Жизненный цикл клетки: определение и периодизация. Жизненный цикл клетки

Рождение . Отправным моментом жизни любой клетки (кроме половой, для которой характерен мейоз) считают деление материнской клетки с образованием двух идентичных дочерних – митоз (непрямое деление СЛАЙД 18 (от греческого mitos – нить). Во время митоза основная задача материнской клетки – поровну передать равноценный в количественном и качественном отношении генетический материал дочерним клеткам.

При митозе полностью сохраняется объем и качество исходной наследственной информации. Успех митоза не зависит от числа хромосом в клетках. Поэтому именно митоз является основой индивидуального развития многоклеточных организмов. Кроме того, митоз является цитологической основой вегетативного размножения у грибов и растений и бесполого размножения у животных. В этом заключается биологическое значение митоза .

Интервал между завершением митоза в исходной клетке и завершением митоза в ее дочерней клетке называется клеточный цикл . Полный клеточный цикл включает интерфазу и собственно митоз . В свою очередь, собственно митоз включает кариокинез (деление ядра) и цитокинез (деление цитоплазмы).

Интерфаза – это период между двумя клеточными делениями. В интерфазе ядро компактное, не имеет выраженной структуры, хорошо видны ядрышки; хромосомы в большинстве случаев не видны. Интерфаза включает три стадии: пресинтетическую (обозначается символом G 1 – «джи-один»), синтетическую (S – «эс») и постсинтетическую (G 2 – «джи-два»).

На пресинтетической стадии в основе каждой хромосомы лежит одна двуспиральная молекула ДНК. Количество ДНК в диплоидной клетке на этой стадии обозначается символом . Клетка активно растет.

На синтетической стадии происходит репликация ДНК. Параллельно удваиваются центриоли (если они имеются).

В конце интерфазы процессы синтеза прекращаются. Далее начинается кариокинез , который включает ряд фаз: профазу , метафазу , анафазу и телофазу .

Профаза первая фаза митоза. Хромосомы спирализуются и становятся видны в световой микроскоп в виде тонких нитей. В конце профазы ядрышки исчезают, ядерная оболочка разрушается, и хромосомы выходят в цитоплазму.

Метафаза . Формируется митотический аппарат , в состав которого входит веретено деления (ахроматиновое веретено) и центриоли или иные центры организации микротрубочек. Хромосомы располагаются в экваториальной плоскости клетки, образуя метафазную пластинку .

В метафазе хромосомы максимально спирализованы. Каждая хромосома состоит из двух продольных субъединиц – хроматид . Обе хроматиды совершенно идентичны. В основе каждой хроматиды лежит одна молекула ДНК. Конечные участки хроматид называются теломеры . Хроматиды связаны между собой в области первичной перетяжки, которая называется центромера .


Анафаза . Происходит разделение хромосом на хроматиды. С этого момента каждая хроматида становится самостоятельной однохроматидной хромосомой, в основе которой лежит одна молекула ДНК. Однохроматидные хромосомы в составе анафазных групп расходятся к полюсам клетки.

Телофаза . Веретено деления разрушается. Хромосомы у полюсов клетки деспирализуются, вокруг них формируются ядерные оболочки. В клетке образуются два ядра, генетически идентичные исходному ядру. Содержание ДНК в дочерних ядрах становится равным 2c .

Телофаза (окончание кариокинеза) сопровождается цитокинезом . В цитокинезе происходит разделение цитоплазмы и формирование мембран дочерних клеток. У животных цитокинез происходит путем перешнуровывания клетки. У растений цитокинез происходит иначе: в экваториальной плоскости образуются пузырьки, которые сливаются с образованием двух параллельных мембран. На этом митоз завершается, и наступает очередная интерфаза.

Таким образом, в ходе митоза образуется две клетки с идентичными хромосомными наборами .

Мейоз – это особый способ деления эукариотических клеток, при котором исходное число хромосом уменьшается в два раза (от древнегреч. «мейон » – меньше – и от «мейозис » – уменьшение).

Исходное число хромосом в клетке, которая вступает в мейоз, называется диплоидным (2n ). Число хромосом в клетках, образовавшихся в ходе мейоза, называется гаплоидным (n ).

Мейоз состоит из двух последовательных клеточных делений, которые соответственно называются мейоз I и мейоз II . В первом делении происходит уменьшение числа хромосом в два раза, поэтому его называют редукционным . Во втором делении число хромосом не изменяется; поэтому его называют эквационным (уравнивающим).

Предмейотическая интерфаза отличается от обычной интерфазы тем, что процесс репликации ДНК не доходит до конца: примерно 0,2...0,4 % ДНК остается неудвоенной. Однако в целом, можно считать, что в диплоидной клетке (2n ) содержание ДНК составляет 4с . При наличии центриолей происходит их удвоение. Таким образом в клетке имеется две диплосомы, каждая из которых содержит пару центриолей.

Первое деление мейоза (редукционное , илимейоз I )(СЛАЙД 20)

Сущность редукционного деления заключается в уменьшении числа хромосом в два раза: из исходной диплоидной клетки образуется две гаплоидные клетки с двухроматидными хромосомами (в состав каждой хромосомы входит 2 хроматиды).

