Уравнение движения самолета при вертикальном порыве ветра. Линеаризация уравнений продольного движения самолета

Анализ нелинейной системы дифференциальных уравнений ((2.1) - (2.7)) и их решение представляет определенные трудности. Поэтому первым шагом на пути их исследования является линеаризация связей между переменными, получение линейной математической модели самолета как объекта управления с последующим анализом динамических свойств.

Для получения линеаризованных уравнений движения необходимо установить зависимость сил и моментов от величин, и V а также от регулирующих факторов.

Сила тяги двигателя P зависит от внутренних параметров, а также от внешних условий, характеризуемых скоростью полета V, давлением p н и температурой T н в атмосфере.

Аэродинамические силы и моменты принято представлять в виде

где c x и c y - коэффициенты сопротивления и подъемной силы;

m z - коэффициент момента тангажа;

b A - длина хорды крыла;

S - площадь крыльев;

q - скоростной напор, вычисляемый по формуле:

Коэффициенты c x и c y являются функциями и V, а коэффициент m z функцией и в.

Для линеаризации уравнений (2.1) - (2.7) с учетом соотношений (2.8) - (2.9) воспользуемся известным методом представления нелинейных зависимостей в виде линейных отклонений относительно невозмущенного движения (в предположении малости этих отклонений). В качестве невозмущенного движения можно взять горизонтальный полет с постоянной скоростью. При этом будем пренебрегать влиянием нестационарности обтекания на аэродинамические характеристики самолета. Предположим, что невозмущенное движение самолета характеризуется параметрами V 0 ,H 0 , 0 , 0 , 0 ,не зависящими от времени. Пусть в некоторый момент времени вследствие возмущений, действующих на самолет, имеем:

где V, H - малые приращения.

Следовательно, возмущенное движение самолета состоит из невозмущенного движения и движения, характеризуемого малыми отклонениями. Такая трактовка возмущенного движения законна до тех пор, пока приращения V, и H остаются малыми, что имеет место для устойчивых систем. Так как одним из основных назначений системы управления является обеспечение устойчивости режима полета, то законность использования линеаризованных уравнений можно считать обеспеченной.

Разлагая силы P, X, Y и момент M z в ряды Тейлора по малым приращениям и ограничиваясь линейными членами приращений, вместо уравнений (2.1) - (2.5) получим:



где члены с верхними индексами обозначают частные производные по соответствующим переменным в окрестности невозмущенного движения.

Предположим, что невозмущенный полет является горизонтальным, тогда 0 =0. Для частных производных, входящих в уравнения (2.10), можно с учетом (2.8) написать:

в этих выражениях М - число Маха.

В целях дальнейших преобразований воспользуемся соотношениями:

или, если учесть, что

где a - скорость звука, то

Кроме того, воспользуемся зависимостью между высотой H и параметрами атмосферы и T H

Градиент температуры,

R - газовая постоянная.

Пользуясь выражением (2.13), найдем:

Следовательно

В целях сокращения записи введем безразмерные величины:

где - аэродинамическая постоянная времени самолета, а также вместо приращений, и будем записывать, и, придавая последним величинам смысл тех же приращений.

Воспользовавшись соотношениями (2.11) - (2.16), приведем уравнения (2.10) к виду:

r - радиус инерции самолета.

Система дифференциальных уравнений (2.17) является линейной математической моделью продольного движения самолета.

Динамика самолета в продольной плоскости характеризуется двумя составляющими: короткопериодической и длиннопериодической . В короткопериодическом движении очень резкие изменения претерпевают параметры и, характеризующие движение самолета относительно центра масс. При длиннопериодическом движении изменяются параметры и V, характеризующие положение центра масс самолета. Поэтому в уравнениях (2.17) можно положить = 0, считая, что за время изменения угловых координат и скорость полета практически не изменяется . Другими словами продольная ось самолета может совершать колебания относительно вектора скорости центра масс.

Если учесть сделанные замечания и принять, что равновесие продольных сил при возмущении по и не нарушается, то вместо системы (2.17) получим для случая горизонтального полета.

