Механизмы генетической рекомбинации бактериальной днк: трансформация, трансдукция, конъюгация. Особенности построения генетических карт у прокариот Факторы резистентности(r-факторы)

Мы познакомились с процессом удвоения ДНК, когда на одной цепи, как на матрице, выстраивается другая цепь. Однако в природе существуют процессы, связанные с изменением структуры ДНК, но эти изменения идут в других направлениях.

Трансформация – внесение в клетку генетической информации при помощи изолированной дезоксирибонуклеиновой кислоты (ДНК). Трансформация приводит к появлению у трансформированной клетки (трансформанта) и её потомства новых признаков, характерных для объекта - источника ДНК. Явление было открыто в 1928 английским учёным Ф. Гриффитом, наблюдавшим наследуемое восстановление синтеза капсульного полисахарида у пневмококков при заражении мышей смесью убитых нагреванием капсулированных бактерий и клеток, лишённых капсулы. Организм мыши в этих экспериментах играл роль своеобразного детектора, так как приобретение капсульного полисахарида сообщало клеткам, лишённым капсулы, способность вызывать смертельный для животного инфекционный процесс. В последующих экспериментах было установлено, что трансформация имеет место и в том случае, когда вместо убитых клеток к лишённым капсулы пневмококкам добавляли экстракт из разрушенных капсулированных бактерий. В 1944 О. Эйвери с сотрудниками (США) установил, что фактором, обеспечивающим трансформацию, являются молекулы ДНК. Эта работа - первое исследование, доказавшее роль ДНК как носителя наследственной информации.

Помимо пневмококков, трансформация обнаружена и изучена на некоторых других бактериях.

Трансформацию у бактерий рассматривают как сложный процесс, включающий следующие стадии:

Фиксация молекул ДНК клеткой-реципиентом;

Проникновение ДНК внутрь клетки;

Включение фрагментов трансформирующей ДНК в хромосому клетки-хозяина;

Формирование "чистых" трансформированных вариантов.

Фиксация ДНК происходит на особых участках клеточной поверхности (рецепторах), число которых ограничено. Связанная с рецепторами ДНК сохраняет чувствительность к действию добавленного в среду фермента дезоксирибонуклеазы, вызывающего её распад. Однако, спустя очень короткий срок (в пределах 1 мин) после фиксации, часть ДНК проникает в клетку. Бактериальные клетки одного и того же штамма резко различаются по проницаемости для ДНК. Клетки данной бактериальной популяции, способные включать чужеродную ДНК, называются компетентными . Число компетентных клеток в популяции незначительно и зависит от генетических особенностей бактерий и фазы роста бактериальной культуры. Развитие компетенции связывают с синтезом особого белка, обеспечивающего проникновение ДНК в клетку.



Средние размеры фрагментов ДНК, проникающих в клетку, составляют 5×106 дальтон. Поскольку в компетентную клетку может одновременно проникнуть ряд таких фрагментов, суммарная величина поглощённой ДНК может быть примерно равна размерам хромосомы клетки-хозяина. После проникновения в клетку двунитевой ДНК одна нить распадается до моно- и олигонуклеотидов, вторая - встраивается в хромосому клетки-хозяина путём её разрывов и воссоединений. Последующая репликация такой гибридной структуры приводит к выщеплению "чистых" клонов трансформантов, в потомстве которых закреплен признак, кодируемый включившейся ДНК.

Применение трансформации позволило провести генетический анализ бактерий, у которых не описано иных форм генетического обмена (конъюгации, трансдукции). Кроме того, трансформация – удобный метод для выяснения влияний на биологическую активность ДНК физических или химических изменений её структуры. Разработка метода у кишечной палочки позволила использовать для трансформации не только фрагменты бактериальной хромосомы, но и ДНК бактериальных плазмид и бактериофагов. Этот метод широко используется для внесения в клетку гибридной ДНК в исследованиях по генной инженерии.