Профаза I (профаза первого деления) включает ряд стадий.

Лептотена (стадия тонких нитей). Хромосомы видны в световой микроскоп в виде клубка тонких нитей.

Зиготена (стадия сливающихся нитей). Происходит конъюгация гомологичных хромосом (от лат. conjugatio – соединение, спаривание, временное слияние). Гомологичные хромосомы (или гомологи) – это парные хромосомы, сходные между собой в морфологическом и генетическом отношении. В результате конъюгации образуются биваленты . Бивалент – это относительно устойчивый комплекс из двух гомологичных хромосом. Гомологи удерживаются друг около друга с помощью белковых синаптонемальных комплексов . Количество бивалентов равно гаплоидному числу хромосом. Иначе биваленты называются тетрады , так как в состав каждого бивалента входит 4 хроматиды.

Пахитена (стадия толстых нитей). Хромосомы спирализуются, хорошо видна их продольная неоднородность. Завершается репликация ДНК. Завершается кроссинговер – перекрест хромосом, в результате которого они обмениваются участками хроматид.

Диплотена (стадия двойных нитей). Гомологичные хромосомы в бивалентах отталкиваются друг от друга. Они соединены в отдельных точках, которые называются хиазмы (от древнегреч. буквы χ – «хи»).

Диакинез (стадия расхождения бивалентов). Хиазмы перемещаются к теломерным участкам хромосом. Биваленты располагаются на периферии ядра.В конце профазы I ядерная оболочка разрушается, и биваленты выходят в цитоплазму.

Метафаза I (метафаза первого деления) . Формируется веретено деления. Биваленты перемещаются в экваториальную плоскость клетки.Образуется метафазная пластинка из бивалентов.

Анафаза I (анафаза первого деления) . Гомологичные хромосомы, входящие в состав каждого бивалента, разъединяются, и каждая хромосома движется в сторону ближайшего полюса клетки. Разъединения хромосом на хроматиды не происходит.

Телофаза I (телофаза первого деления) . Гомологичные двухроматидные хромосомы полностью расходятся к полюсам клетки. В норме каждая дочерняя клетка получает одну гомологичную хромосому из каждой пары гомологов. Формируются два гаплоидных ядра, которые содержат в два раза меньше хромосом, чем ядро исходной диплоидной клетки. Каждое гаплоидное ядро содержит только один хромосомный набор, то есть каждая хромосома представлена только одним гомологом. Содержание ДНК в дочерних клетках составляет 2с .

В большинстве случаев (но не всегда) телофаза I сопровождается цитокинезом .

После первого деления мейоза наступает интеркинез – короткий промежуток между двумя мейотическими делениями. Интеркинез отличается от интерфазы тем, что не происходит репликации ДНК, удвоения хромосом и удвоения центриолей: эти процессы произошли в предмейотической интерфазе и, частично, в профазе I.

Второе деление мейоза (эквационное , илимейоз II )

В ходе второго деления мейоза уменьшения числа хромосом не происходит. Сущность эквационного деления заключается в образовании четырех гаплоидных клеток с однохроматидными хромосомами (в состав каждой хромосомы входит одна хроматида).

Профаза II (профаза второго деления) . Не отличается существенно от профазы митоза. Хромосомы видны в световой микроскоп в виде тонких нитей. В каждой из дочерних клеток формируется веретено деления.

Метафаза II (метафаза второго деления) . Хромосомы располагаются в экваториальных плоскостях гаплоидных клеток независимо друг от друга. Эти экваториальные плоскости могут быть параллельны друг другу или взаимно перпендикулярны.

Анафаза II (анафаза второго деления) . Хромосомы разделяются на хроматиды (как при митозе). Получившиеся однохроматидные хромосомы в составе анафазных групп перемещаются к полюсам клеток.

Телофаза II (телофаза второго деления) . Однохроматидные хромосомы полностью переместились к полюсам клетки, формируются ядра. Содержание ДНК в каждой из клеток становится минимальным и составляет 1с .

Таким образом, в результате описанной схемы мейоза из одной диплоидной клетки образуется четыре гаплоидные клетки. Дальнейшая судьба этих клеток зависит от таксономической принадлежности организмов, от пола особи и ряда других факторов.

Типы мейоза . При зиготном и споровом мейозе образовавшиеся гаплоидные клетки дают начало спорам (зооспорам). Эти типы мейоза характерны для низших эукариот, грибов и растений. Зиготный и споровый мейоз тесно связан со спорогенезом . При гаметном мейозе из образовавшихся гаплоидных клеток образуются гаметы. Этот тип мейоза характерен для животных. Гаметный мейоз тесно связан с гаметогенезом и оплодотворением . Таким образом, мейоз – это цитологическая основа полового и бесполого (спорового) размножения .

Отличие мейоза от митоза . Главной особенностью мейоза является конъюгация (спаривание) гомологичных хромосом с последующим расхождением их в разные клетки. Поэтому в первом делении мейоза вследствие образования бивалентов к полюсам клетки расходятся не однохроматидные, а двухроматидные хромосомы. В результате число хромосом уменьшается в два раза, и из диплоидной клетки образуются гаплоидные клетки.

