hypothermia reduces calpain activity and breakdown of its substrate in experimental focal cerebral ischemia in rats. Neurosci. Lett. 2004; 357: 17-20.

44. Hayashi S., Osuka K., Watanabe Y., Yasuda M., Takayasu M., Waka-bayashi T. Hypothermia enhances the colocalization of calmodulin kinase IIalpha with neuronal nitric oxide synthase in the hippocampus following cerebral ischemia. Neurosci. Lett. 2011; 505: 228-32.

45. Liu L., Kim J.Y., Koike M.A., Yoon Y.J., Tang X.N., Ma H. et al. FasL shedding is reduced by hypothermia in experimental stroke. J. Neurochem. 2008; 106: 541-50.

46. Al-Senani F.M., Graffagnino C., Grotta J.C., Saiki R., Wood D., Chung W. et al. A prospective, multicenter pilot study to evaluate the feasibility and safety of using the CoolGard System and Icy catheter following cardiac arrest. Resuscitation. 2004; 62: 143-50.

47. Badjatia N., Strongilis E., Prescutti M., Fernandez L., Fernandez A., Buitrago M. et al. Metabolic benefits of surface counter warming during therapeutic temperature modulation. Crit. Care Med. 2009; 37: 1893-7.

48. Castren M., Silfvast T., Rubertsson S., Niskanen M., Valsson F., Wanscher M., Sunde K. Scandinavian clinical practice guidelines

for therapeutic hypothermia and post-resuscitation care after cardiac arrest. Acta Anaesthesiol. Scand. 2009; 53: 280-8.

49. Gillies M.A., Pratt R., Whiteley C., Borg J., Beale R.J., Tibby S.M. Therapeutic hypothermia after cardiac arrest: a retrospective comparison of surface and endovascular cooling techniques. Resuscitation. 2010; 81: 1117-22.

50. Heard K.J., Peberdy M.A., Sayre M.R., Sanders A., Geocadin R.G., Dixon S.R. et al. A randomized controlled trial comparing the Arctic Sun to standard cooling for induction of hypothermia after cardiac arrest. Resuscitation. 2010; 81: 9-14.

51. Holzer M., Mullner M., Sterz F., Robak O., Kliegel A., Losert H. et al. Efficacy and safety of endovascular cooling after cardiac arrest: cohort study and Bayesian approach. Stroke. 2006; 37: 1792-7.

52. Sterz F., Safar P., Tisherman S., Radovsky A., Kuboyama K., Oku K. Mild hypothermic cardiopulmonary resuscitation improves outcome after prolonged cardiac arrest in dogs. Crit. Care Med. 1991; 19: 379-89.

53. Tomte O., Draegni T., Mangschau A., Jacobsen D., Auestad B., Sunde K. A comparison of intravascular and surface cooling techniques in comatose cardiac arrest survivors. Crit. Care Med. 2011; 39: 443-9.

54. Bernard S.A., Gray T.W., Buist M.D., Jones B.M., Silvester W., Gutteridge G., Smith K. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N. Engl. J. Med. 2002; 346: 557-63.

55. Kamarainen A., Virkkunen I., Tenhunen J., Yli-Hankala A., Silfvast T. Prehospital therapeutic hypothermia for comatose survivors of cardiac arrest: a randomized controlled trial. Acta Anaesthesiol. Scand. 2009; 53: 900-7.

56. Kamarainen A., Virkkunen I., Tenhunen J., Yli-Hankala A., Silfvast T. Prehospital induction of therapeutic hypothermia during CPR: a pilot study. Resuscitation. 2008; 76: 360-3.

57. Kim F., Olsufka M., Carlbom D., Deem S., Longstreth W.T., Hanrahan M. et al. Pilot study of rapid infusion of 2 L of 4oC normal saline for induction of mild hypothermia in hospitalized, comatose survivors of out-of-hospital cardiac arrest. Circulation. 2005; 112: 715-9.

