Количественное определение витаминов. Качественное определение витаминов в лекарственных препаратах Обработка и оформление результатов

Методы количественного определения витаминов основаны на их физико-химических свойствах, таких как окислительно-восстановительные свойства, способность флуоресцировать в УФ-свете. Применяют различные методы определения: титрометрические, фотоколориметрические, спектрофотометрические, флуорометрические и др.

Количественное определение витамина К

Витамин К в листьях крапивы определяют методом СФМ (таблица 3).

Таблица 3 . Количественное определение витамина K в листьях крапивы (авторский метод)

Количественное определение БАВ в плодах шиповника.

Аскорбиновую кислоту можно определять титрометрическим методом, который основан на восстановлении 2,6-дихлорфенолиндофенола. С этим же реактивом можно провести фотоколориметрическое определение аскорбиновой кислоты. Для этого проводят экстракцию сырья 2 % метафосфорной кислотой, добавляют раствор 2,6-дихлорфенолиндофенола. Через 35 сек. проводят фотоколориметрирование. Параллельно колориметрируют контрольный раствор 2 % метафосфорная кислота с 2,6-дихлорфенолиндофенолом. Интенсивность окраски пропорциональна количеству аскорбиновой кислоты.

Количественное определение аскорбиновой кислоты можно провести фотоколориметрическим методом с помощью гексацианоферрита калия. В кислой среде аскорбиновая кислота восстанавливает гексацианоферрит калия до гексацианоферрата калия, который в присутствии ионов железа (Ш) образует берлинскую лазурь, с последующим ее фотоколориметрированием.

Метод количественного определения аскорбиновой кислоты (по ГФ XI, вып. 2, стр. 294) основан на ее способности окисляться до дегидроформы раствором 2,6-дихлорфенолиндофенолята и восстанавливать последний до лейкоформы. Точка эквивалентности устанавливается появлением розового окрашивания, которое свидетельствует об отсутствии восстановителя, т. е кислоты аскорбиновой (2,6-дихлорфенолиндофенол имеет в щелочной среде синее окрашивание, в кислой - красное, а при восстановлении обесцвечивается):



1. Определение содержания аскорбиновой кислоты. (таблица 4). Из грубо измельченной аналитической пробы плодов берут навеску массой 20 г, помещают в фарфоровую ступку, где тщательно растирают со стеклянным порошком (около 5 г), постепенно добавляя 300 мл воды, и настаивают 10 мин. Затем смесь размешивают и извлечение фильтруют. В коническую колбу вместимостью 100 мл вносят 1 мл полученного фильтрата, 1 мл 2%раствора хлористоводородной кислоты, 13 мл воды, перемешивают и титруют из микробюретки раствором 2,6-дихлорфенолиндофенолята натрия (0,001 моль/л) до появления розовой окраски, не исчезающей в течение 30-60 с. Титрование продолжают не более 2 мин. В случае интенсивного окрашивания фильтрата или высокого содержания в нем аскорбиновой кислоты [расход раствора 2,6-дихлорфенолиндофенолятанатрия (0,001 моль/л) более 2 мл], обнаруженного пробным титрованием, исходное извлечение разбавляют водой в 2 раза или более.

где 0,000088 - количество аскорбиновой кислоты, соответствующее 1мл раствора 2,6-дихлорфенолиндофенолята натрия (0,001 моль/л), в граммах; V - объем раствора 2,6-дихлорфенолиндофенолята натрия (0,001 моль/л), пошедшего на титрование, в миллилитрах; m - масса сырья в граммах; W - потеря в массе при высушивании сырья в процентах.

Примечания . Приготовление раствора 2,6-дихлорфенолиндофенолята натрия (0,001 моль/л): 0,22 г 2,6-дихлорфенолиндофенолята натрия растворяют в 500 мл свежепрокипяченной и охлажденной воды при энергичном взбалтывании (для растворения навески раствор оставляют на ночь). Раствор фильтруют в мерную колбу вместимостью 1 л и доводят объем раствора водой до метки. Срок годности раствора не более 7 сут при условии хранения в холодном, темном месте.

Установка титра. Несколько кристаллов (3-5) аскорбиновой кислоты растворяют в 50 мл 2 % раствора серной кислоты; 5 мл полученного раствора титруют из микробюретки раствором 2,6-дихлорфенолиндофенолята натрия до появления розового окрашивания, исчезающего в течение 1-2 нед. Другие 5 мл этого же раствора аскорбиновой кислоты титруют раствором калия йодата (0,001 моль/л) в присутствии нескольких кристаллов (около 2 мг) калия йодида и 2-3 капель раствора крахмала до появления голубого окрашивания. Поправочный коэффициент вычисляют по формуле:

где V - объем раствора калий йодата (0,001 моль/л), пошедшего на титрование, в миллилитрах; V1-объем раствора 2,6-дихлорфенолиндофенолята натрия, пошедшего на титрование, в миллилитрах.

2. Определение содержания свободных органических кислот. Аналитическую пробу сырья измельчают до размера частиц, проходящих сквозь сито с отверстиями диаметром 2 мм. 25 г измельченных плодов шиповника помещают в колбу вместимостью 250 мл, заливают 200 мл воды и выдерживают в течение 2 ч на кипящей водяной бане, затем охлаждают, количественно переносят в мерную колбу вместимостью 250 мл, доводят объем извлечения водой до метки перемешивают. Отбирают 10 мл извлечения, помещают в колбу вместимостью 500 мл, прибавляют 200-300 мл свеже-прокипяченной воды, 1 мл 1% спиртового раствора фенолфталеина, 2 мл 0,1 % раствора метиленового синего и титруют раствором натра едкого (0,1 моль/л) до появления в пене лилово- красной окраски.

где 0,0067-количество яблочной кислоты, соответствующее 1 мл раствора натра едкого (0,1 моль/л), в граммах; V - объем раствора натра едкого (0,1 моль/л), пошедшего на титрование, в миллилитрах; m - масса сырья в граммах; W - потеря в массе при высушивании сырья в процентах.

Таблица 4. Количественное определение аскорбиновой кислоты в плодах шиповника (фармакопейный метод)

Количественное определение химических веществ в цветках календулы.

Каротиноиды определяют в лекарственном сырье фотоколориметрическим методом, основанном на измерении интенсивности их природной окраски. Разработан спектрофотометрический метод определения каротиноидов. Каротиноиды из сырья экстрагируют петролейным эфиром, затем хроматографируют на пластинке "Силуфол" в системе петролейный эфир-бензол-метанол (60:15:4), элюируют хлороформом и спектрофотометрируют при длине волны 464 нм (-каротин) при 456 нм (в-каротин).

  • 1. Около 1 г (точная навеска) измельченных цветков ноготков, просеянных сквозь сито с отверстиями размером 1 мм, помещают в коническую колбу вместимостью 250 мл, прибавляют 50 мл спирта 70 %, колбу закрывают пробкой, взвешивают (с погрешностью ± 0,01 г) и оставляют на 1 ч. Затем колбу соединяют с обратным холодильником, нагревают, поддерживая слабое кипение в течение 2 ч. После охлаждения колбу с содержимым вновь закрывают той же пробкой, взвешивают и потерю в массе восполняют растворителем. Содержимое колбы тщательно взбалтывают и фильтруют через сухой бумажный фильтр, отбрасывая первые 20 мл, в сухую колбу вместимостью 200 мл (раствор А).
  • 1 мл раствора А помещают в мерную колбу вместимостью 25 мл, прибавляют 5 мл раствора алюминия хлорида, 0,1 мл кислоты уксусной и доводят объем раствора спиртом 96 % до метки и оставляют на 40 минут (раствор Б).

Через 40 минут измеряют оптическую плотность испытуемого раствора Б и раствора стандартного образца Б 1 на спектрофотометре в максимуме поглощения при длине волны (408 + 2) нм в кювете с толщиной слоя 10 мм, используя растворы сравнения для испытуемого раствора и стандартного образцов.

где: А - оптическая плотность испытуемого раствора;

А о - оптическая плотность раствора стандартного образца рутина;

а - навеска сырья, г;

а о - навеска стандартного образца рутина, г;

W - влажность сырья, %;

Допускается проводить определение содержания суммы флавоноидов с использованием удельного показателя поглощения рутина.

Введение……………………………………………………………2

1. Общий обзор методов определения витаминов…………………3

2. Хроматографические методы определения витаминов…………5

3. Электрохимические методы определения витаминов…………10

4. Инверсионно вольтамперометрический метод определения

водорасторимых витаминов B 1 B 2 в пищевых продуктах………..13

Заключение………………………………………………………...18

Введение

В настоящее время на рынке появилось огромное количество витаминизированных продуктов питания для человека и кормов для животных, представляющих собой сухие многокомпонентные смеси. Ассортимент таких продуктов представлен достаточно широко. Это, прежде всего, биологически активные добавки к пище, премиксы, комбикорма для животных и птиц, поливитаминные препараты. Критерием качества таких продуктов может являться их анализ на содержание витаминов и, особенно, таких жизненно необходимых, как водорастворимые и жирорастворимые витамины, количество которых регламентируется нормативными документами и санитарными нормами качества.