Биологическое значение мейоза заключается в поддержании постоянства числа хромосом при наличии полового процесса. Кроме того, вследствие кроссинговера происходит рекомбинация – появление новых сочетаний наследственных задатков в хромосомах. Мейоз обеспечивает также комбинативную изменчивость – появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.

Созревание . В этот период происходит дифференцировка клеток и становление ключевых ферментных систем . Клетка готовится выполнять предназначенные природой функции, постепенно активизируя свой обмен веществ.

Активное функционирование . Интенсивность реакций метаболизма и сопряженного с ним энергетического обмена в это время максимальны.

В период активного функционирования интенсивность обмена веществ в клетке максимальна

Процессы в клетке направлены на обеспечение постоянства внутренней среды и выполнение специфических функций: нейрон воспринимает и передает нервный импульс, эритроцит переносит кислород и так далее.

Угасание (старение) . Этот процесс запрограммирован генетически и, в первую очередь, проявляется уменьшением выработки и активности ферментов в клетке. При этом замедляются биохимические реакции, тормозится метаболизм и энергетический обмен. Период старения клетки характеризуется уменьшением выработки и активности ферментов.

Стареющие клетки, как правило, имеют неудвоенное количество ДНК, но сохраняют жизнеспособность и некоторую метаболическую активность в течение определенного времени.

Естественная гибель клетки (апоптоз ). К сожалению, до сих пор процесс естественной гибели клеток до конца не изучен.

Известно, что в клетке из-за блокирования ферментов прекращается синтез белка, а нет белка – нет и жизни. Морфологически апоптоз характеризуется разрушением ядра и цитоплазмы. “Осколки” погибшей клетки поглощаются и перерабатываются специальными клетками иммунной системы – фагоцитами . Но ведь клетки могут погибнуть и под воздействием случайных факторов (механических, химических и любых других). Случайная гибель клеток (а также ткани, органа) в биологии называется некрозом . Важно то, что естественная клеточная гибель (апоптоз) в отличие от некроза не вызывает воспаления в окружающих тканях.

Апоптоз не вызывает воспаления в окружающих тканях

В организме запрограммированная клеточная гибель выполняет функцию, противоположную митозу, и, тем самым, регулирует общее число клеток в организме. Апоптоз играет важную роль в защите организма при вирусных инфекциях. В частности, иммунодефицит при ВИЧ-инфекции определяется нарушениями в контроле апоптоза.

3.1. жизненный цикл клетки

Закономерные изменения структурно-функциональных характеристик клетки во времени составляют содержание ее жизненного цикла. Жизненный (клеточный) цикл (рис. 3.1) - это период существования клетки от момента ее образования вследствие деления материнской клетки до собственного деления или смерти. Обязательный компонент клеточного цикла - митотический (пролиферативный) цикл (см. рис. 3.1, I) - комплекс однонаправленных, регулируемых, взаимосвязанных и упорядоченных во времени событий, происходящих в процессе подготовки клетки к делению, на протяжении деления и непосредственно после завершения деления. Кроме митотического цикла, в жизненный цикл клеток многоклеточного организма входит период

Рис. 3.1. Жизненный цикл клетки многоклеточного организма: I - митотический цикл; II - переход клетки в дифференцированное состояние; III - гибель клетки; G 1 - пресинтетический (постмитотический) период интерфазы; G 2 - постсинтетический (предмитотический) период интерфазы; S - синтетический период интерфазы; Ri и R 2 - периоды покоя; М - митоз; - диплоидное количество ДНК, - тетраплоидное (удвоенное) количество ДНК

выполнения специфических функций (дифференцированные клетки) и периоды покоя (образовавшиеся вследствие митоза дочерние клетки «ожидают сигнала», дифференцироваться им или вступить в митотический цикл).

На рисунке 3.1, II показаны два выделявшихся цитологией второй половины ХХ в. периода покоя, обозначенные как R 1 и R 2 (англ., resting). Первый из них (R j) приходится на постмитотический (предсинтетиче-ский) период интерфазы митотического цикла и иногда обозначается как период G 0 , второй (R 2) - на постсинтетический (предмитотический) период интерфазы и иногда называется периодом G 2 . Наличие постсинтетического периода покоя (R 2 или G 2) не без оснований оспаривается.

Известны типы клеток, жизненный цикл которых представлен исключительно митотическим циклом, например бластомеры на стадии дробления в эмбриогенезе.

Завершение клеткой жизненного пути может быть связано с запуском механизма генетически контролируемой гибели (самоуничтожение) или апоптоза, а также гибели вследствие действия неблагоприятных факторов - клеточный некроз (см. п. 3.1.2 и рис. 3.1, III).

Еще одно направление изменения состояния клетки в жизненном цикле состоит в ее бласттрансформации, т.е. превращении в опухолевую (на рис. 3.1 не показано). Она приобретает способность к бесконечному размножению и становится формально бессмертной (в условиях in vitro, вне организма). In vivo длительность жизни такой клетки ограничивается смертью организма-носителя опухоли.