58. Kim F., Olsufka M., Longstreth W.T., Maynard C., Carlbom D., Deem S. et al. Pilot randomized clinical trial of prehospital induction of mild hypothermia in out-of-hospital cardiac arrest patients with a rapid infusion of 4 degrees C normal saline. Circulation. 2007; 115: 3064-70.

59. Kliegel A., Losert H., Sterz F., Kliegel M., Holzer M., Uray T., Doma-novits H. Cold simple intravenous infusions preceding special endo-vascular cooling for faster induction of mild hypothermia after cardiac arrest - a feasibility study. Resuscitation. 2005; 64: 347-51.

60. Larsson I.M., Wallin E., Rubertsson S. Cold saline infusion and ice packs alone are effective in inducing and maintaining therapeutic hypothermia after cardiac arrest. Resuscitation. 2010; 81: 15-9.

61. Nolan J.P., Soar J., Zideman D.A., Biarent D., Bossaert L.L., Deakin C. et al. European Resuscitation Council guidelines for resuscitation 2010 Section 1. Executive summary. Resuscitation. 2010; 81: 1219-76.

62. Polderman K.H., Herold I. Therapeutic hypothermia and controlled normothermia in the intensive care unit: practical considerations, side effects, and cooling methods. Crit. Care Med. 2009; 37: 1101-20.

63. Al-Senani F.M., Graffagnino C., Grotta J.C., Saiki R., Wood D., Chung W. et al. A prospective, multicenter pilot study to evaluate the feasibility and safety of using the CoolGard System and Icy catheter following cardiac arrest. Resuscitation. 2004; 62: 143-50.

64. Benson D.W., Williams G.R., Spencer F.C., Yates A.J. The use of hypothermia after cardiac arrest. Anesth. Analg. 1959; 38: 423-8.

65. Bernard S.A., Gray T.W., Buist M.D., Jones B.M., Silvester W., Gutteridge G., Smith K. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N. Engl. J. Med. 2002; 346: 557-63.

66. Heard K.J., Peberdy M.A., Sayre M.R., Sanders A., Geocadin R.G., Dixon S.R. et al. A randomized controlled trial comparing the Arctic Sun to standard cooling for induction of hypothermia after cardiac arrest. Resuscitation. 2010; 81: 9-14.

67. Nielsen N., Sunde K., Hovdenes J., Riker R.R., Rubertsson S., Stammet P. et al. Adverse events and their relation to mortality in out-of-hospital cardiac arrest patients treated with therapeutic hypothermia. Crit. Care Med. 2011; 39: 57-6.

68. Peberdy M.A., Callaway C.W., Neumar R.W., Geocadin R.G., Zimmerman J.L., Donnino M. et al. Part 9: post-cardiac arrest care: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010; 122: S768-86.

69. Huet O., Kinirons B., Dupic L., Lajeunie E., Mazoit J.X., Benhamou D. et al. Induced mild hypothermia reduces mortality during acute inflammation in rats. Acta Anaesthesiol. Scand. 2007; 51: 1211-6.

70. Reinikainen M., Oksanen T., Leppanen P., Torppa T., Niskanen M., Kurola J. Mortality in out-of-hospital cardiac arrest patients has decreased in the era of therapeutic hypothermia. Acta Anaesthesiol. Scand. 2012; 56: 110-5.

71. Sydenham E., Roberts I., Alderson P. Hypothermia for traumatic head injury. Cochrane Database Syst. Rev. 2009; CD001048.

72. Urbano L.A., Oddo M. Therapeutic hypothermia for traumatic brain injury. Curr. Neurol. Neurosci. Rep. 2012; 12: 580-91.

73. Tissier R., Cohen M.V., Downey J.M. Does mild hypothermia protect against reperfusion injury? the debate continues. Basic Res. Cardiol. 2011; 106: 691-5.

74. Shankaran S., Laptook A.R., Ehrenkranz R.A., Tyson J.E., McDonald S.A., Donovan E.F. et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N. Engl. J. Med. 2005; 353: 1574-84.