Для определения витаминов применяют различные методы. Широко используемые оптические методы анализа трудоемки, требуют больших затрат времени и дорогостоящих реактивов, применение хроматографических методов осложнено использованием дорогостоящего оборудования. С каждым годом расширяется ассортимент и увеличивается производство продуктов питания, совершенствуется рецептура детского питания. Это в свою очередь предъявляет повышенные требования к контролю за качеством выпускаемой продукции и совершенствованию методов определения витаминов. Медико-биологические требования и санитарные нормы качества продовольственного сырья и пищевых продуктов характеризуют пищевую ценность большинства видов и групп продуктов детского питания различного назначения.

1. Общий обзор методов определения витаминов

Почти все витамины легко подвергаются окислению, изомеризации и разрушаются под воздействием высокой температуры, света, кислорода воздуха, влаги и других факторов.

Из существующих методов определения витамина С (аскорбиновой кислоты) наиболее широко применяют метод визуального и потенциометрического титрования раствором 2,6-ди-хлорфенолиндофенола по ГОСТ 24556-81, основанный на редуцирующих свойствах аскорбиновой кислоты и ее способности восстанавливать 2,6-ДХФИФ. Темно-синяя окраска этого индикатора при добавлении аскорбиновой кислоты переходит в бесцветную. Важное значение имеет приготовление экстракта исследуемого продукта. Наилучшим экстрагентом является 6 %-ный раствор метафосфорной кислоты, который инактивирует аскорбинотоксидазу и осаждает белки.

Каротин в растительном сырье, концентратах и безалкогольных напитках контролируют физико-химическим методом по ГОСТ 8756.22-80. Метод основан на фотометрическом определении массовой доли каротина в растворе, полученном в процессе экстрагирования из продуктов органическим растворителем. Предварительно раствор очищают от сопутствующих красящих веществ с помощью колоночной хроматографии. Каротин легко растворяется в органических растворителях (эфир, бензин и др.) и придает им желтую окраску. Для количественного определения каротина используют адсорбционную хроматографию на колонках с окисью алюминия и магния. Такое определение пигментов на колонке зависит от активности адсорбента, количества пигментов, а также присутствия других компонентов в разделяемой смеси. Сухая смесь окиси алюминия задерживает каротин, а влажная пропускает в раствор другие красящие вещества.

Тиамин в основном находится в связанном состоянии в виде дифосфорного эфира - кокарбоксилазы, которая является активной группой ряда ферментов. С помощью кислотного гидролиза и под воздействием ферментов тиамин освобождается из связанного состояния. Этим способом определяют количество тиамина. Для расчета содержания витамина B1 используют флюрометрический метод, который применяют для определения тиамина в пищевых продуктах. Он основан на способности тиамина образовывать в щелочной среде с феррнцианндом калня тиохром, который дает интенсивную флюоресценцию в бутиловом спирте. Интенсивность процесса контролируют на флюорометре ЭФ-ЗМ.

В продуктах питания и напитках рибофлавин присутствует в связанном состоянии, т. е. в форме фосфорных эфиров, связанных с белком. Чтобы определить количество рибофлавина в продуктах, необходимо освободить его из связанного состояния путем кислотного гидролиза и обработки ферментными препаратами. Витамин B1 в безалкогольных напитках рассчитывают с помощью химического метода для определения количества легкогидролизуемых и прочно связанных форм рибофлавина в тканях. Метод основан на способности рибофлавина к флюоресценции до и после восстановления его гипосульфитом натрия. Определение общего содержания фенольных соединений. Для этого используют колориметрический метод Фолина - Дениса, который основан на образовании голубых комплексов при восстановлении вольфрамовой кислоты под действием полифенолов с реагентом в щелочной среде. Фенольные соединения определяют по хлорогеновой кислоте методом пламенной фотометрии на приборе ЕКФ-2.

2. Хроматографические методы определения витаминов

В последнее время за рубежом бурное развитие переживает метод высокоэффективной жидкостной хроматографии. Это связано, прежде всего, с появлением прецизионных жидкостных хроматографов, совершенствованием техники выполнения анализа. Широкое использование метода ВЭЖХ при определении витаминов нашло отражение и в числе публикаций. На сегодняшний день более половины всех опубликованных работ по анализу как водо- так и жирорастворимых витаминов посвящено применению этого метода.Широкое распространение при определении витаминов получили различные варианты хроматографии.

Для очистки токоферола от посторонних примесей используют метод тонкослойной хроматографии В сочетании со спектрофотометрическими и флуориметрическими методами этим способом проводят и количественное определение витамина Е. При разделении используют пластинки с силуфолом, кизельгелем

Анализ изомеров токоферола в оливковом масле проводится методом газо-жидкостной хроматографии. Методики анализа ГХ и ГЖХ требуют получения летучих производных, что крайне затруднительно при анализе жирорастворимых витаминов. По этой причине данные способы определения не получили большого распространения. Определение витамина Е в пищевых продуктах, фармпрепаратах и биологических объектах проводят в градиентном и изократическом режимах как в нормально-фазовых, так и в обращенно-фазовых условиях. В качестве адсорбентов используют силикагель (СГ), кизельгур, силасорб, ODS-Гиперсил и другие носители. Для непрерывного контроля состава элюата в жидкостной хроматографии при анализе витаминов и увеличения чувствительности определения используют УФ (А,=292 нм), спектрофотометрический (Х=295нм), флуоресцентный (Х,=280/325нм), электрохимический, ПМР- и масс-спектроскопический детекторы.

Большинство исследователей для разделения смесей всех восьми изомеров токоферолов и их ацетатов предпочитают использовать адсорбционную хроматографию. В этих случаях подвижной фазой обычно служат углеводороды, содержащие незначительные количества какого-либо простого эфира. Перечисленные методики определения витамина Е, как правило, не предусматривают предварительного омыления образцов, что существенно сокращает время выполнения анализа.

Разделение с одновременным количественным определением содержания жирорастворимых витаминов (А, Д, Е, К) при их совместном присутствии в поливитаминных препаратах проводят как на прямой, так и на обращенной фазах. При этом большинство исследователей предпочитают использовать обращенно-фазовый вариант ВЭЖХ. Метод ВЭЖХ позволяет анализировать водорастворимые витамины В1 и В2 как одновременно, так и отдельно. Для разделения витаминов используют обращенно-фазный, ион-парный и ионообменный варианты ВЭЖХ. Применяют как изократический, так и градиентный режимы хроматографирования. Предварительное отделение определяемых веществ от матрицы осуществляют путем ферментативного и кислотного гидролиза пробы.

Преимущества метода жидкостной хроматографии:

Одновременное определение нескольких компонентов

Устранение влияния мешающих компонентов

Комплекс можно быстро перестроить на выполнение других анализов.

Состав и характеристика оборудования и программного обеспечения для жидкостного хроматографа "Хромос ЖХ-301":

Таблица 1

Насос SSI серии III

Насос для подачи элюента имеет низкий уровень пульсаций

Детектор спектрофотометрический СПФ-1

Детектор по измерению поглощения (длинна волны 254 - 455 нм)

Кран-дозатор

Применяется шестипортовый двухходовой петлевой дозатор. Увеличение петли дозирования позволяет увеличить чувствительность анализа.

Насос SSI серии III

Дополнительный насос может быть использован для создания градиента (необязателен)

Колонки хроматографические

Аналитическая колонка Vydac 201SP54 250х4 мм или аналогичная.

Вспомогательное оборудование для лаборатории жидкостной хроматографии

Вакуумный насос для дегазации элюента.

Программа сбора и обработки хроматографической информации "Хромос 2.3."

Работа одного компьютера с несколькими хроматографами (количество зависит от конфигурации компьютера). Методы расчета хроматограмм: абсолютная калибровка, внутренний стандарт.

Компьютер IBM-PC/AT с принтером

Celeron-366 (и выше), 32 Мб RAM. HDD-10G. FDD 1.44 (либо CD-ROM). клавиатура, мышь. монитор 15" SVGA, принтер.

Достоинства хроматографа "Хромос ЖХ-301":

Высокая стабильность и точность поддержания расхода элюента обеспечивается конструкцией насосов высокого давления.

Легкий доступ к колонкам обеспечивается конструкцией прибора.

Эффективность разделения обеспечивается применением высокоэффективных хроматографических колонок.

Широкий линейный диапазон измерительного сигнала детекторов без переключений предела измерения, что позволяет с высокой точностью измерять пики как большой, так и малой концентрации.

Хроматограмма анализа водорастворимых витаминов:

1 аскорбиновая кислота (C),
2 никотиновая кислота (Niacin),
3 пиридоксин (B6),
4 тиамин (B1),
5 никотинамид (B3),
6 фолиевая кислота (M),
7 цианокобаламин (B12),
8 рибофлавин (B2).