Наличие у ЛА плоскости материальной симметрии позволяет разделить его пространственное движение на продольное и боковое. К продольному движению относится движение ЛА в вертикальной плоскости при отсутствии крена и скольжения, при нейтральном положении руля и элеронов. При этом происходят два поступательных и одно вращательное движение. Поступательное движение осуществляются вдоль вектора скорости и по нормали, вращательное – вокруг оси Z. Продольное движение характеризуется углом атаки α, углом наклона траектории θ, углом тангажа, скоростью полета, высотой полета, а также положением руля высоты и величиной и направлением в вертикальной плоскости тяги ДУ.

Система уравнений продольного движения самолета.

Замкнутая система, описывающая продольное движение самолета может быть выделена из полной системы уравнений, при условии, что параметры бокового движения, а также углы отклонения органов управления креном и рысканьем равны 0.

Соотношение α = ν – θ оплучено из первого геометрического уравнения после его преобразования.

Последнее уравнение системы 6.1 не влияет на остальные и может быть решено отдельно. 6.1 – нелинейная система, т.к. содержит в себе произведения переменных и тригонометрических функций, выражения для аэродинамических усилий.

Для получения упрощенной линейной модели продольного движения самолета, необходимо ввести определенные допущения и провести процедуру линеаризации. С целью обоснования дополнительных допущений, нам необходимо рассмотреть динамику продольного движения самолета при ступенчатом отклонении руля высоты.

Реакция самолета на ступенчатое отклонение руля высоты. Разделение продольного движения на долго- и кратковременное.

При ступенчатом отклонении δ в возникает момент М z (δ в), который вращает относительно оси Z со скоростью ω z . При этом происходит изменение угла тангажа и атаки. При увеличении угла атаки возникает приращение подъемной силы и соответствующий этому момент продольной статической устойчивости М z (Δα),который противодейсвует моменту М z (δ в). По истечению вращения, на определенном угле атаки он его компенсирует.

Изменение угла атаки после уравновешивания моментов М z (Δα) и М z (δ в) останавливается, но, т.к. самолет обладает определенными инерциальными свойствами, т.е. обладает моментом инерции I z относительно оси ОZ, то установление угла атаки носит колебательный характер.

Угловые колебания самолета вокруг оси ОZ будут демпфировать ся с помощью собственного момента аэродинамического демпфирования М z (ω z). Приращение подъемной силы начинает изменять направление вектора скорости. Изменяется также угол наклона траектории θ.Это в свою очередь влияет на угол атаки.Исходя из сбалансированности моментных нагрузок синхронно с изменением угла наклона траектории продолжает изменяться угол тангажа. При этом угол атаки – постоянный. Угловые движения на малом интервале происходят с высокой частотой, т.е. имеют короткий период и называются краткопериодическими.



После того, как затухнут кратковременные колебания, становится заметным изменение скорости полета. В основном за счет составляющей Gsinθ. Изменение скорости ΔV влияет на приращение подъемной силы, и как следствие, на угол наклона траектории. Последнее изменяет скорость полета. При этом возникают угасающие колебания вектора скорости по величине и направлению.

Указанные движения характеризуются низкой частотой, угасают медленно, поэтому их называют долгопериодическими.

При рассмотрении динамики продольного движения нами не была учтена дополнительная подъемная сила, создаваемая отклонением руля высоты. Данное усилие направлено на уменьшение полной подъемной силы, поэтому ддля тяжелых самолетов наблюдается явление просадки – качественное отклонение угла наклона траектории с одновременным увеличением угла тангажа. Это происходит пока приращение подъемной силы не скомпенсирует составляющую подъемной силы за счет отклонения руля высоты.

На практике, долгопериодические колебания не возникают, т.к. своевременно гасятся пилотом, или автоматическими органами управления.

Передаточные функции и структурные схемы матмодели продольного движения .

Передаточной функцией называется изображение выходной величены, по изображению входной при нулевых начальных условиях.

Особенностью передаточных функций самолета, как объекта управления является то, что отношение выходной величины, по сравнению со входной берется с отрицательным знаком. Это связано с тем, что в аэродинамике принято в качестве положенительного отклонения органов управления считать отклонения, которые создают отрицательные приращения параметров движения самолета.

