Чему равен относительный показатель преломления воздуха. Абсолютный показатель преломления и его связь с относительным показателем преломления

Законы физики играют очень важную роль при проведении расчетов для планирования определенной стратегии производства какого-либо товара или при составлении проекта строительства сооружений различного назначения. Многие величины являются расчетными, так что перед стартом работ по планированию производятся измерения и вычисления. Например, показатель преломления стекла равен отношению синуса угла падения к синусу угла преломления.

Так что вначале идет процесс измерения углов, затем вычисляют их синус, а уже только потом можно получить искомое значение. Несмотря на наличие табличных данных, стоит каждый раз проводить дополнительные расчеты, так как в справочниках зачастую используются идеальные условия, которых добиться в реальной жизни практически невозможно. Поэтому на деле показатель обязательно будет отличаться от табличного, а в некоторых ситуациях это имеет принципиальное значение.

Абсолютный показатель

Абсолютный показатель преломления зависит от марки стекла, так как на практике имеется огромное количество вариантов, отличающихся по составу и степени прозрачности. В среднем он составляет 1,5 и колеблется вокруг этого значения на 0,2 в ту или иную сторону. В редких случаях могут быть отклонения от этой цифры.

Опять-таки, если важен точный показатель, то без дополнительных измерений не обойтись. Но и они не дают стопроцентно достоверного результата, так как на итоговое значение будет влиять положение солнца на небосводе и облачность в день измерений. К счастью, в 99,99% случае достаточно просто знать, что показатель преломления такого материала, как стекло больше единицы и меньше двойки, а все остальные десятые и сотые доли не играют роли.

На форумах, которые занимаются помощью в решении задач по физике, часто мелькает вопрос, каков показатель преломления стекла и алмаза? Многие думают, что раз эти два вещества похожи внешне, то и свойства у них должны быть примерно одинаковыми. Но это заблуждение.

Максимальное преломление у стекла будет находиться на уровне около 1,7, в то время как у алмаза этот показатель достигает отметки 2,42. Данный драгоценный камень является одним из немногих материалов на Земле, чей уровень преломления превышает отметку 2. Это связано с его кристаллическим строением и большим уровнем разброса световых лучей. Огранка играет в изменениях табличного значения минимальную роль.

Относительный показатель

Относительный показатель для некоторых сред можно охарактеризовать так:

  • - показатель преломления стекла относительно воды составляет примерно 1,18;
  • - показатель преломления этго же материала относительно воздуха равен значению 1,5;
  • - показатель преломления относительно спирта - 1,1.

Измерения показателя и вычисления относительного значения проводятся по известному алгоритму. Чтобы найти относительный параметр, нужно разделить одно табличное значение на другое. Или же произвести опытные расчеты для двух сред, а потом уже делить полученные данные. Такие операции часто проводятся на лабораторных занятиях по физике.

Определение показателя преломления

Определить показатель преломления стекла на практике довольно сложно, потому что требуются высокоточные приборы для измерения начальных данных. Любая погрешность будет возрастать, так как при вычислении используются сложные формулы, требующие отсутствия ошибок.

Вообще данный коэффициент показывает, во сколько раз замедляется скорость распространения световых лучей при прохождении через определенное препятствие. Поэтому он характерен только для прозрачных материалов. За эталонное значение, то бишь за единицу, взят показатель преломления газов. Это было сделано для того, чтобы можно было отталкиваться от какого-нибудь значения при расчетах.

Если солнечный луч падает на поверхность стекла с показателем преломления, который равен табличному значению, то изменить его можно несколькими способами:

  • 1. Поклеить сверху пленку, у которой коэффициент преломления будет выше, чем у стекла. Этот принцип используется в тонировке окон автомобиля, чтобы улучшить комфорт пассажиров и позволить водителю более четко наблюдать за дорожной обстановкой. Также пленка будет сдерживать и ультрафиолетовое излучение.
  • 2. Покрасить стекло краской. Так поступают производители дешевых солнцезащитных очков, но стоит учесть, что это может быть вредно для зрения. В хороших моделях стекла сразу производятся цветными по специальной технологии.
  • 3. Погрузить стекло в какую-либо жидкость. Это полезно исключительно для опытов.

Если луч света переходит из стекла, то показатель преломления на следующем материале рассчитывается при помощи использования относительного коэффициента, который можно получить, сопоставив между собой табличные значения. Эти вычисления очень важны при проектировке оптических систем, которые несут практическую или экспериментальную нагрузку. Ошибки здесь недопустимы, потому что они приведут к неправильной работе всего прибора, и тогда любые полученные с его помощью данные будут бесполезны.

