Функциональное мрт исследование. Функциональная магнитно-резонансная томография

Изменение активности кровотока регистрируется функциональной магнитно-резонансной томографией (ФМРТ). Способ применяется с целью определения локализации артерий, для оценки микроциркуляции центров зрения, речи, движения, коры некоторых других функциональных центров. Особенность картирования – пациента просят выполнять определенные задачи, повышающие активность нужного мозгового центра (читать, писать, разговаривать, двигать ногами).

На заключительной стадии программное обеспечение формирует изображение путем суммации обычных послойных томограмм и картинок мозга с функциональной нагрузкой. Комплекс информации отображает трехмерная модель. Пространственное моделирование позволяет специалистами детально изучить объект.

Вместе с МРТ спектроскопией исследование выявляет все особенности метаболизма патологических образований.

Принципы функциональной МРТ головного мозга

Магнитно-резонансная томография основана на регистрации измененной радиочастоты атомов водорода жидких сред после воздействия сильным магнитным полем. Классическое сканирование показывает мягкотканые компоненты. Для улучшения видимости сосудов проводится внутривенное контрастирование парамагнетиком гадолинием.

Функциональная МРТ регистрирует активность отдельных зон коры мозга за счет учета магнитного эффекта гемоглобина. Вещество после отдачи молекулы кислорода тканям становится парамагнетиком, радиочастоту которого улавливают датчики аппарата. Чем интенсивнее кровоснабжение мозговой паренхимы, тем качественнее сигнал.

Магнетизация ткани дополнительно повышается за счет окисления глюкозы. Вещество необходимо для обеспечения процессов тканевого дыхания нейронов. Изменение магнитной индукции регистрируется датчиками устройства, обрабатывается программным приложением. Высокопольные аппараты создают разрешение высокой степени качества. На томограмме прослеживается детальное изображение деталей диаметром до 0,5 мм диаметром.

Функциональное исследование МРТ регистрирует сигнал не только от базальных ганглиев, поясной коры, таламуса, но и от злокачественных опухолей. Новообразования имеют собственную сосудистую сеть, по которой внутрь образования поступает глюкоза, гемоглобин. Отслеживание сигнала позволяет изучить контуры, диаметр, глубину проникновения опухоли внутрь белого или серого вещества.

Функциональная диагностика МРТ головного мозга требует квалификации врача лучевой диагностики. Разные зоны коры характеризуются различной микроциркуляцией. Насыщение гемоглобином, глюкозой влияет на качество сигнала. Учитывать следует структуру молекулы кислорода, наличие альтернативных заменителей атомов.

Сильное магнитное поле увеличивает период полураспада кислорода. Эффект работает при мощности аппарата более 1,5 Тесла. Более слабые установки нельзя не смогут исследовать функциональную активность мозга.

Метаболическую интенсивность кровоснабжения опухоли лучше определять высокопольным оборудованием мощностью 3 Тесла. Высокое разрешение позволит зарегистрировать небольшой очаг.

Эффективность сигнала научным языком называется «гемодинамическим ответом». Термин применяется для описания скорости нейронных процессов с интервалом 1-2 секунды. Кровоснабжения тканей не всегда достаточно для функциональных исследований. Повышается качество результата дополнительным введением глюкозы. После стимуляции пик насыщения наступает через 5 секунд, когда и проводится сканирование.

Технические особенности функционального исследования МРТ мозга

Функциональная диагностика МРТ основана на повышении активности нейронов после стимуляции мозговой активности путем выполнения человеком определенного задания. Внешний раздражитель вызывает стимуляцию сенсорной или моторной активности определенного центра.

Для отслеживания участка включается режим градиентного эха на основе импульсной эхопланарной последовательности.

Анализ сигнала активной зоны на МРТ делается быстро. Регистрация одной томограммы выполняется на интервале в 100 мс. Диагностика выполняется после стимуляции и в периоде покоя. Программное обеспечение использует томограммы для вычисления очагов нейрональной активности, наложения участков усиленного сигнала на трехмерную модель мозга в покое.

Лечащим врачам данный тип МРТ предоставляет информацию о патофизиологических процессах, которые нельзя отследить другими диагностическими методами. Изучение когнитивных функций необходимо нейропсихологам для дифференцировки психических и психологических заболеваний. Исследование помогает верифицировать эпилептические очаги.

Финальная карта картирования показывает не только участки повышенной функциональной стимуляции. Снимки визуализируют зоны сенсомоторной, слуховой речевой активности вокруг патологического очага.

Построение карт расположения мозговых каналов называется трактографией. Функциональная значимость расположения зрительного, пирамидного тракта перед планированием оперативного вмешательства позволяет нейрохирургам правильно спланировать расположения надрезов.

Что показывает ФМРТ

Высокопольное МРТ с функциональными пробами назначается по показаниям, когда требуется изучить патофизиологические основы функционирования моторных, сенсорных, зрительных, слуховых зон мозговой коры головного мозга. Нейропсихиологи применяют исследование у пациентов с нарушением речи, внимания, памяти, когнитивных функций.

С помощью ФМРТ выявляется ряд заболеваний на начальной стадии – Альцгеймера, Паркинсона, демиелинизацию при рассеянном склерозе.

Функциональная диагностика в разных медицинских центрах выполняется на различных установках. Знает, что показывает МРТ головного мозга , врач-диагност. Консультация специалиста обязательно проводится перед обследованием.

Высокое качество результатов достигается сканированием сильным магнитным полем. Перед выбором медицинского центра рекомендуем узнать тип установленного аппарата. Важна квалификация специалиста, который должен владеть знаниями о функциональной, структурной составляющей головного мозга.

Будущее функциональной диагностики МРТ в медицине

Функциональные исследования недавно внедрены в практическую медицину. Возможности метода использованы недостаточно.

