Количественное определение водорастворимых витаминов. Качественные реакции на витамины


Введение

Определение витамина В1 (обзор литературы)

1 Историческая справка

2 Классификация витаминов

4 Синтез витамина В1

Методы определения витаминов

1 Биологические методы

2 Химические методы

3 Физические методы

4 Физико-химические методы

Аналитическое определение витамина В1 (экспериментальная часть)

1 Потенциометрическое определение витамина В1

2 Аргентометрическое определение витамина В1

Заключение


Введение


В настоящее время на рынке появилось огромное количество витаминизированных продуктов питания для человека и кормов для животных, представляющих собой сухие многокомпонентные смеси. Ассортимент таких продуктов представлен достаточно широко. Это, прежде всего, биологически активные добавки к пище, комбикорма для животных и птиц, поливитаминные препараты. Критерием качества таких продуктов может являться их анализ на содержание витаминов и, особенно, таких жизненно необходимых, как водорастворимые и жирорастворимые витамины, количество которых регламентируется нормативными документами и санитарными нормами качества.

Витамины принадлежат к различным классам органических соединений. Поэтому для них не могут существовать общие групповые реакции; каждый из витаминов требует особого аналитического подхода.

Химическая структура витамина В1 (антиневритический витамин, аневрин, бери-бери витамин, анти-бери-бери витамин), позволяет применить различные методы химического и физико-химического количественного определения:

кислотно-основное титрование, осадительное титрование (аргентометрия), физико-химические методики (спектрофотометрические), гравиметрия.

Целью данной курсовой работы, является количественное определение витамина В1. Было выбрано два способа количественного определения- химический и физико-химический методы.

Задачи курсовой работы: Произвести анализ литературы, выполнить два количественных определения тиамина- потенциометрическим титрованием и аргентометрическим методом.


1. Определение витамина В1 (обзор литературы)


1 Историческая справка


Всем известное слово "витамин" происходит от латинского "vita" - жизнь. Такое название эти разнообразные органические соединения получили далеко не случайно: роль витаминов в жизнедеятельности организма чрезвычайно велика.

Витамины представляют собой группу разнообразных по строению химических веществ, принимающие участие во многих реакциях клеточного метаболизма. Они не являются структурными компонентами живой материи и не используются в качестве источников энергии. Большинство витаминов не синтезируются в организме человека и животных, но некоторые синтезируются микрофлорой кишечника и тканями в минимальных количествах, поэтому основным источником этих веществ является пища.

Ко второй половине XIX века было выявлено, что пищевая ценность продуктов питания определяется содержанием в них в основном следующих веществ: белков, жиров, углеводов, минеральных солей и воды.

Однако практика далеко не всегда подтверждала правильность укоренившихся представлений о биологической полноценности пищи.

Экспериментальное обоснование и научно-теоретическое обобщение этого многовекового практического опыта впервые стали возможны благодаря исследованиям русского ученого Николая Ивановича Лунина.

Он провел эксперимент с мышами, разделив их на 2 группы. Одну группу он кормил натуральным цельным молоком, а другую держал на искусственной диете, состоящей из белка-казеина, сахара, жира, минеральный солей и воды.

Через 3 месяца мыши второй группы погибли, а первой остались здоровыми. Этот опыт показал, что помимо питательных веществ, для нормальной жизнедеятельности организма, необходимы еще какие-то компоненты. Это было важное научное открытие, опровергавшее установившееся положения в науке о питании.

Блестящим подтверждением правильности вывода Н. И. Лунина установлением причины болезни бери-бери.

В 1896 году английский врач Эйкман заметил, что куры, питавшиеся полированным рисом, страдали нервным заболеванием, напоминавшим бери-бери у людей. После дачи курам неочищенного риса заболевание прекратилось. Он сделал вывод, что витамин содержится в оболочке зерен. В 1911 году польский ученый Казимир Функ выделил витамин в кристаллическом виде. Окончательное строение витамина В1 было установлено в 1973 году.

По своим химическим свойствам это вещество принадлежало к органическим соединениям и содержало аминогруппу. Функ, полагая, что во всех подобных веществах обязательно должны входить аминные группировки, предложил называть эти неизвестные вещества витаминами, т.е. аминами жизни. В дальнейшем было установлено, что многие из них аминных групп не содержат, но термин «витамин» прижился в науке и практике.

Согласно классическому определению, витамины - это необходимые для нормальной жизнедеятельности низкомолекулярные органические вещества, которые не синтезируются организмом данного вида или синтезируются в количестве, недостаточном для обеспечения жизнедеятельности организма. Витамины необходимы для нормального протекания практически всех биохимических процессов в нашем организме.


2 Классификация витаминов


Современная классификация витаминов не является совершенной. Она основана на физико-химических свойствах (в частности, растворимости) или на химической природе. В зависимости от растворимости в неполярных органических растворителях или в водной среде различают жирорастворимые и водорастворимые витамины. В приводимой классификации витаминов, помимо буквенного обозначения, в скобках указан основной биологический эффект, иногда с приставкой «анти», указывающей на способность данного витамина предотвращать или устранять развитие соответствующего заболевания.

Витамины, растворимые в жирах

Витамин Л (антиксерофгальмический); ретинол

Витамин D (антирахитический); кальциферолы

Витамин Е (антистерильный, витамин размножения); токоферолы

Витамин К (антигеморрагический); нафтохиноны

Витамины, растворимые в воде

.Витамин В1 (антиневритный); тиамин

.Витамин В2 (витамин роста); рибофлавин

.Витамин В6 (антидерматитный, адермин); пиридоксин

.Витамин В12 (антианемический); цианкобаламии; кобаламин

.Витамин РР (антипеллагрический, ниацин); никотинамид

.Витамин Н (антисеборейный, фактор роста бактерий, дрожжей и грибков); биотин

.Витамин С (антискорбутный): аскорбиновая кислота


3 Строение и свойства витамина В1

Витамин В1-тиамин является хлористоводородной солью 4-метил-5-?-оксиэтил- N - (2-метил-4-амино-5-метилпиримидил) -тиазолийхлорида, получается синтетически обычно в виде хлористо-или бромистоводородной соли. В его структуру входят такие гетероциклические системы, как пиримидил и тиазол.

Витамин В1- белый кристаллический порошок горького вкуса, с характерным запахом, хорошо растворяется в воде(1г в 1 мг), ледяной уксусной кислоте, в этиловом спирте. В сильнокислой водной среде тиамин обладает высокой устойчивостью и не разрушается под действием таких энергичных окислителей, как перекись водорода, марганцовокислый калий и озон. При рН=3,5 тиамин может нагреваться до температуры 120ºС без заметных признаков разложения.

Витамин В1 способен окисляться. В щелочной среде под действием красной кровяной соли тиамин переходит в тиохром. Превращение тиамина в тиохром количественный необратимый процесс.

Эта реакция положена в основу одного из количественных методов определения витамина В1. Превращение тиамина в тиохром сопровождается утратой витаминной способности.


1.4 Синтез


Учитывая особенности строения витамина В1, его синтез может быть осуществлен тремя путями: конденсацией пиримидинового и тиазольного компонентов, на основе пиримидинового компонента и на основе тиазольного компонента.

Рассмотрим первый вариант. Оба компонента синтезируются параллельно, а затем соединяются в молекулу тиамина. Конкретно 2- метил-4-амино-5 хлорметилпиримидин взаимодействует с 4-метил-5-оксиэтиазолом, образуя четвертичную тиазолевую соль:

Конденсация проходит при температуре 1200С в толуоле или бутиловом спирте. Далее полученный тиамин выделяют из реакционной смеси осаждением ацетоном и очищают перекристаллизацией из метанола.


5 Распространение в природе и применение


Тиамин распространен повсеместно и обнаруживается у разных представителей живой природы. Как правило, количество его в растениях и микроорганизмах достигает величин значительно более высоких, чем у животных. Кроме того, в первом случае витамин представлен преимущественно свободной, а во втором - фосфорилированной формой. Содержание тиамина в основных продуктах питания колеблется в довольно широких пределах в зависимости от места и способа получения исходного сырья, характера технологической обработки полупродуктов и т. п.

В злаковых семенах растений тиамин, подобно большинству водорастворимых витаминов, содержится в оболочке и зародыше. Переработка растительного сырья (удаление отрубей) всегда сопровождается резким снижением уровня витамина в полученном продукте. Шлифованный рис, например, совсем не содержит витамина.

Витамин В1 широко применяется в медицинской практике для лечения различных нервных заболеваний (неврозов, полиневритов), сердечно - сосудистых расстройств(гипертония) и др.

Витаминизация хлебобулочных изделий и комбикормов в животноводстве и птицеводстве.

Суточная потребность взрослого человека в среднем составляет 2-3 мг витамина В1. Но потребность в нём в очень большой степени зависит от состава и общей калорийности пищи, интенсивности обмена веществ и интенсивности работы. Преобладание углеводов в пище повышает потребность организма в витамине; жиры, наоборот, резко уменьшают эту потребность.


2. Методы определения витаминов


Все методы исследования витаминов подразделяются на биологические (микробиологические), физические, химические и физико-химические.


