Скорость и ускорение точек твердого тела, совершающего поступательное и вращательное движения. Сложное движение точки

Формулы скорости (ускорения) точек твердого тела, выраженные через скорость (ускорение) полюса и угловую скорость (ускорение). Вывод этих формул из принципа, что расстояния между любыми точками тела, при его движении, остаются постоянными.

Содержание

Основные формулы

Скорость и ускорение точки твердого тела с радиус вектором определяются по формулам:
;
.
где - угловая скорость вращения, - угловое ускорение. Они равны для всех точек тела и могут изменяться со временем t .
и - скорость и ускорение произвольным образом выбранной точки A с радиус вектором . Такую точку часто называют полюсом.
Здесь и далее, произведения векторов в квадратных скобках означают векторные произведения.

Вывод формулы для скорости

Выберем прямоугольную неподвижную систему координат Oxyz . Возьмем две произвольные точки твердого тела A и B . Пусть (x A , y A , z A ) и (x B , y B , z B ) - координаты этих точек. При движении твердого тела они являются функциями от времени t . Их производные по времени t являются проекциями скоростей точек:
, .

Воспользуемся тем, что при движении твердого тела, расстояние | AB| между точками остается постоянным, то есть не изменяется со временем t . Также постоянным является квадрат расстояния
.
Продифференцируем это уравнение по времени t , применяя правило дифференцирования сложной функции.

Сократим на 2 .
(1)

Введем векторы
,
.
Тогда уравнение (1) можно представить в виде скалярного произведения векторов:
(2) .
Отсюда следует, что вектор перпендикулярен вектору . Воспользуемся свойством векторного произведения. Тогда можно представить в виде:
(3) .
где - некоторый вектор, который мы вводим только для того, чтобы автоматически выполнялось условие (2) .
Запишем (3) в виде:
(4) ,

Теперь займемся изучением свойств вектора . Для этого составим уравнение, которое не содержит скоростей точек. Возьмем три произвольные точки твердого тела A, B и C . Запишем для каждой пары этих точек уравнение (4) :
;
;
.
Сложим эти уравнения:

.
Сокращаем сумму скоростей в левой и правой части. В результате получаем векторное уравнение, содержащее только исследуемые векторы :
(5) .

Легко заметить, что уравнение (5) имеет решение:
,
где - какой-то вектор, имеющий равное значение для любых пар точек твердого тела. Тогда уравнение (4) для скоростей точек тела примет вид:
(6) .

Теперь рассмотрим уравнение (5) с математической точки зрения . Если записать это векторное уравнение по компонентам на оси координат x, y, z , то векторное уравнение (5) является линейной системой, состоящей из 3-ех уравнений с 9-ю переменными:
ω BAx , ω BAy , ω BAz , ω CBx , ω CBy , ω CBz , ω ACx , ω ACy , ω ACz .
Если уравнения системы (5) линейно не зависимы, то их общее решение содержит 9 - 3 = 6 произвольных постоянных. Поэтому мы нашли не все решения. Существуют еще какие-то. Чтобы их найти замечаем, что найденное нами решение полностью определяет вектор скорости . Поэтому дополнительные решения не должны приводить к изменению скорости. Заметим, что векторное произведение двух равных векторов равно нулю. Тогда, если в (6) к вектору прибавить член, пропорциональный , то скорость не изменится:


.

Тогда общее решение системы (5) имеет вид:
;
;
,
где C BA , C CB , C AC - постоянные.

Выпишем общее решение системы (5) в явном виде.
ω BAx = ω x + C BA (x B - x A )
ω BAy = ω y + C BA (y B - y A )
ω BAz = ω z + C BA (z B - z A )
ω CBx = ω x + C CB (x C - x B )
ω CBy = ω y + C CB (y C - y B )
ω CBz = ω z + C CB (z C - z B )
ω ACx = ω x + C AC (x A - x C )
ω ACy = ω y + C AC (y A - y C )
ω ACz = ω z + C AC (z A - z C )
Это решение содержит 6 произвольных постоянных:
ω x , ω y , ω z , C BA , C CB , C AC .
Как и должно быть. Таким образом, мы нашли все члены общего решения системы (5) .

Физический смысл вектора ω

Как уже указывалось, члены вида не влияют на значения скоростей точек. Поэтому их можно опустить. Тогда скорости точек твердого тела связаны соотношением:
(6) .