Трансдукция (от лат. transductio - перемещение) – перенос генетического материала из одной клетки в другую с помощью вируса, что приводит к изменению наследственных свойств клеток-реципиентов. Явление трансдукции было открыто американскими учёными Д. Ледербергом и Н. Циндером в 1952. Особые бактериальные вирусы – умеренные фаги в процессе вегетативного размножения способны случайно захватывать и переносить в другие клетки любые участки ДНК лизируемых, то есть разрушаемых ими, бактерий (общая , или неспецифическая , трансдукция). Длина переносимого (трансдуцируемого) отрезка ДНК определяется размером белковой оболочки фаговой частицы и обычно не превышает 1-2% бактериального генома. Переносимый отрезок может содержать несколько генов. Поскольку вероятность такой сцепленной трансдукции зависит от расстояния между генами в молекуле ДНК, образующей хромосому бактерии, явление трансдукции широко используется при составлении генетических карт хромосом бактерий. Генетический материал фага в таких трансдуцирующих частицах отсутствует; поэтому, вводя ДНК в клетку, они не осуществляют все остальные функции фага: не размножаются, не лизогенизируют клетку и не наделяют её иммунитетом к фагу. Внесённый фрагмент может существовать в клетке в виде дополнительной генетического элемента, обладающего функциональной активностью. Поскольку такой фрагмент не способен воспроизводиться, при каждом клеточном делении он передаётся лишь в одну из дочерних клеток. За исключением этой клетки свойства всего остального потомства остаются без изменений (абортивная трансдукция). В дальнейшем фрагмент может быть либо разрушен, либо включен в хромосому бактерии, заменив в ней гомологичный участок ДНК. В последнем случае новые признаки, приобретённые клеткой-трансдуктантом, будут свойственны всему потомству этой клетки (полная трансдукция).

Существует группа бактериофагов, способных трансдуцировать лишь определённые гены, расположенные рядом с местом включения генома фага в хромосому бактерии при лизогенизации (ограниченная , или специфическая , трансдукция). Такие трансдуцирующие фаговые частицы, образующиеся в результате случайного нарушения точности процесса выхода профага из бактериальной хромосомы, содержат молекулу ДНК, состоящую из остатка фагового генома и фрагмента бактериального генома. В большинстве случаев они не могут самостоятельно размножаться или лизогенезировать бактерии из-за утраты части фагового генома (до 30%). Генетический материал трансдуцирующих частиц может сохраняться в клетке в автономном состоянии или в качестве профага включиться в ДНК бактерии. Однако в обоих случаях часть потомства восстанавливает исходные свойства из-за утраты профага. Стабильная трансдукция достигается только в случае включения бактериального фрагмента профага в геном бактерии в результате обмена на гомологичный участок хромосомы.

Эписомы (от эпи... и греч. sóma - тело) – генетические факторы, способные находиться в клетке либо в автономном (в цитоплазме) либо в интегрированном (включенными в хромосому) состоянии; представляют собой молекулы ДНК. К эписомам относятся геном умеренного фага лямбда, половой фактор F, некоторые R-факторы, сообщающие бактериям устойчивость к определённым лекарств, веществам, и некоторые др. Эписомы не являются обязательными компонентами клеток и могут переходить из одного состояния в другое, что зависит от вида клеток. Например, геном умеренного фага лямбда в клетках кишечной палочки может находиться в интегрированном либо в автономном состоянии, а в клетках возбудителя брюшного тифа – только в автономном состоянии. Находясь в автономном состоянии, большинство эписом ведут себя как типичные плазмиды. Ряд авторов видит в эписомах переходное звено между структурами, определяющими хромосомную и нехромосомную наследственность.

ДНК- диагностика

Организм человека является средой обитания для сотен видов бактерий и вирусов. С биологической точки зрения организм человека представляет собой целую систему сосуществующих организмов-симбионтов. Далеко не все из симбионтов патогенные. Без некоторых видов бактерий человек просто не способен существовать, их утрата или снижение количества является причиной развития ряда тяжелых заболеваний. Расшифровка геномов многих болезнетворных микроорганизмов с идентификацией всех белков поможет разработать методы предупреждения и лечения инфекционных болезней.

Для развития инфекционного процесса большое значение имеет генетический статус самого хозяина. Например, отдельные индивидуумы являются носителями вируса иммунодефицита, но СПИДом не болеют. У этих лиц имеется мутация в гене, кодирующем поверхностный белок, ответственный за попадание вируса внутрь лимфоидных клеток. Плотность белка на поверхности клеток снижена, вирус удерживается, но внутрь не попадает. Частота гомозигот по этой мутации среди жителей Европы составляет около 1%, они имеют выраженную устойчивость к ВИЧ-инфекциям. Более устойчивыми оказываются и гетерозиготные носители мутации, в российской популяции их частота достигает 13%.

Тема: Генетика микроорганизмов 1. Конъюгация, трансдукция, трансформация. 2. Изменчивость микроорганизмов. 3. Использование достижений генетики бактерий.

Наследственный аппарат бактерий имеет ряд особенностей: бактерии - гаплоидные организмы, т. е. они имеют 1 хромосому. В связи с этим при наследовании признаков отсутствует явление доминантности; бактерии обладают высокой скоростью размножения, в связи с чем за короткий промежуток времени (сутки) сменяется несколько десятков поколений бактерий. Это дает возможность изучать огромные по численности популяции и достаточно легко выявлять даже редкие по частоте мутации. Наследственный аппарат бактерий представлен хромосомой. У бактерий она одна. Хромосома бактерий - это молекула ДНК. Длина этой молекулы достигает 1, 0 мм и, чтобы "уместиться" в бактериальной клетке, она не линейная, как у эукариотов, а суперспирализована в петли и свернута в кольцо. Это кольцо в одной точке прикреплено к цитоплазматической мембране. На бактериальной хромосоме располагаются отдельные гены. У кишечной палочки, например, их более 2 тыс.