1 Биологические методы


Несмотря на то, что биологические методы определения некоторых витаминов отличаются высокой чувствительностью и могут использоваться для исследования образцов с незначительным содержанием этих соединений, в настоящее время они представляют главным образом исторический интерес. Точность этих методов невысока, кроме того биологические методы требуют больших затрат времени и средств и неудобны для проведения серийных анализов.

Микробиологические методы основаны на измерении скорости роста бактерий, которая пропорциональна концентрации витамина в исследуемом объекте.


2.2 Химические методы


Специфичность свойств витаминов обусловлена наличием в их молекулах функциональных групп. Это свойство широко используется при количественном и качественном химическом анализе.

Химические методы анализа:

) Фотометрический;

) Титриметрический(заключается в том, что все вещества реагируют между собой в эквивалентных количествах С*V = С*V);

3) Гравиметрический(заключается в выделении вещества в чистом виде и его взвешивании. Чаще всего такое выделение проводят осаждением. Реже определяемый компонент выделяют в виде летучего соединения(метод отгонки). Аналитический сигнал-масса);

) Оптический(основан на поглощении системой некоторого количества лучистой энергии атомами. Количество энергии поглощения находится в прямой зависимости от концентрации вещества в растворе).


3 Физические методы


Применение физических методов в анализе витаминов (например, ПМР) ограничено высокой стоимостью приборов.

Кондуктометрический - основан на измерении электропроводности раствора.

Потенциометрический(в основе метода лежит измерение зависимости равновесного потенциала электрода от активности(концентрации) определяемого иона определяемого иона. Для измерений необходимо сравнивать элемент из подходящего индикаторного электрода и электрода сравнения).

Масс-спектральный - применяется при помощи сильных элементов и магнитных полей, происходит разделение газовых смесей на компоненты в соответствии с атомами или молекулярными массами компонентов. Применяется при исследовании смеси изотопов, инертных газов, смесей органических веществ.


4 Физико-химические методы


В настоящее время в практике фармацевтического анализа находят все большее применение физико-химические методы анализа, как наиболее точные и экспрессные по своему исполнению. К ним относятся оптические, электрохимические и хроматографические методы анализа.

Среди оптических методов наибольшее распространение получили спектрофотометрические и фотоколориметрические методы, основанные на общем принципе - существовании в известных границах концентраций прямой пропорциональной зависимости между светопоглощением раствора и концентрацией растворенного вещества. Спектрофотометрический анализ по непосредственному измерению оптической плотности может быть проведен для веществ, обладающими определенными особенностями строения - в структуре должны быть хромофорные и ауксохромные группы (например, гетероатомы, системы сопряженных связей).

К достоинствам колориметрических (фотометрических) методов можно отнести доступность оборудования и средств измерения, экспрессность. Основным недостатком является низкая селективность, препятствующая применению этих методов к сложным по составу объектам. Сказывается влияние сопутствующих компонентов: провитаминов, антиоксидантов, производных витаминов, продуктов деструкции витаминов, способных подобно витаминам, давать окрашенные продукты. Встречаются трудности при подборе специфического реактива для взаимодействия с определенным витамином.

Несмотря на недостатки этого метода, для многих витаминов разработаны методики фотометрического определения.

Несмотря на разнообразие методик фотометрического определения витаминов ученые до сих пор интересуются этим методом, унифицируют старые методики и создают новые.

Хроматографические методы анализа очень распространены в фармацевтической практике. Эти методы перспективны при анализе веществ, содержащих витамины и имеющих сложную структуру.

Вплоть до относительно недавнего времени наиболее часто из хроматографических методов использовали газожидкостную хроматографию (ГЖХ).

В настоящее время альтернативным способом быстрого определения витаминов в разнообразных объектах является высокоэффективная жидкостная хроматография (ВЭЖХ).

Определение витаминов методом высокоэффективной жидкостной хроматографии не требует длительной пробоподготовки, достаточно высока чувствительность метода, однако высокая стоимость оборудования существенно ограничивает применение этого метода.

Электрохимические методы анализа основаны на использовании ионообменных или электрообменных процессов, протекающих на поверхности электрода или в при электродном пространстве. Аналитическим сигналом служит любой электрический параметр (потенциал, сила тока, сопротивление, электропроводность и т.д.), функционально связанный с составом и концентрацией раствора.

Электрохимические методы анализа играют важную роль в современной фармацее, поскольку характеризуются высокой чувствительностью, низкими пределами обнаружения, широким интервалом определяемых содержаний. Самыми распространенными методами являются полярография и вольтамперометрия. Литературные данные по полярографическому исследованию витаминов самые многочисленные. Полярографически можно определять количественное содержание каждого витамина в индивидуальных и в сложных фармацевтических препаратах.

Метод достаточно чувствительный, но использование полярографии ограничено применением токсичного ртутного электрода.

Вместе с тем метод потенциометрического титрования является экспрессным, простым в выполнении, не требует дорогостоящего оборудования и реактивов.


3. Экспериментальная часть


1 Потенциометрическое определение витамина В1


В структуру витамина В1 входит подвижный хлор (С12Н18ОN4Cl2S):


витамин тиамин титрование потенциометрический

Это дало возможность использовать осадительное потенциометрическое титрование для определения тиамина. В качестве индикаторного электрода использовался серебряный электрод. Титрантом служил раствор нитрата серебра с концентрацией 0,05 моль/л.

Для проведения анализа готовили растворы с концентрацией витамина В1 0,02968моль/л. Для этого содержимое 10 ампул количественно переносили в колбу на 50 мл и доводили до метки дистиллированной водой. Объем ампул равен 1 мл, содержание витамина В1 - 50 мг (Производитель: ОАО «Мосхимфармпрепараты» им. Н.А.Семашко). Отбирали аликвоты, объемом по 5 мл и проводили потенциометрическое титрование. Эквивалентный объем раствора нитрата серебра при титровании 5 мл раствора витамина 6 мл. Было выполнено 8 потенциометрических измерений.

Примеры кривых титрования представлены на рисунках 1, 2, 3, 4, 5. Кривые титрования построены в координатах- интегральные кривые V, мл- Е, Вт, а дифференциальные кривые в координатах - ?V -


Рис.1 Кривая потенциометрического титрования витамина В1(Val=5 мл)


Рис.2 Кривая потенциометрического титрования витамина В1(Val=5 мл)


Рис.3 Кривая потенциометрического титрования витамина В1(Val=5 мл)


Рис.4 Кривая потенциометрического титрования витамина В1(Val=5 мл)


Рис.5 Кривая потенциометрического титрования витамина В1(Val=5 мл)


где ТAgNO3/вит.В1.= (0,05*337)/1000=0,01685г/мл; Vэ- объем нитрата серебра, пошедший на титрование.



где Vколбы = 50мл, ТAgNO3/вит.В1 =0,008425г/мл, Vэ - объем нитрата серебра, пошедший на титрование, Val = 5 мл, N - число ампул (10 шт).

Результаты анализа представлены в таблице 1.


Таблица 1. Результаты анализа потенциометрического титрования.

№V, мла, мгm, г160.10110,05055260.10110,0505536,50,10950,05476460.10110,05055560.10110,05055660.10110,05055760.10110,05055860.10110,05055<среднее>6,06250,102150,051076

где x - "подозрительное" значение (вероятный промах) - это максимальное или минимальное значение выборки, xближайшее - ближайшее к подозрительному значение, xmin и xmax - максимальное и минимальное значения выборки. Значение Q сравнивают с табличным значением(Таблица 2). Доверительную вероятность берут равной 0.90 или 0.95. Если Q> Qтабл - подозрительный результат является промахом и исключается из дальнейшего рассмотрения;Q< Qтабл - подозрительный результат не является промахом.


Таблица 2. Критические значения Q-критерия для различной доверительной вероятности p и числа измерений n.

np0.900.950.9930.9410.9700.99440.7650.8290.92650.6420.7100.82160.5600.6250.74070.5070.5680.68080.4680.5260.63490.4370.4930.598100.4120.4660.568

Вычисления: n=8; р=0.90;= =1,0>0,468 критерий свидетельствует, что результат является промахом, и мы его не учитываем.

Исключая промах получаем m= 0,05055 г, по нормативным документам содержание витамина В1 должно быть равным 0,05 г.

Погрешность составляет:

Х= 0,05055-0,05= 0,00055 г

1,1%

. Среднее квадратичное отклонение, характеризующее разброс результатов КХА:


Таблица 3. Вспомогательная таблица для расчета СКО.

mimi - (mi - )2S0,050550,050550000,050550,050550000,050550,050550000,050550,050550000,050550,050550000,050550,050550000,050550,05055000


. Доверительный интервал:

0,05055


3.2 Аргентометрическое определение витамина В1


Аргентометрическое определение по методу Фаянса,. Метод Фаянса - это метод прямого титрования галогенидов раствором AgNO30,1М в слабо кислой среде с применением адсорбционных индикаторов, которые показывают изменение цвета не в растворах, а на поверхности выпавшего осадка. Использовали раствор, приготовленный для первого метода количественного определения тиамина с концентрацией витамина 0,02968моль/л. Val= 5 мл. Прибавляли 2-3 капли раствора бромфенолового синего и по каплям разведенную уксусную кислоту до получения зеленовато-желтого окрашивания. Полученный раствор титровали 0,1 М раствором нитрата серебра до фиолетовой окраски.