Это вектор угловой скорости твердого тела

Выясним физический смысл вектора .
Для этого положим v A = 0 . Это всегда можно сделать если выбрать систему отсчета, которая в рассматриваемый момент времени движется относительно неподвижной системы со скоростью . Начало системы отсчета O поместим в точку A . Тогда r A = 0 . И формула (6) примет вид:
.
Ось z системы координат направим вдоль вектора .
По свойству векторного произведения, вектор скорости перпендикулярен векторам и . То есть он параллелен плоскости xy . Модуль вектора скорости:
v B = ω r B sin θ = ω |HB| ,
где θ - это угол между векторами и ,
|HB| - это длина перпендикуляра, опущенного из точки B на ось z .

Если вектор не меняется со временем, то точка B движется по окружности радиуса |HB| со скоростью
v B = |HB| ω .
То есть ω - это угловая скорость вращения точки B вокруг точки H .
Таким образом, мы приходим к выводу, что - это вектор мгновенной угловой скорости вращения твердого тела .

Скорость точек твердого тела

Итак, мы нашли, что скорость произвольной точки B твердого тела определяется по формуле:
(6) .
Она равна сумме двух членов. Точку A часто называют полюсом . В качестве полюса обычно выбирают неподвижную точку или точку, совершающую движение с известной скоростью. Второй член представляет собой скорость вращения точек тела относительно полюса A .

Поскольку точка B - это произвольная точка, то в формуле (6) можно сделать подстановку . Тогда и скорость точки твердого тела с радиус вектором определяются по формуле:
.
Скорость произвольной точки твердого тела равна сумме скорости поступательного движения полюса A и скорости вращательного движения относительно полюса A .

Ускорение точек твердого тела

Теперь выведем формулу для ускорения точек твердого тела. Ускорение - это производная скорости по времени. Дифференцируем формулу для скорости
,
применяя правила дифференцирования суммы и произведения:
.
Вводим ускорение точки A
;
и угловое ускорение тела
.
Далее замечаем, что
.
Тогда
.
Или
.

То есть вектор ускорения точек твердого тела можно представить в виде суммы трех векторов:
,
где
- ускорение произвольно выбранной точки, которую часто называют полюсом ;
- вращательное ускорение ;
- осестремительное ускорение .

Если угловая скорость изменяется только по величине и не изменяется по направлению, то векторы угловой скорости и ускорения направлены вдоль одной прямой. Тогда направление вращательного ускорения совпадает или противоположно направлению скорости точки. Если угловая скорость изменяется по направлению, то вращательное ускорение и скорость могут иметь разные направления.

Осестремительное ускорение всегда направлено в сторону мгновенной оси вращения так, что пересекает ее под прямым углом.

К примеру, автомобиль, который трогается с места, движется ускоренно, так как наращивает скорость движения. В точке начала движения скорость автомобиля равняется нулю. Начав движение, автомобиль разгоняется до некоторой скорости. При необходимости затормозить, автомобиль не сможет остановиться мгновенно, а за какое-то время. То есть скорость автомобиля будет стремиться к нулю - автомобиль начнет двигаться замедленно до тех пор, пока не остановится полностью. Но физика не имеет термина «замедление». Если тело двигается, уменьшая скорость, этот процесс тоже называется ускорением , но со знаком «-».

Средним ускорением называется отношение изменения скорости к промежутку времени, за который это изменении произошло. Вычисляют среднее ускорение при помощи формулы:

где - это . Направление вектора ускорения такое же, как у направления изменения скорости Δ = - 0

где 0 является начальной скоростью. В момент времени t 1 (см. рис. ниже) у тела 0 . В момент времени t 2 тело имеет скорость . Исходя из правила вычитания векторов, определим вектор изменения скорости Δ = - 0 . Отсюда вычисляем ускорение:

.

В системе СИ единицей ускорения называется 1 метр в секунду за секунду (либо метр на секунду в квадрате):

.

Метр на секунду в квадрате - это ускорение прямолинейно движущейся точки, при котором за 1 с скорость этой точки растет на 1 м/с. Другими словами, ускорение определяет степень изменения скорости тела за 1 с. К примеру, если ускорение составляет 5 м/с 2 , значит, скорость тела ежесекундно растет на 5 м/с.