В операторной форме записи имеет вид:

Системе 6.10, которая описывает кратковременное движение самолета соответствуют решения:

(6.11)

(6.12)

Таким образом, можем записать передаточные функции, которые связывают угол атаки и угловую скорость по тангажу от отклонения руля высоты

(6.13)

Для того, чтобы передаточные функции имели стандартный вид, введем следующие обозначения:

, , , , ,

Учитывая эти соотношения перепишем 6.13:

(6.14)

Таким образом, передаточные функции по углу наклона траектории и по углу тангажа, в зависимости от отклонения руля высоты будут иметь следующий вид:

(6.17)

Одним из важнейших параметров, которые характеризуют продольное движение самолета является нормальная перегрузка. Перегрузка бывает: Нормальной (по оси ОУ), продольная (по оси ОХ) и боковая (по оси OZ). Вычисляется как сумма сил, действующих на самолет в определенном направлении, деленная на силу тяжести. Проекции на оси позволяют вычислить величину и соотношение ее с g.

- нормальная перегрузка,

Из первого уравнения сил системы 6.3 получим:

Используя выражения для перегрузки перепишем:

Для условий горизонтального полета ( :

Запишем структурную схему, которая соответствует передаточной функции:


-δ в M ω z ν ν α -
θ θ

Боковая сила Z a (δ н) создает момент крена М х (δ н). Соотношение моментов М х (δ н) и М х (β) характеризует прямую и обратную реакцию самолета на отклонение руля направления. В случае, если М х (δ н)по модулю больше, чем М х (β), самолет будет наклоняться в противоположную сторону разворота.

Принимая во внимание вышесказанное можем построить структурную схему для анализа бокового движения ЛА при отклонении руля направления.

-δ н М у ω y ψ ψ

β β
F z Ψ 1
Mx

ω y ω x

В режиме так называемого плоского разворота моменты крена компенсируются пилотом, либо соответствующей системой управления. Следует отметить, что при малом боковом движении самолет кренится, вместе с этим происходит наклон подъемной силы, что вызывает боковую проекцию Y a sinγ, которая начинает развивать большое боковое движение: самолет начинает скользить на наклоненное полукрыло, при этом увеличиваются соответствующие аэродинамические силы и моменты, и значит роль начинают играть так называемые "спиральные моменты": М у (ω х) и М у (ω z). Большое боковое движение целесообразно рассматривать при уже наклоненном самолете, или на примере динамики самолета при отклонении элеронов.

Реакция самолета на отклонение элеронов.

При отклонении элеронов возникает момент М х (δ э). Самолет начинает вращаться вокруг связанной оси ОХ, при этом появляется угол крена γ. Демпфирующий момент М х (ω х) противодействует вращению самолета. При наклоне самолета вследствии изменения угла крена возникает боковая сила Z g (Уа), которая является результирующей от силы веса и подъемной силы У­ а. Эта сила "разворачивает" вектор скорости, при этом начинает меняться путевой угол Ψ 1 , что приводит к возникновению угла скольжения β и соответствующей силы Z a (β), а также момента путевой статической устойчивости М у (β), который начинает разворачивать продольную ось самолета с угловой скоростью ω у. Вследствие такого движения начинает меняться угол рысканья ψ. Боковая сила Z a (β) направлена в противоположную сторону по отношению к силе Z g (Уа) поэтому она в некоторой степени уменьшает скорость изменения путевого угла Ψ 1 .

Сила Z a (β) также является причиной момента поперечной статической устойчивости. М х (β), который в свою очередь старается вывести самолет из крена, а угловая скорость ω у и соответствующий ей спиральный аэродинамический момент М х (ω у) стараются увеличить угол крена. Если М х (ω у) больше М х (β) – возникает ак называемая "спиральная неустойчивость", при которой угол крена после возвращения элеронов в нейтральное положение продолжает увеличиваться, что приводит к развороту самолета с возрастающей угловой скоростью.

Такой разворот называется координированным разворотом, при этом угол крена задается пилотом, либо с помощью системы автоматического управления. При этом в процессе разворота компенсируются возмущающие моменты по крену М х β и М х ωу, руль направления при этом компенсирует скольжение, то есть β, Z a (β), М у (β) = 0, при этом момент М у (β), который разворачивал продольную ось самолета, замещается моментом от руля направления М у (δ н), а боковая сила Z a (β), которая препятствовала изменению путевого угла замещается силой Z a (δ н). В случае координированного разворота скорость (маневренность) увеличивается, при єтом продольная ось самолета совпадает с вектором воздушной скорости и разворачивается синхронно с изменение угла Ψ 1 .