2. Функциональными единицами генома бактерий, кроме хромосомных генов, являются: IS-последовательности; транспозоны; плазмиды. IS-последовательности (англ. insertion - вставка, sequence - последовательность)- короткие фрагменты ДНК. Они не несут структурных (кодирующих тот или иной белок) генов, а содержат только гены, ответственные за транспозицию (способность IS-последовательностей перемещаться по хромосоме и встраиваться в различные ее участки). ISпоследовательности одинаковы у разных видов бактерий. Транспозоны - это молекулы ДНК, более крупные, чем IS последовательности. Помимо генов, ответственных за транспозицию, они содержат и структурный ген, кодирующий тот или иной признак. Транспозоны (Tn-элементы) состоят из 2000 -25 000 пар нуклеотидов, содержат фрагмент ДНК, несущий специфические гены, и два концевых ISэлемента. Каждый транспозон обычно содержит гены, привносящие важные для бактерии характеристики типа множественной устойчивости к антибактериальным агентам. В общем, для транспозонов характерны те же гены, что и для плазмид (гены устойчивости к антибиотикам, токсинообразования, дополнительных ферментов метаболизма). Транспозоны легко перемещаются по хромосоме. Их положение сказывается на экспрессии как их собственных структурных генов, так и соседних хромосомных. Транспозоны могут существовать и вне хромосомы,

Плазмиды - кольцевые суперспиралевидные молекулы ДНК. Их молекулярная масса колеблется в широких пределах и может быть в сотни раз больше, чем у транспозонов. Плазмиды содержат структурные гены, наделяющие бактериальную клетку разными, весьма важными для нее свойствами: R-плазмиды - лекарственной устойчивостью; Col-плазмиды - способностью синтезировать колицины; F-плазмиды - передавать генетическую информацию; Тох-плазмиды - синтезировать токсин; Плазмиды биодеградации - разрушать тот или иной субстрат и т. д. Плазмиды могут быть интегрированы в хромосому (в отличие от ISпоследовательностей и транспозонов, встраиваются в строго определенные участки), а могут существовать автономно. В этом случае они обладают способностью к автономной репликации, и именно поэтому в клетке может быть 2, 4, 8 копий такой плазмиды. Многие плазмиды имеют в своем составе гены трансмиссивности и способны передаваться от одной клетки к другой при конъюгации (обмене генетической информацией). Такие плазмиды называются трансмиссивными.

У бактерий различают 2 вида изменчивости - фенотипическую и генотипическую. Фенотипическая изменчивость - модификация - не затрагивает генотип, но затрагивает большинство особей популяции. Модификации не передаются по наследству и с течением времени затухают, т. е. возвращаются к исходному фенотипу через большее (длительные модификации) или меньшее (кратковре менные модификации) исло поколений. ч Генотипическая изменчивость затрагивает генотип. В ее основе лежат мутации и рекомбинации. Мутации бактерий принципиально не отличаются от мутаций эукариотических клеток. Особенностью мутаций у бактерий является относительная легкость их выявления, так как имеется возможность работать с большими по численности популяциями бактерий. По происхождению мутации могут быть: спонтанными; индуцированными. По протяженности: точечными; генными; хромосомными. По направленности: прямыми; - обратными.

Рекомбинации (обмен генетическим материалом) у бактерий отличаются от рекомбинаций у эукариот: у бактерий имеется несколько механизмов рекомбинаций; при рекомбинациях у бактерий образуется не зигота, как у эукариот, а мерозигота (несет полностью генетическую информацию реципиента и часть генетической информации донора в виде дополнения); у бактериальной клетки-рекомбината изменяется не только качество, но и количество генетической информации.

Конъюгация У бактерий - способ переноса генетического материала от одной бактериальной клетки к другой. При этом две бактерии соединяются тонким мостиком, через который из одной клетки (донора) в другую (реципиент) переходит отрезок нити дезоксирибонуклеиновой кислоты (ДНК). Наследственные свойства реципиента изменяются в соответствии с количеством генетической информации, заключённой в переданном кусочке ДНК.

Конъюгация Конъюгация (от лат. conjugatio - соединение), парасексуальный процесс - однонаправленный перенос части генетического материала (плазмид, бактериальной хромосомы) при непосредственном контакте двух бактериальных клеток. Открыт в 1946 году Дж. Ледербергом и Э. Тайтемом. Имеет большое значение в природе, поскольку способствует обмену полезными признаками при отсутствии истинного полового процесса. Из всех процессов горизонтального переноса генов конъюгация позволяет передавать наибольшее количество генетической информации.