Мгновенное ускорение тела (материальной точки) в данный момент времени - это физическая величина , которая равна пределу, к которому стремится среднее ускорение при стремлении промежутка времени к 0. Другими словами - это ускорение, развиваемое телом за очень маленький отрезок времени:

.

Ускорение имеет такое же направление, как и изменение скорости Δ в крайне маленьких промежутках времени, за которые скорость изменяется. Вектор ускорения можно задать при помощи проекций на соответствующие оси координат в заданной системе отсчета (проекциями а Х, a Y , a Z).

При ускоренном прямолинейном движении скорость тела увеличивается по модулю, т.е. v 2 > v 1 , а вектор ускорения имеет такое же направление, как и у вектора скорости 2 .

Если скорость тела по модулю уменьшается (v 2 < v 1), значит, у вектора ускорения направление противоположно направлению вектора скорости 2 . Другими словами, в таком случае наблюдаем замедление движения (ускорение отрицательно, а < 0). На рисунке ниже изображено направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

Если происходит движение по криволинейной траектории, то изменяется модуль и направление скорости. Значит, вектор ускорения изображают в виде 2х составляющих.

Тангенциальным (касательным) ускорением называют ту составляющую вектора ускорения, которая направлена по касательной к траектории в данной точке траектории движения. Тангенциальное ускорение описывает степень изменения скорости по модулю при совершении криволинейного движения.


У вектора тангенциального ускорения τ (см. рис. выше) направление такое же, как и у линейной скорости либо противоположно ему. Т.е. вектор тангенциального ускорения находится в одной оси с касательной окружности, являющейся траекторией движения тела.

Пусть теперь известна функция . На рис. 5.10
и
 векторы скорости движущейся точки в моменты t и t . Чтобы получить приращение вектора скорости
перенесем параллельно вектор
в точкуМ :

Средним ускорением точки за промежуток времени t называется отношение приращения вектора скорости
к промежутку времениt :

Следовательно, ускорение точки в данный момент времени равно первой производной по времени от вектора скорости точки или второй производной радиус-вектора по времени

. (5.11)

Ускорение точки это векторная величина, характеризующая быстроту изменения вектора скорости по времени.

Построим годограф скорости (рис.5.11). Годографом скорости по определению является кривая, которую вычерчивает конец вектора скорости при движении точки, если вектор скорости откладывается из одной и той же точки.

Определение скорости точки при координатном способе задания её движения

Пусть движение точки задано координатным способом в декартовой системе координат

х = x (t ), y = y (t ), z = z (t )

Радиусвектор точки равен

.

Так как единичные векторы
постоянны, то по определению

. (5.12)

Обозначим проекции вектора скорости на оси Ох , Оу и Oz через V x , V y , V z

(5.13)

Сравнивая равенства (5.12) и (5.13) получим


(5.14)

В дальнейшем производную по времени будем обозначать точкой сверху, т.е.

.

Модуль скорости точки определяется формулой

. (5.15)

Направление вектора скорости определяется направляющими косинусами:

Определение ускорения точки при координатном способе задания её движения

Вектор скорости в декартовой системе координат равен

.

По определению

Обозначим проекции вектора ускорения на оси Ох , Оу и Oz через а x , а y , а z соответственно и разложим вектор скорости по осям:

. (5.17)

Сравнивая равенства (5.16) и (5.17) получим

Модуль вектора ускорения точки вычисляется аналогично модулю вектора скорости точки:

, (5.19)

а направление вектора ускорения  направляющими косинусами:

Определение скорости и ускорения точки при естественном способе задания её движения

При этом способе используются естественные оси с началом в текущем положении точки М на траектории (рис.5.12) и единичными векторами
Единичный векторнаправлен по касательной к траектории в сторону положитель ного отсчета дуги, единичный вектор направлен по главной нормали траектории в сторону ее вогнутости, единичный векторнаправлен по бинормали к траектории в точкеМ .

Орты илежат всоприкасающейся плоскости , орты ивнормальной плоскости , орты и в спрямляющей плоскости .

Полученный трехгранник называется естественным.

Пусть задан закон движения точки s = s (t ).

Радиус вектор точкиМ относительно какойлибо фиксированной точки будет сложной функцией времени
.