Кафедра: ТАУ

РАСЧЁТ ЗАКОНА УПРАВЛЕНИЯ ПРОДОЛЬНЫМ ДВИЖЕНИЕМ САМОЛЁТА

Введение

1. Математическое описание продольного движения самолета

1.1 Общие сведения

1.2 Уравнения продольного движения самолета

1.3 Силы и моменты при продольном движении

1.4 Линеаризованные уравнения движения

1.5 Математическая модель привода стабилизатора

1.6 Математические модели датчиков угловой скорости и перегрузки

1.7 Математическая модель датчика положения штурвала

2. Техническое задание на разработку алгоритма ручного управления продольным движением самолета

2.1 Общие положения

2.2 Требования к статическим характеристикам

2.3 Требования к динамическим характеристикам

2.4 Требования к разбросам параметров

2.5 Дополнительные требования

3. План выполнения курсовой работы

3.1 Этап анализа

Введение

Целью курсовой работы является закрепление материала первой части курса ТАУ и освоение модальной методики расчета алгоритмов управления на примере синтеза закона управления продольным движением самолета. Методические указания содержат вывод математических моделей продольного движения самолета, электрогидравлического привода руля высоты, датчиков положения штурвала, угловой скорости тангажа, перегрузки, а также приводятся числовые данные для гипотетического самолета.

Одним из наиболее ответственных и трудных моментов при реализации методики модального синтеза является выбор желаемых собственных значений. Поэтому приведены рекомендации по их выбору.

    Математическое описание продольного движения самолета

    1. Общие сведения

Полет самолета осуществляется под влиянием сил и моментов, действующих на него. Отклоняя органы управления, летчик может регулировать величину и направление сил и моментов, тем самым, изменяя параметры движения самолета в желаемую сторону. Для прямолинейного и равномерного полета необходимо, чтобы все силы и моменты были уравновешены. Так, например, в прямолинейном горизонтальном полете с постоянной скоростью подъемная сила равна силе тяжести самолета, а тяга двигателя – силе лобового сопротивления. При этом обязательно должно соблюдаться и равновесие моментов. В противном случае самолет начинает вращаться.

Равновесие, созданное летчиком, может быть нарушено воздействием какого-либо возмущающего фактора, например, турбулентностью атмосферы или порывами ветра. Поэтому когда режим полета установлен, требуется обеспечить устойчивость движения.

Другой важнейшей характеристикой самолета является управляемость. Под управляемостью самолета понимают его способность реагировать на перемещение рычагов управления (органов управления). О хорошо управляемом самолете летчики говорят, что он хорошо «ходит за ручкой». Это означает, что для выполнения требуемых маневров летчику необходимо совершить простые по характеру отклонения рычагов и прилагать к ним небольшие по величине, но четко ощутимые усилия, на которые самолет отвечает соответствующими изменениями положения в пространстве без излишнего запаздывания. Управляемость – важнейшая характеристика самолета, определяющая возможность полета. На неуправляемом самолете летать невозможно.

Летчику одинаково трудно управлять самолетом, когда требуется прикладывать большие усилия к рычагам управления и выполнять большие перемещения штурвала, а также когда отклонения штурвала и усилия, потребные для их отклонения, слишком малы. В первом случае летчик быстро утомляется при совершении маневров. О таком самолете говорят, что он «тяжел в управлении». Во втором случае самолет реагирует на малое, иногда даже непроизвольное перемещение ручки, требуя от летчика большого внимания, точного и плавного управления. О таком самолете говорят что он «строг в управлении» .

На основе летной практики и теоретических исследований установлено, какими должны быть характеристики устойчивости и управляемости, чтобы удовлетворить требованиям удобного и безопасного пилотирования. Один из вариантов формулирования этих требований представлен в техническом задании на курсовую работу.

    1. Уравнения продольного движения самолета

Обычно полёт самолёта рассматривают как движение в пространстве абсолютно жёсткого тела. При составлении уравнений движения используют законы механики, позволяющие в самом общем виде записать уравнения движения центра масс самолёта и его вращательного движения вокруг центра масс.