Конъюгация - обмен генетической информацией у бактерий путем передачи ее от донора к реципиенту при их прямом контакте. После образования между донором и реципиентом конъюгационного мостика одна нить ДНК-донора поступает по нему в клетку-реципиент. Чем дольше контакт, тем большая часть донорской ДНК может быть передана реципиенту. Основываясь на прерывании конъюгации через определенные промежутки времени, можно определить порядок расположения генов на хромосоме бактерий - построить хромосомные карты бактерий (произвести картирование бактерий). Донорской функцией обладают F+-клетки.

Трансдукция Эстер Ледерберг удалось выделить бактериофаг лямбда, ДНК вирус, из Escherichia coli K 12 в 1950 году. Собственно открытие трансдукции связано с именем Джошуа Ледерберга. В 1952 году они совместно с Нортоном Циндером обнаружили общую трансдукцию. В 1953 Ледербергом и др. было показано существование абортивной трансдукции, в 1956 - специфической.

Трансдукция- обмен генетической информацией у бактерий путем передачи ее от донора к реципиенту с помощью умеренных (трансдуцирующих) бактериофагов. Трансдуцирующие фаги могут переносить 1 или более генов (признаков). Трансдукиия бывает: специфической - переносится всегда один и тот же ген; неспецифической - передаются разные гены. Это связано с локализацией трансдуиируюших фагов в геноме донора: в случае специфической трансдукции они располагаются всегда в одном месте хромосомы; при неспецифической их локализация непостоянна.

Рис. 2. Трансдукция 1 - бактерия - донор (В+), 2 - фаг, 3 - размножение, 4 - адсорбция, 5 - бактерия - реципиент (В-), 6 - бактерия – реципиент с новым свойством.

Трансформация - это обмен генетической информацией у бактерий путем введения в бактериальную клетку реципиент готового препарата ДНК (специально приготовленного или непосредственно выделенного из клетки-донора). Чаще всего передача генетической информации происходит при культивировании реципиента на питательной среде, содержащей ДНК донора. Для восприятия донорской ДНК при трансформации клеткареципиент должна находиться в определенном физиологическом состоянии (компетентности), которое достигается специальными методами обработки бактериальной популяции или возникает спонтанно. При трансформации передаются единичные (чаще 1) признаки. Трансформация является самым объективным свидетельством связи ДНК или ее фрагментов с тем или иным фенотипическим признаком, поскольку в реципиентную клетку вводится чистый препарат ДНК.

Рис. 3. Трансформация капсульный штамм бактерии (1) при посеве дает рост (6). После кипячения этой культуры рост отсутствует (7). Аналогичен результат такого опыта с бескапсульным штаммом (4 -рост +, 8 -рост -). Объединение в одну емкость экстракта касульного (1) и живой культуры бескапсульного (3) штаммов с последующим высевом дает рост капсульного штамма (5).

Свойства клеток колоний S – и R- форм S-форма R-форма Колонии шероховатые, непрозрачные с неровными краями, часто морщинистые Жгутики часто отсутствуют Капсулы или слизистый слой отсутствует Биохимически менее активны Слабовирулентные или авирулентные Неполноценны в антигенном отношении Слабочувствительны к фагу Взвесь быстро оседает, осадок крошковидный, клетки полиморфные Колонии прозрачные, с гладкой блестящей поверхностью, круглые, с ровными краями, выпуклые Подвижные виды имеют жгутики У капсульных видов хорошо видна капсула или слизистый слой Биохимически более активны У патогенных видов выражены вирулентные свойства Полноценны в антигенном отношении Чувствительны к фагу Взвесь клеток в физиологическом растворе гомогенная, стойкая, клетки нормальных размеров

Прокариотам несвойственно половое размножение . Рекомбинация у них происходит в результате внутригеномных перестроек, заключающихся в изменении локализации генов в пределах хромосомы, или при проникновении в клетку реципиента части ДНК донора.

В результате рекомбинаций образуется только один рекомбинант, генотип которого представлен в основном генотипом реципиента с включенным в него фрагментом ДНК донора.

Генетические рекомбинации происходят при участии ряда ферментов в пределах отдельных генов или групп сцепленных генов. Существуют специальные гес-гены, детерминирующие рекомбинационную способность бактерий. Передача генетического материала (хромосомных генов) от одних бактерий к другим происходит путем трансформации, трансдукции и конъюгации. Передача плазмидных генов - путем трансдукции и конъюгации.