Из дифференциальной геометрии известны формулы СерреФрене, устанавливающие связи между единичными векторами естественных осей и векторфункцией кривой

где   радиус кривизны траектории.

Используя определение скорости и формулы СерреФрене, получим:

. (5.20)

Обозначая проекцию скорости на касательную и учитывая, что вектор скорости направлен по касательной, имеем

. (5.21)

Сравнивая равенства (5.20) и (5.21), получим формулы для определения вектора скорости по величине и направлению

Величина положительна, если точкаМ движется в положительном направлении отсчета дуги s и отрицательна в противоположном случае.

Используя определение ускорения и формулы СерреФрене, получим:

Обозначим проекцию ускорения точки на касательную, главную нормаль и бинормаль
соответственно.

Тогда ускорение равно

Из формул (5.23) и (5.24) следует, что вектор ускорения всегда лежит в соприкасающейся плоскости и раскладывается по направлениям и:

(5.25)

Проекция ускорения на касательную
называетсякасательным или тангенциальным ускорением . Оно характеризует изменение величины скорости.

Проекция ускорения на главную нормаль
называетсянормальным ускорением . Оно характеризует изменение вектора скорости по направлению.

Модуль вектора ускорения равен
.

Если иодного знака, то движение точки будет ускоренным.

Если иразных знаков, то движение точки будет замедленным.

СПОСОБе ЗАДАНИЯ ДВИЖЕНИЯ ТОЧКИ

Определение скорости точки

Скорость - это векторная величина, характеризующая быстроту и направление движения точки в данной системеотсчета.

При векторном способе задания движения положение движущейся точки в каждый момент времени определяется радиусом-вектором , который является функцией времени . Пусть в момент времени t точка занимает положениеМ , определяемое радиусом-вектором , а в момент - положение M 1 , определяемое радиусом-век­тором (рис. 8.6). Из треугольника ОММ 1 ,

.

Рис. 8.6 Рис. 8.7

При перемещении точки ее радиуc-вектор получает приращение:

Из двух последних равенств следует, что вектор перемещения точки является приращением радиуса-вектора точки за промежу­ток времени t .

Отношение вектора перемещения к промежутку времени t ,втечение которого произошло это перемещение, представляет собой вектор средней скорости воображаемого движения точки по хорде ММ 1:

Направление вектора совпадает с направлением Δ . При умень­шении промежутка времени Δt и приближении его к нулю вектор Δ также стремится к нулю, а вектор - к некоторому пределу. Этот предел является вектором скорости точки в момент t :

.

Так как Δt - приращение скалярного аргумента t , а Δ - прираще­ние вектора-функции , то предел отношения при явля­ется векторной производной от по t :

Таким образом, вектор скорости точки в данный момент равен производной от радиуса-вектора точки по времени.

Вектор направлен по хорде MM 1 в сторону движения точки. Когда Δt стремится к нулю, точка M 1 стремится к точке М , т. е. предельным положением секущейMM 1 является касательная.

Из этого следует, что вектор скорости точки направлен по касательной к траектории в сторону движения точки.

При движении точки по криволинейной траектории направление вектора скорости непрерывно изменяется (рис. 8.8).

Скорость точки при неравномерном криволинейном движении изменяется как по модулю, так и по направлению.

Отметим ряд положений движущейся точки на траектории M 1 , M 2 , M 3 , М 4 и покажем в этих положениях скорости точки (рис. 8.8,а).

Выбрав в пространстве некоторую неподвижную точку О 1 , отло­жим от этой точки векторы, геометрически равные скоростям (рис. 8.8,б). Если от точки О 1 отложить скорости, соответствующие всем поло­жениям точки М на кривой АВ, и соединить концы этих векторов, то получится линия CD, являющаяся годографом скорости.



Таким образом, годограф скорости представляет собой геометри­ческое место концов векторов скорости движущейся точки, отложен­ных от одной и той же произвольной точки пространства.

Изобразим на рис. 8.9, а траекторию точки АВ и ее скорость в произвольный момент времени t , а на рис. 8.9, б - годограф ско­рости CD этой точки.

Проведем через точку О 1 оси координат X, Y,Z, параллельные основным осямх,y,z. Тогда радиусом-вектором любой точки N годографа скорости CD будет скорость , а координаты точек годографа X, У, Z будут равны проекциям скорости на оси координат:

Эти уравнения являются параметрическими уравнениями годографа скорости .