Поступила 24.03.14 Received 24.03.14

ДИАГНОСТИЧЕСКОЕ ЗНАЧЕНИЕ БИОМАРКЕРОВ СИСТЕМНОГО ВОСПАЛЕНИЯ ПРИ ХРОНИЧЕСКОЙ ОБСТРУКТИВНОЙ БОЛЕЗНИ ЛЕГКИХ

Будневский А.В., Овсянников Е. С., Чернов А.В., Дробышева Е.С.

ГБОУ ВПО «Воронежская государственная медицинская академия им. Н.Н. Бурденко» Минздрава России, 394000 Воронеж

Хроническая обструктивная болезнь легких (ХОБЛ) приводит к значительному социальному и экономическому ущербу. Воспаление дыхательных путей является основным компонентом патогенеза ХОБЛ, который присутствует на ранних этапах заболевания и сохраняется в течение многих лет после прекращения действия провоцирующих факторов. На протяжении последних лет наблюдается растущий интерес к биомаркерам воспаления при различных заболеваниях, в том числе и при ХОБЛ. Биомаркеры, которые изучали у пациентов с ХОБЛ, связаны с патофизиологией заболевания и воспалительным процессом в легких. Тем не менее была показана значимость только некоторых из них. Цель настоящего обзора - обобщить имеющиеся в настоящее время данные о системных биомаркерах воспаления при ХОБЛ, их возможной роли в оценке активности, тяжести заболевания и определении фенотипа ХОБЛ. Большинство системных биомаркеров не являются специфическими для ХОБЛ. Кроме того, наличие сопутствующих заболеваний, наиболее часто сердечно-сосудистых заболеваний, обусловливает определенные трудности в оценке значения системных биомаркеров. Несмотря на это, результаты исследований с участием большого количества больных ХОБЛ позволили получить информацию о роли доступных на сегодняшний день биомаркеров в определении активности заболевания, а также фенотипа ХОБЛ с системным воспалением. Включение биомаркеров в протоколы обследования больных ХОБЛ требует дальнейшего изучения.

Ключевые слова: хроническая обструктивная болезнь легких; биомаркеры; системное воспаление.

THE DIAGNOSTIC VALUE OF SYSTEMIC INFLAMMATION BIOMARKERS IN CHRONIC OBSTRUCTIVE PULMONARY DISEASE

Budnevsky A.V., Ovsyannikov E.S., Chernov A.V., Drobysheva E.S.

N.N. Burdenko Voronezh State Medical Academy, Russia

Chronic obstructive pulmonary disease (COPD) is a cause of appreciable social and economic losses. Airway inflammation is the main factor at the early stages of COPD pathogenesis and persists for many years after cessation of the action of provoking factors. In the last years, researchers have shown much interest in biomarkers associated with various diseases including COPD. Biomarkers of COPD are related to pathophysiology of the disease and inflammatory processes in the lungs. This review is designed to summarize the currently available data on systemic COPD biomarkers, their use for the assessment of activity of the disease and the possible role in the formation of COPD phenotype. Most systemic biomarkers are not specific for COPD. Moreover, evaluation of their significance encounters difficulties due to the presence of concomitant pathologies, in the first place cardiovascular diseases. Nevertheless, studies involving a large number of patients with COPD provided information about the role of biomarkers in the activity of COPD and formation of its phenotype with systemic inflammation. The introduction of biomarkers in protocols of examination of COPD patients needs further substantiation.

Key words: chronic obstructive pulmonary disease; biomarkers; systemic inflammation.