Ученые разрабатывают методики визуализации снов, чтения мыслей с помощью функциональной МРТ. Предполагается использование томографии для выработки метода общения с парализованными людьми.

  • Нейронной возбудимости;
  • Психической активности;
  • Степени насыщения мозговой коры кислородом, глюкозой;
  • Количества дезоксилированного гемоглобина в капиллярах;
  • Участков расширения кровотока;
  • Уровня оксигемоглобина в сосудах.

Достоинства исследования:

  1. Качественная временная картинка;
  2. Пространственное разрешение выше 3 мм;
  3. Возможность изучения мозга до и после стимуляции;
  4. Безвредность (при сравнении с ПЭТ);
  5. Отсутствие инвазивности.

Ограничивает массовое использование функционального МРТ головного мозга высокая стоимость оборудования, каждого единичного обследования, невозможность прямого измерения нейрональной активности, нельзя делать пациентам с металлическими включениями в теле (сосудистые клипсы, ушные импланты).

Регистрация функционального метаболизма мозговой коры имеет большое диагностическое значение, но не является точным показателем для динамической оценки изменений головного мозга на фоне лечения, после оперативного вмешательства.

Как увидеть мысли. Неортодоксальные приложения магнитно-резонансной томографии

Магнитно-резонансная томография (МРТ) сегодня используется не только для диагностики, но и для картирования функционального состояния нейронных сетей, позволяя в прямом смысле увидеть работу мозга в масштабе реального времени. С ее появилась возможность создания технологии игрового биоуправления, базирующейся на естественных механизмах саморегуляции функций человеческого организма.

В уникальных компьютерных играх, разработанных новосибирскими специалистами, пользователь обучается «руководить» виртуальным игровым сюжетом через волевые изменения своих физиологических характеристик (пульса, температуры, электрической активности мозга и т.п.). Игры можно использовать для решения широкого класса лечебных и реабилитационных задач, в том числе для оценки актуального психофизиологического состояния человека. Подобная игровая деятельность сама по себе обладает выраженным антистрессовым эффектом, но, главное, с помощью этой технологии можно раскрыть потенциальные ресурсы организма, которыми мы в нашей обычной жизни не умеем пользоваться

До недавнего времени фундаментальные сведения о работе мозга удавалось получать лишь из косвенных источников. Речь идет о прямых экспериментах на животных; наблюдениях за больными людьми, у которых поражение того или иного участка мозга проявляется в виде параличей, нарушений речи или памяти; нейропсихологическом тестировании; операциях на открытом мозге, позволяющих нейрохирургу видеть реакцию на конкретные раздражители; наконец, регистрации электрической активности мозга. Однако на основе результатов, полученных с помощью этих подходов, нельзя описать, как работает мозг при решении той или иной конкретной задачи. Возможность непосредственно наблюдать динамику познавательной (когнитивной) деятельности мозга, иными словами, «видеть мысли» появилась лишь с внедрением в исследовательскую практику технологии функциональной магнитно-резонансной томографии.

Гипотеза о связи интенсивности кровоснабжения мозга с его активностью получила распространение еще в конце XIX в. с легкой руки выдающегося британского физиолога Ч. Шеррингтона. Спустя много лет наличие этой связи было доказано радиографическими методами, подтвердившими прямую зависимость между обменными процессами в определенных работающих участках мозга и скоростью доставки к ним кислорода.

А чуть больше двух десятилетий назад сотрудники американской исследовательской организации «AT&T Bell laboratories» описали принцип визуализации активности зон головного мозга в режиме реального времени с использованием магнитно-резонансной томографии (МРТ), при которой контрастность изображения определяется степенью насыщения крови кислородом (Ogawa et al. , 1990). Именно этот принцип лег в основу технологии функциональной магнитно-резонансной томографии (фМРТ) – динамического исследования активных зон мозговых структур в момент их деятельности, впервые опробованного на человеке спустя два года после первой публикации.

Маркер – кислород

Активация участка мозга всегда связана с потреблением энергии, поэтому она влечет за собой ускорение обмена глюкозы и трансформацию молекул гемоглобина – поставщика кислорода в нашем организме, – при которой оксигемоглобин, обратимо соединенный с кислородом, превращается в дезоксигемоглобин («восстановленный» гемоглобин).

МРТ (магнитно-резонансная томография) – это диагностическая процедура, в основе которой лежит эффект ядерно-магнитного резонанса. Суть его в том, что под действием магнитного поля протоны (положительно заряженные ядра водорода) в живых тканях способны переходить на более высокий энергетический уровень, а затем возвращаться в исходное состояние. Последнее сопровождается выделением энергии, которую можно измерить.
Затем полученный сигнал преобразовывают в так называемое Т1-взвешенное изображение (Т1 – время, за которое две трети протонов возвращаются в исходное состояние). Получаемое на выходе изображение будет различно для разных тканей, например, здоровых и больных.
Современные методики МРТ позволяют не только визуализировать с высоким качеством различные внутренние органы, но и исследовать их функцию. Благодаря отсутствию ионизирующего облучения этот метод можно использовать без ограничений и многократно проводить повторные исследования

Ключевым фактором для магнитно-резонансной томографии являются различия магнитных свойств разных форм гемоглобина. Так, оксигемоглобин является диамагнетиком , т. е. веществом, намагничивающимся против направления внешнего магнитного поля. Дезоксигемоглобин («восстановленный» гемоглобин), напротив, имеет свойства парамагнетика , намагничиваясь в направлении внешнего магнитного поля. Величина сигнала МРТ зависит от количества дезоксигемоглобина в ткани: чем выше концентрация, тем ниже сигнал. Показатель, который определяется соотношением двух форм гемоглобина и зависит от уровня кислорода в крови, называют BOLD (от анг. blood oxygenation level dependent ).