Хроматограмма анализа жирорастворимых витаминов:

1. Витамин А
2. токол
3. y -токоферол
4. a -токоферол (Витамин E)
5. лютеин
6. зеаксантин
7. криптоксантин

8. a -каротин

Несмотря на высокую чувствительность метода ВЭЖХ, высокая стоимость приборов, а также длительность анализа с учетом времени пробоподготовки существенно ограничивает его применение в аналитических лабораториях нашей страны.


Незаменимые вещества пищи, объединяемые под общим названием «витамины», относятся к различным классам химических соединений, что само по себе исключает возможность использования единого метода их количественного определения. Все известные для витаминов аналитические методы основаны либо на определении специфических биологических свойств этих веществ (биологические, микробиологические, ферментативные), либо на использовании их физико-химических характеристик (флуоресцентные, хроматографические и спектрофотометрические методы), либо на способности некоторых витаминов вступать в реакции с некоторыми реагентами с образованием окрашенных соединений (колориметрические методы).

Несмотря на достигнутые успехи в области аналитической и прикладной химии методы определения витаминов в пищевых продуктах еще трудоемки и длительны. Это обусловлено рядом объективных причин, основные из которых следующие.

1. Определение ряда витаминов часто осложняется тем, что многие из них находятся в природе в связанном состоянии в виде комплексов с белками или пептидами, а также в виде фосфорных эфиров. Для количественного определения необходимо разрушить эти комплексы и выделить витамины в свободном виде, доступном для физико-химического или микробиологического анализа. Это достигается обычно путем использования особых условий обработки (кислотным, щелочным или ферментативным гидролизом, автоклавированием).

2. Почти все витамины – соединения весьма неустойчивые, легко подвергающиеся окислению, изомеризации и полному разрушению под воздействием высокой температуры, кислорода воздуха, света и других факторов. Следует соблюдать меры предосторожности: максимально сокращать время на предварительную подготовку продукта, избегать сильного нагрева и воздействия света, использовать антиоксиданты и др.

3. В пищевых продуктах, как правило, приходится иметь дело с группой соединений, имеющих большое химическое сходство и одновременно различающихся по биологической активности. Например, витамин Е включает 8 токоферолов, сходных по химическим свойствам, но отличающихся по биологическому действию; группа каротинов и каротиноидных пигментов насчитывает до 80 соединений, из которых только 10 в той или иной степени обладают витаминными свойствами.

4. Витамины принадлежат к различным классам органических соединений. Поэтому для них не могут существовать общие групповые реакции и общие методы исследования.

5. Кроме того, анализ затрудняет присутствие в исследуемом образце сопутствующих веществ, количество которых может во много раз превышать содержание определяемого витамина (например, стерины и витамин D). Для устранения возможных погрешностей при определении витаминов в пищевых продуктах обычно проводят тщательную очистку экстрактов от сопутствующих соединений и концентрирование витамина. Для этого используют различные приемы: осаждение мешающих анализу веществ, методы адсорбционной, ионобменной или распределительной хроматографии, избирательную экстракцию определяемого компонента и др.

В последние годы для определения витаминов в пищевых продуктах с успехом стали использовать метод ВЭЖХ. Этот метод является наиболее перспективным, так как позволяет одновременно разделять, идентифицировать и количественно определять различные витамины и их биологически активные формы, что позволяет сократить время анализа.

Физико-химические методы исследования витаминов. Методы основаны на использовании физико-химических характеристик витаминов (их способности к флуоресценции, светопоглощению, окислительно-восстановительным реакциям и др). Благодаря развитию аналитической химии, приборостроения физико-химические методы почти полностью вытеснили длительные и дорогостоящие биологические методы.

Определение витамина С. Витаминб С (аскорбиновая кислота) может присутствовать в пищевых продуктах как в восстановленной, так и в окисленной форме. Дегидроаскорбиновая кислота (ДАК) может образовываться при обработке и хранении пищевых продуктов в результате окисления, что вызывает необходимость ее определения. При определении витамина С в пищевых продуктах используют различные методы: колориметрические, флуоресцентные, методы объемного анализа, основанные на окислительно-восстановительных свойствах АК, и ВЭЖХ.

Ответственный момент количественного определения АК – приготовление экстракта образца. Извлечение должно быть полным. Наилучшим экстрагентом является 6% раствор метафосфорной кислоты, обладающей способностью осаждать белки. Используются также уксусная, щавелевая и соляная кислоты, а также их смеси.

1. Для суммарного и раздельного определения окисленной и восстановленной форм АК часто используют метод Роэ с применением 2,4-динитрофенилгидразинового реактива. АК (гулоновая кислота) под действием окислителей переходит в ДАК, а затем в 2,3-дикетогулоновую кислоту, которая образует с 2,4-динитрофенилгидразином соединения, имеющие оранжевую окраску. Сам 2,4-динитрофенилгидразин представляет собой основание, неспособное существовать в аци-форме. Однако соответствующие гидразоны под влиянием щелочей превращаются в интенсивно окрашенные аци-соли. При определении витамина С этим методом мешает присутствие восстановителей (глюкоза, фруктоза и др). Поэтому при большом содержании сахаров в исследуемом продукте используют хроматографию, что осложняет определение.

2. В последнее время для определения общего содержания витамина С (сумма АК и ДАК) получил признание весьма чувствительный и точный флуоресцентный метод. ДАК конденсируясь с о-фенилендиамином, образует флуоресцирующее соединение хиноксалин, обладающее максимальной флуоресценцией при длине волны возбуждающего света 350 нм.

Интенсивность флуоресценции хиноксалина в нейтральной среде при комнатной температуре прямо пропорциональна концентрации ДАК. Для количественного определения АК ее предварительно окисляют в ДАК. Недостатком метода является достаточно дорогое оборудование.

Методы, основанные на окислительно-восстановительных свойствах АК.

3. Из методов, основанных на окислительно-восстановительных свойствах АК, наибольшее применение нашел метод титрования раствором 2,6-дихлорфенолиндофенола, имеющим синюю окраску. Продукт взаимодействия АК с реактивом – бесцветный. Метод может быть использован при анализе всех видов продуктов. При анализе продуктов, не содержащих естественных пигментов, в картофеле, молоке используют визуальное титрование. В случае присутствия естественных красителей, используют потенциометрическое титрование или метод индофенол-ксилоловой экстракции. Последний метод основан на количественном обесцвечивании 2,6-дихлорфенолиндофенола аскорбиновой кислотой. Избыток краски экстрагируется ксилолом и измеряется оптическая плотность экстракта при 500 нм.

В реакцию вступает только АК. ДАК предварительно восстанавливают цистеином. Для отделения АК от восстановителей, присутствующих в пищевых продуктах, подвергшихся тепловой обработке, или длительно хранившиеся экстракты обрабатывают формальдегидом. Формальдегид в зависимости от рН среды избирательно взаимодействует с АК и посторонними примесями восстановителей (рН = 0). Указанным методом определяют сумму АК и ДАК.

2,6-дихлорфенолиндофенол может быть использован и для фотометрического определения АК. Раствор реактива имеет синюю окраску, а продукт взаимодействия с АК – бесцветен, т.е. в результате реакции уменьшается интенсивность синей окраски. Оптическую плотность измеряют при 605 нм (рН = 3,6).

4. Еще одним методом, основанным на восстановительных свойствах АК, является колориметрический метод, в котором используется способность АК восстанавливать Fe(3+) до Fe(2+) и способность последнего образовывать с 2,2’-дипиридилом соли, интенсивно окрашенные в красный цвет. Реакцию проводят при рН 3,6 и температуре 70ºС. Оптическую плотность раствора измерят при 510 нм.

5. Фотометрический метод, основанный на взаимодействии АК с реактивом Фолина. Реактив Фолина представляет собой смесь фосфорномолибденовой и фосфорновольфрамовой кислот, т.е. это – известный метод, основанный на образовании молибденовых синей, поглощающих при 640–700 нм.

6. Для определения витамина С во всех пищевых продуктах с успехом может быть использован высоко чувствительный и специфичный метод ВЭЖХ. Анализ достаточно прост, лишь при анализе продуктов, богатых белками, необходимо предварительно удалить их. Детектирование осуществляется по флуоресценции.

Кроме названных методов определения витамина С существует еще целый ряд способов, например, окисление хлоридом золота и образование гидроксамовых кислот, но эти методы не имеют практического значения.

Определение тиамина (В 1 ). В большинстве природных продуктов тиамин встречается в виде дифосфорного эфира – кокарбоксилазы. Последняя, являясь активной группой ряда ферментов углеводного обмена, находится в определенных связях с белком. Для количественного определения тиамина необходимо разрушить комплексы и выделить исследуемый витамин в свободном виде, доступном для физико-химического анализа. С этой целью проводят кислотный гидролиз или гидролиз под воздействием ферментов. Объекты, богатые белком, обрабатывают протеолитическими ферментами (пепсином) в среде соляной кислоты. Объекты, с высоким содержанием жира (свинина, сыры), для его удаления обрабатывают эфиром (тиамин практически нерастворим в эфире).