Исходные уравнения движения вначале записывают в векторной форме

m – масса самолета;

– равнодействующая всех сил;

– главный момент внешних сил самолёта, вектор суммарного вращающего момента;

– вектор угловой скорости системы координат;

– момент количества движения самолёта;

t – время.

Знак «» обозначает векторное произведение. Далее переходят к обычной скалярной записи уравнений, проектируя векторные уравнения на некоторую систему координатных осей.

Получаемые общие уравнения оказываются настолько сложными, что, по существу, исключают возможность проведения наглядного анализа. Поэтому в аэродинамике летательных аппаратов вводятся различные упрощающие приёмы и предположения. Очень часто оказывается целесообразным разделить полное движение самолёта на продольное и боковое. Продольным называется движение с нулевым креном, когда вектор силы тяжести и вектор скорости самолёта лежат в его плоскости симметрии. Далее будем рассматривать только продольное движение самолёта (рис. 1).

Это рассмотрение будем вести с использованием связанной ОXYZ и полусвязанной ОX e Y e Z e систем координат. За начало координат обеих систем принимается точка, в которой расположен центр тяжести самолета. Ось ОX связанной системы координат проводится параллельно хорде крыла и называется продольной осью самолета. Нормальная ось ОY перпендикулярна оси ОX и расположена в плоскости симметрии самолета. Ось ОZ перпендикулярна к осям ОX и ОY , а следовательно, и к плоскости симметрии самолета. Она называется поперечной осью самолета. Ось ОX e полусвязанной системы координат лежит в плоскости симметрии самолета и направлена по проекции на неё вектора скорости. Ось ОY e перпендикулярна оси ОX e и расположена в плоскости симметрии самолета. Ось ОZ e перпендикулярна к осям ОX e и ОY e .

Остальные обозначения, принятые на рис. 1: – угол атаки, – угол тангажа, угол наклона траектории, – вектор воздушной скорости, – подъемная сила, – сила тяги двигателей, – сила лобового сопротивления, – сила тяжести, – угол отклонения рулей высоты, – момент тангажа, вращающий самолёт вокруг оси ОZ .

Запишем уравнение продольного движения центра масс самолёта

, (1)

где – суммарный вектор внешних сил. Представим вектор скорости с использованием его модуля V и угла его поворота относительно горизонта:

Тогда производная вектора скорости по времени запишется в виде:

. (2)

С учётом этого уравнения продольного движения центра масс самолёта в полусвязанной системе координат (в проекциях на оси ОX e и ОY e ) примут вид:

Уравнение вращения самолёта вокруг связанной оси OZ имеет вид:

где J z – момент инерции самолета относительно оси OZ , M z – суммарный вращающий момент относительно оси OZ .

Полученные уравнения полностью описывают продольное движение самолета. В курсовой работе рассматривается только угловое движение самолёта, поэтому далее будем учитывать только уравнения (4) и (5).

В соответствии с рис. 1, имеем:

угловая скорость вращения самолёта вокруг поперечной оси OZ (угловая скорость тангажа).

При оценке качества управляемости самолета большое значение имеет перегрузка. Она определяется как отношение действующей на самолёт суммарной силы (без учёта веса) к силе веса самолёта. В продольном движении самолёта используют понятие «нормальная перегрузка». По ГОСТ 20058–80 она определяется как отношение проекции главного вектора системы сил, действующих на самолёт, без учёта инерционных и гравитационных сил, на ось OY связанной системы координат к произведению массы самолёта на ускорение свободного падения:

Переходные процессы по перегрузке и угловой скорости тангажа определяют оценку летчиком качества управляемости продольного движения самолета.

    1. Силы и моменты при продольном движении

Силы и моменты, действующие на самолёт, – это сложные нелинейные функции, зависящие от режима полёта и положения управляющих органов. Так, подъёмная сила Y и сила лобового сопротивления Q записываются в виде:

. (10)движения . Нарушения безопасности движения Обеспечение безопасности движения . Организация обеспечения безопасности движения . Управление безопасностью движения . Безопасность движения ...