Чем активнее работает участок мозга, тем больше кислорода он потребляет. При формировании действующего нейронного ансамбля увеличение локального потребления энергии уже в первые секунды приводит к возрастанию концентрации парамагнитного дезоксигемоглобина; затем следует реакция сосудистой системы, заключающаяся в увеличении местного крово­снабжения и кровенаполнения тканей мозга из-за роста объема и скорости кровотока.

Отсюда следует, что относительная величина сигнала МРТ может служить мерой активности зон мозга. Более того, результаты, полученные под контролем электроэнцефалографии на зрительной коре открытого мозга приматов, дают основания утверждать, что сигнал МРТ является линейным откликом на электрическую активность, которую генерирует действующий нейронный ансамбль (Logothetis et al. , 2002).

Таким образом, функциональная МРТ, ориентированная на детектирование BOLD эффекта, является на сегодня оптимальным инструментом картирования нейрональной активности, точнее, функционального состояния нейронных сетей – основы визуализации наших мыслей и идей. Другими словами, именно с помощью фМРТ можно в прямом смысле увидеть, как наш мозг решает задачи в масштабе реального времени.

Сила мысли

С технологией фМРТ тесно связана нейробиологическая технология «интерфейса мозг–компьютер», своего рода «компьютерный симбиоз» (Каплан, 2005, 2012; Черникова и др., 2010). Речь идет о возможности с помощью электроэнцефалограммы получить отображение устойчивого «рисунка» биоэлектрической активности мозга, привязав этот рисунок к функции мозговых структур и образованию в них новых устойчивых нейронных ансамблей. При этом электроэнцефалограмма является не только источником информации о внутримозговых событиях: эти данные можно использовать в качестве сигнала обратной связи для контура произвольной саморегуляции функций организма.

Хотя нейробиология является самостоятельной научной областью, возникла она как «социальный продукт» для глубоких инвалидов, благодаря которому у людей, прикованных к коляске и лишенных самостоятельных двигательных навыков, появляется возможность управления искусственными конечностями, такими как механическая рука (Hochberg et al. , 2012).

Еще в конце XIX в. французский нейрохирург П. Брока (1861) описал нарушения речи, вызванные поражением определенной зоны левого полушария. Его работа положила начало многочисленным исследованиям, посвященным развитию клинического анализа языковой организации мозга и ее нарушениям. И определение траектории речевого развития – локализации «центра речи» на пространстве соответствующих зон мозга – стало одной из наиболее крупных областей применения фМРТ.
Сведения о локализации в мозге речевых (буквенных, семантических и синтаксических) зон сегодня конструктивно используются в нейрохирургической практике. Речь идет о предоперационном определении тех участков коры у пациентов с различными поражениями мозга, куда не должен вторгаться нож хирурга. На сегодня фМРТ является практически единственной технологией, которая позволяет определить такую «пограничную» зону

Одним из практических приложений нейробиологии является нейробиоуправление, нелекарственная технология, основанная на принципах вышеупомянутой адаптивной обратной связи – феномене, обеспечивающем механизм саморегуляции. В основе этой технологии лежит идея о том, что человека можно обучить волевому управлению неосознаваемыми физиологическими характеристиками, такими как частота пульса и параметры ритмов электрической активности мозга.

Способность человека целенаправленно изменять параметры электроэнцефалограммы была впервые описана американским ученым Дж. Камия еще в 1958 г. (эту способность изучали с целью управления функциональным состоянием мозга пациента и изменения тенденции развития психики). Дальнейшие исследования доказали удивительные способности нашего мозга к внутренним перестройкам, не предусмотренным природой. Оказалось, что с помощью нейробиоуправления можно сформировать у человека ранее отсутствовавшие навыки саморегуляции, образовать новые и «пробудить» дремлющие мозговые образования. При этом фМРТ дает возможность визуализировать реальную временную и пространственную динамику работы мозга.

Игра – активность индивида, направленная на моделирование той или иной реальной деятельности. Она позволяет человеку формировать и совершенствовать функции управления собственным поведением и произвольной активностью в целом.
При использовании игрового биоуправления игрок становится активным субъектом лечебного (коррекционного) процесса или процесса обретения новых навыков

С практической точки зрения, особый интерес представляет технология так называемого игрового биоуправления, когда человек обучается «руководить» виртуальным игровым сюжетом через волевые изменения своих физиологических характеристик, таких как кардиограмма, пульс, температура кожи и электрическая активность мозга.

Обыграть себя

В контексте нейробиологии игра – это психологическая реальность с большим числом нестандартных ситуаций, в которых невозможно стереотипное поведение. Компьютерный игрок привыкает перемещаться из одного виртуального мира в другой, быстро адаптируясь к новым виртуальным реалиям на основе личностных предпочтений.

Во время игры мозг ведет активную деятельность, определяя вариант действий, который в данный момент представляется наиболее выигрышным. В случае использования биоуправления игрок, овладев навыками саморегуляции, может управлять этим процессом, так как адаптивная обратная связь позволяет не только увидеть и «проиграть» различные стратегии поведения, но и оценить степень их эффективности. В этом смысле эта технология представляет собой мощный механизм обучения человека новым поведенческим стереотипам.

На базе Международного томографического центра СО РАН совместно с НИИ молекулярной биологии и биофизики СО РАМН (Новосибирск) проведен эксперимент по нейровизуализации «волевого» управления виртуальным игровым сюжетом на группе молодых мужчин.

Испытуемым предлагался игровой сюжет «Вира!», посвященный поиску подводных сокровищ. Каждый испытуемый, находясь в кольцевом магните томографа, управлял одним из аквалангистов, опускавшихся на дно. Скорость игрока напрямую определялась частотой сердечных сокращений: чем медленнее пульс, тем выше скорость. На протяжении игры информация о частоте пульса передавалась в виде визуального ряда на экран монитора, доступный испытуемому. Чтобы победить в игре, требовалось научиться мысленно управлять частотой пульса, т. е. развить навыки замедления сердечного ритма.