1. Для определения тиамина в пищевых продуктах используют, как правило, флуоресцентный метод, основанный на окислении тиамина в щелочной среде гексацианоферратом калия (3+) с образованием сильно флуоресцирующего в ультрафиолетовом свете соединения тиохрома. Интенсивность его флуоресценсции прямо пропорциональна содержанию тиамина (длина волны возбуждающего света 365 нм, испускаемого – 460–470 нм (синяя флуоресценция)). При использовании этого метода возникают трудности, связанные с тем, что в ряде объектов присутствуют флуоресцирующие соединения. Их удаляют очисткой на колонках с ионообменными смолами. При анализе мяса, молока, картофеля, пшеничного хлеба и некоторых овощей очистка не требуется.

2. Тиамин характеризуется собственным поглощением в УФ области (240 нм – в водном растворе, 235 нм – в этаноле), а значит он может быть определен методом прямой спектрофотометрии.

3. Для одновременного определения тиамина и рибофлавина используют ВЭЖХ.

Определение рибофлавина (В 2 ). В пищевых продуктах рибофлавин присутствует главным образом в виде фосфорных эфиров, связанных с белками, и, следовательно, не может быть определен без предварительного протеолитического расщепления. Свободный рибофлавин в значительном количестве содержится в молоке.

При определении рибофлавина наибольшее распространение получили микробиологический и физико-химический (флуоресцентный) методы анализа. Микробиологический метод специфичен, высоко чувствителен и точен; применим ко всем продуктам, но длителен и требует специальных условий.

Физико-химический метод разработан в двух вариантах, которые отличаются способом оценки флуоресцирующих веществ:

· вариант прямой флуоресценции (определение интенсивности флуоресценции рибофлавина) и

· люмифлавиновый вариант.

1. Свободный рибофлавин и его фосфорные эфиры обладают характерной желто-зеленой флуоресценцией при длине волны возбуждающего света 440–500 нм. На этом свойстве основан наиболее широко используемый флуоресцентный метод определения рибофлавина. Рибофлавин и его эфиры дают очень сходные спектры флуоресценции с максимумом при 530 нм. Положение максимума не зависит от рН. Интенсивность флуоресценции значительно зависит от рН и от растворителя (по-разному для рибофлавина и его эфиров), поэтому предварительно разрушают эфиры и анализируют свободный рибофлавин. Для этого используют гидролиз с соляной и трихлоруксусной кислотами, автоклавирование, обработку ферментными препаратами.

Интенсивность желто-зеленой флуоресценции рибофлавина в УФ-свете зависит не только от его концентрации, но и от значения рН раствора. Максимальная интенсивность достигается при рН=6-7. Однако измерение проводят при рН от 3 до 5, так как в этом интервале интенсивность флуоресценции определяется только концентрацией рибофлавина и не зависит от других факторов – значения рН, концентрации солей, железа, органических примесей и др.

Рибофлафин легко разрушается на свету, определение проводят в защищенном от света месте и при рН не выше 7. Следует отметить, что метод прямой флуоресценции не применим к продуктам с низким содержанием рибофлавина.

2. Люмифлавиновый вариант основан на использовании свойства рибофлавина при облучении в щелочной среде, переходить в люмифлавин, интенсивность флуоресценции которого измеряют после извлечения его хлороформом (голубая флуоресценция, 460–470 нм). Поскольку при определенных условиях в люмифлавин переходит 60–70% общего рибофлавина, при проведении анализа необходимо соблюдать постоянные условия облучения, одинаковые для испытуемого и стандартного раствора.

Определение витамина В 6 . Для определения витамина могут быть использованы следующие методы:

1. Прямая спектрофотометрия. Пиридоксина гидрохлорид характеризуется собственным поглощением при 292 нм (e = 4,4·10 3) при рН = 5.

2. Метод Кьельдаля. Определение осуществляется по аммиаку, образующемуся при окислении витамина.

3. Фотометрический метод, основанный на реакции с 2,6-дихлорхинонхлоримином (реактив Гиббса) при рН 8–10, в результате которой образуются индофенолы, имеющие синюю окраску. Индофенолы экстрагируют метил-этилкетоном и измеряют оптическую плотность экстракта при 660–690 нм (реакцию Гиббса дают фенолы со свободным пара-положением).

4. Флуоресцентный метод, основанный на том, что при облучении пиридоксина и пиридоксамина наблюдается синяя, а пиридоксаля – голубая флуоресценция.

Определение витамина В 9 . Определение фолатов в пищевых продуктах в тканях и жидкостях организма представляет значительные трудности, т.к. в этих объектах они обычно присутствуют в связанной форме (в виде полиглютаматов); кроме того, большинство форм чувствительно к воздействию кислорода воздуха, света и температуры. Для предохранения фолатов от гидролиза рекомендуется вести гидролиз в присутствии аскорбиновой кислоты.

В пищевых продуктах фолаты могут быть определены физическими, химическими и микробиологическими методами. Колориметрический метод основан на расщеплении птероилглутаминовой кислоты с образованием п-аминобензойной кислоты и родственных ей веществ и дальнейшем превращении их в окрашенные соединения. Однако из-за недостаточной специфичности этот метод применяется в основном для анализа фармацевтических препаратов.

Для разделения, очистки и идентификации фолатов разработаны также методы хроматографии на колонках, бумаге и в тонком слое адсорбента.

Определение витамина РР. В пищевых продуктах никотиновая кислота и ее амид находятся как в свободной, так и в связанной форме, входя в состав коферментов. Химические и микробиологические методы количественного определения ниацина предполагают наиболее полное выделение и превращение его связанных форм, входящих в состав сложного органического вещества клеток, в свободную никотиновую кислоту. Связанные формы ниацина освобождают воздействием растворов кислот или гидрооксида кальция при нагревании. Гидролиз с 1 М раствором серной кислоты в автоклаве в течение 30 минут при давлении 0,1 МПа приводит к полному освобождению связанных форм ниацина и превращению никотинамида в никотиновую кислоту. Установлено, что этот способ обработки дает менее окрашенные гидролизаты и может быть использован при анализе мясных и рыбных продуктов. Гидролиз с гидрооксидом кальция предпочтителен при определении ниацина в муке, крупах, хлебобулочных изделиях, сырах, пищевых концентратах, овощах, ягодах и фруктах. Ca(OH) 2 образует с сахарами и полисахаридами, пептидами и гликопептидами соединения, почти полностью нерастворимые в охлажденных растворах. В результате гидролизат, полученый при обработке Ca(OH) 2 , содержит меньше веществ, мешающих химическому определению, чем кислотный гидролизат.

1. В основе химического метода определения ниацина лежит реакция Кенига, протекающая в две стадии. Первая стадия – реакция взаимодействия пиридинового кольца никотиновой кислоты с бромцианом, вторая – образование окрашенного производного глутаконового альдегида в результате взаимодействия с ароматическими аминами. (Сразу после добавления к никотиновой кислоте бромистого циана появляется желтая окраска глутаконового альдегида. В результате взаимодействия его с ароматическими аминами, вводимыми в реакционную смесь, образуются дианилы, которые интенсивно окрашены в желтый, оранжевый или красный цвет, в зависимости от амина (бензидин – красный, сульфаниловая кислота – желтый). Реакцию Кенига применяют для фотометрического определения пиридина и его производных со свободным a-положением. Недостатком метода является его длительность, так как скорость реакций мала.

Получение CNBr возможно двумя способами:

1. CN – + Br 2 = CNBr + Br –

2. SCN – + Br 2 + 4H 2 O = CNBr + SO 4 2– + 8H + + Br –

Существует много модификаций проведения этой реакции в зависимости от температурного режима, рН, источника ароматических аминов. рН и амин существенно влияют на интенсивность и устойчивость развивающейся окраски. Наиболее устойчивую окраску дают продукты реакции никотиновой кислоты с бромродановым (бромциановым) реактивом и сульфаниловой кислотой или метолом (сульфатом пара-метиламинофенола).

2. Никотиновую кислоту и ее амид можно также определять спектрофотометрически благодаря их собственному поглощению в УФ-области. Никотиновая кислота характеризуется максимумом поглощения при 262 нм (Е = 4,4·10 3), а никотинамид при 215 нм, (Е = 9·10 3).

3. Для количественного определения ниацина широко используется микробиологический метод. Он простой, специфичный, но более длительный, чем химический. Микробиологический метод позволяет определять содержание ниацина в объектах, в которых химическим путем это сделать невозможно (продукты с высоким содержанием сахаров и низким уровнем ниацина).

Определение b -каротина . В ряде пищевых продуктов, особенно растительного происхождения, присутствуют так называемые каротиноиды. Каротиноиды (от лат. carota – морковь) – природные пигменты от желтого до красно-оранжевого цвета; полиненасыщенные соединения, содержащие циклогексановые кольца; в большинстве случаев содержат в молекуле 40 атомов углерода.) Некоторые из них (a, b-каротин, криптоксантин и др.) являются провитаминами (предшественниками) витамина А, так как в организме человека и животных могут превращаться в витамин А. Известно около десяти провитаминов А, но самым активным из них является b-каротин.