  • Лекции по Безопасности жизнедеятельности

    Реферат >> Безопасность жизнедеятельности

    Нарушению управления движением на... самолетов - специальные аппараты, рассеивающие насекомых с самолетов . ... соответствии с федеральными законами законы и иные нормативные... расчётов . Бывший начальник управления ... пенале с продольными по­луовальными вырезками...

  • Факторы обеспечения безопасности полетов

    Курсовая работа >> Транспорт

    ... Управление воздушным движением УГА – Управление Гражданской Авиации УГАН – Управление ... входят: национальные законы , международные соглашения... интервала продольного эшелонирования... расчёта траектории движения ... перегрузки (4,6) самолет разрушился и загорелся...

  • В случае анализа динамики самолета, совершающего полет со скоростью, значительно меньшей орбитальной, уравнения движения по сравнению с общшм случаем полета летательного аппарата могут быть упрощены, в частности, можно пре­небречь вращением и сферичностью Земли. Кроме этого сделаем еще ряд упрощающих допущений.

    только квазистатически, для текущего значения скоростного напора.

    При анализе устойчивости и управляемости самолета будем использовать следующие прямоугольные правые системы осей координат.

    Нормальная земная система координат OXgYgZg. Эта система осей координат имеет неизменную ориентацию относительно Земли. Начало координат совпадает с центром масс (ЦМ) самолета. Оси 0Xg и 0Zg лежат в горизонтальной плоскости. Их ориентация может быть принята произвольно, в зависимости от целей реша­емой задачи. При решении навигационных задач ось 0Xg часто направляют к Северу параллельно касательной к меридиану, а ось 0Zg направляют на Восток. Для анализа устойчивости и управляемости самолета удобно принять направление ориента­ции оси 0Xg совпадающим по направлению с проекцией вектора скорости на горизонтальную плоскость в начальный момент вре­мени исследования движения. Во всех случаях ось 0Yg направлена вверх по местной вертикали, а ось 0Zg лежит в горизонтальной плоскости и образует вместе с осями OXg и 0Yg правую систему осей координат (рис. 1.1). Плоскость XgOYg называют местной вертикальной плоскостью.

    Связанная система координат OXYZ. Начало координат рас­положено в центре масс самолета. Ось ОХ лежит в плоскости симметрии и направлена вдоль линии хорд крыла (либо парал­лельно какому-либо другому, фиксированному относительно само­лета направлению) к носовой части самолета. Ось 0Y лежит в плоскости симметрии самолета и направлена вверх (при гори­зонтальном полете), ось 0Z дополняет систему до правой.

    Углом атаки а называется угол между продольной осью самолета и проекцией воздушной скорости на плоскость OXY. Угол положителен, если проекция воздушной скорости самолета на ось 0Y отрицательна.

    Углом скольжения р называется угол между воздушной ско­ростью самолета и плоскостью OXY связанной системы коорди­нат. Угол положителен, если проекция воздушной скорости на поперечную ось положительна.

    Положение связанной системы осей координат OXYZ относи­тельно нормальной земной системы координат OXeYgZg может быть полностью определено тремя углами: ф, #, у, называемыми углами. Эйлера. Последовательно поворачивая связанную систему

    координат на каждый из углов Эйлера, можно прийти к любому угловому положению связанной системы относительно осей нор­мальной системы координат.

    При исследовании динамики самолетов используются следу­ющие понятия углов Эйлера.

    Угол рыскания г]) - угол между некоторым исходным напра­влением (например, осью 0Xg нормальной системы координат) и проекцией связанной оси самолета на горизонтальную пло­скость. Угол положителен, если ось ОХ совмещается с проекцией продольной оси на горизонтальную плоскость поворотом вокруг оси OYg по часовой стрелке.

    Угол тангажа # - угол между продольно# осью самолета ОХ и местной горизонтальной плоскостью OXgZg, Угол положителен, если продольная ось находится выше горизонта.