Трансформация - изменение одного типа клеток при действии активного начала из другого типа клеток. Феномен открыл Гриффит у Streptococcus pneumoniae (1928); позднее Эвери, Маклеод и Мак Карти (1944) выделили трансформирующее начало пневмококков в форме молекулы ДНК. Это и явилось первым прямым доказательством того, что носителем генетической информации является ДНК.

Погибшие бактерии постоянно высвобождают ДНК, которая может быть воспринята другими бактериями. Традиционно, любая чужеродная ДНК, попадающая в бактериальную клетку, расщепляется эндонуклеазами. При некоторых условиях такая ДНК интегрируется в геном бактерий и изменяет его. Встраивание плазмидной ДНК может менять вирулентность бактерий. В обмене генетической информацией трансформация играет незначительную роль.

Трансдукция - перенос фрагмента ДНК от одной клетки (донора) к другой (реципиенту) с помощью бактериофага. Явление открыл Ледерберг и Циндер (1952). Выделяют 3 типа трансдукции:

    неспецифическая (общая) - в клетке, инфицированной бактериофагом, в ходе сборки дочерней популяции в головки некоторых фагов вместе с вирусной ДНК может проникнуть любой фрагмент бактериальной ДНК или плазмиды. В этом случае, фаг утрачивает часть своего генома, становиться дефектным и способен вызвать трансдукцию. При такой форме трансдукции в клетки-реципиенты могут быть внесены практически любые гены.

    специфическая характеризуется способностью фага переносить определенные гены от бактерии-донора к бактерии-реципиенту. Это связано с тем, что образование трансдуцирующего бактериофага происходит путем выщепления профага из бактериальной хромосомы вместе с генами, расположенными на хромосоме в клетке-донора рядом с профагом. При взаимодействии трансдуцирующих фагов клетками реципиентного штамма происходит включение гена бактерии-донора вместе с ДНК дефектного фага в хромосому бактерии-реципиента. Бактерии, лизогенированные дефектным фагом, невосприимчивы, как и все лизогенные клетки, к последующему заражению гомологичным вирулентным фагом.

    абортивная. Принесенный фагом фрагмент ДНК бактерии-донора не включается в хромосому бактерии-реципиента, а располагается в ее цитоплазме и может в таком виде функционировать. Во время деления бактериальной клетки трансдуцированный фрагмент ДНК-донора может передаваться только одной из двух дочерних клеток, т. е. наследоваться однолинейно и постепенно утрачиваться.

Конъюгация - перенос генетического материала их клетки-донора в клетку-реципиента при их скрещивании. Процесс конъюгации у бактерий впервые обнаружен Д. Ледербергом и Э. Тейтумом в 1946 г.Позднее выяснилось, что донорами генетического материала являются клетки, несущие F-плазмиду (половой фактор). При скрещивании F + с F" клеткой половой фактор передается независимо от хромосомы донора, если плазмида находится в автономном состоянии. При этом почти все реципиентные клетки получают F плазмиду и становятся F + клетками.

Этапы коньюгации:

    прикрепление клетки-донора к реципиентной клетке с помощью половых ворсинок (sex pili).

    образуется конъюгационный мостик, через который из клетки-донора в клетку-реципиент могут передаваться F-фактор и другие плазмиды, находящиеся в цитоплазме бактерии-донора в автономном состоянии.

    Интеграция F-плазмиды в состав бактериальной хромосомы приводит к разрыву одной из нитей ДНК, что обеспечивает возможность переноса в реципиентную клетку.

Постановка опыта трансдукции

Умеренный фаг, полученный при фильтровании из культуры E.coli в объеме 1 мл вносят в стерильную пробирку, затем в эту пробирку вносят 1 мл бульонной культуры E.coli, не способной расщеплять лактозу. Опытную пробирку выдерживают в термостате 40 мин. Затем делают высевы на сектора чашки со средой Эндо: умеренный фаг; E.coli lac-; из опытной пробирки.

Постановка опыта конъюгации

В отдельную стерильную пробирку вносят бульонную культуру донора и бульонную культуру реципиента в объеме по 1 мл. Опытную пробирку выдерживают в термостате 40 мин. Затем производят высевы культуры донора, реципиента и смесь донора с реципиентом на отдельные сектора минимальной питательной среды. Инкубируют 24 часа 37°С.

Процесс образования геномов, содержащих генетический материал от двух родительских форм . У бактерий осуществляется в результате конъюгации, трансформации, трансдукции.

Рекомбинации подразделяют на законные и незаконные. Законная рекомбинация требует наличия протяженных, комплементарных участков ДНК в рекомбинируемых молекулах. Она происходит только между близкородственными видами микроорганизмов.

Незаконная рекомбинация не требует наличия протяженных комплементарных участков ДНК.