Титрование идет по уравнению:


12Н17N4ОS)Cl- .HCl +2AgNO3= 2AgCl + (С12Н17N4ОS)NO3- .HNO3



Таблица 4. Результаты аргентометирического определения витамина В1

№V, млm, г11,50,0505521,50,0505531,50,0505541,50,0505551,40,0471861,50,0505571,50,0505581,50,0505591,40,04718101,50,05055<среднее>1,480,04988

Приведённые результаты свидетельствуют о наличии выпадающих результатов. Определение промахов ведем по Q-критерию: Тестовая статистика Q-критерия вычисляется по формуле:

Вычисления: n=10; р=0.90;

> 0,412критерий свидетельствует, что результат является промахом, и мы его не учитываем в дальнейших расчетах.

1.Установление титра AgNO3 0,1 N по раствору NaCl 0,1 N


= ;


V-объем AgNO3, пошедший на титрование, мл.

2.Погрешность составляет:

Х= 0,05055 -0,05= 0,00055 г

1,1%

Математическая обработка результатов КХА (количественного химического анализа)

. Среднее квадратичное отклонение, характеризующее разброс результатов КХА


Таблица 5. Вспомогательная таблица для расчета СКО.

mimi - (mi - )2S0,050550,050550000,050550,050550000,050550,050550000,050550,050550000,050550,050550000,050550,050550000,050550,050550000,050550,05055000



. Доверительный интервал:

Верхнюю и нижнюю границы интервала, в котором погрешность результатов КХА находится с доверительной вероятностью 0,95, определяли следующим образом:

0,05055


Заключение


В данной курсовой работе стояла задача количественно определить витамин В1. Для определения витаминов применяют различные методы. Так же необходимо учитывать химическое строение каждого витамина. Широко используемые оптические методы анализа трудоемки, требуют больших затрат времени и дорогостоящих реактивов, применение хроматографических методов осложнено использованием дорогостоящего оборудования. Было выбрано два метода определения тиамина:

.Потенциометрическое титрование, который имеет ряд преимуществ по сравнению с существующими методами анализа фармпрепаратов, на содержание в них витаминов: метод прост, экспрессен, не требует дорогостоящего оборудования, расход реактивов минимален, исключено влияние субъективных факторов.

По этому методу ошибка составляет 1,1%.

.Титрование, заключается в том, что все вещества реагируют между собой в эквивалентных количествах С*V = С*V

В данном методе определения тиамина ошибка составляет 1,1%.

Доверительный интервал: 0,05055.


Список используемой литературы


1. Биохимия: учеб.для вузов 3-е изд., стереотип. / В.П. Комов; В.Н. Шведова М.: Дрофа, 2008. -638 с.

Химия витаминов/ В.М. Березовский М.: «Пищевая промышленность», 1973. -632 с.

Основы аналитической химии книга 2 методы химического анализа / Ю.А. Золотов «Высшая школа» год; 2002. -494 с.

4. Аналитическая химия, учебное пособие/ Н.Я. Логинов; А.Г.Воскресенский; И.С. Солодкин-. М.: «Просвещение» 1975.- 478 с.

5. Михеева Е.В. Вольтамперометрическое определение водорастворимых витаминов В1 и В2 в витаминизированных подкормках и кормах./ Е. В. Михеева, Л. С. Анисимова // Материалы 6 конференции « Аналитика Сибири и Дальнего Востока» г.Новосибирс.-2000.-с.367.

Химические методы в количественном анализе лекарственных средств: Методическое указание для студентов V курса по «Контроль качества лекарственных средств»/ Государственный Университет Медицины и Фармации им. Н. Тестемицану.- Кишинэу.- 2008

ГОСТ 29138-91

8. Л.Н. Корсун, Г.Н. Баторова, Э.Т. Павлова/- Математическая обработка результатов химического эксперимента: учебное пособие для студентов химических, медицинских и биологических специальностей и направлений-Улан-Удэ.- 2011.-70 с.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

МОТИВАЦИОННАЯ ХАРАКТЕРИСТИКА ТЕМЫ

Рациональное питание человека требует сбалансированности не только по содержанию белков, жиров, углеводов, но и по содержанию микронутриентов. Результаты изучения фактического питания различных групп населения свидетельствуют о значительной распространенности полигиповитаминозов, недостаточности основных минеральных веществ и пищевых волокон. Устранение недостаточностей микронутриентов не может быть достигнуто простым увеличением потребления продуктов питания. Современные условия жизни и труда большинства населения приводят к уменьшению энергетических затрат, что обусловливает необходимость снижения количества потребляемой пищи и влечет за собой недостаточное потребление содержащихся в ней микронутриентов. Знания клинических проявлений недостаточностей микронутриентов, источников витаминов, минеральных веществ и пищевых волокон в питании, способах сохранения витаминной ценности продуктов, приемах профилактической витаминизации позволяют врачу оптимизировать статус питания пациентов.

ЦЕЛЬ ЗАНЯТИЯ: ознакомить с биологической ролью, нормированием и источниками в питании микронутриентов и пищевых волокон; научить определению химического состава рациона питания по содержанию витаминов, минеральных веществ, пищевых волокон расчетным методом (на примере анализа меню-раскладки суточного рациона питания студента-медика), витаминосберегающим способам хранения и кулинарной обработки продуктов, профилактической витаминизацией.

САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ НА ЗАНЯТИИ

1. Определение качественного состава суточного рациона питания студента по содержанию витаминов, минеральных веществ, пищевых волокон расчетным методом (по меню-раскладке, составленной к теме 3.2.) с использованием «Таблиц химического состава и энергетической ценности пищевых продуктов».

2. Решение ситуационных профессионально ориентированных задач двух типов, оформление решения в протоколе.

3. Лабораторная работа по определению содержания витамина С в овощах. 3.1. Определение содержания витамина С в сыром и вареном картофеле; расчет процента потери витамина С при кулинарной обработке.

3.2. Определение содержания витамина С в капусте; расчет процента потери витамина С при хранении.

4. Заслушивание и обсуждение рефератов, подготовленных студентами

по индивидуальному заданию преподавателя.

ЗАДАНИЕ ДЛЯ САМОПОДГОТОВКИ

1.Биологическая роль, нормирование, источники в питании водорастворимых витаминов.

2.Биологическая роль, нормирование, источники в питании жирорастворимых витаминов.

3. Виды витаминных недостаточностей.

4. Причины гиповитаминозов, их проявления.

5.Приемы сохранения и повышения витаминной ценности рационов питания, профилактика гиповитаминозов.

6.Биологическая роль, нормирование, источники в питании минеральных веществ.

7.Биологическая роль, нормирование, источники в питании пищевых волокон.

ПРОТОКОЛ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

"_____"___________20___г.

Таблица 46

Качественный состав суточного рациона питания студента

Наименования блюд меню, набор продуктов на порцию Масса, г Витамины Минеральные вещества Пище-вые волок- на, г
С мг В мг В мг А мкг D мкг Ca мг P мг К мг Fe мг J мкг
ЗАВТРАК:
2-ой ЗАВТРАК:
ОБЕД:
УЖИН:
ВСЕГО ЗА СУТКИ:

2. Решение ситуационной задачи (тип 1) №____

__________________________________________________________________

______________________________________________________________________________________________________________________________________________________________________________________________________

__________________________________________________________________

__________________________________________________________________

Решение ситуационной задачи (тип2) №___

__________________________________________________________________

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

__________________________________________________________________

__________________________________________________________________

3. Определение содержания витамина С в овощах:

вид продукта _____________, навеска продукта ____________г,

количество 0,0001н. раствора иодноватокислого калия, пошедшего на тит-

рование пробы _____мл;

Формула для расчета:

а) сырой картофель _______ м, вареный картофель _______ мг,

потеря витамина С при кулинарной обработке _________%

б) капуста ______ мг, среднее содержание в капусте _____ мг,

потеря витамина С при хранении _____ %.

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________

Работу выполнил __________________

Подпись преподавателя _____________

СПРАВОЧНЫЙ МАТЕРИАЛ

Дефиниции темы

АВИТАМИНОЗ - полное истощение витаминных ресурсов организма.

АНТИВИТАМИНЫ - соединения, частью или полностью выключающие витамины из обменных реакций организма путем их разрушения, инактивации или препятствуя их ассимиляции. Антивитамины делятся на 2 группы:

а) структуроподобные соединения (конкурентные ингибиторы; вступают с витаминами или их производными в конкурирующие отношения в соответствующих биохимических реакциях обмена веществ), к ним относятся сульфаниламиды, дикумарин, мегафен, изониазид и др.

б) структуроразличные соединения (природные антивитамины; вещества,

которые путем изменения молекулы или комплексного соединения с метаболитами частично или полностью лишают витамин его действия), к ним относятся тиаминаза, аскорбиназа, авидин и др.