3.1.1. МИТОТИЧЕСКИЙ (ПРОЛИФЕРАТИВНЫЙ) ЦИКЛ

Митотический или пролиферативный цикл (см. рис. 3.1, I) - основа жизненного цикла всех клеток. Его биологическое значение состоит в том, что он обеспечивает преемственность хромосом (и следовательно, геномов, генов) в ряду клеточных поколений, т.е. образование клеток, равноценных по количеству ДНК и содержанию наследственной информации. Таким образом, цикл является универсальным механизмом воспроизведения клеточной организации эукариотического типа в индивидуальном развитии живых форм.

До последней трети ХХ в. вопрос о том, гарантирует ли митотиче-ский процесс наследование клетками полноценной во всех отношениях генетической информации, был предметом научных споров. Удачное клонирование животных: лягушки (рис. 3.2), мыши, свиньи, козы, овцы,

Рис. 3.2. Биоинформационная полноценность (количественная и качественная) ДНК ядер соматических клеток. Успешное репродуктивное клонирование амфибий. Схема опытов

крупного рогатого скота, - из клеток с цитоплазмой от яйцеклетки и ядром от соматической клетки (в случае известной овцы Долли - ядро клетки молочной железы) является основанием для утвердительного ответа. Известно, однако, что репродуктивное клонирование, имеющее целью получить новый организм, дает высокий процент потомства с отклонениями в развитии (уродства).

В ходе эволюции многоклеточных организмов митоз послужил основой мейоза, представляющего собой центральный и специфический механизм образования половых клеток - гаметогенеза. Мейоз встречается у всех видов организмов, размножающихся половым путем. Принципиальный с общебиологических позиций результат митоза состоит в сохранении в ряду клеточных поколений постоянного диплоидного количества хромосом. Мейоз, напротив, приводит к образованию из диплоидных клеток гаплоидных гамет. При оплодотворении свойственный виду диплоидный набор хромосом (кариотип) восстанавливается.

Главные события митотического цикла заключаются в репликации (самоудвоении, самокопировании) наследственного материала - ДНК материнской клетки, а также в равномерном и равноценном распределении этого материала между дочерними клетками. Указанным событиям сопутствуют закономерные изменения морфологической и химической организации хромосом (см. пп. 2.4.3.4, 2.4.3.4-а, 2.4.3.4-б, 2.4.5.3). По двум названным событиям в митотическом цикле выделяют репродуктивную и разделительную фазы, соответствующие интерфазе и собственно митозу классической цитологии.

3.1.1.1. Клетка в митотическом цикле. Интерфаза

В начальный отрезок интерфазы (постмитотический, предсин-тетический или период G 2) восстанавливаются черты организации интерфазной клетки, завершается формирование ядрышка, начавшееся в телофазе митоза. В цитоплазме, параллельно реорганизации ультраструктуры, интенсифицируется биосинтез белка, значительные количества которого предназначаются для вновь создаваемого ядра. Энергичное образование белка способствует восстановлению важного клеточного параметра - ее массы. Если клетке предстоит вступить в очередной митотический цикл, синтезы приобретают направленный характер. Формируется пул химических предшественников ДНК, образуются ферменты и другие белки репликации. Вступление клетки в следующий, синтетический период интерфазы требует прохождения ею точки рестрикции, приходящейся на конец периода G 1 .

Предположительно переход клетки из G 1 -периода в период S связан с наличием инсулиноподобного фактора роста, который, воздействуя на специфический белок-рецептор клеточной оболочки, запускает процесс сигнальной трансдукции: последовательно активируются белки-переносчики сигнала (G-белки, ферменты цитоплазматические тирозинкиназы, активируемые ими белки-циклины и др.), белки, связывающиеся с ядром (обеспечивают, по всей видимости, перенос сигнальных молекул или сигнальных комплексов через ядерную оболочку), белки-транскрипционные факторы (способны к специфическому взаимодействию с белками промоторов определенных генов, обусловливая их активацию или репрессию, см. также п. 2.4.3.1 - белки теплового шока). В зависимости от того, какие гены активируются, а какие репрессируются, клетка либо вступает в синтетический период митотического цикла (выбор направления «пролиферация»), либо в дифференцировку (см. рис. 3.1).

Если клетка не проходит точку рестрикции, то она выходит из митотического цикла и либо, как уже говорилось, встает на путь специализации (дифференцировки) в определенном структурно-функциональном направлении (см. рис. 3.1, II), либо приостанавливает свое движение по клеточному циклу (ни подготовки к митозу, ни дифференцировки), переходит в период покоя и, если это период R 1 , сохраняется в G 0 клеточной популяции (см. здесь же, ниже). Некоторые типы специализированных клеток (эритроциты) навсегда утрачивают перспективу вернуться в митотический цикл и, в конце концов, гибнут (терминальная дифференцировка - см. рис. 3.1, III), тогда как другие (лимфоциты, фибробласты, печеночные клетки) сохраняют указанную перспективу и в соответствующих условиях вновь переходят к делению (см. рис. 3.1, II). Клетки, приостановившие движение по клеточному циклу и находящиеся в периоде R 1 интерфазы, составляют G 0 -клеточную популяцию. Они возвращаются в митотический цикл при действии стимулирующих митоз (митогенетических) сигналов.