Чтобы определить скорость света в стекле с показателем преломления, нужно абсолютное значение скорости в вакууме разделить на величину преломления. Вакуум используется в качестве эталонной среды, потому что там не действует преломление из-за отсутствия каких-либо веществ, которые могли бы мешать беспрепятственному движению световых лучей по заданной траектории.

В любых расчетных показателях скорость будет меньше, чем в эталонной среде, так как коэффициент преломления всегда больше единицы.

Для некоторых веществ показатель преломления достаточно сильно меняется при изменении частоты электромагнитных волн от низких частот до оптических и далее, а также может ещё более резко меняться в определённых областях частотной шкалы. По умолчанию обычно имеется в виду оптический диапазон или диапазон, определяемый контекстом.

Отношение показателя преломления одной среды к показателю преломления второй называют относительным показателем преломления первой среды по отношению к второй. Для выполняется:

где и - фазовые скорости света в первой и второй средах соответственно. Очевидно, что относительным показателем преломления второй среды по отношению к первой является величина, равная .

Эта величина, при прочих равных условиях, обычно меньше единицы при переходе луча из среды более плотной в среду менее плотную, и больше единицы при переходе луча из среды менее плотной в среду более плотную (например, из газа или из вакуума в жидкость или твердое тело). Есть исключения из этого правила, и потому принято называть среду оптически более или менее плотной, чем другая (не путать с оптической плотностью как мерой непрозрачности среды).

Луч, падающий из безвоздушного пространства на поверхность какой-нибудь среды, преломляется сильнее, чем при падении на неё из другой среды; показатель преломления луча, падающего на среду из безвоздушного пространства, называется его абсолютным показателем преломления или просто показателем преломления данной среды, это и есть показатель преломления, определение которого дано в начале статьи. Показатель преломления любого газа, в том числе воздуха, при обычных условиях много меньше, чем показатели преломления жидкостей или твердых тел, поэтому приближенно (и со сравнительно неплохой точностью) об абсолютном показателе преломления можно судить по показателю преломления относительно воздуха.

Примеры

Показатели преломления некоторых сред приведены в таблице.

Показатели преломления для длины волны 589,3 нм
Тип среды Среда Температура, °С Значение
Кристаллы LiF 20 1,3920
NaCl 20 1,5442
KCl 20 1,4870
KBr 20 1,5552
Оптические стёкла ЛК3 (Лёгкий крон) 20 1,4874
К8 (Крон) 20 1,5163
ТК4 (Тяжёлый крон) 20 1,6111
СТК9 (Сверхтяжёлый крон) 20 1,7424
Ф1 (Флинт) 20 1,6128
ТФ10 (Тяжёлый флинт) 20 1,8060
СТФ3 (Сверхтяжёлый флинт) 20 2,1862
Драгоценные камни Алмаз белый - 2,417
Берилл - 1,571 - 1,599
Изумруд - 1,588 - 1,595
Сапфир белый - 1,768 - 1,771
Сапфир зелёный - 1,770 - 1,779
Жидкости Вода дистиллированная 20 1,3330
Бензол 20-25 1,5014
Глицерин 20-25 1,4370
Кислота серная 20-25 1,4290
Кислота соляная 20-25 1,2540
Масло анисовое 20-25 1,560
Масло подсолнечное 20-25 1,470
Масло оливковое 20-25 1,467
Спирт этиловый 20-25 1,3612

Материалы с отрицательным коэффициентом преломления

  • фазовая и групповая скорости волн имеют различное направление;
  • возможно преодоление дифракционного предела при создании оптических систем («суперлинз»), повышение с их помощью разрешающей способности микроскопов , создание микросхем наномасштаба, повышение плотности записи на оптические носители информации).

См. также

  • Иммерсионный метод измерения показателя преломления.

Примечания

Ссылки

  • RefractiveIndex.INFO база данных показателей преломления

Wikimedia Foundation . 2010 .