По результатам игр у испытуемых было выявлено шесть разных вариантов поведения, и для каждого из них была определена ведущая стратегия саморегуляции.

Например, при стратегии «пробы и ошибки с выходом на результат» испытуемый сначала делал несколько неуспешных попыток, но в конце концов достигал поставленной цели. Испытуемые с такой тактикой основное внимание уделяли не регуляции собственных физиологических показателей (т. е. пульса), а контролю над непосредственным игровым действием. Стратегия «маятниковая динамика» характеризовалась чередованием успешных и неуспешных попыток, а «последовательное обучение» – улучшением результата от попытки к попытке.

Анализ результатов эксперимента свидетельствует об определенной последовательности возникновения и развития зон активности в головном мозге испытуемых. «Пик» соревновательного сюжета приходился на четвертую – шестую попытки, когда последовательно в борьбу за выигрыш вовлекалось все большее число вновь образующихся нейронных ансамблей.

Интересно, что новые зоны этой активности локализовались, в том числе и в мозжечке. Анализ динамики их образования дает основание предположить, что мозжечок выполняет в нашем головном мозге роль не только регулятора двигательных функций, но и модификатора когнитивных (познавательных) функций, регулируя скорость, силу, ритм и точность мышления. При этом происходит последовательное развертывание программы когнитивных операций в режиме, организованном адаптивной обратной связью.

Именно так в игре «Вира!» формировалась «дорожная карта» когнитивного управления игровым сюжетом, согласно стратегии «проб и ошибок», наиболее распространенному варианту саморегуляции.

Ложь отличается от правды

Виртуальная реальность, представленная в виде игрового соревновательного сюжета, управляемого через волевую регуляцию физиологической характеристики, дает человеку уникальную возможность проявить обычно блокируемые особенности поведения. И в этом смысле не только виртуальная игра, но и вообще любой игровой тренинг позволяют нам выявить скрытые способности, которые мы сможем успешно использовать в реальной жизни.

В этом контексте представляет интерес анализ данных игрового эксперимента, проведенного в МТЦ СО РАН, в котором помимо «реального» биоуправления использовалось так называемое «имитационное» (ложное) биоуправление. Другими словами, когда развитие игрового сюжета было совершенно случайным и не зависело от действий испытуемого. При этом сами испытуемые не знали, что в одной из серий виртуальных тренингов реальная обратная связь отсутствует.

По оценке эффективности результата, достигнутого в этой игре, испытуемых можно разделить на две группы. Первая из них демонстрировала более эффективные стратегии саморегуляции при наличии реальной обратной связи, чем в случае «ложного» биоуправления. При этом даже в последнем случае испытуемым удавалось после нескольких неудачных попыток добиться замедления ритма сердечных сокращений.

Вторая группа продемонстрировала менее эффективную стратегию саморегуляции: даже на «реальном» этапе этим испытуемым удалось лишь частично добиться поставленной цели. При отсутствии же обратной связи наблюдался интенсивный и «хаотичный» поиск решения, что выражалось в увеличении разброса значений пульсового интервала.

И тем не менее обе эти группы испытуемых показали более высокую эффективность саморегуляции при реальном биоуправлении, чем при имитационном: мозг достаточно успешно отличал «правду» от «лжи».

Нужно сказать, что и реальное биоуправление, и его имитация сопровождались выразительной динамической картиной работы определенных мозговых образований, выражаемой в изменении объема активации и перераспределении зон активности. В процесс фактически вовлекалась вся поверхность коры головного мозга, причем подавляющее большинство корковых зон, задействованных при имитационном и реальном тренинге, пересекались и в обоих случаях характеризовались максимальными значениями активации. И все же надо отметить, что в режиме имитационного биоуправления ряд мозговых структур активизировался значительно сильнее, чем при реальном биоуправлении: новые нейронные ансамбли появлялись в мозжечке, веретенообразной извилине и в других отделах мозга.

БЕСПРОИГРЫШНЫЕ ИГРЫ Специалисты Института молекулярной биологии и биофизики СО РАМН (Новосибирск) и новосибирской Научно-производственной компании «Компьютерные системы биоуправления» создают уникальный продукт – компьютерные игры, соревновательный сюжет которых управляется физиологическими характеристиками человеческого организма (температурой, пульсом, дыханием, биотоками головного мозга и мышц).


Технология «компьютерного игрового биоуправления» базируется на естественных механизмах саморегуляции функций человеческого организма. При этом благодаря соревновательному характеру устраняется монотонность процедуры обучения: увлекательный сюжет мотивирует испытуемого, вызывая у него эмоциональный интерес к результату и таким образом способствуя более эффективному обучению навыкам саморегуляции.
Поскольку достижение выигрыша требует от испытуемого принятия нетривиальных решений, подобную игру можно квалифицировать как творческую обучающую деятельность, привлекательность которой заключается в непредвиденности конечного результата. Так как каждая последующая игровая попытка базируется на результате предыдущей, игровое биоуправление становится залогом самосовершенствования испытуемого, импульсом к поиску новых эффективных стратегий саморегуляции. А поскольку игрок мотивирован желанием выиграть, он вынужден держаться в предписываемых игрою рамках и сохранять спокойствие.
Игры, созданные на основе технологии биоуправления, можно использовать для решения широкого класса лечебных и реабилитационных задач. С их помощью можно оценить актуальное психофизиологическое состояние человека, к тому же подобная игровая деятельность сама по себе обладает выраженным антистрессовым эффектом. Но главное, с помощью этой технологии можно раскрыть потенциальные ресурсы организма, которыми мы в нашей обычной жизни не умеем пользоваться

Если же попытаться описать наиболее общий «маршрут» активации мозговых структур во время игры, то можно сказать, что после старта в работу сначала вовлекаются широкие корковые поля мозга, а заканчивается такой «когнитивный маршрут» в мозжечке. Последовательное вовлечение мозговых структур в организацию новых нейронных сетей во время виртуального тренинга обеспечивает возникновение нового навыка и его последующее закрепление в мозге. И в этом смысле подобные работы лежат в русле нового тренда в развитии современного социума, который получил название «игрофикация».