Трансформация - процесс поглощения клеткой организма свободной молекулы ДНК из среды и встраивания её в геном , что приводит к появлению у такой клетки новых для неё наследуемых признаков, характерных для организма-донора ДНК. Клетки, способные воспринимать донор
ную ДНК, называются компетентными. Состояние компетентности непродолжительно. Оно возникает в определенный период роста бактериальной культуры.В состоянии компетентности клеточная стенка бактерий становится проницаемой для высокополимерных фрагментов ДНК. По-видимому, это связано с тем, что трансформируемый фрагмент ДНК связывается с белком, образуя трансформасому, в которой он переносится в бактериальную клетку. Процесс трансформации:

1).Адсорбция ДНК-донора на клетке-реципиенте.

2) проникновение ДНК внутрь клетки-реципиента;

3) соединение ДНК с гомологичным участком хромосомы реципиента с последующей рекомбинацией.

После проникновения внутрь клетки трансформирующая ДНК деспирализуется. Затем происходит физическое включение любой из двух нитей ДНК донора в геном реципиента.

Трансдукция - процесс переноса бактериальной ДНК из одной клетки в другую бактериофагом .

Неспецифическая : трансдуцирующие фаги являются только переносчиком генетического материала от одних бактерий к другим, поскольку сама фагоная ДНК не участвует в образовании рекомбинантов.

Специфическая : характеризуется способностью фага переносить определенные гены от бактерии-донора к бактерии-
реципиенту.

Абортивная : принесенный фагом фрагмент ДНК бактерии донора не включается в хромосому бактерии реципиента, а располагается в цитоплазме.

Конъюга́ция - однонаправленный перенос части генетического материала при непосредственном контакте двух бактериальных клеток.

Первым этапом является прикрепление клетки-донора к реципиентной клетке с помощью половых ворсинок.Затем между обеими клетками образуется конъюгационный мостик через который из клетки-донора в клетку-реципиент могут передаваться F-фактор и другие плазмиды, находящиеся в цитоплазме бактерии-донора в автономном состоянии.

Транспозиция - перемещение определенных генетических элементов из одного места на хромосоме в другое.

Рекомбинация у прокариот. Трансформация. Конъюгация. Трансдукция. Особенности построения генетических карт у прокариот.

Генетическая рекомбинация

Генотипическая изменчивость прокариот наблюдается в результате рекомбинации генетт-го материала за счет частичного объединения геномов двух клеток и проявляется в фенотипе бактерий. К рекомбинативной изменчивости генетт-го материала прокариот приводят трансформация, трансдукция и конъюгация.

В отличие от эукариот, у которых при половом процессе происходит образование истинной зиготы, объединяющей генетт.материал обоих родителей, у прокариот при всех трех вышеуказанных процессах наблюдается лишь частичный перенос генет-го материала из клетки-донора в клетку-реципиент, что приводит к обр-ию неполноценной зиготы – мерозиготы . Т.о., прокариотная клетка-реципиент становится частично диплоидной, сохраняя в основном генотип клетки-реципиента и приобретая лишь отдельные свойства клетки-донора.

Ответственность за рекомбинации несут специальные гены клетки-реципиента, получившие название rec-генов . Механизм рекомбинаций включает ряд последовательных стадий:
1) разрыв нитей ДНК клетки-реципиента;
2) встраивание фрагментов ДНК, привнесенных из клетки-донора в геном клетки-реципиента;
3) репликация рекомбинативной ДНК, дающей начало потомству клеток с измененным геномом.

Доказательства вышеуказанного механизма рекомбинации были экспериментально получены при изучении процесса конъюгации кишечной палочки (E.coli) с использованием меченных по фосфору (Р 32) клеток-доноров.

Трансформация (от лат.– преобразование) – изменение генома и свойств бактерий в рез-те переноса информации при проникновении фрагмента свободной ДНК из среды в кл-ку. При трансформации не требуется непосредственного контакта м/у клеткой-донором и клеткой-реципиентом. Источником трансформирующей ДНК может служить свежеубитая культура бактерий или чистые препараты ДНК, экстрагированной из нее.



Явление трансформации у бактерий впервые наблюдал Ф. Гриффитс в 1928 г. Он обнаружил, что при совместном ведении в организм мышей убитого вирулентного капсульного пневмококка S-типа с живым авирулентным бескапсульным пневмококком R-типа все животные погибают. При этом из крови погибших мышей наряду с бескапсульными пневмококками R-типа выделяются вирулентные капсульные пневмококки S-типа. Гриффитс не сумел объяснить явление трансформации. Лишь в 1944 г. О. Эвери, К. Мак-Леод и М. Мак-Карти выделили трансформирующее вещество из убитых клеток капсульных пневмококков и показали, что им является ДНК, чувствительная к ДНК-полимеразе.