  • Бельфор
  • Саксония-Анхальт

Смотреть что такое "Показатель преломления" в других словарях:

    ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ - отношение скорости света в вакууме к скорости света в среде (абсолютный показатель преломления). Относительный показатель преломления 2 сред отношение скорости света в среде, из которой свет падает на границу раздела, к скорости света по второй… … Большой Энциклопедический словарь

    ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ Современная энциклопедия

    Показатель преломления - ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ, величина, характеризующая среду и равная отношению скорости света в вакууме к скорости света в среде (абсолютный показатель преломления). Показатель преломления n зависит от диэлектрической e и магнитной m проницаемостей… … Иллюстрированный энциклопедический словарь

    ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ - (см. ПРЕЛОМЛЕНИЯ ПОКАЗАТЕЛЬ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

    показатель преломления - 1. Отношение скорости падающей волны к скорости преломленной волны. 2. Отношение скоростей звука в двух средах. [Система неразрушающего контроля.… … Справочник технического переводчика

    показатель преломления - отношение скорости света в вакууме к скорости света в среде (абсолютный показатель преломления). Относительный показатель преломления двух сред отношение скорости света в среде, из которой свет падает на границу раздела, к скорости света во… … Энциклопедический словарь

    показатель преломления - lūžio rodiklis statusas T sritis automatika atitikmenys: angl. index of refraction; refraction index; refractive index vok. Brechungsindex, m; Brechungsverhältnis, n; Brechungszahl, f; Brechzahl, f; Refraktionsindex, m rus. индекс преломления, m; … Automatikos terminų žodynas

    показатель преломления - lūžio rodiklis statusas T sritis chemija apibrėžtis Medžiagos konstanta, apibūdinanti jos savybę laužti šviesos bangas. atitikmenys: angl. index of refraction; refraction index; refractive index rus. индекс преломления; коэффициент рефракции;… … Chemijos terminų aiškinamasis žodynas

    показатель преломления - lūžio rodiklis statusas T sritis Standartizacija ir metrologija apibrėžtis Esant nesugeriančiai terpei, tai elektromagnetinės spinduliuotės sklidimo greičio vakuume ir tam tikro dažnio elektromagnetinės spinduliuotės fazinio greičio terpėje… …

    показатель преломления - lūžio rodiklis statusas T sritis Standartizacija ir metrologija apibrėžtis Medžiagos parametras, apibūdinantis jos savybę laužti šviesos bangas. atitikmenys: angl. refraction index; refractive index vok. Brechungsindex, m rus. показатель… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

Книги

  • Квант. Научно-популярный физико-математический журнал. № 07/2017 , Если вы интересуетесь математикой и физикой и любите решать задачи, то вашим другом и помощником станет научно-популярный физико-математический журнал «КВАНТ». Онвыходит с 1970 года и… Категория: Математика Серия: Журнал «Квант» 2017 Издатель: МЦНМО , Купить за 50 руб электронная книга (fb2, fb3, epub, mobi, pdf, html, pdb, lit, doc, rtf, txt)

Области применения рефрактометрии.

Устройство и принцип действия рефрактометра ИРФ-22.

Понятие показателя преломления.

План

Рефрактометрия. Характеристика и сущность метода.

Для идентификации веществ и проверки их чистоты используют пока-

затель преломления.

Показатель преломления вещества - величина, равная отношению фазовых скоростей света (электромагнитных волн) в вакууме и виданной среде.

Показатель преломления зависит от свойств вещества и длины волны

электромагнитного излучения. Отношение синуса угла падения относительно

нормали, проведенной к плоскости преломления (α) луча к синусу угла пре-

ломления (β) при переходе луча из среды A в среду B называется относи-тельным показателем преломления для этой пары сред.

Величина n есть относительный показатель преломления среды В по

отношению к среде А, а

Относительный показатель преломления среды А по отношению к

Показатель преломления луча, падающего на среду из безвоздушно-

го пространства, называется его абсолютным показателем преломления или

просто показателем преломления данной среды (таблица 1).

Таблица 1 - Показатели преломления различных сред

Жидкости имеют показатель преломления в интервале 1.2-1,9. Твердые

вещества 1,3-4,0. Некоторые минералы не имеют точного значения показате-

ля преломления. Его величина находится в некоторой «вилке» и определяет-

ся присутствием примесей в кристаллической структуре, что определяет цвет

кристалла.