При анализе пищевых продуктов необходима предварительная обработка образца для извлечения, концентрирования каротина и очистки его от сопутствующих соединений. В этих целях широко используют экстракцию (петролейный эфир, гексан, ацетон и их смеси), омыление и хроматографию. При определении b-каротина следует избегать нагревания. Но в некоторых случаях горячее омыление необходимо, например, когда отношение жира к b-каротину больше, чем 1000:1 (молочные продукты, животные жиры, маргарин, яйца, печень). Омыление проводят в присутствии антиоксиданта. Избыток щелочи ведет к разрушению b-каротина. Для отделения b-каротина от сопутствующих пигментов широко применяют адсорбционную хроматографию на колонках с оксидом алюминия, магния.

1. Большинство применяемых в настоящее время физико-химических методов определения b-каротина в пищевых продуктах основано на измерении интенсивности светопоглощения его растворов. Как соединения с сопряженными двойными связями, каротиноиды имеют характерные спектры поглощения в УФ и видимой области. Положение полосы поглощения зависит от числа сопряженных двойных связей в молекуле каротиноида и от применяемого растворителя. Максимальное поглощение b-каротина наблюдается в бензоле при 464–465 нм, в гексане и петролейном эфире при 450-451 нм.

2. В последнее время для определения b-каротина и других каротиноидов чаще используется метод ВЭЖХ. Метод позволяет сократить время анализа, а значит и вероятность их разрушения под действием света и кислорода воздуха. Метод ВЭЖХ каротиноидов является классическим примером демонстрации возможностей метода разделять и количественно определять пространственные изомеры a- и b-каротина в овощах.

Для определения b-каротина могут быть использованы и химические методы, например, основанные на реакции с хлоридом сурьмы (3+) в хлороформе (синий, 590 нм), аналогично витамину А, и с реактивом Фолина (синий, 640–700 нм). Однако из-за неспецифичности этих реакций они не нашли широкого применения.

Определение витамина А. Важнейшими представителями витамина являются, как уже говорилось, ретинол (А 1 -спирт), рентиналь (А 1 -альдегид), ретиноевая кислота (А 2).

При количественном определении витамина А в пищевых продуктах используют различные методы: колориметрический, флуоресцентный, способ прямой спектроскопии и ВЭЖХ. Выбор метода определяется наличием той или иной аппаратуры, целью исследования, свойствами анализируемого материала, предполагаемым содержанием витамина А и характером сопутствующих примесей.

Выделение витамина осуществляют кипячением со спиртовым раствором КОН в среде азота; и последующей экстракцией петролейным эфиром.

1. Для количественного определения веществ, обладающих А-витаминной активностью, может быть использован метод прямой спектрофотометрии, основанный на способности этих соединений к избирательному светопоглощению на разных длинах волн в УФ области спектра. Поглощение пропорционально концентрации вещества при измерении на тех длинах волн, где наблюдается свойственный данному соединению максимум абсорбции в используемом растворителе. Метод – наиболее простой, быстрый, достаточно специфичный. Дает надежные результаты при определении витамина А в объектах, не содержащих примесей, обладающих поглощением в той же области спектра. При наличии таких примесей метод может быть использован в сочетании со стадией хроматографического разделения.

2. Перспективным является флуоресцентный метод, основанный на способности ретинола флуоресцировать под действием УФ лучей (длина волны возбуждающего света 330–360 нм). Максимум флуоресценции наблюдается в области 480 нм. Определению витамина А этим методом мешают каротиноиды и витамин D. Для устранения мешающего влияния используют хроматографию на оксиде алюминия. Недостаток флуоресцентного метода – дорогостоящая аппаратура.

3. Ранее наиболее распространенным являлся колориметрический метод определения витамина А по реакции с хлоридом сурьмы. Используют раствор хлорида сурьмы в хлороформе (реактив Карр-Прайса). Механизм реакции точно не установлен и предполагают, что в реакцию вступает примесь SbCL 5 в SbCl 3 . Образующееся в реакции соединение окрашено в синий цвет. Измерение оптической плотности проводят при длине волны 620 нм в течение 3–5 секунд. Существенным недостатком метода является неустойчивость развивающейся окраски, а также высокая гидролизуемость SbCl 3 . Предполагается, что реакция протекает следующим образом:

Эта реакция для витамина А не специфична, аналогичное окрашивание дают каратиноиды, но хроматографическое разделение этих соединений позволяет устранить их мешающее влияние.

Определению витамина А перечисленными методами, как правило, предшествует подготовительная стадия, включающая щелочной гидролиз жироподобных веществ и экстракцию неомыляемого остатка органическим растворителем. Часто приходится проводить хроматографическое разделение экстракта.

4. В последнее время вместо колоночной хроматографии находит все более широкое применение ВЭЖХ, которая позволяет разделить жирорастворимые витамины (A, D, E, K), обычно присутствующие одновременно в пищевых продуктах, и количественно их определить с большой точностью. ВЭЖХ облегчает определение различных форм витаминов (витамин А-спирт, его изомеры, эфиры ретинола), что особо необходимо при контроле за внесением витаминов в пищевые продукты.

Определение витамина Е . К группе веществ, объединяемых общим названием «витамин Е» относятся производные токола и триенола, обладающие биологической активностью a-токоферолла. Кроме a-токоферолла, известно еще семь родственных ему соединений, обладающих биологической активностью. Все они могут встречаться в продуктах. Следовательно, главная трудность при анализе витамина Е состоит в том, что во многих случаях приходится рассматривать группу соединений, имеющих большое химическое сходство, но одновременно различающихся по биологической активности, оценить которую можно только биологическим методом. Это трудно и дорого, поэтому физико-химические методы почти полностью вытеснили биологические.

Основные стадии определения витамина Е: подготовка образца, щелочной гидролиз (омыление), экстракция неомыляемого остатка органическим растворителем, отделение витамина Е от мешающих анализу веществ и разделение токоферолов с помощью различных видов хроматографии, количественное определение. Токоферолы очень чувствительны к окислению в щелочной среде, поэтому омыление и эктсракцию проводят в атмосфере азота и в присутствии антиоксиданта (аскорбиновой кислоты). При омылении могут разрушаться ненасыщенные формы (токотриенолы). Поэтому при необходимости определения всех форм витамина Е, содержащихся в продукте, омыление заменяют другими видами обработки, например, кристаллизацией при низких температурах.

1. Большинство физико-химических методов определения витамина Е основано на использовании окислительно-восстановительных свойств токоферолов. Для определения суммы токоферолов в пищевых продуктах наиболее часто используют реакцию восстановления трехвалентного железа в двухвалентное токоферолами с образованием окрашенного комплекса Fe(2+) с органическими реагентами. Наиболее часто используют 2,2’-дипиридил, с которым Fe(2+) дает комплекс, окрашенный в красный цвет (λ max = 500 нм). Реакция не специфична. В нее также вступают каротины, стиролы, витамин А и др. Кроме того, интенсивность окраски существенно зависит от времени, температуры, освещения. Поэтому для повышения точности анализа токофероллы предварительно отделяют от соединений, мешающих определению, методом колоночной, газожидкостной хроматографии, ВЭЖХ. При определении Е-витаминной ценности продуктов, в которых a-токоферол составляет более 80% общего содержания токоферолов (мясо, молочные продукты, рыба и др.), часто ограничиваются определением суммы токоферолов. Когда в значительных количествах присутствуют другие токоферолы (растительные масла, зерно, хлебобулочные изделия, орехи), для их разделения используют колоночную хроматографию.

2. Для определения суммы токоферолов может быть использован также флуоресцентный метод. Гексановые экстракты имеют максимум флуоресценции в области 325 нм при длине волны возбуждающего света 292 нм.

3. Для определения индивидуальных токоферолов несомненный интерес представляет метод ВЭЖХ, обеспечивающий в одном процессе как разделение, так и количественный анализ. Метод также характеризуется высокой чувствительностью и точностью. Детектирование проводят по поглощению или по флуоресценции.

Определение витамина D. Количественное определение витамина в продуктах представляет собой чрезвычайно сложную задачу ввиду его низкого содержания, отсутствия чувствительных специфических реакций на витамин D и трудностей отделения его от сопутствующих веществ. До недавнего времени использовались биологические исследования на крысах или цыплятах. Биологические методы основаны на установлении минимального количества исследуемого продукта, излечивающего или предотвращающего рахит у крыс (цыплят), находящихся на рахитогенной диете. Степень рахита оценивается рентгенографически. Это достаточно специфичный и точный метод, позволяющий определять витамин D в концентрации 0,01–0,2 мкг%.

1. При исследовании продуктов с содержанием витамина D свыше 1 мкг% может быть использован фотометрический метод, основанный на реакции кальциферолов с хлоридом сурьмы (образуется продукт, окрашенный в розовый цвет). Метод позволяет определять как холекальциферол (D 3), так и эргокальциферол (D 2). Анализ состоит из следующих операций: омыление (щелочной гидролиз), осаждение стеринов, хроматография (колоночная или распределительная) и фотометрическая реакция с хлоридом сурьмы. Метод пригоден для определения содержания витамина D в рыбьем жире, яйцах, печени трески, икре, сливочном масле, продуктах, обогащенных витамином. Описанный метод трудоемок, длителен.