Эффективно или справедливо?

Психология – одна из наиболее перспективных сфер использования технологии нейровизуализации средствами фМРТ, потому что эта научная область практически лишена представлений о локализации (в анатомическом смысле) когнитивных функций. Ведь основные сведения об их «территориальной привязке» психологи обычно черпают из общения с пациентами, у которых инструментально обнаруживается локальное поражение мозга, либо которым на длительное время вживлены внутримозговые электроды.

В одной из работ американских исследователей была сделана попытка ответить на вопрос о локализации мозговых структур, призванных классифицировать такие когнитивные категории, как равенство и эффективность (Hsu Ming et al. , 2008). Другими словами, структур, призванных решить извечную дилемму: как следует действовать – эффективно или справедливо?

В игровом эксперименте испытуемых «усаживали» за руль грузовика, везущего продукты питания в «голодный» район Южной Африки. Условия были таковы: если испытуемый будет неукоснительно следовать инструкции и раздавать продукты поровну каждому голодающему, часть груза обязательно испортится в пути. Если же пренебречь половиной нуждающихся, то потеря продуктов уменьшится в разы, но, естественно, достанется меньшему числу людей. Как же поступить? Пожертвовать потерей продуктов или же, руководствуясь «разумным» выбором, оставить половину нуждающихся без надежды на помощь?

Оказалось, что эмоциональная оценка «эффективности», «справедливости» и «общей пользы» принимаемого решения осуществляется тремя разными мозговыми структурами. Отдел мозга, называемый «скорлупа» (лат. putamen ), отвечает за эффективность, кора «островка» (лат. insula ) защищает интересы справедливости, совокупную же меру эффективности и неравенства, т. е. полезность, оценивает септальный орган (лат. septum ).

Эти результаты согласуются с уже имеющимися данными, что именно вышеперечисленные мозговые структуры являются интеграторами различных психических «переменных» в вынесении окончательных «социально-ориентированных» приговоров и оценок. Можно предположить, что окончательное решение поставленной этической проблемы принимается путем сравнения сигналов из разных источников и сличения их с ретроспективным опытом, при этом в когнитивный процесс вовлекаются и другие области мозга.

Число публикаций, посвященных различным фундаментальным и прикладным аспектам функциональной магнитно-резонансной томографии и проблемам «интерфейса мозг–компьютер», за последние годы неуклонно растет (главным образом за рубежом, отечественных работ в этом списке практически нет). Развитие соответствующих технологий открывает сразу несколько перспективных прикладных направлений. Например, появилась возможность наблюдать за особенностями циркуляции крови в мозговом сегменте, находящемся в активированном состоянии, – это можно использовать для мониторинга определенных структур мозга в случае нарушения мозгового кровообращения (инсульта) или при подборе сосудистых препаратов.

Большие перспективы открывает и развитие когнитологии – направления нейронаук, занимающегося исследованием базовых механизмов работы мозга: «ментальными стратегиями», их локализацией, динамикой, способами использования и совершенствования в повседневной жизни. Так называемая «интерактивная стимуляция» дает возможности организовать обучающую (лечебную) обратную связь непосредственно через «заинтересованную» мозговую структуру. Визуализируя, например, поясную извилину или гиппокамп, вы получаете шанс «прямого разговора» с мозгом.

Функциональная магнитно-резонансная томография – мощный инструмент, позволяющий достичь качественно нового понимания организации головного мозга и особенностей высшей нервной деятельности человека и животных. Внедрение технологий фМРТ в различные сферы человеческой деятельности – нейро­маркетинг, профессиональный кастинг, оценку эффективности образовательных программ, «детекцию» лжи и т. п., окажет огромное влияние на дальнейшее развитие не только самих нейронаук, но и всего общества в целом.

Литература

Каплан А. Я. Нейрокомпьютерный симбиоз: движение силой мысли // НАУКА из первых рук. 2012. № 6 (48).

Штарк М. Б., Коростышевская А. М., Резакова М. В., Савелов А. А. Функциональная магнитно-резонансная томография и нейронауки // Успехи физиологических наук, 2012. Т. 43, №1. С. 3-29.

В публикации использованы фото М. А. Покровского

Функциональная магнитно-резонансная томография, или Ф-я МРТ , является методом для изучения мозговой деятельности. Он работает путем обнаружения изменений в оксигенации крови и её потоке , который возникают в ответ на нервную деятельность – это когда области мозга более активно потребляют больше кислорода и чем больше активна та или иная область мозга, тем больше она требует притока крови. Функциональная МРТ может быть использована для получения активной карты мозга, показывающей, какая часть мозга участвует в тех или иных психических процессах.

Развитие функциональной МРТ в 1990-х, обычно приписывают Сейджи и Кен Огава Квонгу, они является последним в длинной череде нововведений, в том числе в области позитронно-эмиссионной томографии (ПЭТ) и инфракрасной спектроскопии (НИРС) , которые используют кровотока и кислородный обмена, чтобы захватить мозговую деятельность. В качестве методики визуализации головного мозга, функциональная МРТ имеет несколько значительных преимуществ:

1. Это неинвазивный метод и не влечет за собой излучения, что делает его безопасным для субъекта.
2. Он имеет отличное пространственное и временное разрешение.
3. Его легко для использовать для исследований.