    Угол крена у - угол между местной вертикальной плоскостью, проходящей через ось ОХ у и связанной осью 0Y самолета. Угол положителен, если ось О К самолета совмещается с местной вер­тикальной плоскостью поворотом вокруг оси ОХ по часовой стрелке. Углы Эйлера могут быть получены последовательными поворотами связанных осей относительно нормальных осей. Бу­дем считать, что нормальная и связанная системы координат в начале совмещены. Первый поворот системы связанных осей произведем относительно оси О на угол рыскания г]; (ф совпадает с осью OYgXрис. 1.2)); второй поворот -относительно оси 0ZX на угол Ф (‘& совпадает с осью OZJ и, наконец, третий поворот произведем относительно оси ОХ на угол у (у совпадает с осью ОХ). Проектируя векторы ф, Ф, у, являющиеся составляющими

    вектора угловой скорости движения самолета относительно нор­мальной системы координат, на связанные оси, получим уравне­ния связи между углами Эйлера и угловыми скоростями вращения связанных осей:

    со* = Y + sin *&;

    o)^ = i)COS’&cosY+ ftsiny; (1.1)

    со2 = ф cos у - ф cos Ф sin у.

    При выводе уравнений движения центра масс самолета необ­ходимо рассматривать векторное уравнение изменения количества движения

    -^- + о>xV)=# + G, (1.2)

    где ю - вектор скорости вращения связанных с самолетом осей;

    R - главный вектор внешних сил, в общем случае аэродинами-

    ческих сил и тяги; G - вектор гравитационных сил.

    Из уравнения (1.2) получим систему уравнений движения ЦМ самолета в проекциях на связанные оси:

    т (гЗ?~ + °hVx ~ °ixVz) = Ry + G!!’ (1 -3)

    т iy’dt “Ь У - = Rz + Gz>

    где Vx, Vy, Vz - проекции скорости V; Rx, Rz - проекции

    результирующих сил (аэродинамических сил и тяги); Gxi Gyy Gz - проекции силы тяжести на связанные оси.

    Проекции силы тяжести на связанные оси определяются с ис­пользованием направляющих косинусов (табл. 1.1) и имеют вид:

    Gy = - G cos ft cos у; (1.4)

    GZ = G cos d sin y.

    При полете в атмосфере, неподвижной относительно Земли, проекции скорости полета связаны с углами атаки и скольжения и величиной скорости (V) соотношениями

    Vх = V cos a cos р;

    Vу = - V sin a cos р;

    Связанная

    Выражения для проекций результирующих сил Rx, Rin Rz имеют следующий вид:

    Rx = - cxqS — f Р cos ([>;

    Rty = cyqS p sin (1.6)

    где cx, cy, сг - коэффициенты проекций аэродинамических сил на оси связанной системы координат; Р - гяга двигателей (обычно Р = / (У, #)); Фн - угол заклинення двигателя (фя > 0, когда проекция вектора тяги на ось 0Y самолета-положительна). Далее везде будем принимать = 0. Для определения входящей в выражение для скоростного напора q величины плотности р (Н) необходимо интегрировать уравнение для высоты

    Vx sin ft+ Vy cos ft cos у - Vz cos ft sin у. (1.7)

    Зависимость p (H) может находиться по таблицам стандартной атмосферы либо по приближенной формуле

    где для высот полета И с 10 000 м К ж 10~4 . Для получения замкнутой системы уравнений движения самолета в связанных осях уравнения (13) необходимо дополнить кинематическими

    соотношениями, которые позволяют определять углы ориентации самолета у, ft, г]1 и могут быть получены из уравнений (1.1):

    ■ф = Кcos У — sin V):

    ■fr = «у sin у + cos Vi (1-8)

    Y = со* - tg ft (©у cos y - sinY),

    а угловые скорости cov, со, coz определяются из уравнений движе­ния самолета относительно ЦМ. Уравнения движения самолета относительно центра масс могут быть получены из закона измене­ния момента количества движения

    -^-=MR-ZxK.(1.9)

    В этом векторном уравнении приняты следующие обозначения: ->■ ->

    К - момент количества движения самолета; MR - главный мо­мент внешних сил, действующих на самолет.

    Проекции вектора момента количества движения К на подвиж­ные оси в общем случае записываются в следующем виде:

    К t = I х^Х? ху®у I XZ^ZI

    К, Iху^х Н[ IУ^У Iyz^zi (1.10)

    К7. - IXZ^X Iyz^y Iz®Z*

    Уравнения (1.10) могут быть упрощены для наиболее распростра­ненного случая анализа динамики самолета, имеющего плоскость симметрии. В этом случае 1хг = Iyz - 0. Из уравнения (1.9), используя соотношения (1.10), получим систему уравнений дви­жения самолета относительно ЦМ:

    h -jf — — hy («4 — ©Ї) + Uy — !*) = MRZ-

    Если за сси OXYZ принять главные оси инерции, то 1ху = 0. В связи с этим дальнейший анализ динамики самолета будем производить, используя в качестве осей OXYZ главные оси инер­ции самолета.