Витамин D 2 необходимо защищать от света и воздуха, иначе происходит изомеризация. D 3 – более устойчив.

2. Более быстрым, надежным и точным является все чаще применяемый метод ВЭЖХ, который успешно используется при анализе детских и диетических продуктов, обогащенных витаминов D.

3. Кальциферолы характеризуются собственным поглощением в УФ и могут быть определены методом прямой спектрофотометрии.

В последние годы в целях определения витамина D успешно применяются хроматографические методы разделения, особенно тонкослойная и газо-жидкостная хроматография. В экспериментальных исследованиях для изучения обмена витамина D в организме животных и человека широко используются радиохимические методы в сочетании с тонкослойной или колоночной хроматографией на силикагеле или оксиде алюминия.

Определение витамина К. Для определения витамина К применяют физические, химические, биологические методы, а также методы спектрографии, основанные на чувствительности витамина К к УФ-излучению.

Для определения 2-метил-1,4-нафтохинонов предложено много колориметрических методов, основанных на цветных реакциях, которые они дают с рядом реактивов: 2,4-динитрофенилгидразином, N,N-диэтилдитиокарбаматом натрия, солями тетразолия и др. Но все эти методы и ряд других физических и химических методов недостаточно специфичны и полученные с их помощью результаты имеют весьма относительную ценность для определения содержания витамина К в пищевых продуктах, органах и тканях человека и животных. Удовлетворительные результаты дают колориметрические и спектрофотометрические методы в сочетании с хроматографией, очисткой и разделением витаминов К на колонках, на бумаге или в тонком слое адсорбента.








Термин «Витамины» в переводе означает «амины жизни». Ныне таких веществ насчитывается более 30, и все они жизненно необходимы человеческому организму, входя в состав всех тканей и клеток, активизируя и определяя ход многих процессов.

Потребность в витаминах неодинакова и разнится в зависимости от возрастного периода жизни человека, заболевания, погодных условий. Повышается потребность в витаминах во время беременности, при физической и умственной нагрузках, при гиперфункции щитовидной железы, надпочечной недостаточности, стрессовых ситуациях.

Следует отметить, что гипервитаминизация, то есть повышенное поступление витаминов в организм человека, также неблагоприятна для обменных функций. Передозировка витаминов происходит в основном при использовании концентрированных препаратов. Большая часть витаминов поступает в организм человека из растений и незначительная часть – из продуктов животного происхождения. Более 20 витаминных веществ не могут быть синтезированы в организме человека, а другие синтезируются во внутренних органах, причем доминирующее значение в таких процессах имеет печень.

Поэтому мы выбираем данную тему для своего исследования.

Ведь в наше время все больше приоритетным становиться здоровье человека, здоровый образ жизни. Сейчас выпускается много различных биологических добавок (БАД), стимулирующих и лекарственных препаратов, помогающих укреплению здоровья.

Но, к сожалению, приходиться признать, что в аптечную сеть попадает и много фальсифицированной, некачественной продукции. После торговли оружием, наркотиками, фальсификация лекарственных препаратов занимает постыдное третье место. Следует отметить, что витаминные препараты и витаминные комплексы отнюдь не дешевая продукция, стоят они дорого. Интересно было узнать, что скрывается за этикетками лекарственных препаратов, продаваемых в аптеках нашего города. Провести качественный анализ всех абсолютно препаратов мы не можем, нужны определенные реактивы, средства, методики. В основу своей исследовательской деятельности мы использовали методики качественного анализа Кучеренко Н. Е. , Северина С. Е. по определению витаминов.

Гипотеза: предполагаем, что за этикетками лекарственных витаминных препаратов скрываются, не фальсифицированные витамины, а натуральные препараты, так как здоровье человека и наших амурчан – наивысшая ценность.

Объект исследования: витаминные препараты, приобретенные в аптеках города.

Цель нашей работы: провести качественный анализ витаминов, купленных в аптеках г. Амурска и Комсомольска – на – Амуре.

Соответственно теме были поставлены следующие задачи:

1. Познакомиться с характеристикой основных витаминов.

2. Провести качественный анализ препаратов.

3. Сопоставить полученные результаты с ходом исследования.

4. Сделать выводы.

Материалы и оборудование: набор витаминов, химические реактивы, методики качественного анализа Кучеренко Н. Е. , Северина С. Е. по определению витаминов.

1. Характеристика витаминов.

Чтобы человек был сильным и здоровым, ему нужны витамины. Это все мы знаем с раннего детства. Но вот что это за вещества такие – витамины, редко задумываемся. А когда о них идет речь, просто представляем себе коробочку с цветными драже или вазу с фруктами. Нужно ли человеку, далекому от медицины, знать о витаминах больше? Да, нужно – хотя бы для того, чтобы

Еще раз осознать, насколько важно разнообразное питание. Сегодня даже врачи призывают делать ставку не на аптечные витаминные препараты, а на богатые витаминами натуральными продукты (в первую очередь это овощи и фрукты, но не только). Итак, что же такое витамины, и откуда их черпать для нужд организма?

Витамины образуются путём биосинтеза в растительных клетках и тканях. Большинство из них связано с белковыми носителями. Обычно в растениях они находятся не в активной, но высокоорганизованной форме и, по данным исследований, в самой подходящей форме для использования организмом, а именно – в виде провитаминов.

Витамины обеспечивают экономичное и оптимальное использование организмом основных питательных веществ.

Недостаток витаминов вызывает тяжёлые расстройства. Скрытые формы витаминной недостаточности не имеют ярких внешних проявлений и симптомов. Часто все, на что жалуется человек,- это быстрая утомляемость, снижение работоспособности, общая слабость. Также при гиповитаминозе

Организм мене устойчив к воздействию всевозможных неблагоприятных факторов. Он дольше восстанавливает нормальные функции после перенесенных заболеваний и более подвержен разного рода осложнениям.

Все витамины делят на две большие группы: водорастворимые и жирорастворимые. К водорастворимым относятся все витамины группы B , витамины PP, H, C, P, а также в жирорастворимым – витамины A, E, K, D.

А теперь поближе познакомимся с наиболее известными витаминами.

Рибофлавин(B2)

Рибофлавин – витамин для «кожи». Он отвечает за то, чтобы кожа была здоровой, мягкой гладкой. Кроме того, этот витамин необходим глазам (например, при воспалении глаз рекомендуют принимать по 3 мг рибофлавина 3 раза в день перед едой).

Дефицит рибофлавина вызывает не только кожные болезни, но также расстройства пищеварения, хронические колиты и гастриты, заболевания нервной системы и общую слабость, приводит к снижению сопротивляемости организма инфекциям.

Пиридоксин (B6)

Этот витамин очень важен для организма, поскольку способствует лучшему усвоению ненасыщенных жирных кислот.

Кроме того, пиридоксин необходим для работы мышц: совместно с кальцием он способствует их эффективному функционированию и полноценному расслаблению. Установлено, что дефицит пиридоксина может стать фактором, провоцирующим развитие отита.

Аскорбиновая кислота (витамин С)

Этот витамин выполняет в организме множество разных функций. Без его участия не обходятся окислительно-восстановительные процессы, он повышает эластичность и прочность кровеносных сосудов, вместе с витамином А защищает организм от инфекций, блокирует токсичные вещества в крови, необходим для укрепления зубов и десен.

Кроме того, достаточное поступление аскорбиновой кислоты необходимо и для увеличения продолжительности жизни, поскольку она участвует в создании и оздоровлении соединительных тканей.

Нетрудно понять, что дефицит витамина С очень опасен. А между тем, организм не имеет возможности запастись им впрок, поэтому принимать аскорбиновую кислоту (в составе пищи и даже в виде аптечного препарата) нужно регулярно. Не бойтесь передозировки: витамин не токсичен, и избыток его легко выводится и организмов.

Никотиновая кислота (РР)

Этот витамин участвует во многих окислительных реакциях. Его недостаток, часто связанный с однообразием рациона (например, при питании исключительно зерновыми культурами), способствует развитию пеллагры.

Ретинол (витамин А)

Витамин А продлевает молодость, нормализует обмен веществ, участвует в процессе роста, предохраняет от поражений кожу и слизистые оболочки. В организме животных и человека образуется из каротина (так называемого провитамина А).

При дефиците этого витамина ухудшается зрение, изменяется состояние кожи (она становится сухой, может появиться мелкая сыпь), начинается интенсивное выпадение волос.

Кальциферол (витамин D)

Основные задачи витамина D в организме – способствовать усвоению кальция и регулировать фосфорно-кальциевый баланс. Он активно участвует в процессе образования и роста костной ткани.

Кроме того, витамин D необходим для нормальной свертываемости крови и работы сердца. Также он участвует в регуляции возбудимости нервной системы.

Несмотря на то, что витамин D содержат очень немногие продукты питания, да и то в небольшом количестве, его дефицит встречается не так уж часто. Дело в том, что организм умеет производить его самостоятельно под воздействием ультрафиолета (поэтому витамин D называют также «солнечным витамином»). Причем, для этого совсем не нужно часами загорать под палящими лучами солнца, достаточно всего лишь на несколько минут в день выбираться на улицу в светлое время суток.