В синтетическом или периоде S интерфазы происходит удвоение количества (репликация) наследственного материала клетки. За некоторыми исключениями (достраивание цепей недореплициро-ванной ДНК теломер хромосом, см. п. 2.4.3.4-г) ДНК реплицируется полуконсервативным способом (см. п. 2.4.5.3, а также рис. 2.25). За митотический цикл ДНК реплицируется один раз. Механизм, блокирующий повторную репликацию, не выяснен. Предположительно он связан с функцией белков репликативного комплекса (см. п. 2.4.5.3).

Вхождение клетки в митотический цикл запускается митогенным (митогенетическим) сигналом, роль которого обычно выполняет соответствующий фактор роста. Фактор роста активирует внутриклеточный сигнальный путь (явление сигнальной трансдукции, см. здесь же, выше), результатом чего является включение в процесс Cdk. Их переход в функционально активное состояние происходит путем соединения двух субъединиц - каталитической и белка из семейства циклинов. В клетках млекопитающих имеется девять разных циклинов и семь разных Cdk. Их различные комбинации обусловливают регуляцию прохождения клеткой отдельных периодов митотического цикла. Так, прохождение клеткой синтетического (S) периода требует последовательной смены комплексов «циклин А - Cdk 2» и «циклин В - Cdk 2». Циклин В принимает участие также в завершающей фазе митотическо-го цикла: его деградация необходима для вступления клетки в анафазу митоза. Начальный отрезок периода G 1 интерфазы осуществляется при участии комплекса «циклин D - Cdk 4» и/или «циклин D - Cdk 6». Эти же комплексы необходимы для возвращения в митотический цикл клеток из G 0 -популяции. Завершающая часть предсинтетического периода требует участия комплекса «циклин Е - Cdk 2». Смена периодов интерфазы, временные отношения между интерфазой и митозом определяются тем, что во время предшествующего периода образуются транскрипционные факторы, активирующие гены, контролирующие последующий период: G 1 -S - G 2 - митоз.

В клетках, прошедших синтетический период, хромосомы содержат удвоенное, в сравнении с обычным для соматических клеток диплоидным (2с, где с - гаплоидное количество ДНК), тетраплоидное (4с) количество генетического материала (ДНК).

Наряду с ДНК, в периоде S интерфазы интенсивно образуются РНК и белки, причем количество гистоновых белков, так же как и ДНК, строго удваивается. Последнее не удивительно, имея в виду нахождение ДНК в хромосомах в составе нуклеогистонового комплекса. При этом массовые отношения ДНК и гистонов составляют 1:1.

В синтетическом периоде удваивает свое количество незначительная часть митохондриальной ДНК, тогда как основная ее часть реплицируется в пост(после)синтетическом (G 2) периоде интерфазы.

Из других цитоплазматических событий периода S следует назвать удвоение центриолей клеточного центра.

Отрезок времени от окончания синтетического периода до начала митоза обозначают как пост (после)синтетический, предмитотиче-

ский или период G 2 . Он отличается активным образованием РНК и белков. Некоторые из этих белков прямо связаны с предстоящим митозом. К ним относятся, в частности, тубулины, идущие на построение микротрубочек веретена деления. В периоде G 2 завершается удвоение суммарной клеточной массы. Реализация программы периода G 2 требует своего циклинкиназного комплекса: «циклин В - Cdk 1». Названный комплекс вводит клетку в митоз и регулирует ход последнего.

3.1.1.2. Клетка в митотическом цикле. Митоз

Собственно митоз делят на четыре фазы (рис. 3.3 и табл. 3.1). Таблица 3.1. События последовательных фаз митоза

Окончание табл. 3.1


Рис. 3.3. Митоз в животной клетке: а - профаза; б - метафаза; в - анафаза; г - телофаза

Продолжительность митотического цикла варьирует и для большинства животных клеток укладывается в диапазон от 10 до 50 ч. У млекопитающих время непосредственно митоза составляет 0,5-1,5 ч, пост(после)митотического периода интерфазы - 9 ч, синтетического периода - 6-10 ч, предмитотического периода - 2-5 ч. При этом не учитывается время возможного пребывания клеток в периоде(ах) покоя. Время отдельных периодов интерфазы митотического цикла может выходить за указанные пределы. Так, в мужском гаметогенезе в пред-мейотических сперматогониях млекопитающих синтетический период занимает 15 ч, а в мейотических сперматоцитах - порядка 100 ч.

Известны типичные отклонения в ходе той или иной фазы митоза. В некоторой своей части эти отклонения приводят к патологическим последствиям. Отклонения в процессе спирализации (конденсации) хромосом в профазе нередко дают их набухание и слипание, что блокирует переход к следующим фазам. Может произойти отрыв участка хромосомы, который, если он лишен центромеры, выпадает из анафаз-ного движения к полюсам клетки и теряется. В генетике это оценивается как хромосомная мутация - делеция. Если оплодотворение прошло с участием половой клетки, несущей делетированную хромосому, это скажется на развитии организма потомка, причем в неблагоприятном отношении вплоть до его гибели. Отставать в движении могут отдельные хроматиды (дочерние хромосомы), из-за чего образуются клетки с несбалансированными хромосомными наборами. Генетиками это квалифицируется как геномная мутация - анэуплоидия. Повреждения со стороны веретена деления результируются в задержке митоза в ме-тафазе, нарушениях структуры метафазной пластинки и «рассеивании» хромосом. При изменении количества центриолей возникают патологические по своим последствиям многополюсные и асимметричные митозы.