ВИТАМИНЫ - необходимые для нормальной жизнедеятельности низкомолекулярные органические соединения с высокой биологической активностью, которые не синтезируются (или синтезируются в недостаточном количестве) в организме и поступают в организм с пищей. Биологическая роль водорастворимых витаминов определяется их участием в построении различных коферментов, жирорастворимых витаминов - в контроле функционального состояния мембран клетки и субклеточных структур.

ВИТАМИНЫ-АНТАГОНИСТЫ: В 1 и В 2 ; А и Д; никотиновая кислота и холин; тиамин и холин (при длительном введении с лечебными целями одного витамина обнаруживаются симптомы недостаточности другого).

ВИТАМИНЫ-СИНЕРГИСТЫ: С и Р; Р, С, К; В 12 и фолиевая кислота; С, К, В 2 ; А и Е; Е и инозит (при комплексном применении в поливитаминных препаратах могут усиливать биологический эффект друг друга). ГИПОВИТАМИНОЗ - резкое снижение обеспеченности организма тем или иным витамином.

СКРЫТАЯ (ЛАТЕНТНАЯ) ФОРМА ВИТАМИННОЙ НЕДОСТАТОЧНОСТИ не имеет каких-либо внешних проявлений и симптомов, однако, оказывает отрицательное влияние на работоспособность, устойчивость организма к различным неблагоприятным факторам, удлиняет выздоровление после перенесенного заболевания.

ПИЩЕВЫЕ ВОЛОКНА – высокомолекулярные углеводы (целлюлоза, гемицеллюлоза, пектины, лигнин, хитин и др.) главным образом растительного происхождения, устойчивые к перевариванию и усвоению в тонком кишечнике, но подвергающиеся полной или частичной ферментации в толстом кишечнике.

ВАЖНЕЙШИЕ ПРИЧИНЫ ГИПОВИТАМИНОЗОВ И АВИТАМИНОЗОВ

1. Недостаточное поступление витаминов с пищей.

1.1. Низкое содержание витаминов в рационе.

1.2. Снижение общего количества потребляемой пищи в связи с низкими энерготратами.

1.3. Потеря и разрушение витаминов в процессе технологической переработки продуктов питания, их хранения и нерациональной кулинарной

обработки.

1.4. Отклонения от сбалансированной формулы питания (преимущественно углеводное питание требует дополнительного количества тиамина;

при недостаточном введении полноценных белков витамины С, РР, В 1 быстро выводятся с мочой, не участвуют в обменных процессах, задерживается превращение каротина в витамин А).

1.5. Анорексия.

1.6. Присутствие витаминов в некоторых продуктах в неутилизируемой форме (инозит в виде фитина зерновых продуктов).

2. Угнетение кишечной микрофлоры, продуцирующей некоторые витамины (В 6 , К).

2.1. Болезни желудочно-кишечного тракта.

2.2. Последствия химиотерапии (дисбактериозы).

3. Нарушение ассимиляции витаминов.

3.1. Нарушение всасывания витаминов в желудочно-кишечном тракте

при заболеваниях желудка, кишечника, поражениях гепатобилиарной системы, а также в пожилом возрасте (нарушение секреции желчи, необходимое для всасывания жирорастворимых витаминов).

3.3. Нарушение обмена витаминов и образования их биологически активных (коферментных) форм при различных заболеваниях, действии токсических и инфекционных агентов, химиотерапии, в пожилом возрасте.

4. Повышенная потребность в витаминах.

4.1. Особые физиологические состояния организма (интенсивный рост, беременность, лактация).

4.2. Особые климатические условия (потребность в витаминах повышается на 30-60% в связи с повышенными энерготратами при низкой температуре воздуха в климатической зоне Севера).

4.4. Значительная нервно-психическая нагрузка, стрессовые состояния.

4.5. Воздействие вредных факторов производства (Рабочим горячих цехов в условиях воздействия высоких температур /32 градуса/ при одновременной физической нагрузке требуется вдвое больше витаминов С, В 1 , В 6 , пантотеновой кислоты, чем при 18 градусах).

4.6. Инфекционные заболевания и интоксикации (При тяжелых септических процессах потребность организма в витамине С достигает 300-500 мг в сутки).

4.7. Заболевания внутренних органов и эндокринных желез.

4.8. Повышенная экскреция витаминов.

5. Врожденные, генетически обусловленные нарушения обмена и функций витаминов.

5.1. Врожденные нарушения всасывания витаминов.

5.2. Врожденные нарушения транспорта витаминов кровью и через клеточные мембраны.

5.3. Врожденные нарушения биосинтеза витаминов (никотиновой кислоты из триптофана).

5.4. Врожденные нарушения превращения витаминов в коферментные

формы, простетические группы и активные метаболиты.

5.5. Нарушение включения витаминов в состав активного центра фермента.

5.6. Нарушение структуры апофермента, затрудняющее его взаимодействие с коферментом.

5.7. Нарушение структуры апофермента, приводящее к полной или частичной утрате ферментативной активности вне зависимости от взаимодействия с коферментом.

5.8. Усиление катаболизма витаминов.

5.9. Врожденные нарушения реабсорбции витаминов в почках.

Таблица 47

(в 100 г съедобной части)

Продукты В 1 В 2 РР В 6 С Е А В-ка-ро-тин D В 12 Фо-лие-вая кисл.
Мг/100г Мкг/100 г
Хлеб ржаной 0,18 0,11 0,67 0,17 - 2,2 - - - -
Хлеб пшенич. 0,21 0,12 2,81 0,3 - 3,8 - - - -
Крупа овсян. 0,49 0,11 1,1 0,27 - 3,4 - - - -
Крупа манная 0,14 0,07 1,0 0,17 - 2,5 - - - -
Крупа рисовая 0,08 0,04 1,6 0,18 - 0,4 - - - -
Крупа гречнев. 0,53 0,2 4,19 0,4 - 6,6 - - - -
Пшено 0,62 0,04 1,55 0,52 - 2,6 - 0,15 - -
Макароны 0,17 0,08 1,21 0,16 - 2,1 - - - -
Говядина 0,07 0,18 3,0 0,39 Сл - - - - 2,8 8,9
Свинина 0,52 0,14 2,4 0,33 Сл - - - - - 5,5
Печень говяж. 0,3 2,19 6,8 0,7 1,3 3,8 1,0 -
Колбаса варен. 0,25 0,18 2,47 0,19 - - - - - -
Куры 0,07 0,15 3,6 0,61 - - 0,1 - - - 5,8
Яйца куриные 0,07 0,44 0,2 0,14 - 0,3 - 4,7 0,1 7,5
Треска 0,09 0,16 2,3 0,17 Сл. 0,9 Сл. - - 1,6 11,3
Икра осетр. 0,3 0,36 1,5 0,29 7,8 - 0,2 - -
Молоко Пастер. 0,03 0,13 0,1 - 1,0 - Сл. 0,01 - - -
Кефир 0,03 0,17 0,14 0,06 0,7 0,1 Сл. 0,01 - 0,4 7,8
Сметана 0,02 0,1 0,07 0,07 0,2 0,5 0,2 0,1 0,1 0,36 8,5
Творог 0,04 0,27 0,4 0,11 0,5 0,4 0,1 0,03 - 1,0 35,0
Сыры твердые 0,02 0,3 0,3 0,1 1,6 0,5 0,2 0,1 - 2,5 10-45
Масло сливоч. Сл 0,01 0,1 - - - 0,5 0,34 - - -
Масло подсолнечное рафинирован. _ - - - - - - - - -
Горох 0,81 0,15 2,2 0,27 - 9,1 - 0,07 - -
Картофель 0,12 0,05 0,9 0,3 0,1 - 0,02 - -
Капуста белокачанная 0,06 0,05 0,4 0,14 0,1 - 0,02 - -
Лук зеленый 0,02 0,1 0,3 0,15 - - -
Томаты 0,06 0,04 0,53 0,1 0,4 - 1,2 - -
Огурцы 0,03 0,04 0,2 0,04 0,1 - 0,06 - -
Свекла 0,02 0,04 0,2 0,07 0,1 - 0,01 - -
Морковь 0,06 0,07 0,13 0,6 - - -
Грибы белые 0,02 0,3 4,6 0,07 0,6 - - - -
Яблоки 0,01 0,03 0,3 0,08 0,6 - 0,03 - - 1,6
Абрикосы 0,03 0,06 0,07 0,05 0,9 - 1,6 - -
Вишни 0,03 0,3 0,4 0,05 0,3 - 0,1 - -
Малина 0,02 0,05 0,6 0,07 0,6 - 0,2 - -
Земляника 0,03 0,05 0,3 0,06 0,5 - 0,03 - -
Смородина чер. 0,02 0,02 0,3 0,13 0,7 - 0,1 - -
Облепиха 0,1 0,05 0,6 0,11 - - -
Шиповник сух. 0,15 0,84 1,5 - - - 6,7 - - -
Виноград 0,05 0,02 0,3 0,09 - - Сл. - -
Лимоны 0,04 0,02 0,1 0,06 - - 0,01 - -
Апельсины 0,04 0,03 0,2 0,06 0,2 - 0,05 - -
Пирожные, торты 0,75 0,1 0,7 - - - 0,1 0,14 - - -
Дрожжи прессован. 0,6 0,68 11,4 0,58 - - - - - -

Количественное определение аскорбиновой кислоты в исследуемом материале часто осуществляют с помощью раствора 2,6-дихлофенолиндофенола натрия, который в щелочной среде имеет синюю окраску, в кислой – розовую. Химизм реакции можно выразить в виде следующего уравнения.