Исключительность функциональной МРТ сделала его популярным инструментом для работы с изображениями нормальной функции мозга — особенно для психологов. За последнее десятилетие метод функциональной МРТ предоставил новый взгляд на исследование того, как формируются воспоминания, язык, боль, обучение и эмоции, этот список можно продолжить. Функциональная МРТ также применяется в клинической практике и в коммерческих условиях.

Как функциональная МРТ работает?

В цилиндрической трубке томографа находится очень мощный электромагнит. Типичное сканирование имеет напряженность поля 3 тесла (Т), это около 50 000 раз больше, чем магнитное поле Земли. Магнитное поле сканера влияет на ядра атомов. Обычно атомные ядра ориентированы случайным образом, но под влиянием магнитного поля ядра становятся совмещенными с направлением поля. Чем сильнее поле, тем больше степень согласованности. При наведении в том же направлении, крошечные магнитные сигналы от отдельных ядер когерентно складываются, в результате чего сигнал становится достаточно большим, чтобы его измерить. В МРТ именно магнитный сигнал от ядер водорода в водной среде (H2O), может его обнаружить.

Механизмом действия МРТ является то , что сигнал от ядер водорода изменяется в силу в зависимости от его окружения. Это обеспечивает возможность рассмотреть серое вещество, белое вещество и спинномозговую жидкость в виде структурных изображений мозга.

Кислород поступает в нейроны с помощью гемоглобина из капиллярной сети. Когда активность нейронов увеличивается, возникает повышенный спрос на кислород и это проявляется в виде местной реакции, как увеличение притока крови к области, где происходит повышенная нервная деятельность.

Гемоглобин изменяет магнитное поле когда он насыщен кислородом, и когда нет. Это различие в магнитных свойствах приводит к небольшим изменениям в сигнале МРТ в зависимости от степени оксигенации. Так как оксигенация крови изменяется в зависимости от уровня нейронной активности, эти различия могут быть использованы для фиксирования деятельности мозга. Эта форма МРТ известна как оксигенация крови в зависимости от уровня насыщения кислородом.

МРТ BOLD(отчётливый) Эффект

Еще один момент: это направление изменения оксигенации с повышенной активностью. Можно было бы ожидать, что оксигенации крови уменьшается с её активацией магнитным полем, но реальность намного сложнее. Существует мгновенное снижение уровня оксигенации крови сразу же после того, как нейронная активность возрастает, она известна как «начальный провал» в гемодинамическом ответе. За этой фазой следует период, когда увеличивает приток крови, не только к месту, где потребность в кислороде удовлетворяется, но и к окружающим тканям. Это означает, что оксигенации крови на самом деле увеличивает последующую нейронную активацию.

Как МРТ сканирования выглядит?

МРТ сканирование

Изображение, показанное здесь является результатом простой функциональной МРТ . В то время, как человек лежит в томографе за ним наблюдает экран, который чередуется визуальными показами и становится темным каждые 30 секунды. Между тем томограф отслеживает сигнал по всему мозгу. Визуализируются области мозга, которые реагируют на стимулы, когда сигнал идет вверх и вниз, и они как бы включается и выключается, хотя и становятся немного размытыми из-за задержки в ответе кровотока.

Исследователи смотрят на активность при сканировании в виде вокселов — или объемных пикселей, наименее различимой коробчатой части трехмерного изображения. Активность в вокселях определяется, как насколько близко ход сигнал от этого вокселя соответствует ожидаемому времени.

ЕРЕВАН, 13 октября. Новости-Армения. Если людям дать возможность наблюдать в реальном времени, что происходит у них в мозгу, они быстро научатся снимать боль, улучшать себе настроение и распоряжаться невиданными умственными способностями. Доступ к этому методу может преобразить мир.

Как это работает

Загружается новость... "Лево"

Как сообщает BBC , у каждого из нас свой способ справляться с негативными чувствами и эмоциями. Кто-то фокусируется на дыхании, чтобы успокоить нервы. Кто-то применяет медитацию, чтобы избавиться от зубной боли. Кто-то, чтобы отогнать плохое настроение, пытается мысленно перенестись в те места, где когда-то чувствовал себя особенно хорошо…

Все эти способы так или иначе работают - правда, с разной степенью успеха. А теперь представьте, что вы видите всё, что происходит у вас в голове, в мозгу, когда вы чувствуете боль, тревогу, тоску, страх или удовольствие. И вы можете наблюдать за этим в реальном времени! Вы учитесь управлять своим умом - примерно так же, как бодибилдер тренирует отдельные группы мышц

Вдруг вам становится ясно, что ваши эмоции - никакая не тайна. Вы способны следить за тем, как работают те маленькие психологические хитрости, с помощью которых вы разгоняете тоску, можете выбирать наиболее эффективные приемы и контролировать их работу в режиме реального времени.

ФМРТ в реальном времени

Наверное, вы уже поняли, какая главная идея лежит за новой техникой, которую назвали "ФМРТ в реальном времени" (ФМРТ - функциональная магнитно-резонансная томография).

Мы учимся контролировать эмоции, чувства и желания, получая на экране визуальный отклик на наши действия, на то, как именно мы применяем психологические техники и уловки. В итоге это становится почти таким же простым, как убавить громкость в стереосистеме.

Это открывает нам путь в будущее, где с помощью "ФМРТ в реальном времени" мы сможем натренировать свои умственные способности до невиданной степени.
Сосредоточившись на контроле над виртуальным пламенем, люди способны уменьшить боль, которую испытывают.

Впервые этот метод был продемонстрирован в 2005 году во время исследования, в ходе которого людей обучали контролю над болевыми ощущениями.

Восьмерых добровольцев помещали в МРТ-сканер и создавали у них на коже ощущения, как от ожога. В это время им показывали на мониторе язычок пламени, олицетворяющий процесс в районе головного мозга, отвечающем за болевые реакции.

С помощью различных когнитивных приемов участники эксперимента быстро учились управлять размером пламени, что помогало им регулировать степень электрического раздражения болевой зоны у себя на коже.