3.1.2. КОНТРОЛЬ КОЛИЧЕСТВА КЛЕТОК В МНОГОКЛЕТОЧНОМ ОРГАНИЗМЕ. АПОПТОЗ. КЛЕТОЧНЫЙ НЕКРОЗ

Возникновение в эволюции многоклеточных живых форм породило ряд специфических задач. Учитывая требование дискретности (см. п. 1.3), одна из таких задач - ограничение количества клеток, строящих организм. Действительно, размеры ныне существующих животных, например млекопитающих, укладываются в определенный диапазон (сравни: мышь и слон). В эволюции одного и того же вида нередко наблюдается дивергенция по такому признаку, как размеры тела. Так, когда-то существовали карликовые слоны. Известны популяции людей, представители которых отличаются в среднем большим (отдельные группы аборигенов-негров к северу от границы тропических лесов - племя Масаи, полинезийцы Маркизских островов, шотландцы) или меньшим (пигмеи Центральной Африки и Юго-Восточной Азии, бушмены Южной Африки) ростом. Важным представляется то, что тело многоклеточного живого существа образовано определенным числом необходимых для обеспечения жизнедеятельности типов специализированных (дифференцированных) клеток. У человека, в организме которого насчитывается 10 13 -10 14 клеток, этих типов 220-250. Количество клеточных элементов каждого типа, хоть и варьирует, ограничено определенным пределом. Есть данные о том, что клеточные типы, связанные функционально, находятся в закономерных количественных отношениях. Контроль количества соматических (телесных) клеток в организме в целом и числа клеток определенных типов специализации осуществляется, с одной стороны, на уровне пролиферации, а с другой, - благодаря механизму генетически контролируемой клеточной гибели (апоптоз).

В тканях и органах, в которых клеточный состав обновляется на протяжении всей жизни особи, обычно сохраняются так называемые камбиальные (матричные) зоны с пролиферирующими клетками-предшественницами клеток конкретных типов специализации. В отношении эпителиальных клеток выстилки тонкой кишки - это «дно» крипт, эпидермиса кожи - базальный слой клеток эпителиального пласта, клеток периферической крови (эритроциты, лейкоциты) - красный костный мозг. Согласно современной номенклатуре, клетки камбиальных зон причисляют к региональным или резидентным (в отличие от эмбриональных, отличающихся тоти(омни)потентностью; по мнению ряда исследователей, оставляющих свойство тоти(омни)потентности исключительно за зиготой, ЭСК внутренней клеточной массы характеризуются мульти(плюри)потентностью) стволовым клеткам, характеризующимся

полипотентностью (кроветворные стволовые клетки дают достаточно широкий набор специализированных клеточных типов периферической крови), олигопотентностью (клетки придонных зон крипт дают ограниченное число специализированных клеток эпителия кишки - предположительно «каемчатый» всасывающий эпителий и некоторые, но не все типы одноклеточных желез) и даже унипотентностью (клетки базального слоя эпидермиса дают через ряд переходных форм только роговые чешуйки).

Клеточная пролиферация как фактор регуляции количества клеток находится под генетическим контролем. Так, у плодовой мухи (дрозофила) имеется мутация, для которой характерно увеличение числа клеточных делений в развитии на одно. Фенотипически мутация проявляется в увеличении в два раза размеров тела в связи с удвоенным количеством соматических клеток.

Наряду с клеточной пролиферацией, количество клеток в структурах тела животного определяется интенсивностью и временными (например, относительно периода онтогенеза или функционального состояния) характеристиками их гибели.

Долгое время науке был известен один вид гибели клеток в многоклеточном организме - клеточный некроз (см. здесь же, ниже), случающийся в ответ на действие неблагоприятных факторов. Последняя четверть ХХ в. ознаменована открытием и активным изучением еще одного вида гибели клеток - апоптоза, происходящего вне прямой связи с действием на клетки повреждающих агентов.

В отличие от некроза, апоптоз - это генетически контролируемый вид клеточной гибели и в качестве такового он является эволюционно «проработанным» клеточным механизмом развития и жизнедеятельности многоклеточных живых существ (как клеточная пролиферация или дифференцировка) (см. также раздел 8.2.4). Описано немало процессов и состояний в эмбриогенезе и во взрослом организме, в которых принимает участие апоптоз. Так, будучи закономерными событиями, резорбция хвоста у головастика и жабр у тритона при метаморфозе амфибий, отмирание клеток вольфовых или мюллеровых протоков при формировании мочеполовой системы соответственно у самок и самцов, определение финальной численности нервных клеток ядер головного мозга или приобретение требуемой формы, например бедренной костью путем удаления клеток в соответствующих зонах «заготовки-болванки» (скульптурная функция) во внутриутробном развитии млекопитающих и многое другое, обеспечиваются апоптозом. Во взрослом состоянии у женщин путем апоптоза после овуляции в яичниках погибают фолликулярные клетки, а по окончании лактации - клетки молочных желез.

В эксперименте удаление семенников (кастрация) приводит к апопто-тической гибели клеток предстательной железы, а удаление гипофиза вызывает гибель клеток надпочечников.