    Входящие в правые части уравнений (1.11) моменты являются суммой аэродинамических моментов и моментов от тяги двигателя. Аэродинамические моменты записываются в виде

    где тХ1 ту, mz - безразмерные коэффициенты аэродинамических моментов.

    Коэффициенты аэродинамических сил и моментов в общем случае выражаются в виде функциональных зависимостей от ки­нематических параметров движения и параметров подобия, за­висящих от режима полета:

    у, г mXt = F(а, р, а, Р, coXJ coyj со2, бэ, ф, бн, М, Re). (1.12)

    Числа М и Re характеризуют исходный режим полета, поэтому при анализе устойчивости или управляемых движений эти парамет­ры могут быть приняты постоянными величинами. В общем случае движения в правой части каждого из уравнений сил и моментов будет содержаться достаточно сложная функция, определяемая, как правило, на основе аппроксимации экспериментальных данных.

    Нарис. 1.3 приведены правила знаков для основных пара­метров движения самолета, а также для величин отклонений органов и рычагов управления.

    Для малых углов атаки и скольжения обычно используется представление аэродинамических коэффициентов в виде разложе­ний в ряд Тейлора по параметрам движения с сохранением только первых членов этого разложения. Такая математическая модель аэродинамических сил и моментов для малых углов атаки доста­точно хорошо согласуется с летной практикой и экспериментами в аэродинамических трубах. На основании материалов работ по аэродинамике самолетов различного назначения примем следу­ющую форму представления коэффициентов аэродинамических сил и моментов в функции параметров движения и углов отклонения органов управления:

    сх ^ схо 4~ сх (°0»

    У ^ СУ0 4" с^уа 4" С!/Ф;

    сг = cfp + СгН6„;

    тх - itixi|5 — f — ■Ь тхха>х-(- тх -f — /л* (І -|- — J — Л2ЛП6,!

    о (0.- (0^- р б б„

    ту = myfi + ту хо)х + ту Уыу + р + га/бэ + ту бн;

    тг = тг (а) + тг zwz /я? ф.

    При решении конкретных задач динамики полета общая форма представления аэродинамических сил и моментов может быть упрощена. Для малых углов атаки многие аэродинамические коэффициенты бокового движения являются константами, а про­дольный момент может быть представлен в виде

    mz (а) = mzo + т£а,

    где mz0 - коэффициент продольного момента при а = 0.

    Входящие в выражение (1.13) составляющие, пропорциональ­ные углам аир, обычно находятся из статических испытаний моделей в аэродинамических трубах или расчетом. Для нахожде-

    НИЯ производных, twx (у) необходимо проведение

    динамических испытаний моделей. Однако в таких испытаниях обычно происходит одновременное изменение угловых скоростей и углов атаки и скольжения, в связи с чем при измерениях и обра­ботке одновременно определяются величины:

    СО — СО- ,

    тг* = т2г —mz;


    0) , R. Юу I в.

    mx* = тх + тх sin а; ту* = Шух ту sin а.

    СО.. (О.. ft СО-. СО.. ft

    ту% = т,/ -|- tiiy cos а; тх% = тху + тх cos а.

    В работе показано, что для анализа динамики самолета,

    особенно на малых углах атаки, допустимо представление момен-

    тов в виде соотношений (1.13), в которых производные mS и т$

    приняты равными нулю, а под выражениями т®х, и т. д.

    понимаются величины m“j, т™у [см. (1.14)], определяемые в экс­перименте. Покажем, что это допустимо, ограничив рассмотрение задачами анализа полета с малыми углами атаки и скольжения при постоянной скорости полета. Подставив в уравнения (1.3) выра­жения для скоростей Vх, Vy, Vz (1.5) и производя необходимые преобразования, получим

    = % COS а + coA. sina — f -^r }

    gastroguru © 2017