Определение ускорения точки

При неравномерном криволинейном движении точки изменяются модуль и направление ее скорости. Ускорение точки характеризует быстроту изменения модуля и направления скорости точки.

Допустим, что в момент времени t точка занимает положение М и имеет скорость , а в момент времени она занимает положение M 1 и имеет скорость (рис. 8.10, а).

Найдем приращение вектора скорости за промежуток времени Δt . Для этого отложим от точки М скорость и построим при этой точке параллелограмм, одной из сторон которого будет скорость , а диагональю - скорость .

Тогда вторая сторона параллелограмма будет приращением вектора скорости , так как

.

Разделив приращение вектора скорости на промежуток времени Δt , получим вектор среднего ускорения точки за этот промежуток:

Этот вектор имеет направление и, следовательно, направлен в cторону вогнутости кривой. Построив годограф скорости CD (рис. 13,б), отложим там же скорости v и v 1 , приращение вектора скорости , а также вектор среднего ускорения , направленный по хорде NN 1 годографа ско­рости. Предел, к которому стремится вектор среднего ускорения , когда Δt стремится к нулю, является вектором ускорения точки α в данный момент времени t: находится в плоскости, проходящей через касательную к траектории точке М и прямую, параллельную касательной в точке М 1 (рис. 10,а). Предельное положение этой плоскости при стремлении точки M 1 к точке М называется соприкасающейся плоскостью.

Из этого следует, что вектор ускорения точки расположен в соприкасающейся плоскости и направлен в сторону вогнутости кривой.

Если кривая плоская, то соприкасающейся плоскостью является плоскость кривой и вектор ускорения лежит в этой плоскости.

В этой главе в основном рассмотрены методы решения задач, в которых закон движения точки выражен так называемым естественным способом: уравнением s=f(t) по заданной траектории *.

* Решения задач, в которых закон движения задан координатным способом, рассмотрены в конце главы (§ 31).

В этом случае главными параметрами, характеризующими движение точки но заданной траектории, являются: s - расстояние от заданного начального положения и t - время.

Величина, характеризующая в каждый данный момент времени направление и быстроту движения точки, называется скоростью (v на рис. 192). Вектор скорости всегда направлен вдоль касательной в ту сторону, куда движется точка. Числовое значение скорости в любой момент времени выражается производной от расстояния по времени:
v = ds/dt или v = f"(t).

Ускорение a точки в каждый данный момент времени характеризует быстроту изменения скорости. При этом нужно отчетливо понимать, что скорость - вектор, и, следовательно, изменение скорости может происходить по двум признакам: по числовой величине (по модулю) и по направлению.

Быстрота изменения модуля скорости характеризуется касательным (тангенсальным) ускорением a t - составляющей полного ускорения a, направленной по касательной к траектории (см. рис. 192).

Числовое значение касательного ускорения в общем случае определяется по формуле
a t = dv/dt или a t = f""(t).

Быстрота изменения направления скорости характеризуется центростремительным (нормальным) ускорением a n - составляющей полного ускорения a, направленного по нормали к траектории в сторону центра кривизны (см. рис. 192).

Числовое значение нормального ускорения определяется в общем случае по формуле
a n = v 2 /R,
где v - модуль скорости точки в данный момент;
R - радиус кривизны траектории в месте, где находится точка в данный момент.

После того как определены касательное и нормальное ускорения, легко определить и ускорение a (полное ускорение точки ).

Так как касательная и нормаль взаимно перпендикулярны, то числовое значение ускорения а можно определить при помощи теоремы Пифагора:
a = sqrt(a t 2 + a n 2).

Направление вектора a можно определить, исходя из тригонометрических соотношений, по одной из следующих формул:
sin α = a n /a; cos α = a t /a; tg α = a n /a t .

Но можно сначала определить направление полного ускорения a использовав формулу tg α = a n /a t ,
а затем найти числовое значение a:
a = a n /sin α или a = a t /cos α.

Касательное и нормальное ускорения точки являются главными кинематическими величинами, определяющими вид и особенности движения точки.

Наличие касательного ускорения (a t ≠0) или его отсутствие (a t =0) определяют соответственно неравномерность или равномерность движения точки.