Кстати, в организме светлокожих людей витамин D образуется в 2 раза быстрее, чем у людей со смуглой кожей.

Токоферол (витамин E)

Витамин Е известен как «витамин плодовитости», поскольку необходим для воспроизведения потомства. Кроме того, он обеспечивает нормальное функционирование сердечной мышцы и препятствует образованию тромбов в кровеносных сосудах.

С недавнего времени токоферол эффективно используется при лечении диабета и астмы.

Витамин Е нетоксичен, однако избыточное его содержание в организме приводит к повышению артериального давления.

Принимать токоферол следует только в сочетании с ретинолом (витамином А).

Укрепляет проницаемость стенок сосудов, снижает окисление аскорбиновой кислоты, способствует лучшей переносимости стрессовых ситуаций.

Теперь, когда мы многое узнали о том, какова роль витаминов и насколько они полезны, у нас возникает вопрос: «А откуда их можно получить?» Вопрос этот далеко не праздный. Можно потреблять аптечные синтетические витамины, но специалисты предупреждают: такие витамины усваиваются далеко не всегда. И потом, зачем прибегать к искусственным средствам, если можно получать витамины непосредственно с пищей.

2. Описание лекарственных препаратов.

Витамины – это незаменимые для организма вещества, присутствие которых имеет принципиальное значение для нормального обмена веществ и поддержания жизнедеятельности вообще. Это низкомолекулярные соединения органической природы. Большинство витаминов не синтезируется в организме человека, а потому исключительно важно их поступления с пищей. (Исключение составляет витамин D). По сравнению с основными питательными веществами, витамины должны поступать в ничтожно малых дозах. В то же время дефицит или отсутствие того или иного витамина вызывает различные заболевания и физиологические расстройства.

Незаменимые вещества пищи, объединяемые под общим названием «витамины», относятся к различным классам химических соединений, что само по себе исключает возможность использования единого метода их количественного определения. Все известные для витаминов аналитические методы основаны либо на определении специфических биологических свойств этих веществ (биологические, микробиологические, ферментативные), либо на использовании их физико-химических характеристик (флуоресцентные, хроматографические и спектрофотометрические методы), либо на способности некоторых витаминов вступать в реакции с некоторыми реагентами с образованием окрашенных соединений (колориметрические методы).

Несмотря на достигнутые успехи в области аналитической и прикладной химии методы определения витаминов в пищевых продуктах еще трудоемки и длительны. Это обусловлено рядом объективных причин, основные из которых следующие.

1.Определение ряда витаминов часто осложняется тем, что многие из них находятся в природе в связанном состоянии в виде комплексов с белками или пептидами, а также в виде фосфорных эфиров. Для количественного определения необходимо разрушить эти комплексы и выделить витамины в свободном виде, доступном для физико-химического или микробиологического анализа. Это достигается обычно путем использования особых условий обработки (кислотным, щелочным или ферментативным гидролизом, автоклавированием).

2.Почти все витамины – соединения весьма неустойчивые, легко подвергающиеся окислению, изомеризации и полному разрушению под воздействием высокой температуры, кислорода воздуха, света и других факторов. Следует соблюдать меры предосторожности: максимально сокращать время на предварительную подготовку продукта, избегать сильного нагрева и воздействия света, использовать антиоксиданты и др.

3.В пищевых продуктах, как правило, приходится иметь дело с группой соединений, имеющих большое химическое сходство и одновременно различающихся по биологической активности. Например, витамин Е включает 8 токоферолов, сходных по химическим свойствам, но отличающихся по биологическому действию; группа каротинов и каротиноидных пигментов насчитывает до 80 соединений, из которых только 10 в той или иной степени обладают витаминными свойствами.

4.Витамины принадлежат к различным классам органических соединений. Поэтому для них не могут существовать общие групповые реакции и общие методы исследования.

5.Кроме того, анализ затрудняет присутствие в исследуемом образце сопутствующих веществ, количество которых может во много раз превышать содержание определяемого витамина (например, стерины и витамин D). Для устранения возможных погрешностей при определении витаминов в пищевых продуктах обычно проводят тщательную очистку экстрактов от сопутствующих соединений и концентрирование витамина. Для этого используют различные приемы: осаждение мешающих анализу веществ, методы адсорбционной, ионобменной или распределительной хроматографии, избирательную экстракцию определяемого компонента и др.



В последние годы для определения витаминов в пищевых продуктах с успехом стали использовать метод ВЭЖХ. Этот метод является наиболее перспективным, так как позволяет одновременно разделять, идентифицировать и количественно определять различные витамины и их биологически активные формы, что позволяет сократить время анализа.

Физико-химические методы исследования витаминов. Методы основаны на использовании физико-химических характеристик витаминов (их способности к флуоресценции, светопоглощению, окислительно-восстановительным реакциям и др). Благодаря развитию аналитической химии, приборостроения физико-химические методы почти полностью вытеснили длительные и дорогостоящие биологические методы.

Определение витамина С. Витаминб С (аскорбиновая кислота) может присутствовать в пищевых продуктах как в восстановленной, так и в окисленной форме. Дегидроаскорбиновая кислота (ДАК) может образовываться при обработке и хранении пищевых продуктов в результате окисления, что вызывает необходимость ее определения. При определении витамина С в пищевых продуктах используют различные методы: колориметрические, флуоресцентные, методы объемного анализа, основанные на окислительно-восстановительных свойствах АК, и ВЭЖХ.

Ответственный момент количественного определения АК – приготовление экстракта образца. Извлечение должно быть полным. Наилучшим экстрагентом является 6% раствор метафосфорной кислоты, обладающей способностью осаждать белки. Используются также уксусная, щавелевая и соляная кислоты, а также их смеси.

1. Для суммарного и раздельного определения окисленной и восстановленной форм АК часто используют метод Роэ с применением 2,4-динитрофенилгидразинового реактива. АК (гулоновая кислота) под действием окислителей переходит в ДАК, а затем в 2,3-дикетогулоновую кислоту, которая образует с 2,4-динитрофенилгидразином соединения, имеющие оранжевую окраску. Сам 2,4-динитрофенилгидразин представляет собой основание, неспособное существовать в аци-форме. Однако соответствующие гидразоны под влиянием щелочей превращаются в интенсивно окрашенные аци-соли. При определении витамина С этим методом мешает присутствие восстановителей (глюкоза, фруктоза и др). Поэтому при большом содержании сахаров в исследуемом продукте используют хроматографию, что осложняет определение.

Нитроформа Ацидоформа

2. В последнее время для определения общего содержания витамина С (сумма АК и ДАК) получил признание весьма чувствительный и точный флуоресцентный метод. ДАК конденсируясь с о-фенилендиамином, образует флуоресцирующее соединение хиноксалин, обладающее максимальной флуоресценцией при длине волны возбуждающего света 350 нм.

о-Фенилендиамин ДАК Хиноксалин

Интенсивность флуоресценции хиноксалина в нейтральной среде при комнатной температуре прямо пропорциональна концентрации ДАК. Для количественного определения АК ее предварительно окисляют в ДАК. Недостатком метода является достаточно дорогое оборудование.

Методы, основанные на окислительно-восстановительных свойствах АК.

3. Из методов, основанных на окислительно-восстановительных свойствах АК, наибольшее применение нашел метод титрования раствором 2,6-дихлорфенолиндофенола, имеющим синюю окраску. Продукт взаимодействия АК с реактивом – бесцветный. Метод может быть использован при анализе всех видов продуктов. При анализе продуктов, не содержащих естественных пигментов, в картофеле, молоке используют визуальное титрование. В случае присутствия естественных красителей, используют потенциометрическое титрование или метод индофенол-ксилоловой экстракции. Последний метод основан на количественном обесцвечивании 2,6-дихлорфенолиндофенола аскорбиновой кислотой. Избыток краски экстрагируется ксилолом и измеряется оптическая плотность экстракта при 500 нм.

В реакцию вступает только АК. ДАК предварительно восстанавливают цистеином. Для отделения АК от восстановителей, присутствующих в пищевых продуктах, подвергшихся тепловой обработке, или длительно хранившиеся экстракты обрабатывают формальдегидом. Формальдегид в зависимости от рН среды избирательно взаимодействует с АК и посторонними примесями восстановителей (рН = 0). Указанным методом определяют сумму АК и ДАК.

2,6-дихлорфенолиндофенол может быть использован и для фотометрического определения АК. Раствор реактива имеет синюю окраску, а продукт взаимодействия с АК – бесцветен, т.е. в результате реакции уменьшается интенсивность синей окраски. Оптическую плотность измеряют при 605 нм (рН = 3,6).

4. Еще одним методом, основанным на восстановительных свойствах АК, является колориметрический метод, в котором используется способность АК восстанавливать Fe(3+) до Fe(2+) и способность последнего образовывать с 2,2’-дипиридилом соли, интенсивно окрашенные в красный цвет. Реакцию проводят при рН 3,6 и температуре 70ºС. Оптическую плотность раствора измерят при 510 нм.