Принцип метода основан на способности аскорбиновой кислоты восстанавливать индофеноловый реактив. При титровании вытяжки исследуемого материала раствором 2,6-дихлорфенолиндофенола происходит окисление аскорбиновой кислоты в дегидроаскорбиновую и восстановление индофенолового реактива. Конец титрования можно установить по изменению окраски. Окисленная форма 2,6-дихлорфенолиндофенола имеет синюю окраску в нейтральной и щелочной среде, восстановленная форма – приобретает розовую окраску в кислой среде.

Аскорбиновую кислоту извлекают из исследуемого материала 1 % раствором соляной кислоты и титруют раствором индофенолового реактива. По количеству краски, затраченной на титрование, рассчитывают содержание аскорбиновой кислоты.

Следует заметить, что точному определению содержания аскорбиновой кислоты в биологических объектах мешают другие, легко окисляемые вещества: глютатион, цистеин и т.п.

7.7.1. ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ВИТАМИНА С В

РАСТИТЕЛЬНОМ МАТЕРИАЛЕ

Берут навеску исследуемого материала 5-20 г (в зависимости от предполагаемого содержания аскорбиновой кислоты), нарезают мелкими кусочками (картофель, морковь, черемша, яблоки и т.п.) тщательно растирают в ступке со щепоткой стекла или кварцевого песка, добавляя порциями по 4-5 мл раствора с массовой долей метафосфорной или соляной кислоты 2 % до получения однородной жидкой кашицы. Смесь из ступки количественно, с помощью раствора используемой при растирании кислоты, переносят в мерную колбу вместимостью 100 мл и общий объем экстракта доводят до метки тем же раствором кислоты. Содержимое хорошо перемешивают, настаивают 5-7 мин и фильтруют через бумажный фильтр. Полученный фильтрат должен быть совершенно прозрачным.

Используемые для экстракции кислоты (соляная, метафосфорная, щавелевая) извлекают из исследуемого материала как свободную, так и связанную аскорбиновую кислоту, а также способствуют устойчивости аскорбиновой кислоты в экстрактах.

Берут две конические колбочки вместимостью 100-150 мл и в одну пипеткой вносят 20 мл полученного фильтрата, в другую – 20 мл раствора кислоты, используемой для растирания исследуемого материала. Содержимое колбочек титруют индофеноловым реактивом до слабо-розового цвета, удерживающегося 30 секунд. Результаты записывают, и титрование повторяют с новыми порциями того же фильтрата. На основании средней величины, полученной из 2-3 определений, рассчитывают содержание аскорбиновой кислоты по формуле:

,

(a-b) – разность между объемами индофенолового реактива, пошедшими на титрование опытной (а) и контрольной (b) проб, мл;

u - общий объем экстракта, мл;

u 1 – объем фильтрата, взятого для титрования, мл;

m – масса исследуемого материала, г,

100 – пересчет на 100г материала.

В растительных тканях в некоторых количествах содержатся и другие редуцирующие вещества, восстанавливающие 2,6-дихлорфенолиндофенол, поэтому при необходимости проведения особо точного анализа следует принять это в расчет. Для этого к двум другим порциям по 10-20 мл исследуемой вытяжки прибавляют по 0,1 или 0,2 мл 10 % раствора сернокислой меди и нагревают в термостате или сушильном шкафу 10 мин при температуре 110 ˚С. Охлаждают и титруют индофеноловым реактивом. В присутствии солей меди и при нагревании аскорбиновая кислота разрушается полностью. Полученную поправку вычитают из данных титрования опытных проб.

При анализе многих плодов и ягод, некоторых овощей получают окрашенные экстракты, что затрудняет определение аскорбиновой кислоты. Для определения аскорбиновой кислоты, окрашенную вытяжку переносят в широкую пробирку, приливают 2-5 мл дихлорэтана или хлороформа и титруют при взбалтывании раствором индофенолового реактива до появлении в слое дихлорэтана или хлороформа розового окрашивания, не исчезающего 30 сек.

При определении необходимо учитывать редуцирующую способность применяемых для экстракции кислот (смесь 20 мл 1 % соляной кислоты и 80 мл 2 % метафосфорной или 1 % щавелевой кислоты). Для этого две порции смеси кислот по 10 мл титруют индофеноловым реактивом до розового окрашивания. Полученную поправку (обычно не превышающую 0,08-0,10 мл раствора краски) вычитают из данных титрования опытных растворов.

+
7.7.2. ОПРЕДЕЛЕНИЕ КОНЦЕНТРАЦИИ РАСТВОРА

2,6-ДИХЛОРФЕНОЛИНДОФЕНОЛА НАТРИЯ (ПО АСКОРБИНОВОЙ КИСЛОТЕ)

: R 4 – CH | NH | CO | R 3 – CH | NH | CO | R 2 – CH | NH | CO | R 1 – CH | NH | CO:

NaOH (избыток) Сu 2+
В две колбочки вносят по 5 мл раствора с массовой долей метафосфорной или соляной кислоты 2 % и по 2 мл стандартного раствора аско­рбиновой кислоты (основной опыт). Содержимое каждой колбочки титруют индофеноловым реактивом до слабо-розового окрашивания, сохраняющегося 30 секунд. Параллельно с основным опытом проводят контрольное определение, где также берут две колбочки и в каждую вносят по 7 мл раствора с массовой долей метафосфорной или соляной кислоты 2 % и воду в объеме, равном объему индофенолового реактива, пошедшего на титрование в основном опыте. Содержимое этих колб титруют индофеноловым реактивом до слабо-розового цвета, сохраняющегося 30 секунд.

Мaccy аскорбиновой кислоты (в мг), соответствующую 1 мл индофенолового реактива (раствора 2,6-дихлорфенолиндофенола натрия), рассчитывают пo формуле:

где М – масса аскорбиновой кислоты в мг, соответствующая 1 мл индофенолового реактива;

(u-u 1) - разность между объемами индофенолового реактива, пошедшими на титрование пробы с аскорбиновой кислотой (u) и пробы без аскорбиновой кислоты (u 1), мл;

2 – масса аскорбиновой кислоты в мг, содержащаяся в опытной пробе (основной опыт).

7.7.3. ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ВИТАМИНА С В МОЛОКЕ

Для определения аскорбиновой кислоты в молоке предварительно осаждают белки.

В колбочку наливают 50 мл молока и добавляют 4 мл насыщенного раствора щавелевой кислоты, взбалтывают, приливают 10 мл насыщенного раствора хлорида натрия, взбалтывают и оставляют при комнатной температуре на 5 мин. Затем содержимое колбочки фильтруют через бумажный складчатый фильтр, отмеривают пипеткой 20 мл фильтрата и титруют его индофеноловым реактивом до слабо-розового цвета, сохраняющегося 30 секунд. Берут еще 20 мл фильтрата и титрование повторяют. Для расчета берут средний результат.

Параллельно проводят контрольное определение, для чего в колбочке смешивают 50 мл воды, 4 мл насыщенного раствора щавелевой кислоты и 10 мл насыщенного раствора хлорида натрия. Далее поступают как в основном опыте.

,

где (a-b) – разность между объемами индофенолового реактива, пошедшего на титрование опытной и контрольной проб, мл;

64 – общий объем молока после добавления осадителей белка и жира;

М – масса аскорбиновой кислоты, соответствующая 1 мл индофенолового реактива (см. пункт 7.7.2.), мг;

u - объем фильтрата, взятого для титрования, мл;

u 1 - объем молока, взятого для анализа, мл.

РЕАКТИВЫ. Вода дистиллированная; молоко свежее; картофель (лимоны,морковь, яблоки, капуста, черемша и т.п.); раствор с массовой долей метафосфорной или соляной кислоты 2 %; насыщенный раствор щавелевой кислоты; насыщенный раствор хлорида натрия; свежеприготов­ленный стандартный раствор аскорбиновой кислоты (в мерную колбу вме­стимостью 100 мл вносят 100 мг аскорбиновой кислоты квалификации «медицинская» и, растворяя, объем доводят до метки раствором с массо­вой долей метафосфорной или соляной кислоты 2 %; индофеноловый реак­тив (в мерную колбу вместимостью 500 мл вносят 140-150 мг 2,6-дихлорфенолиндофенола натрия и 200-300 мл воды, энергично встряхивают до растворения краски, объем доводят до метки водой, перемешивают и фильтруют через бумажный фильтр в сухую склянку из темного стекла; раствор хранят в холодильнике не более трех суток).

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ

Методы количественного ОФС.1.2.3.0017.15

определения витаминов Взамен ст. ГФ XI , вып.2

В данной статье изложены общие принципы определения витаминов в субстанциях и лекарственных формах с использованием методов высокоэффективной жидкостной хроматографии (ВЭЖХ), спектрофотометрии и титриметрии.