Хроническая обструктивная болезнь легких (ХОБЛ) является одной из наиболее частых причин инвалидизации и смерти и приводит к значительному социальному и экономическому ущербу . В последние годы наблюдается рост распространенности заболевания, а по прогнозам ущерб от ХОБЛ будет увеличиваться, что главным образом связано с неблагоприятной экологической ситуацией, продолжающимся воздействием факторов риска . Несмотря на то что диагностика ХОБЛ, выбор терапии, оценка ее эффективности основываются прежде всего

на степени ограничения скорости воздушного потока, в настоящее время признано, что объем форсированного выдоха за 1 с (ОФВ1) не позволяет в полной мере отразить сложные взаимоотношения имеющихся при ХОБЛ патологических процессов на клиническом, клеточном и молекулярном уровнях . Воспаление дыхательных путей является основным компонентом патогенеза ХОБЛ, который присутствует на ранних этапах заболевания и сохраняется в течение многих лет после прекращения действия провоцирующих факторов, а персистирующее системное воспа-


Использование умеренной гипотермии после СЛР на протяжении 12-24 часов, достоверно улучшает прогноз для жизни у больных с остановкой сердца .
Внимание. На сегодняшний день применение терапевтической гипотермии рассматривается как стандарт лечения коматозных пациентов после остановки сердца.

И чем раньше будет достигнут оптимальный температурный уровень (центральная температура 32-34°C), тем лучше исходы. По оценке специалистов, каждый час задержки с выполнением гипотермии приводит приблизительно к 20% увеличению смертности . Противопоказанием служат: наличие
глубокой гипотонии, необходимость использовать высокие дозы вазопрессоров для поддержания гемодинамики, бесперспективность реанимационных мероприятий, коагулопатии.
Блокирование центра теплорегуляции
Дрожь - естественная реакция организма на охлаждение, увеличивает скорость обмена веществ и предотвращает или замедляет достижение заданной температуры. Обычно наблюдается при изменении температуры от 37°С к 35°C. При более низкой температуре дрожь обычно прекращается. Седация должна предотвратить возникновение дрожи и блокировать центр терморегуляции, но для этого она должна быть достаточно глубокой. Следует также обратить внимание, что гипотермия снижает клиренс седативных средств, анальгетиков, мышечных релаксантов.
Внимание. Фактически должна проводиться самая обычная общая внутривенная анестезия с использованием наркотических анальгетиков (фентанил), мышечных релаксантов, гипнотиков (пропофол). При этом
(1
для заметокпациент, пусть медленно, будет пассивно охлаждаться, даже если не принимать специальных мер.
Магния сульфат эффективно устраняет дрожь. Вызывая периферическую вазодилатацию, увеличивает скорость теплоотдачи. Вводят в/в 4-5 г магния сульфата за 10-20 минут. Затем в/в инфузия со скоростью 1 -2 г/ч, пока температура пациента не снизится до 33°C;
Методика проведения гипотермии
Внимание. Всем пациентам, которым планируется использовать гипотермию, требуется проведение искусственной вентиляции легких.
Определенная проблема заключается в том, как при отсутствии специальной аппаратуры для гипотермии быстро снизить температуру тела до оптимального уровня.
Рекомендуется такой порядок действий:
1. Внутривенно вводится приблизительно 20-35 мл/кг охлажденного до 2-5°C 0,9% раствора натрия хлорида за максимально короткий срок. Что позволит снизить температуру тела больного приблизительно на 1°C. Как правило, больные после СЛР имеют определенную степень гиповолемии. И большинство пациентов, даже с кардиальной патологией, хорошо переносят этот объем инфузии. Но у больных с выраженной сердечной недостаточностью, при наличии почечного повреждения, введение столь больших объемов жидкости может быть противопоказано.
Внимание. В отделении надо иметь постоянный запас охлажденных до 2- 5°C солевых растворов.