Процесс трансформации проходит в несколько этапов :
1) адсорбция трансформирующей ДНК на поверхности компетентной клетки-реципиента;
2) ферментативное расщепление трансформирующей ДНК с образованием фрагментов со средней молекулярной массой (4-5)·10 6 ;
3) проникновение фрагментов ДНК в клетку-реципиент, сопровождающееся деградацией одной из цепей ДНК и образованием одноцепочечных фрагментов;
4) интеграция – включение фрагментов трансформирующей ДНК в ДНК клетки-реципиента путем генетт-го обмена;
5) экспрессия – интенсивное размножение трансформированных клеток, потомство которых будет иметь измененный ген в молекуле ДНК.

Трансформирующий фрагмент ДНК обычно соответствует 0,3% бактериальной хромосомы, или примерно 15 генам. В клетку-реципиент проникает очень малый фрагмент ДНК, что обуславливает трансформацию только одного признака и редко двух. Путем трансформации из одной клетки в другую могут быть перенесены такие признаки бактерий, как устойчивость к лекарств.препаратам, способность к синтезу капсульных полисахаридов, ферментов, определенных метаболитов и т.д. При трансформации не происходит добавления качественно нового наследственного признака, наблюдается лишь замена одного признака другим.

Трансдукция заключается в переносе генетт-го материала из клетки-донора в клетку-реципиент умеренным бактериофагом. Явление трансдукции в 1952 г. открыли Н. Циндер и Дж. Ледерберг на примере двух штаммов сальмонелл.

По механизму взаимодействия с бактериальной клеткой фаги подразделяются на вирулентные и умеренные. Вирулентные фаги, проникая в клетку, обусловливают формирование новых фагов и лизис бактерий. Заражение клеток умеренными фагами не всегда сопровождается лизисом бактерий, часть их выживает и становится лизогенными. В лизогенных бактериях ДНК-фага включается в ДНК-клетки и умеренный фаг превращается в профаг, утрачивая при этом способность лизировать бактериальную клетку. Профаг ведет себя как часть бактериальной хромосомы и репродуцируется в ее составе в течение ряда поколений. Освобождение умеренных фагов из клеток лизогенных бактерий происходит спонтанно либо под действием лизогенных бактерий происходит спонтанно либо под действием индуцированных агентов – ультрафиолетовых лучей, ионизирующей радиации и химических мутагенов.

В процессе репродукции некоторых умеренных фагов небольшой фрагмент бактериальной хромосомы, включается в геном фага. Трансдуцирующий фаг переносит фрагмент ДНК предыдущего хозяина в новую чувствительную к нему бактериальную клетку. Т.о., бактериальная клетка-реципиент становится частичной зиготой.

У бактерий различают 3 типа трансдукции : специализированную, общую и абортивную.

Специализированная - в геном фага включаются строго определенные гены ДНК бактерии-донора, расположенные на хромосоме бактерии непосредственно рядом с профагом. Прилегающие к профагу гены выщепляются из бактер-ой хромосомы, а часть генов профага остается в ее составе. Освобождающиеся из клетки-донора трансдуцирующие дефектные фаги вызывают лизогенезацию клетки-реципиента. ДНК дефектного фага включается в состав хромосомы клетки-реципиента, привнося в нее и гены бактерии-донора.

Общая - отличается от специализ-ой тем, что в состав ДНК фага включается любой фрагмент ДНК бактерии-донора. Т.о., при общей трансдукции трансдуцирующие фаги переносят из хромосомы бактерии-донора любые гены, контролирующие различные признаки, в клетку бактерии-реципиента.

Абортивная - фрагмент хромосомы клетки-донора, привнесенный трансдуцирующим фагом в клетку-реципиент, не включается в ее хромосому, а локализуется в цитоплазме и при делении клетки-реципиента передается только одной из образующихся клеток.

Трансдукция в эксперименте показана на кишечных бактериях, псевдомонадах, стафилококках, бациллах и актиномицетах. Трансдукция определяет появление разновидностей бактерий с новыми свойствами, устойчивость к лекарственным препаратам, синтез ферментов, аминокислот и др.

В экспериментах по генной инженерии трансдукция открывает не только широкие возможности межвидовой гибридизации бактерий, но и возможность получения гибридов среди разных групп прокариот.

Конъюгация происходит при непосредственном контакте бактер-ых кл-ок и предусматривает направленный перенос генетт-го материала из клетки-донора в клетку-реципиент. Феномен конъюгации в 1946 г. описали Дж. Ледерберг и Э. Тейтум на примере кишеч.палочки (E.coli) штамма К 12 .