Приведенные типовые методики позволяют количественно определять следующие соединения: витамин А (ретинол, ретинола ацетат и ретинола пальмитат), витамин D (холекальциферол и эргокальциферол), витамин Е (a-токоферол и aтокоферола ацетат), витамин К 1 (фитоменадион), b-каротин, витамины В 1 (тиамина хлорид, тиамина бромид и тиамина мононитрат), В 2 (рибофлавин, рибофлавинмононуклеотид), В 3 (кислоту никотиновую, никотинамид), В 5 (кислоту пантотеновую и ее соли, пантенол), В 6 (пиридоксина гидрохлорид), В С (кислоту фолиевую), В 12 (цианокобаламин), витамин С (кислоту аскорбиновую или ее натриевую или кальциевую соли, аскорбилпальмитат), d биотин, рутин.

Бохан Иван

Людям еще в глубокой древности было известно, что отсутствие некоторых продуктов в пищевом рационе может быть причиной заболеваний.

Отсутствие витаминов в пище может приводить к тяжелым расстройствам в организме. Самым распространенным витамином является витамин С. С давних времен люди страдали от многочисленных тяжелых болезней, причины которых были неизвестны. Одна из таких болезней - цинга, ею обычно болеют люди на Крайнем Севере. Известно, что в экспедиции Васко да Гама от цинги погибло около 60% моряков, такая же судьба постигла русского мореплавателя В. Беринга и многих членов его экипажа в 1741 г., русского полярника Г.Я. Седова в 1914 г. и др. За время существования парусного флота от цинги погибло моряков больше, чем во всех морских сражениях, вместе взятых. И причиной тому был недостаток или гиповитаминоз витамина С.

Скачать:

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа № 25»

Секция естествознания

Определение содержания витамина С в продуктах питания

Выполнил: Бохан Иван

Учащийся 7В класса

Руководитель: Бохан Вера Васильевна, учитель химии

Абакан 2015

Введение ………………………………………………………………………….3

I. Теоретическая часть……………………………………………………………4

  1. История открытия и изучения витамина С………………………………4
  2. Биологическая ценность витамина С……………………………………..5
  3. Суточная потребность в витамине С……………………………………...5
  4. Витаминная недостаточность – авитаминоз……………………………..6
  5. Признаки гипервитаминоза……………………………………………….6
  6. Профилактика авитаминоза……………………………………………....7
  7. Источники витамина С…………………………………………………...8

II. Практическая часть. Количественное определение содержания

Витамина С в продуктах питания йодометрическим методом…..………… 9

  1. Приготовление рабочих растворов для определения витамина С….….9
  1. Испытание растворов на точность………………………………………10
  1. Определение аскорбиновой кислоты в продуктах……………..………10
  1. Обработка полученных результатов ……………………..…………….10

Заключение……………………………………………………………………….11

Литература……………………………………………………………………….12

Приложение………………………………………………………………………13

Введение

Людям еще в глубокой древности было известно, что отсутствие некоторых продуктов в пищевом рационе может быть причиной заболеваний.

Отсутствие витаминов в пище может приводить к тяжелым расстройствам в организме. Самым распространенным витамином является витамин С. С давних времен люди страдали от многочисленных тяжелых болезней, причины которых были неизвестны. Одна из таких болезней - цинга, ею обычно болеют люди на Крайнем Севере. Известно, что в экспедиции Васко да Гама от цинги погибло около 60% моряков, такая же судьба постигла русского мореплавателя В. Беринга и многих членов его экипажа в 1741 г., русского полярника Г.Я. Седова в 1914 г. и др. За время существования парусного флота от цинги погибло моряков больше, чем во всех морских сражениях, вместе взятых. И причиной тому был недостаток или гиповитаминоз витамина С.

В настоящее время из года в год мы опасаемся сезонных заболеваний ОРЗ. Одним из профилактических средств, является витамин С. «По данным отечественных исследователей, недостаток аскорбиновой кислоты у школьников в 2 раза снижает способность лейкоцитов уничтожать попавшие в организм болезнетворные микробы, в результате чего частота острых респираторных заболеваний увеличивается на 26–40%, и наоборот, прием витаминов значительно снижает показатель частоты ОРЗ» Я увидел, что данная тема актуальна и сегодня. Это натолкнуло меня на мысль исследовать это очень важное для человечества вещество.

Целью данной работы является изучение источников витамина С и значение для организма человека.

Для достижения поставленной цели, требуется решить следующие задачи:

  1. Проанализировать литературу по данной теме
  2. Изучить источники витаминов и их функции в организме
  3. Исследовать содержание витамина С в некоторых пищевых продуктах

Объект исследования : пищевые продукты.

Предмет исследования: процессы выявления витамина С в продуктах питания.

Методы исследования: анализ литературы, эксперимент, наблюдение.

Гипотеза: содержание витамина С можно выявить в домашних условиях.

I. Теоретическая часть

1. История открытия и изучения витамина С

Витамин С или аскорбиновая кислота представляет собой белые кристаллы, растворимые в воде и имеющие вкус лимонного сока.

История открытия витамина С связана с цингой. В те далекие времена эта болезнь особенно поражала мореплавателей. Сильные, отважные моряки были бессильны перед цингой, которая к тому же часто вела к смертельному исходу. Болезнь проявлялась общей слабостью, кровоточивостью десен, вследствие чего выпадали зубы, появлялась сыпь, кровоизлияния на коже. Но все же был найден путь излечения. Так, моряки, следуя примеру индейцев, стали пить водный экстракт сосновой хвои, который является кладезем витамина С. В XVIII веке хирург британского флота Дж. Линд показал, что болезнь моряков можно излечить, добавив в их рацион питания свежие овощи и фрукты. Интересен еще другой факт: Альберт фон Сент- Дьердь, первооткрыватель витамина С, на самом деле открыл целый комплекс витаминов.

Огромная заслуга в исследовании его свойств принадлежит Лайнусу Полингу. Лайнус Карл Полинг один из немногих ученых, дважды в своей жизни удостаивавшихся высшей мировой оценки заслуг перед человечеством - Нобелевской премии. Лайнус Полинг - один из основателей современной химии и молекулярной биологии.

Надо отметить, что он является единственным человеком, получившим столь высокие награды единолично, ни с кем их не разделив. Исследованиями ученый занялся в середине 60-х годов. Его первая работа называлась “Витамин С и обычная простуда”. Но какую же волну возмущения и неприятия со стороны фармацевтической и медицинской общественности пришлось выдержать ученому, утверждавшему, что витамин С следует принимать в дозах, в 200 раз превышающих общепринятые! Между тем, Полинг, основываясь, как всегда, на строгих научных данных, призывал оппонентов обратиться к трудам Ирвина Стоуна, доказавшего, что печень большинства млекопитающих, за исключением человека и обезьян, синтезирует витамин С в количестве, пропорциональном весу тела животного. Составив пропорцию для человека, Полинг пришел к упомянутой цифре - доза витамина С, необходимая человеку для повышения сопротивляемости организма, должна в 200 раз превышать то количество, которое поступает с обычной пищей.

Полинг продолжал свои исследования, изучая влияние витамина С на развитие онкологических заболеваний. Поистине настоящий взрыв в американской медицине вызвала его книга “Рак и витамин С”, доказывающей фантастические возможности аскорбиновой кислоты. Именно в то время Лайнус Полинг получил прозвище Человек “Витамин С”. Но, несмотря на насмешки прессы, сопротивление медиков и фармацевтов, ученый продолжал работать. Его убеждения подтвердило время.

2. Биологическая ценность витамина С

Витамин С – мощный антиоксидант. Он играет важную роль в регуляции окислительно-восстановительных процессов, участвует в синтезе коллагена и проколлагена, обмене фолиевой кислоты и железа, а также синтезе стероидных гормонов и катехоламинов. Аскорбиновая кислота также регулирует свертываемость крови, нормализует проницаемость капилляров, необходима для кроветворения, оказывает противовоспалительное и потивоаллергическое действие.

Витамин С является фактором защиты организма oт последствий стресса. Усиливает процессы, увеличивает устойчивость к инфекциям. Уменьшает эффекты воздействия различных аллергенов. Имеется много теоретических и экспериментальных предпосылок для применения витамина С с целью профилактики раковых заболеваний. Известно, что у онкологических больных из-за истощения его запасов в тканях нередко развиваются симптомы витаминной недостаточности, что требует дополнительного их введения.

Существуют данные, показывающие профилактическую роль витамина С в отношении рака толстой кишки, пищевода, мочевого пузыря и эндометрия (Block G., Epidemiology, 1992, 3 (3), 189–191).

Витамин С улучшает способность организма усваивать кальций и железо, выводить токсичные медь, свинец и ртуть.

Важно, что в присутствии адекватного количества витамина С значительно увеличивается устойчивость витаминов В 1 , В 2 , A, E, пантотеновой и фолиевой кислот. Витамин С предохраняет холестерин липопротеидов низкой плотности от окисления и, соответственно, стенки сосудов от отложения окисленных форм холестерина.