Идентификация минерала по «цвету» затруднительна. Так, минерал корунд существует в виде рубина, сапфира, лейкосапфира, отличаясь по

показателю преломления и цвету. Красные корунды называются рубинами

(примесь хрома), синие бесцветные, голубые, розовые, желтые, зеленые,

фиолетовые - сапфирами (примеси кобальта, титана и др). Светлоокрашен-

ные сапфиры или бесцветный корунд носит название лейкосапфир (широко

применяется в оптике как светофильтр). Показатель преломления этих кри-

сталлов лежит в диапазоне 1,757-1,778 и является основанием для идентифи-

Рисунок 3.1 – Рубин Рисунок 3.2 - Сапфир синий

Органические и неорганические жидкости также имеют характерные значения показателей преломления, которые характеризуют их как химиче-

ские соединения и качество их синтеза (таблица 2):

Таблица 2 - Показатели преломления некоторых жидкостей при 20 °C

4.2. Рефрактометрия: понятие, принцип.

Метод исследования веществ, основанный на определении показателя



(коэффициента) преломления (рефракции) называется рефрактометрией (от

лат. refractus - преломленный и греч. metreo – измеряю). Рефрактометрия

(рефрактометрический метод) применяется для идентификации химических

соединений, количественного и структурного анализа, определения физико-

химических параметров веществ. Принцип рефрактометрии, реализованный

в рефрактометрах Аббе, поясняется рисунком 1.

Рисунок 1 - Принцип рефрактометрии

Призменный блок Аббе состоит из двух прямоугольных призм: освети-

тельной и измерительной, сложенных гипотенузными гранями. Осветитель-

ная призма имеет шероховатую (матовую) гипотенузную грань и предназна-

чена для освещения образца жидкости, помещаемого между призмами.

Рассеянный свет проходит плоскопараллельный слой исследуемой жидкости и, преломляясь в жидкости падает на измерительную призму. Измерительная призма выполнена из оптически плотного стекла (тяжелый флинт) и имеет показатель преломления больше 1,7. По этой причине рефрактометр Аббе измеряет величины n меньшие, чем 1,7. Увеличение диапазона измерения показателя преломления может быть достигнуто только путем замены измерительной призмы.

Исследуемый образец наливают на гипотенузную грань измеритель-ной призмы и прижимают осветительной призмой. При этом между призмами остается зазор 0,1-0,2 мм в котором находится образец, и через

который проходит преломляясь свет. Для измерения показателя преломления

используют явление полного внутреннего отражения. Оно заключается в

следующем.

Если на границу раздела двух сред падают лучи 1, 2, 3, то в зависимо-

сти от угла падения при наблюдении за ними в среде преломления будет на-

блюдаться наличие перехода областей различной освещенности. Оно связано

с падением некоторой части света на границу преломления под углом близ-

ким к 90° по отношению к нормали (луч 3). (Рисунок 2).

Рисунок 2 – Изображение преломляемых лучей

Эта часть лучей не отражается и поэтому образует более светлую об-

ласть при преломлении. Лучи с меньшими углами испытывают и отражение

и преломление. Поэтому образуется область меньшей освещенности. В объ-

ективе видна граничная линия полного внутреннего отражения, положение

которой зависит от преломляющих свойств образца.

Устранение явления дисперсии (окрашивания границы раздела двух областей освещенности в цвета радуги из-за использования в рефрактометрах Аббе сложного белого света) достигается использованием двух призм Амичи в компенсаторе, которые вмонтированы в зрительную трубу. Одновременно в объектив проецируется шкала (Рисунок 3). Для анализа достаточно 0,05 мл жидкости.

Рисунок 3 - Вид в окуляр рефрактометра. (Правая шкала отражает

концентрацию измеряемого компонента в промилле)

Помимо анализа однокомпонентных образцов широко анализируются

двухкомпонентные системы (водные растворы, растворы веществ в каком

либо растворителе). В идеальных двухкомпонентных системах (образующих-

ся без изменения объема и поляризуемости компонентов) зависимость пока-

зателя преломления от состава близка к линейной, если состав выражен в

объемных долях (процентах)

где: n, n1 ,n2 - показатели преломления смеси и компонентов,

V1 и V2 - объемные доли компонентов (V1 + V2 = 1).

Влияние температуры на показатель преломления определяется двумя

факторами: изменением количества частиц жидкости в единице объема и за-

висимостью поляризуемости молекул от температуры. Второй фактор стано-

вится существенным лишь при очень большом изменении температуры.

Температурный коэффициент показателя преломления пропорционален температурному коэффициенту плотности. Поскольку все жидкости при нагревании расширяются, то их показатели преломления уменьшаются при повышении температуры. Температурный коэффициент зависит от величины температуры жидкости, но в небольших температурных интервалах может считаться постоянным. По этой причине большая часть рефрактометров не имеет термостатирования, однако в некоторых конструкциях предусмотрено

водное термостатирование.