Удивительно, но всего лишь за 13 минут эксперимента его участники достигали умения легко менять размер пламени и, соответственно, были способны более чем на 50% уменьшать боль.

Способности, приобретенные во время обучения, сохраняются и спустя 11 месяцев, что подтверждает долгоиграющий эффект тренинга

С тех пор количество подобных исследований с применением ФМРТ в реальном времени росло лавинообразно. О всё новых и новых методах клинического и экспериментального применения сообщается чуть ли не каждый месяц.

Наука не стоит на месте

Загружается новость... "Право"

Исследуемым теперь предлагается возможность оценить происходящее у себя в мозгу не только с помощью изображения, но и звуков, и даже температуры (через очки виртуальной реальности). Метод уже получил еще одно название - нейрофидбэк.

В исследовании 2017 г., результаты которого опубликованы в журнале Appetite, продемонстрировано, как с помощью ФМРТ в реальном времени можно бороться с ожирением.

В течение четырех дней мужчины с лишним весом учились контролировать те районы головного мозга, которые отвечают за ощущения исполнения и вознаграждения, приучая свой мозг делать выбор в пользу более здоровой пищи и меньшего ее количества.

В другом исследовании этого года обнаружено, что если научиться контролировать определенную часть префронтальной коры головного мозга (тот район, с которым связывают поведение пациентов с СДВГ, синдромом дефицита внимания с гиперактивностью), то прошедшие курс обучения подростки могут самостоятельно уменьшить симптомы СДВГ и развить навык сосредотачиваться.

Причем способности, приобретенные во время обучения, сохраняются и спустя 11 месяцев, что подтверждает долгоиграющий эффект тренинга и происшедших в связи с ним изменений в мозгу.

В исследовании 2016 г. было обнаружено, что пожилые люди могут использовать эту технику для улучшения своих познавательных способностей, притупленных возрастом. Таким же образом и молодые люди могут стимулировать работу своего мозга.

Исследование 2015 г., в котором участвовали здоровые взрослые люди, показало: обучение с помощью так называемого нейрофидбэка помогает улучшить способность сосредотачиваться и меньше отвлекаться.

В других недавних исследованиях было найдено применение этой методике в лечении депрессии, тревожных состояний, посттравматического стрессового расстройства у ветеранов военных действий и даже пристрастия к курению.

Исследование Джеймса Салзера из Техасского университета города Остин показало, что люди способны научиться регулировать уровень нейромедиаторного допамина, что может быть применено для лечения болезни Паркинсона.

Огромный мир новых возможностей

Насколько же велик потенциал обучения с помощью нейрофидбэка, если каждый из нас сможет полностью контролировать свой мозг?

В общем, исследования ясно демонстрируют, что эта технология может найти применение в миллионах случаев. Но насколько длительным будет ее эффект и насколько она практична? Точно сказать пока нельзя.

Для ФМРТ в реальном времени нужно дорогостоящее и громоздкое оборудование, которое сейчас применяется прежде всего в срочных и тяжелых случаях. Однако, как мы знаем, технологии не стоят на месте. Вполне возможно, очень скоро появятся более дешевые и более миниатюрные сканеры ФМРТ.

Если даже несколько 10-минутных занятий приносят статистически значимый результат, то что же будет после 10 тысяч часов тренировки?

И тогда перед человечеством откроется огромный мир новых возможностей.
Представьте себе атлета, который проводит тренировки, не видя собственного тела и не имея представления о весе штанги.

Примерно в таком же положении мы находимся сейчас, не видя, что происходит в нашем мозгу, когда нам больно, когда нам холодно, когда у нас плохое настроение, когда мы в отчаянии, когда мы плачем или радуемся...

Насколько же велик потенциал обучения с помощью ФМРТ в реальном времени? Чего мы достигнем, если каждый из нас сможет каждый день уделять время тренировкам сознания - и так месяцы и годы?

Метод "ФМРТ в реальном времени" может оказаться коротким путем к достижению, например, того, на что тратят годы упорной работы со своим умом тибетские монахи, высушивающие жаром своего тела мокрое полотенце на ледяном ветру, или индийские йоги, умеющие полностью блокировать ощущение боли в теле.

Конечно, пока ничего нельзя утверждать наверняка, но, вполне возможно, речь идет и о достижении умственных сверхспособностей. -0-

фМРТ позволяет определить активацию определенной области головного мозга во время нормального его функционирования под влиянием различных физических факторов (например, движение тела) и при различных патологических состояниях.

На сегодняшний день это один из самых активно развивающихся видов нейровизуализации . С начала 1990-х годов функциональная МРТ стала доминировать в области визуализации процессов головного мозга из-за своей сравнительно низкой инвазивности, отсутствия воздействия радиации и относительно широкой доступности.

Энциклопедичный YouTube

  • 1 / 5

    Мозг функционально не предназначен для хранения глюкозы - основного источника энергии. Однако, для активации нейронов и действия ионных насосов, которые обуславливают нормальное функционирование мозга, нужна энергия, получаемая из глюкозы. Энергия из глюкозы поступает за счёт кровотока. Вместе с кровью в результате расширения кровеносных сосудов также транспортируются кислородосодержащие молекулы гемоглобина в красных кровяных клетках. Изменение кровотока локализуется в пределах 2 или в области нейронной активности. Обычно увеличение концентрации кислорода больше, чем кислорода, израсходованного на сжигание глюкозы (на данный момент не определено, окисляется ли вся глюкоза), и это приводит к общему снижению гемоглобина . При этом изменяются магнитные свойства крови, препятствуя её намагничиванию, что впоследствии ведет к созданию индуцированного МРТ процесса.