Многообразие ситуаций с участием апоптоза, их неслучайность, принадлежность апоптоза к естественным клеточным механизмам развития и жизнедеятельности ставят вопрос о природе сигналов, запускающих этот вид гибели клеток. Некоторые из приведенных выше примеров (молочные железы после лактации, кастрация, резорбция хвоста головастика) говорят о том, что в ситуациях, связанных с индивидуальным развитием и жизнедеятельностью, эти сигналы нередко имеют гормональную природу, а апоптоз является реакцией на изменение гормонального статуса организма. В случае молочных желез или простаты - это падение уровня соответственно прогестерона или андрогенов. При резорбции хвоста головастика в метаморфозе речь идет о тироксине.

Апоптоз происходит при недостатке регуляторных молекул, необходимых для жизнедеятельности клеток определенного типа. Так, при отсутствии фактора роста нервов (англ. NGF - Nerve Growth Factor) нервные клетки в условиях in vitro (в культуре клеток, вне организма) гибнут апоп-тозом. Другие регуляторные молекулы, например фактор некроза опухолей, ФНО (англ. TNF - Tumor Necrosis Factor), вызывают апоптотическую гибель разных типов клеток. Сигналом к апоптозу может стать нарушение клеточного метаболизма вследствие действия экзогенных токсинов.

Цитогенетическая система, обусловливающая развитие апоптоза, сходна у представителей разных таксонов, в том числе далеко отстоящих друг от друга в эволюционном плане, например, у круглого червя C. elegans и позвоночных животных. Ее начальный отрезок представлен регулятором, адаптером и эффектором. У позвоночных функцию регулятора выполняет белок bcl-2, который ингибирует адаптерный белок Apaf-1, стимулирующий ферменты каспазы. Каспазы, выполняющие роль эффекторов, - это протеиназы, расщепляющие молекулы разных белков (у позвоночных таких белков-мишеней более 60).

Представление о процессе апоптоза дает схема на рис. 3.4. При наличии соответствующего трофического фактора в цитоплазме присутствует фосфорилированный и в таком состоянии неактивный белок Bad-P. При отсутствии трофического фактора названный белок дефосфори-лируется и превращается в активную форму - Bad. Последний, связываясь с регуляторным белком наружной митохондриальной мембраны bcl-2, лишает его антиапоптозных свойств, что переводит в активное состояние проапоптотический белок Bax. В таких условиях в митохон-

Рис. 3.4. Вариант развития апоптоза: запускающий фактор - отсутствие жизненно важного трофического фактора (схема): 1 - плазматическая мембрана; 2 - наружная мембрана митохондрии; 3 - трофический фактор; 4 - рецептор трофического фактора; 5 - дефосфорилирование проапоптотического белка Bad; 6 - инактивация антиапоптозного белка Bcl-2; 7 - выход цитохрома С из митохондрии в цитозоль; 8 - активация проапоптозного белка Bax, открытие ионных каналов; 9 - цитохром С активирует адапторный белок Apaf-1; 10 - активация прокаспазы 9; 11 - активная каспаза 9; 12 - активация каспазы 3; 13-15 - разрушение ядерной ламины (плотная пластинка, см. п. 2.4.3.1), цито-скелетных структур, конденсация и фрагментация хроматина

дрию через открывшиеся ионные каналы устремляется поток ионов, а из органеллы в цитозоль выходит фермент цитохром С. Комплекс названного фермента и адапторного белка Apaf-1 переводит прокаспазу 9 в активную форму. Каспаза 9, в свою очередь, активирует каспазу 3, которая, проявляя свойства протеазы, вызывает деградацию белков, в

частности адгезивных, что способствует обособлению апоптозирующей клетки от соседних, а также приводит к конденсации и распаду хроматина, цитоскелетных структур и ядерной ламины. Перечисленные изменения означают, что судьба клетки предопределена, и она вступила на путь апоптоза. В результате внутриклеточных изменений деструктивного характера клетка распадается на фрагменты - апоптотические тельца, которые «опознаются», захватываются и перевариваются макрофагами. При этом макрофаги не реагируют на находящиеся в непосредственной близости, но не неапоптозирующие клетки.

К апоптотической гибели приводят не только внешние относительно клеток (изменение гормонального статуса, недостаток в организме жизненно важного ростового фактора), но и внутриклеточные события, в частности нерепарируемые нарушения химической структуры ДНК (см. п. 2.4.5.3-a), дающие генетически (биоинформационно) дефектные и, следовательно, балластные или угрожающие здоровью и даже жизни клетки(приводящшие благодаря генетическим или биоинформационным нарушениям к функционально дефектным состояниям, угрожающим здоровью и даже жизни клетки). В таких случаях начальная фаза процесса заключается в накоплении в цитоплазме транскрипционного фактора р53, что активирует белок р21. Последний, с одной стороны, блокирует вступление клетки в период S (G1 -блок митотического цикла) интерфазы или в митоз (G 2 -блок митотического цикла), тогда как с другой, - активирует проапоптотический белок Bax (см. здесь же, выше и рис. 3.4). Далее события развиваются в соответствии с представленным на рис. 3.4 сценарием. Внутриклеточным по своему происхождению событием, запускающим апоптоз, является деструктивное действие активных форм кислорода (АФК, свободные радикалы - см. п. 2.4.8) на митохондрии. Следствием нарушения структуры названных орга-нелл является выход в цитозоль цитохрома С, его комплексирование с Apaf-1, перевод прокаспазы 9 в каспазу 9 и т.д. (см. рис. 3.4). Можно заключить, что существуют варианты апоптоза, различающиеся природой инициирующего сигнала и событиями в дебюте процесса.