Наш организм не может запасать витамин С, поэтому необходимо постоянно получать его дополнительно. Поскольку он водорастворим и подвержен действию температуры, приготовление пищи с термической обработкой его разрушает.

3. Суточная потребность в витамине С

Суточная потребность человека в витамине С зависит от ряда причин: возраста, пола, выполняемой работы, состояния беременности или кормления грудью, климатических условий, вредных привычек.

Болезни, стрессы, лихорадка и подверженность токсическим воздействиям (таким, как сигаретный дым) увеличивают потребность в витамине С.

В условиях жаркого климата и на Крайнем Севере потребность в витамине С повышается на 30-50 процентов. Молодой организм лучше усваивает витамин С, чем пожилой, поэтому у лиц пожилого возраста потребность в витамине С несколько повышается.

Средневзвешенная норма физиологических потребностей составляет 60-100 мг в день. Обычная терапевтическая доза составляет 500-1500 мг ежедневно.[ ]

Для детей:

0-6 мес. - 30 мг

6 мес. до года - 35 мг

1-3 года - 40 мг

4-6 лет - 45 мг

7-10 лет - 45 мг

11-14 лет - 50 мг

Для мужчин и женщин от 15 лет и до 50 суточная потребность около 70 мг.

4. Витаминная недостаточность – авитаминоз

Недостаточность снабжения организма витаминами ведет к его ослаблению, резкий недостаток витаминов – к разрушению обмена веществ и заболеваниям – авитаминозам, которые могут окончиться гибелью организма. Авитаминозы могут возникать не только от недостаточного поступления витаминов, но и от нарушения процессов их усваивания и использования в организме.

По данным руководителя лаборатории витаминов и минеральных веществ Института питания РАМН проф. В.Б. Спиричева, результаты обследований в разных регионах России, показывают, что подавляющее большинство детей дошкольного и школьного возраста испытывает недостаток необходимых для их нормального роста и развития витаминов.

Особенно неблагополучно обстоит дело с витамином С, недостаток которого был выявлен у 80–90% обследованных детей.

При обследовании детей в больницах Москвы, Екатеринбурга, Нижнего Новгорода и других городов дефицит витамина С обнаруживается у 60–70%.

Глубина этого дефицита нарастает в зимне-весенний период, однако у многих детей недостаточная обеспеченность витаминами сохраняется даже в более благоприятные летние и осенние месяцы.

А ведь недостаточное потребление витаминов заметно снижает активность иммунной системы, повышает частоту и усиливает тяжесть респираторных и желудочно-кишечных заболеваний. Недостаточность может быть экзогенная (за счет недостатка аскорбиновой кислоты в продуктах питания) и эндогенная (за счет нарушения всасываемости и усвояемости витамина С в организме человека).

При недостаточности поступления витамина в течение длительного времени может развиваться гиповитаминоз.

5. Признаки гипервитаминоза

Витамин С хорошо переносится даже в высоких дозах.

Однако:

· При слишком больших дозах приема может развится диарея.

· Большие дозы могут вызвать гемолиз (разрушение красных кровяных клеток) у людей, страдающих отсутствием специфического фермента глюкозо-6-фосфатдегидрогеназы. Поэтому людям с таким нарушением можно принимать повышенные дозы витамина С только под строгим наблюдением врача.

· Если аскорбиновую кислоту принимать в больших дозах одновременно с аспирином, может возникнуть раздражение желудка, вследствие чего, разовьется язва (аскорбиновая кислота в виде аскорбата кальция имеет нейтральную реакцию и менее агрессивна по отношению к слизистой желудочно-кишечного тракта).

· При применении витамина С с аспирином следует также помнить, что большие дозы аспирина могут привести к усиленному выделению витамина С через почки и потере его с мочой и, следовательно, через некоторое время к дефициту витамина.

· Жевательные конфеты и жевательные резинки с витамином С могут повредить эмаль зубов, следует полоскать рот или чистить зубы после их приема.

6. Профилактика авитаминоза

Комитет экспертов ВОЗ ввел понятие о безусловно допустимой суточной дозе витамина С, которая не превышает 2,5 мг/кг веса тела, и условно допустимой суточной дозе витамина С, которая составляет 7,5 мг/кг (Шилов П.И., Яковлев Т.Н., 1974)

Профилактика витаминной недостаточности заключается в производстве пищевых продуктов, богатых витаминами, в достаточном потреблении овощей и фруктов, правильном хранении пищевых продуктов и рациональной технологической обработке их на предприятиях пищевой промышленности, общественного питания и в быту. При недостатке витаминов - дополнительное обогащение питания витаминными препаратами, витаминизированными пищевыми продуктами массового потребления.

Витамин C назначают при цинге, некоторых заболеваниях желудочно-кишечного тракта, кровотечениях, аллергиях, коллагенозах, атеросклерозе, инфекционных заболеваниях, профилактических интоксикациях.

Исследования позволили утверждать, что высокие дозы витамина C способствуют продлению жизни и улучшению состояния больных определенными видами рака. Имеются данные о том, что очень высокие дозы аскорбиновой кислоты могут препятствовать нормальному оплодотворению, вызвать выкидыши, повышать свертываемость крови, оказывать неблагоприятное действие на функцию почек и поджелудочной железы. Однако опасность передозировки аскорбиновой кислоты преувеличено. Результаты многочисленных исследований позволили считать, что гипервитаминоз C практически не проявляется.

Систематический прием больших доз витамина C снижает риск возникновения рака полости рта, пищевода, гортани, желудка, молочной железы, мозга. Большие дозы витамина C (около 1 г в сутки) несколько снимают крайне опасное воздействие табачного дыма на организм курильщика.

Помимо витаминных препаратов для профилактики гиповитаминоза используются плоды шиповника. Плоды шиповника отличаются относительно высоким содержанием аскорбиновой кислоты (не менее 0,2%) и широко применяются в качестве источника витамина С. Используют собранные в период созревания и высушенные плоды разных видов кустарников шиповника. Они содержат, помимо витамина С, витамины К, Р, сахара, органические, в том числе дубильные, и другие вещества. Применяют в виде настоя, экстрактов, сиропов, пилюль, конфет, драже.

Настой из плодов шиповника готовят следующим образом: 10 г. (1 столовую ложку) плодов помещают в эмалированную посуду, заливают 200 мл (1 стакан) горячей кипяченой воды, закрывают крышкой и нагревают в водяной бане (в кипящей воде) 15 мин, затем охлаждают при комнатной температуре не менее 45 мин, процеживают. Оставшееся сырье отжимают и доводят объем полученного настоя кипяченой водой до 200 мл. Принимают по 1/2 стакана 2 раза в день после еды. Детям дают по 1/3 стакана на прием. Для улучшения вкуса можно к настою прибавить сахар или фруктовый сироп.

Сироп из плодов шиповника готовят из сока плодов различных видов шиповника и экстракта ягод (рябины красной, рябины черноплодной, калины, боярышника, клюквы и др.) с добавлением сахара и аскорбиновой кислоты. Содержит в 1 мл около 4 мг аскорбиновой кислоты, а также витамин Р и другие вещества. Назначают детям (в профилактических целях) по 1/2 чайной или 1 десертной ложке (в зависимости от возраста) 2 – 3 раза в день, запивают водой.

7. Источники витамина С

Первоисточником витаминов служат главным образом растения. В организме человека аскорбиновая кислота не образуется, и отсутствуют ее накопления. Человек и животные получают витамины непосредственно с растительной пищей и косвенно - через продукты животного происхождения. В продуктах животного происхождения витамин С представлен незначительно (печень, надпочечники, почки). Значительное количество аскорбиновой кислоты содержится в продуктах растительного происхождения например, цитрусовые, овощи листовые зеленые, дыня, брокколи, брюссельская капуста, цветная и кочанная капуста, черная смородина, болгарский перец, земляника, помидоры, яблоки, абрикосы, персики, хурма, облепиха, шиповник, рябина, печеный картофель в «мундире». Травы, богатые витамином С: люцерна, коровяк, корень лопуха, песчанка, очанка, семя фенхеля, пажитник сенной, хмель, хвощ, ламинария, мята перечная, крапива, овес, кайенский перец, красный перец, петрушка, сосновые иглы, тысячелистник, подорожник, лист малины, красный клевер, плоды шиповника, шлемник, листья фиалки, щавель. Нормы содержания витамина С в некоторых пищевых продуктах (в мг на 100 г) смотри в приложении 1.

На содержание витамина C в пищевых продуктах значительное влияние оказывает хранение продуктов и их кулинарная обработка. Витамин C быстро разрушается в очищенных овощах, даже если они погружены в воду. Соление и маринование разрушают витамин C. Кулинарная обработка, как правило, приводит к снижению содержания аскорбиновой кислоты в продукте. Витамин C лучше сохраняется в кислой среде.

Аскорбиновую кислоту можно получать и синтетическим путем, ее выпускают в виде порошка, драже, таблеток с глюкозой и т. д. Аскорбиновая кислота входит в состав различных поливитаминных препаратов.