    Кровоток мозга неравномерно зависит от потребляемой глюкозы в разных областях мозга. Предварительные результаты показывают, что в некоторых областях мозга приток крови больше того уровня, который бы соответствовал потреблению. Например в таких областях, как в миндалине , базальных ганглиях , таламусе и поясной коре, которые набираются за быстрый отклик. В областях, которые имеют более совещательный характер, таких как боковая, лобной и латеральной париетальных долей, наоборот, исходя из наблюдений, следует вывод, что входящий поток меньше расхода. Это сильно влияет на чувствительность.

    Гемоглобин отличается тем, как он реагирует на магнитные поля, в зависимости от того, имеет ли он привязку к молекуле кислорода . Молекула гемоглобина лучше реагирует на действие магнитного поля. Следовательно, она искажает окружающее её магнитное поле, индуцированного магнитно-резонансного сканера, вызывая потерю намагниченности ядер быстрее через период полураспада . Таким образом, сигнал МРТ лучше в тех областях мозга, где кровь сильно насыщается кислородом и меньше, где кислорода нет. Этот эффект возрастает, как квадрат напряженности магнитного поля. У фмрт-сигнала, следовательно, проявляется необходимость в сильном магнитном поле (1.5 Т и выше) и последовательности импульсов, таких как ЭПИ, которая чувствительна к периоду полураспада.

    Физиологическая ответная реакция кровотока во многом определяет временную чувствительность, то есть насколько точно мы можем измерить период активности нейронов и в какое именно время они активны, отмечая жирным шрифтом фмрт. Основным временным параметрическим разрешением является - ТР, который диктует, как часто определенный кусочек мозга возбуждается и теряет свою намагниченность. Трс может варьироваться от очень коротких (500 мс) до очень длинных (3 сек). Для фмрт в частности, гемодинамическая реакция длится более 10 секунд, поднявшись мультипликативно с пиком на 4 до 6 секунд, а затем падает мультипликативно. Изменения в системе кровотока, сосудистая система, интеграция ответных реакций нейронной активности с течением времени. Так как данная ответная реакция представляет собой гладкую непрерывную функцию, отбора проб. Больше точек на кривой отклика можно получить путём простой линейной интерполяции в любом случае. Экспериментальные парадигмы могут улучшить временное разрешение, но уменьшат число эффективных точек данных, полученных экспериментальным путём.

    Гемодинамическая ответная реакция зависимости уровня кислорода в крови (ЗУКВ)

    Механизму, с помощью которого нервная система обеспечивает обратную связь с сосудистой системой , необходимо больше глюкозы, в том числе, частично высвобожденной из глутамата в рамках запуска нейронов. Глутамат влияет на ближайшие опорные клетки, астроциты , вызывая изменение концентрация ионов кальция . Это, в свою очередь, высвобождает оксид азота в точке контакта астроцитов и средних кровеносных сосудов, артериол . Оксид азота является вазодилататором , вызывая расширения артериол и привлечение к себе большего объема крови.

    Ответный сигнал одного вокселя в течение периода времени называется timecourse. Как правило, нежелательный сигнал, называемый шумом, со сканера, беспорядочной деятельности, помех и аналогичных элементов соизмерим с величиной полезного сигнала. Чтобы устранить данные шумы, фмрт исследования повторяют несколько раз.

    Пространственное разрешение

    Пространственное разрешение фмрт исследований определяется, как способность оборудования различать границы мозга и близлежащие места. Она измеряется размером вокселей , как в МРТ . Воксель - это трехмерный прямоугольный параллелепипед, размеры которого определяются толщиной среза, площадь среза, и сетки, наложенные на срез путём сканирования. При полном исследовании мозга используются более крупные воксели, а те, которые специализируются на конкретных регионах, представляющие интерес, как правило, используют меньшие размеры. Размеры варьируются от 4-5 мм до 1 мм. Таким образом размеры вокселей напрямую зависят от области измерения. Вместе с тем время сканирования напрямую увеличивается с увеличением количества вокселей, зависящих от среза и количества срезов. Это может привести к дискомфорту для субъекта внутри сканера и к потере намагниченности сигнала. Вокселя, как правило, содержат несколько миллионов нейронов каждый и десятки миллиардов синапсов .

    Временное разрешение

    Временное разрешение - это наименьший период времени нейронной активности который с высокой точностью можно определить с помощью фмрт.

    Временное разрешение зависит от возможностей мозга обрабатывать данные за определенное время, находясь в различных ситуациях. Например, в широком диапазоне задается визуальная система обработки. То, что глаз видит, регистрируется на фоторецепторах сетчатки в пределах миллисекунд. Данные сигналы доходят до первичной зрительной коры через таламус за десятки миллисекунд. Активность нейронов, связанных с актом видения длится чуть больше 100 мс. Быстрые реакции, такие как резкий поворот, чтобы избежать аварии, занимает около 200 мс. Реакция происходит приблизительно во вторую половину осознания и осмысления произошедшего. Вспоминание подобного события может занять несколько секунд, и эмоциональные или физиологические изменения, такие как страх, возбуждение могут длиться минуты или часы. Распознавание лиц, событий могут длиться дни, месяцы или годы. Большинство экспериментов фмрт исследований процессов мозга, длящиеся несколько секунд, с исследованием, проведенным в течение нескольких десятков минут. Изменение психо-эмоционального состояния может изменить поведение субъекта и его когнитивные процессы.

    Линейное дополнение от многократной активации

    Когда человек выполняет две задачи одновременно, ответная реакция ЗУКВ, как ожидается, добавляется линейно. Это фундаментальное предположение многих фмрт исследований. Линейное дополнение означает отдельное масштабирование каждого интересующего процесса и их последующего суммирования. Поскольку масштабирование - это просто умножение на постоянное число, это означает, что событие, которое вызывается, скажем, два раза в нейронных реакциях могут быть смоделированы, как определенное событие представленное два раза одновременно.



gastroguru © 2017