Линейная экстраполяция показателя преломления при изменении температуры допустима на небольшие разности температур (10 – 20°С).

Точное определение показателя преломления в широких температурных интервалах производится по эмпирическим формулам вида:

nt=n0+at+bt2+…

Для рефрактометрии растворов в широких диапазонах концентраций

пользуются таблицами или эмпирическими формулами. Зависимость показа-

теля преломления водных растворов некоторых веществ от концентрации

близка к линейной и позволяет определять концентрации данных веществ в

воде в широких диапазонах концентраций (рисунок 4) с помощью рефрак-

тометров.

Рисунок 4 - Показатель преломления некоторых водных растворов

Обычно n жидких и твердых тел рефрактометрами определяют с точ-

ностью до 0,0001. Наиболее распространены рефрактометры Аббе (рисунок 5) с призменными блоками и компенсаторами дисперсии, позволяющие определять nD в "белом" свете по шкале или цифровому индикатору.

Рисунок 5 - Рефрактометр Аббе (ИРФ-454; ИРФ-22)

При решении задач по оптике часто требуется знать показатель преломления стекла, воды или другого вещества. Причем в разных ситуациях могут быть задействованы как абсолютные, так и относительные значения этой величины.

Два вида показателя преломления

Сначала о том, что это число показывает: как изменяет направление распространения света та или иная прозрачная среда. Причем электромагнитная волна может идти из вакуума, и тогда показатель преломления стекла или другого вещества будет называться абсолютным. В большинстве случаев его величина лежит в пределах от 1 до 2. Только в очень редких случаях показатель преломления оказывается больше двух.

Если же перед предметом находится более плотная, чем вакуум, среда, то говорят уже об относительном значении. И рассчитывается он как отношение двух абсолютных величин. Например, относительный показатель преломления вода-стекло будет равен частному абсолютных величин для стекла и воды.

В любом случае она обозначается латинской буквой «эн» - n. Эта величина получается путем деления друг на друга одноименных величин, поэтому является просто коэффициентом, у которого нет наименования.

По какой формуле можно сосчитать показатель преломления?

Если принять угол падения за «альфа», а угол преломления обозначить «бэта», то формула абсолютного значения коэффициента преломления выглядит так: n = sin α/sin β. В англоязычной литературе часто можно встретить другое обозначение. Когда угол падения оказывается i, а преломления — r.

Существует еще другая формула того, как можно вычислить показатель преломления света в стекле и прочих прозрачных средах. Она связана со скоростью света в вакууме и ею же, но уже в рассматриваемом веществе.

Тогда она выглядит так: n = c/νλ. Здесь с — скорость света в вакууме, ν — его скорость в прозрачной среде, а λ — длина волны.

От чего зависит показатель преломления?

Он определяется той скоростью, с которой свет распространяется в рассматриваемой среде. Воздух в этом отношении очень близок к вакууму, поэтому световые волны в нем распространяются практически не отклоняются от своего первоначального направления. Поэтому, если определяется показатель преломления стекло-воздух или какое-либо другое вещество, граничащее с воздухом, то последний условно принимается за вакуум.

Любая другая среда имеет свои собственные характеристики. У них разные плотности, они имеют собственную температуру, а также упругие напряжения. Все это сказывается на результате преломления света веществом.

Не последнюю роль в изменении направления распространения волн играют характеристики света. Белый свет состоит из множества цветов, от красного до фиолетового. Каждая из частей спектра преломляется по-своему. Причем значение показателя для волны красной части спектра всегда будет меньше, чем у остальных. К примеру, показатель преломления стекла марки ТФ-1 изменяется от 1,6421 до 1,67298 соответственно от красной до фиолетовой части спектра.

Примеры значений для разных веществ

Здесь приведены значения абсолютных величин, то есть коэффициент преломления при прохождении луча из вакуума (что приравнивается к воздуху) через другое вещество.

Эти цифры потребуются, если нужно будет определить показатель преломления стекла относительно других сред.

Какие еще величины используются при решении задач?

Полное отражение. Оно наблюдается при переходе света из более плотной среды в менее плотную. Здесь при определенном значении угла падения преломление происходит под прямым углом. То есть луч скользит вдоль границы двух сред.