Способность бактерий к конъюгации связана с наличием у них полового F-фактора, относящегося к числу конъюгативных плазмид. Клетки, несущие F-фактор, обозначаются F + ; клетки, лишенные F-фактора, - F ¯ . F-фактор (F-плазмида) в клетках F + обычно находится в изолированном состоянии от бактериальной хр-мы и является цитоплазматической структурой. Бактер-ые клетки, содержащие F-фактор, отличаются от остальных клеток рядом свойств: измененным поверхностным зарядом и способностью синтезировать дополнительные поверхностные структуры F-пили.

Процесс конъюгации начинается с прикрепления конца F-пили клетки-донора к клетке-реципиенту. В теч.неск-их минут клетка-донор и клетка-реципиент сближаются, возможно, за счет сокращения F-пили и вступают в непосредственный контакт. Ч/з цитоплазматический мостик по каналу F-пили, менее чем за 5 мин, происходит передача полового F-фактора, независимо от бактериальной хромосомы, из цитоплазмы клетки-донора F + в цитоплазму клетки-реципиента F ¯ . При этом клетка-донор не теряет своей донорной способности, так как в ней остаются копии F-фактора.

Среди популяции клеток F + имеются бактерии, способные при конъюгации передавать не F-фактор, а фрагмент бактериальной хромосомы. Эти клетки бактерий и образованные ими штаммы обозначаются Hfr (high frequency of recombination), что означает бактерии с высокой частотой рекомбинации. Рекомбинации м/у кл-ми Hfr и кл-ми F ¯ происходят в тысячу раз чаще, чем между клетками F + и F ¯ . Отличие клеток Hfr от клеток F + заключается в том, что половой F-фактор у них включён в бактериальную хромосому. Во время конъюгации в клетке-доноре Hfr идет процесс репликации ДНК. При этом одна из реплицирующихся цепей ДНК ч/з конъюгационный мостик проникает в клетку-реципиент F ¯ , вторая остается в клетке-доноре Hfr, затем каждая из этих цепей достраивается комплементарной нитью. Конъюгационный мостик непрочен, он легко разрывается, поэтому из клетки-донора Hfr в клетку-реципиент F ¯ передается не вся хромосома, а лишь ее фрагмент.

М/у перенесенным из клетки Hfr фрагментом хромосомы и гомологичным участком хромосомы клетки F ¯ происходит генет-ий обмен. В результате часть донорной ДНК встраивается в ДНК реципиента, а соответствующая часть реципиентной ДНК исключается из нее. Эффективность включения донорной ДНК в хромосому реципиента высока и составляет примерно 0,5.

Конъюгацию прокариот не следует отождествлять с половым процессом эукариот, т.к.при конъюгации в клетку F ¯ передается только часть генет-го материала клетки F + , в результате чего образуется неполноценная мерозигота. Основу последней составляет геном клетки-реципиента с привнесенной частью генома клетки-донора.

Наряду со стабильностью и точностью наследственных свойств генетический аппарат прокариот характеризуется изменчивостью, которая проявляется в форме мутаций и рекомбинаций.

Спонтанные мутации прокариот следует считать начальным видом изменчивости, возникшим параллельно началу функционирования их ДНК как генетической структуры. Возможно, что на протяжении миллионов лет мутации были единственным механизмом изменчивости прокариот.

Скачком в эволюции прокариот явилось появление рекомбинативной изменчивости, заключающейся в частичном объединении генет-ой информации двух прокариотных клеток донора и реципиента. Т.о. возник новый дополнительный материал для естеств.отбора, ускоряющий процесс эволюции. Из трех вышерассмотренных рекомбинативных процессов наиболее совершенным является конъюгация, т.к.она обеспечивает более полный обмен генетической информации м/у двумя клетками. Известны случаи, когда при длительной конъюгации (90 мин) двух клеток E.coli наблюдается вхождение всей хромосомы клетки-донора в клетку-реципиент.

Эффективность генет-их рекомбинаций оказывается высокой только для близкородственных бактерий, имеющих родство в пределах вида.

Особенности построения генетических карт у прокариот

Для построения генетт.карт у прокариот используется явление конъюгации – переноса генетт-го материала из одной клетки в другую с помощью спец.кольцевых молекул ДНК (плазмид, в частности, с помощью F–плазмиды).

Вероятность переноса определенного гена в клетку–реципиент зависит от его удаления от F–плазмидной ДНК, а точнее, от точки О, в которой начинается репликация F–плазмидной ДНК. Чем больше время конъюгации, тем выше вероятность переноса данного гена. Это дает возможность составить генетическую карту бактерий в минутах конъюгации. Например, у кишечной палочки ген thr (оперон из трех генов, контролирующих биосинтез треонина) находится в нулевой точке (то есть непосредственно рядом с F–плазмидной ДНК), ген lac переносится через 8 мин, ген recE – через 30 мин, ген argR – через 70 мин и т.д.



gastroguru © 2017