Наличие нормального ускорения (a n ≠0) или его отсутствие (a n =0) определяют криволинейность или прямолинейность движения точки.

Движение точки можно классифицировать так:
а) равномерное прямолинейное (a t = 0 и a n = 0);
б) равномерное криволинейное (a t = 0 и a n ≠ 0);
в) неравномерное прямолинейное (a t ≠ 0 и a n = 0);
г) неравномерное криволинейное (a t ≠ 0 и a n ≠ 0).

Таким образом, движение точки классифицируется по двум признакам: по степени неравномерности движения и по виду траектории.

Степень неравномерности движения точки задана уравнением s=f(t), а вид траектории задается непосредственно.

§ 27. Равномерное прямолинейное движение точки

Если a t =0 и a n =0, то вектор скорости остается постоянным (v=const), т. е. не изменяется ни по модулю, ни по направлению. Такое движение называется равномерным прямолинейным .

Уравнение равномерного движения имеет вид
(а) s = s 0 + vt
или в частном случае, когда начальное расстояние s 0 =0,
(б) s = vt.

В уравнение (а) входит всего четыре величины, из них две переменные: s и t и две постоянные: s 0 и v. Поэтому в условии задачи на равномерное и прямолинейное движение точки должны быть заданы три любые величины.

При решении задач необходимо выяснить все заданные величины и привести их к одной системе единиц. При этом нужно заметить, что как в системе МКГСС (технической), так и в СИ единицы всех кинематических величин одинаковы: расстояние s измеряется в м, время t - в сек, скорость v - в м/сек.

§ 28. Равномерное криволинейное движение точки

Если a t = 0 и a n ≠ 0, то модуль скорости остается неизменным (точка движется равномерно), но ее направление изменяется и точка движется криволинейно. Иначе, при равномерном движении по криволинейной траектории точка имеет нормальное ускорение, направленное по нормали к траектории и численно равное
a n = v 2 /R,
где R - радиус кривизны траектории.

В частном случае движения точки по окружности (или по дуге окружности) радиус кривизны траектории во всех ее точках постоянный:
R = r = const,
а так как и числовое значение скорости постоянно, то
a n = v 2 /r = const.

При равномерном движении числовое значение скорости определяется из формулы
v = (s - s 0)/t или v = s/t.

Если точка совершит полный пробег по окружности, то путь s равен длине окружности, т. е. s = 2πr = πd (d = 2r - диаметр), а время равно периоду, т. е. t = T. Выражение скорости примет вид
v = 2πr/T = πd/T.

§ 29. Равнопеременное движение точки

Если вектор a t =const (касательное ускорение постоянно как по модулю, так и по направлению), то a n =0. Такое движение называется равнопеременным и прямолинейным .

Если же постоянным остается только числовое значение касательного уравнения
a t = dv/dt = f"(t) = const,
то a n ≠0 и такое движение точки называется равнопеременным криволинейным .

При |a t |>0 движение точки называется равноускоренным , а при |a t |<0 - равнозамедленным .

Уравнение равнопеременного движения независимо от его траектории имеет вид
(1) s = s 0 + v 0 t + a t t 2 / 2.

Здесь s 0 - расстояние точки от исходного положения в момент начала отсчета; v 0 - начальная скорость и a t - касательное ускорение - величины численно постоянные, a s и t - переменные.

Числовое значение скорости точки в любой момент времени определяется из уравнения
(2) v = v 0 + a t t.

Уравнения (1) и (2) являются основными формулами равнопеременного движения и они содержат шесть различных величин: три постоянные: s 0 , v 0 , a t и три переменные: s, v, t.

Следовательно, для решения задачи на равнопеременное движение точки в ее условии должно быть дано не менее четырех величин (систему двух уравнений можно решить лишь в том случае, если они содержат два неизвестных).

Если неизвестные входят в оба основных уравнения, например, неизвестны a t и t, то для удобства решения таких задач выведены вспомогательные формулы:

после исключения a t из (1) и (2)
(3) s = s 0 + (v + v 0)t / 2;

после исключения t из (1) и (2)
(4) s = s 0 + (v 2 - v 0 2) / (2a t).