5. Фотометрический метод, основанный на взаимодействии АК с реактивом Фолина. Реактив Фолина представляет собой смесь фосфорномолибденовой и фосфорновольфрамовой кислот, т.е. это – известный метод, основанный на образовании молибденовых синей, поглощающих при 640–700 нм.

6. Для определения витамина С во всех пищевых продуктах с успехом может быть использован высоко чувствительный и специфичный метод ВЭЖХ. Анализ достаточно прост, лишь при анализе продуктов, богатых белками, необходимо предварительно удалить их. Детектирование осуществляется по флуоресценции.

Кроме названных методов определения витамина С существует еще целый ряд способов, например, окисление хлоридом золота и образование гидроксамовых кислот, но эти методы не имеют практического значения.

Определение тиамина (В 1 ). В большинстве природных продуктов тиамин встречается в виде дифосфорного эфира – кокарбоксилазы. Последняя, являясь активной группой ряда ферментов углеводного обмена, находится в определенных связях с белком. Для количественного определения тиамина необходимо разрушить комплексы и выделить исследуемый витамин в свободном виде, доступном для физико-химического анализа. С этой целью проводят кислотный гидролиз или гидролиз под воздействием ферментов. Объекты, богатые белком, обрабатывают протеолитическими ферментами (пепсином) в среде соляной кислоты. Объекты, с высоким содержанием жира (свинина, сыры), для его удаления обрабатывают эфиром (тиамин практически нерастворим в эфире).

1. Для определения тиамина в пищевых продуктах используют, как правило, флуоресцентный метод, основанный на окислении тиамина в щелочной среде гексацианоферратом калия (3+) с образованием сильно флуоресцирующего в ультрафиолетовом свете соединения тиохрома. Интенсивность его флуоресценсции прямо пропорциональна содержанию тиамина (длина волны возбуждающего света 365 нм, испускаемого – 460–470 нм (синяя флуоресценция)). При использовании этого метода возникают трудности, связанные с тем, что в ряде объектов присутствуют флуоресцирующие соединения. Их удаляют очисткой на колонках с ионообменными смолами. При анализе мяса, молока, картофеля, пшеничного хлеба и некоторых овощей очистка не требуется.

Тиамин Тиохром

2. Тиамин характеризуется собственным поглощением в УФ области (240 нм – в водном растворе, 235 нм – в этаноле), а значит он может быть определен методом прямой спектрофотометрии.

3. Для одновременного определения тиамина и рибофлавина используют ВЭЖХ.

Определение рибофлавина (В 2 ). В пищевых продуктах рибофлавин присутствует главным образом в виде фосфорных эфиров, связанных с белками, и, следовательно, не может быть определен без предварительного протеолитического расщепления. Свободный рибофлавин в значительном количестве содержится в молоке.

При определении рибофлавина наибольшее распространение получили микробиологический и физико-химический (флуоресцентный) методы анализа. Микробиологический метод специфичен, высоко чувствителен и точен; применим ко всем продуктам, но длителен и требует специальных условий.

Физико-химический метод разработан в двух вариантах, которые отличаются способом оценки флуоресцирующих веществ:

· вариант прямой флуоресценции (определение интенсивности флуоресценции рибофлавина) и

· люмифлавиновый вариант.

1. Свободный рибофлавин и его фосфорные эфиры обладают характерной желто-зеленой флуоресценцией при длине волны возбуждающего света 440–500 нм. На этом свойстве основан наиболее широко используемый флуоресцентный метод определения рибофлавина. Рибофлавин и его эфиры дают очень сходные спектры флуоресценции с максимумом при 530 нм. Положение максимума не зависит от рН. Интенсивность флуоресценции значительно зависит от рН и от растворителя (по-разному для рибофлавина и его эфиров), поэтому предварительно разрушают эфиры и анализируют свободный рибофлавин. Для этого используют гидролиз с соляной и трихлоруксусной кислотами, автоклавирование, обработку ферментными препаратами.

Интенсивность желто-зеленой флуоресценции рибофлавина в УФ-свете зависит не только от его концентрации, но и от значения рН раствора. Максимальная интенсивность достигается при рН=6-7. Однако измерение проводят при рН от 3 до 5, так как в этом интервале интенсивность флуоресценции определяется только концентрацией рибофлавина и не зависит от других факторов – значения рН, концентрации солей, железа, органических примесей и др.

Рибофлафин легко разрушается на свету, определение проводят в защищенном от света месте и при рН не выше 7. Следует отметить, что метод прямой флуоресценции не применим к продуктам с низким содержанием рибофлавина.

2. Люмифлавиновый вариант основан на использовании свойства рибофлавина при облучении в щелочной среде, переходить в люмифлавин, интенсивность флуоресценции которого измеряют после извлечения его хлороформом (голубая флуоресценция, 460–470 нм). Поскольку при определенных условиях в люмифлавин переходит 60–70% общего рибофлавина, при проведении анализа необходимо соблюдать постоянные условия облучения, одинаковые для испытуемого и стандартного раствора.

Рибофлавин Люмифлавин

Определение витамина В 6 . Для определения витамина могут быть использованы следующие методы:

1. Прямая спектрофотометрия. Пиридоксина гидрохлорид характеризуется собственным поглощением при 292 нм (e = 4,4·10 3) при рН = 5.

2. Метод Кьельдаля. Определение осуществляется по аммиаку, образующемуся при окислении витамина.

3. Фотометрический метод, основанный на реакции с 2,6-дихлорхинонхлоримином (реактив Гиббса) при рН 8–10, в результате которой образуются индофенолы, имеющие синюю окраску. Индофенолы экстрагируют метил-этилкетоном и измеряют оптическую плотность экстракта при 660–690 нм (реакцию Гиббса дают фенолы со свободным пара-положением).

Индофенол

4. Флуоресцентный метод, основанный на том, что при облучении пиридоксина и пиридоксамина наблюдается синяя, а пиридоксаля – голубая флуоресценция.

Определение витамина В 9 . Определение фолатов в пищевых продуктах в тканях и жидкостях организма представляет значительные трудности, т.к. в этих объектах они обычно присутствуют в связанной форме (в виде полиглютаматов); кроме того, большинство форм чувствительно к воздействию кислорода воздуха, света и температуры. Для предохранения фолатов от гидролиза рекомендуется вести гидролиз в присутствии аскорбиновой кислоты.

В пищевых продуктах фолаты могут быть определены физическими, химическими и микробиологическими методами. Колориметрический метод основан на расщеплении птероилглутаминовой кислоты с образованием п-аминобензойной кислоты и родственных ей веществ и дальнейшем превращении их в окрашенные соединения. Однако из-за недостаточной специфичности этот метод применяется в основном для анализа фармацевтических препаратов.

Для разделения, очистки и идентификации фолатов разработаны также методы хроматографии на колонках, бумаге и в тонком слое адсорбента.

Определение витамина РР. В пищевых продуктах никотиновая кислота и ее амид находятся как в свободной, так и в связанной форме, входя в состав коферментов. Химические и микробиологические методы количественного определения ниацина предполагают наиболее полное выделение и превращение его связанных форм, входящих в состав сложного органического вещества клеток, в свободную никотиновую кислоту. Связанные формы ниацина освобождают воздействием растворов кислот или гидрооксида кальция при нагревании. Гидролиз с 1 М раствором серной кислоты в автоклаве в течение 30 минут при давлении 0,1 МПа приводит к полному освобождению связанных форм ниацина и превращению никотинамида в никотиновую кислоту. Установлено, что этот способ обработки дает менее окрашенные гидролизаты и может быть использован при анализе мясных и рыбных продуктов. Гидролиз с гидрооксидом кальция предпочтителен при определении ниацина в муке, крупах, хлебобулочных изделиях, сырах, пищевых концентратах, овощах, ягодах и фруктах. Ca(OH) 2 образует с сахарами и полисахаридами, пептидами и гликопептидами соединения, почти полностью нерастворимые в охлажденных растворах. В результате гидролизат, полученый при обработке Ca(OH) 2 , содержит меньше веществ, мешающих химическому определению, чем кислотный гидролизат.

1. В основе химического метода определения ниацина лежит реакция Кенига, протекающая в две стадии. Первая стадия – реакция взаимодействия пиридинового кольца никотиновой кислоты с бромцианом, вторая – образование окрашенного производного глутаконового альдегида в результате взаимодействия с ароматическими аминами. (Сразу после добавления к никотиновой кислоте бромистого циана появляется желтая окраска глутаконового альдегида. В результате взаимодействия его с ароматическими аминами, вводимыми в реакционную смесь, образуются дианилы, которые интенсивно окрашены в желтый, оранжевый или красный цвет, в зависимости от амина (бензидин – красный, сульфаниловая кислота – желтый). Реакцию Кенига применяют для фотометрического определения пиридина и его производных со свободным a-положением. Недостатком метода является его длительность, так как скорость реакций мала.



gastroguru © 2017