Предельный угол полного отражения — это его минимальное значение, при котором свет не выходит в менее плотную среду. Меньше него — происходит преломление, а больше — отражение в ту же среду, из которой свет перемещался.

Задача № 1

Условие. Показатель преломления стекла имеет значение 1,52. Необходимо определить предельный угол, на который полностью отражается свет от раздела поверхностей: стекла с воздухом, воды с воздухом, стекла с водой.

Потребуется воспользоваться данными показателем преломления для воды, данным в таблице. Он же для воздуха принимается равным единице.

Решение во всех трех случаях сводится к расчетам по формуле:

sin α 0 /sin β = n 1 /n 2 , где n 2 относится к той среде, из которой распространяется свет, а n 1 куда проникает.

Буквой α 0 обозначен предельный угол. Значение угла β равно 90 градусам. То есть его синус будет единицей.

Для первого случая: sin α 0 = 1 /n стекла, тогда предельный угол оказывается равным арксинусу от 1 /n стекла. 1/1,52 = 0,6579. Угол равен 41,14º.

Во втором случае при определении арксинуса нужно подставить значение показателя преломления воды. Дробь 1 /n воды примет значение1/1,33 = 0, 7519. Это арксинус угла 48,75º.

Третий случай описывается отношением n воды и n стекла. Арксинус потребуется вычислить для дроби: 1,33/1,52, то есть числа 0,875. Находим значение предельного угла по его арксинусу: 61,05º.

Ответ: 41,14º, 48,75º, 61,05º.

Задача № 2

Условие. В сосуд с водой погружена стеклянная призма. Ее показатель преломления равен 1,5. В основе призмы лежит прямоугольный треугольник. Больший катет расположен перпендикулярно дну, а второй — ему параллелен. Луч света падает нормально на верхнюю грань призмы. Каким должен быть наименьший угол между горизонтально расположенным катетом и гипотенузой, чтобы свет достиг катета, расположенного перпендикулярно к дну сосуда, и вышел из призмы?

Для того, чтобы луч вышел из призмы описанным образом, ему необходимо упасть под предельным углом на внутреннюю грань (ту, которая в сечении призмы является гипотенузой треугольника). Этот предельный угол оказывается по построению равным искомому углу прямоугольного треугольника. Из закона преломления света получается, что синус предельного угла, деленный на синус 90 градусов, равен отношению двух показателей преломления: воды к стеклу.

Расчеты приводят к такому значению для предельного угла: 62º30´.

Цифровой ресурс может использоваться для обучения в рамках программы основной и средней школы (базового уровня).

Модель представляет собой анимированную иллюстрацию по теме «Закон преломления света». Рассматривается система вода–воздух. Прорисовывается ход падающего, отраженного и преломленного лучей.

Краткая теория

Закон преломления света находит объяснение в волновой физике. Согласно волновым представлениям, преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ 1 к скорости их распространения во второй среде υ 2:

Работа с моделью

Кнопка Старт /Стоп позволяет начать или поставить на паузу эксперимент, кнопка Сброс – начать новый эксперимент.

Данная модель может быть применена в качестве иллюстрации на уроках изучения нового материала по теме «Закон преломления света». На примере этой модели можно рассмотреть с учащимися ход луча при переходе из оптически менее плотной среды в оптически более плотную.

Пример планирования урока с использованием модели

Тема «Преломление света»

Цель урока: рассмотреть явление преломления света, ход луча при переходе из одной среды в другую.

№ п/п Этапы урока Время, мин Приемы и методы
1 Организационный момент 2
2 Проверка домашнего задания по теме «Построение изображения в плоском зеркале» 10 Самостоятельная работа
3 Объяснение нового материала по теме «Преломление света» 20 Объяснение нового материала с использованием модели «Закон преломления света»
4 Решение качественных задач по теме «Закон преломления света» 10 Решение задач на доске
5 Объяснение домашнего задания 3

Таблица 1.

Примеры вопросов и заданий

  • Свет переходит из вакуума в стекло, при этом угол падения равен α, угол преломления β. Чему равна скорость света в стекле, если скорость света в вакууме равна c ?
  • Показатели преломления воды, стекла и алмаза относительно воздуха равны 1,33, 1,5, 2,42 соответственно. В каком из этих веществ предельный угол полного отражения имеет минимальное значение?
  • Водолаз рассматривает снизу вверх из воды лампу, подвешенную на высоте 1 м над поверхностью воды. Чему равна кажущаяся высота лампы под водой?


gastroguru © 2017