В частном случае, когда начальные величины s 0 =0 и v 0 =0 (равноускоренное движение из состояния покоя), то получаем те же формулы в упрощенном виде:
(5) s = a t t 2 / 2;
(6) v = a t t;
(7) s = vt / 2;
(8) s = v 2 / (2a t).

Уравнения (5) и (6) являются основными, а уравнения (7) и (8) - вспомогательными.

Равноускоренное движение из состояния покоя, происходящее под действием только силы тяжести, называется свободным падением . К этому движению применимы формулы (5)-(8), причем
a t = g = 9,81 м/сек 2 ≈ 9,8 м/сек 2 .

§ 30. Неравномерное движение точки по любой траектории

§ 31. Определение траектории, скорости и ускорения точки, если закон ее движения задан в координатной форме

Если точка движется относительно некоторой системы координат, то координаты точки изменяются с течением времени. Уравнения, выражающие функциональные зависимости координат движущейся точки от времени, называют уравнениями движения точки в системе координат (см. § 51, п. 2 в учебнике Е. М. Никитина).

Движение точки в пространстве задается тремя уравнениями:
x = f 1 (t);
(1) y = f 2 (t);
z = f 3 (t);

Движение точки в плоскости (рис. 203) задается двумя уравнениями:
(2) x = f 1 (t);
y = f 2 (t);

Системы уравнений (1) или (2) называют законом движения точки в координатной форме .

Ниже рассматривается движение точки в плоскости, поэтому используется только система (2).

Если закон движения точки задан в координатной форме, то:

а) траектория плоского движения точки выражается уравнением
y = F(x),
которое образуется из данных уравнений движения после исключения времени t;

б) числовое значение скорости точки находится из формулы
v = sqrt(v x 2 + v y 2)
после предварительного определения проекции (см. рис. 203) скорости на оси координат
v x = dx/dt и v y = dy/dt;

в) числовое значение ускорения находится из формулы
a = sqrt(a x 2 + a y 2)
после предварительного определения проекций ускорения на оси координат
a x = dv x /dt и a y = dv y /dt;

г) направления скорости и ускорения относительно осей координат определяются из тригонометрических соотношений между векторами скорости или ускорения и их проекциями.

§ 32. Кинематический способ определения радиуса кривизны траектории

При решении многих технических задач возникает необходимость знать радиус кривизны R (или 1/R - кривизну ) траектории. Если задано уравнение траектории, то радиус ее кривизны в любой точке можно определить при помощи дифференциального исчисления. Используя уравнения движения точки в координатной форме, можно определять радиус кривизны траектории движущейся точки без непосредственного исследования уравнения траектории. Определение радиуса кривизны траектории при помощи уравнений движения точки в координатной форме называется кинематическим способом. Этот способ основан на том, что радиус кривизны траектории движущейся точки входит в формулу
a n = v 2 /R,
выражающую числовое значение нормального ускорения.

Отсюда
(а) R = v 2 /a n .

Скорость v точки определяется по формуле
(б) v = sqrt(v x 2 + v y 2).

Следовательно,
(б") v 2 = v x 2 + v y 2 .

Числовое значение нормального ускорения a n входит в выражение полного ускорения точки
a = sqrt(a n 2 + a t 2),
откуда
(в) a n = sqrt(a 2 - a t 2),
где квадрат полного ускорения
(г) a 2 = a x 2 + a y 2
и касательное ускорение
(д) a t = dv/dt.

Таким образом, если закон движения точки задан уравнениями
x = f 1 (t);
y = f 2 (t),
то при определении радиуса кривизны траектории рекомендуется произвести следующее:

1. Продифференцировав уравнения движения, найти выражения проекций на оси координат вектора скорости:
v x = f 1 "(t);
v y = f 2 "(t).

2. Подставив в (б") выражения v x и v y , найти v 2 .

3. Продифференцировав по t уравнение (б), полученное непосредственно из (б"), найти касательное ускорение a t , а затем a t 2 .

4. Продифференцировав вторично уравнения движения, найти выражения проекций на оси координат вектора ускорения
a x = f 1 ""(t) = v x ";
a y = f 2 ""(t) = v y ".

5. Подставив в (г) выражения a x и a y , найти a 2 .

6. Подставить в (в) значения a 2 и a t 2 и найти a n .

7. Подставив в (а) найденные значения v 2 и a n , получить радиус кривизны R.



gastroguru © 2017