Используют другие доступные способы охлаждения:
Ч
Обкладывают пациента, используя всю поверхность тела, пластиковыми мешками со снегом или льдом;
Стараясь покрыть всю поверхность тела, используют пропитанные водой, а потом замороженные, полотенца, простыни; Проводят обдувание возможно большей поверхности тела охлажденным воздухом (бытовой кондиционер); Понятно, что если имеются штатные устройства поверхностного или внутрисосудистого охлаждения, используют их. Измеряется центральная температура. Датчик для измерения температуры, в зависимости от его назначения, устанавливается в пищеводе, носоглотке или в наружном слуховом проходе или в мочевом пузыре. При снижении температуры тела до 33°C охлаждение прекращают. В дальнейшем колебания температуры стараются свести к минимуму - Внимание. Измерение температуры тела в подмышечной впадине не должно использоваться для контроля при проведении гипотермии. Спустя 12-24 часов охлаждение, седа- цию и введение релаксантов прекращают. Больной пассивно согревается. В редких случаях приходится использовать активное согревание - см. стр. 289. Оптимальным вариантом считается, когда скорость подъема температуры не превышает 0,25-0,5°С/час. После достижения нормальной температуры тела оценивают неврологический статус больного. При необходимости се- дацию и ИВЛ продолжают.
Гипертермия
Гипертермия увеличивает метаболизм мозга и негативно влияет на исходы реанимации. Особенно важно не допускать развития гипертермии в ближайшие 72 часа после СЛР. Назначают: метамизол (Анальгин) 1,0 три раза в сутки в/в, или парацетамол 1,0 три раза в сутки в зонд. Используют физические методы охлаждения.
Судороги
Эпилептические приступы и/или миоклония развивается в постреанимационном периоде у 5%-15% пациентов. Эпилептические приступы значительно увеличивают мозговой метаболизм. Миоклония может плохо поддаваться лечению - фенитоин часто неэффективен. Клоназепам, натрия валпроат и леветирацетам - приблизительно одинаково успешно применяют при этих состояниях. Препараты вводят энтерально. При резистентных к лечению судорогах используют тиопентал натрия, диазепам в/в.
Введение вазопрессоров
Введение вазопрессоров (или их сочетаний) показано в случае, когда адекватная инфузионная терапия не в состоянии восстановить нормальное кровяное давление и перфузию внутренних органов. При назначении вазопрессоров ориентируются на значения АД, упомянутые в начале этой главы.
Норэпинефрин (Норадреналин) является препаратом выбора. Фенилэфрин (Мезатон) несколько снижает ударный объем, но в наименьшей степени, по сравнению с другими вазопрессорами, вызывает тахикардию.
Хотя в последние годы появилось довольно много публикаций, где было показано, что допамин не является оптимальным препаратом у пациентов с поражением мозга, его продолжают достаточно широко использовать.
Некоторые специалисты предпочитают начинать терапию с введения эпинефрина (Адреналина). После стабилизации гемодинамики, и улучшения общего состояния больного, скорость введения вазопрессоров снижать постепенно (за 10-24 часов).
Проведение антибактериальной терапии
Гипотермия значительно увеличивает частоту инфекционных осложнений. Особенно - пневмоний. Хотя эффектив-

ность профилактического назначения антибиотиков неизвестна, обычно назначается бета-лактамный антибиотик широкого спектра. Чаще используются це- фалоспорины третьего поколения (например - цефтриаксон 1,0 в/в 2 раза в сутки).
Профилактика венозного тромбоза и ТЭЛА
Во время проведения гипотермии не проводится. Назначается со вторых суток при отсутствии противопоказаний. Использование низкомолекулярных ге- паринов, по сравнению с нефракционированным гепарином, ассоциируется с меньшей частотой геморрагических осложнений.
Профилактика стрессовых язв ЖКТ
Показана больным при наличии факторов риска (например, ИВЛ, геморрагические проявление, язвенная болезнь, прием кортикостероидов и т.д.). Применяют ингибиторы протонной помпы (омепра- зол и др.) или блокаторы H2- гистаминовых рецепторов;
Контроль уровня глюкозы в крови
Снижение температуры уменьшает секрецию и увеличивает резистентность тканей к инсулину. У пациентов, получавших инсулин, во время согревания возможно развитие гипогликемии. Поэтому уровень глюкозы в крови должен контролироваться через 1-4 часа. В настоящее время считается, что инсулин для коррекции гипергликемии должен быть назначен, если уровень глюкозы превышает 10 ммоль/л.



gastroguru © 2017