Помните, что лишь немногие люди и особенно дети едят достаточно фруктов и овощей, которые являются главными пищевыми источниками витамина. Еще больше его сгорает в организме под влиянием стресса, курения и других источников повреждения клеток, наподобие дыма и смога. Повсеместно используемые медикаменты, вроде аспирина в огромной степени лишают наш организм тех количеств витамина, которые нам все-таки удалось получить.

II. Практическая часть. Количественное определение содержания витамина С в продуктах питания йодометрическим методом

У аскорбиновой кислоты есть свойство, которого нет у всех остальных кислот: быстрая реакция с йодом. Поэтому мы использовали к оличественное определение содержания витамина С в продуктах питания йодометрическим методом.

Одна молекула аскорбиновой кислоты - С 6 Н 8 О 6 , реагирует с одной молекулой йода – I 2 .

1. Приготовление рабочих растворов для определения витамина С

Для определения витамина С в соках и других продуктах необходимо взять аптечную йодную настойку с концентрацией йода 5 %, т.е. 5 г в 100 мл. Однако, аскорбиновой кислоты в некоторых соках может так мало, что на титрование определенного объема сока (например, 20 мл) уходит всего 1-2 капли йодной настойка. При этом ошибка анализа оказывается очень большой. Чтобы результат был точнее, нужно брать много сока, либо разбавить йодную настойку. В обоих случаях число капель йода, израсходованных на титрование, увеличивается, и анализ будет точнее.

Для анализа фруктовых соков удобно к 1 мл йодной настойки добавить прокипяченной воды до общего объема 40 мл, то есть разбавить настойку в 40 раз и 1 мл его соответствует 0,88 мг аскорбиновой кислоты.

Чтобы узнать, сколько будет израсходовано на титрование йодной настойки необходимо вначале определить объём 1 капли: с помощью шприца отмерим 1 мл разбавленного раствора йода и посчитаем, сколько капель из обычной пипетки содержится в этом объеме. В одной капе содержится 0.02 мл.

Далее готовим крахмальный клейстер: для этого вскипятим ½ кружки воды, пока вода нагревается, размешаем 1/4 чайную ложку крахмала с ложкой холодной воды, так чтобы не было комочков. Выльем в кипящую воду и охладим.

2. Испытание растворов на точность.

Прежде чем приступить к анализу продуктов, испытаем наш раствор на точность. Для этого возьмем 1 таблетку чистого витамина, 0.1 г, растворим ее в 0.5 л кипяченой воды. Возьмем для опыта 25 мл, что соответствует содержанию витамина в 20 раз меньшей чем в таблетке. Дольем к этому раствору 1/2 чайной ложки крахмального клейстера и по каплям, добавим раствор йода до синего цвета. Определяем число капель и следовательно, объём израсходованного раствора йода, рассчитываем содержание витамина в растворе по формуле: 0.88* V=А мг, где V- объём раствора йода. В исходной таблетке А – в 20 раз больше, то А* 20= содержание аскорбиновой кислоты в таблетке. Результаты показали, что на титрование ушло 6 мл раствора что соответствует 5.28 мг витамина, домножив на 20 находим цифру 105.6 . Это означает что точность нашего анализа вполне достаточна

3. Определение аскорбиновой кислоты в продуктах

Мы взяли 25 мл исследуемого продукта добавили крахмала. Затем провели титрование раствором йода исследуемой жидкости до появления устойчивого синего окрашивания крахмала, которое говорит о том, что вся аскорбиновая кислота окислилась (Смотри приложение 2). Записали количество раствора йода, пошедшего на титрование, и произвели расчёт. Для этого мы составили пропорцию, зная что 1 мл 0,125%-ного раствора йода окисляет 0,875 мг аскорбиновой кислоты.

4. Обработка полученных результатов

На титрование 25 мл сока лимона ушло 7.1 мл раствора йода. Составили пропорцию:

1 мл йодног о раствора – 0,875 мг аскорбиновой кислоты

7.1 мл – X

X= 7.1 * 0,875/1=6.25 (мг)

Итак, в 25 мл сока содержится 6.25 мг аскорбиновой кислоты. Тогда в 100 мл сока содержится 6.25*100/25=25 мг

Подобным образом мы рассчитали содержание витамина С в остальных продуктах. Полученные данные занесли в таблицу1

Таблица 1. Результаты исследований

Анализируемый продукт

Количество сока для анализа

Объем раствора йода (в мл)

Количество витамина С в 25 мл сока

Количество витамина С в 100мл

Сок лимона (свежевыжатый)

6,25

Сок апельсиновый из упаковки

15,2

Перец красный сладкий

22,7

Сок яблока (зимний сорт)

0,45

Отвар шиповника

109,4

96,25

Аскорбиновая кислота

(в таблетках)

28,4

Капуста белокочанная

Таким образом, в ходе выполнения работы, мы пришли к практическому выводу, что витамином С, который необходим для укрепления иммунной системы организма человека, наиболее богатые продукты – отвар шиповника, перец красный, капуста и лимон. Мы бы рекомендовали самое простое – готовить настой из плодов шиповника. Он очень вкусный, особенно с мёдом или фруктовым сиропом, поэтому его с удовольствием можно пить.

Из плодов шиповника можно также готовить сироп, добавляя к ним ягоды красной и черноплодной рябины, калины, клюквы, боярышника. Такой сироп можно употреблять по 1 ст.л. 3 раза в день, а маленьким детям давать 0,5-1 ч.л. – это обеспечит профилактику многих заболеваний.

Заключение

На основании исследуемой литературы и проделанной работы можно сделать следующие выводы:

  • Витамины – это важнейший класс незаменимых пищевых веществ. Говоря о витаминах, можно сказать, что важны они все, но витамин С - аскорбиновую кислоту , большинство биохимиков считают одним из величайших чудес живой природы. Молекула аскорбиновой кислоты настолько проста, активна и подвижна, что она способна легко преодолевать множество препятствий, участвуя в различных процессах жизнедеятельности.
  • Для получения организмом достаточного витамина С необходимо есть либо местные овощи, либо полученную синтетическим путем аскорбиновую кислоту.
  • Витамин С является одним из самых мощных антиоксидантов, и впервые он был выделен из сока лимона. Он прекрасно растворяется в воде, и это даёт ему ряд преимуществ – например, благодаря этому свойству витамин С может легко и быстро проникать туда, куда нужно, помогать иммунной системе ликвидировать сбои в организме, и запускать процессы, необходимые для здоровья и жизни человека. Однако это же свойство делает его уязвимым – аскорбиновая кислота разрушается при тепловой обработке продуктов.
  • Исследовать содержание витамина С в пищевых продуктах можно не прибегая к помощи специальной лаборатории, а сделать это в домашних условиях, что подтверждает выдвинутую нами гипотезу.
  • Витамин С – аскорбиновая кислота, обнаружен во фруктах и овощах при помощи раствора йода.
  • Наибольшее количество витамина С содержится в свежих овощах и фруктах, особенно в плодах шиповника, красном перце, лимоне.

Литература

  1. Дудкин М. С., Щелкунов Л. Ф. Новые продукты питания. - М.: Наука, 1998.
  2. Леенсон И. Занимательная химия, - М.:Росмен, 1999.
  3. Скурихин И. М., Нечаев А. П. Все о пище с точки зрения химика. ‒ М.: Высшая

школа, 1991.

  1. Смирнов М.И. «Витамины», М.: «Медицина» 1974 год.
  2. Тюренкова И.Н. «Растительные источники витаминов», Волгоград 1999 .
  3. Химический состав пищевых продуктов / Под ред. И. М. Скурихина, М. Н. Волгарева. ‒ М.: Агропромиздат, 1987.
  4. . http://vitamini.solvay-pharma.ru/encyclopedia/info.aspx?id=13
  5. .http://kref.ru/infohim/138679/3.html
  6. “Энциклопедический словарь юного химика” - Москва 1990 Педагогика,650с.
  7. http://vitamini.solvay-pharma.ru/encyclopedia/info.aspx?id=13

Приложение 1

Наименование пищевых продуктов

Количество аскорбиновой кислоты

Овощи

Фрукты и ягоды

Баклажаны

Абрикосы

Горошек зеленый консервированный

Апельсины

Горошек зеленый свежий

Арбуз

Кабачки

Бананы

Капуста белокочанная

Брусника

Капуста квашеная

Виноград

Капуста цветная

Вишня

Картофель лежалый

Гранат

Картофель свежесобранный

Груша

Лук зеленый

Дыня

Морковь

Земляника садовая

Огурцы

Клюква

Перец зеленый сладкий

Крыжовник

Перец красный

Лимоны

Редис

Малина

Редька

Мандарины

Репа

Персики

Салат

Слива

Томатный сок

Смородина красная

Томат-паста

Смородина черная

Томаты красные

Черника

Хрен

110-200

Шиповник сушеный

До 1500

Чеснок

Следы

Яблоки, антоновка

Шпинат

Яблоки северных сортов

Щавель

Яблоки южных сортов

5-10

Молочные продукты

Кумыс

Молоко кобылье

Молоко козье

Молоко коровье

Приложение 2

Исследование сока раствором йода на содержание витамина С



gastroguru © 2017