На рисунке 3.5 в схематическом изображении представлены гибель клетки, с одной стороны, путем апоптоза, а с другой, путем некроза. Очевидно, что это два отдельных процесса. Во-первых, они различаются по морфологии, во-вторых, по запускающим их факторам. К клеточному некрозу приводят повреждения мембраны плазмолеммы и подавление активности мембранных ионных насосов токсинами, недостаток кислорода, например, вследствие ишемизации тканей при спазме

Рис. 3.5. Апоптоз и клеточный некроз - сравнительная характеристика морфологии процессов (схема): а - апоптоз: 1 - специфическое сжатие клетки и конденсация хроматина; 2 - фрагментация ядра; 3 - фрагментация тела клетки с образованием апоптических телец; б - некроз: 1 - набухание вакуолярных структур и клетки в целом, компактизация хроматина, кариопикноз и карио-рексис; 2 - дальнейшее набухание мембранных органелл, кариолизис; 3 - разрушение мембранных структур, клеточный лизис

или закупорке кровеносных сосудов (инфаркт миокарда, ишемический инсульт мозга), выключение из функции митохондриальных ферментов в результате действия некоторых ядов (цианиды). Обычно клеточный некроз развивается по следующему сценарию. Повышается проницаемость цитоплазматической мембраны, происходит обводнение цитоплазмы, что приводит к набуханию клетки. Одновременно набухают вакуолярные цитоплазматические структуры с деструкцией мембран. Необратимо изменяются митохондрии, прекращается продукция энергии, что тут же сказывается на состоянии клеточных функций, которые блокируются. Благодаря повышению концентрации ионов Na+ и Ca ++ цитоплазма закисляется, жизненно важные синтезы, в частности белковые, прекращаются, из лизосом высвобождаются ферменты кислые гидролазы (см. п. 2.4.4.4-в), происходит лизис клетки. Одновременно хроматин ядер компактизируется (кариопикноз) с последующим распадом (кариорексис), происходят разрывы ядерной оболочки с последующим исчезновением ядра (кариолизис).

В отличие от апоптоза, при котором клеточная гибель носит автономный характер и не распространяется на клетки, соседствующие с апоптозирующей, при клеточном некрозе в процесс вовлекаются объемные участки тканей и органов, т.е. сразу некоторое количество клеток. В зоне некроза развивается воспаление, и некротизированный участок буквально «наводняется» (инфильтрируется) лейкоцитами. Этого не происходит в случае апоптоза. Можно заключить, что генетически контролируемая клеточная гибель путем апоптоза, в отличие от клеточного некроза, не носит характера патологического процесса и по своим параметрам удовлетворяет статусу одного из базисных клеточных механизмов развития и жизнедеятельности многоклеточного организма.

3.1.3. КЛЕТОЧНАЯ ДИФФЕРЕНЦИРОВКА

Дифференцировка - это процесс, в результате которого клетки становятся специализированными, т.е. приобретают морфологические, цитохимические, а главное - функциональные особенности, соответствующие запросам многоклеточного организма (см. также разделы 8.2.5, 8.2.5.1, 8.2.5.2 и 8.2.6). В широком смысле под дифференциров-кой понимают постепенное, наблюдаемое, в частности, в процессе эмбриогенеза через ряд последовательных делений и смену положения в теле развивающегося организма, появление все больших различий между клетками, происходящими из относительно однородных кле-

ток конкретного эмбрионального зачатка (например, зародышевого листка - энто-, эктоили мезодермы). Специализированные в заданном структурно-функциональном направлении клетки возникают и во взрослом организме, замещая, к примеру, постоянно гибнущие клетки - физиологическая регенерация.

Процесс клеточной дифференцировки как в эмбриогенезе, так и во взрослом состоянии «растянут» во времени, распространяется на группы клеток и определяется понятием гистогенез. Гистогенез начинается со стволовых (у взрослого, региональные стволовые, см. п. 3.1.2) клеток, включает несколько митотических делений, дающих ряд закономерных промежуточных клеточных форм, и завершается возникновением дифференцированных клеток. Появление отдельных морфологических, цитохимических, метаболических и иных характеристик дифференцированного состояния в ходе гистогенеза может происходить независимо и приурочено, как правило, к конкретным промежуточным клеточным формам. Вся совокупность соответствующих характеристик выявляется в дифференцированной зрелой клетке, составляя ее цитофенотип. Предположительно такое появление говорит о смене одних генов, активно транскрибируемых на предшествующей стадии гистогенеза, на другие.

Клеточные формы, с которых начинается гистогенез, обычно лишены признаков специализации. Тем не менее в нормальных условиях развития и жизнедеятельности организма направление дифференцировки определено. Известно, например, что клетки дерматома, склеротома и миотома, на которые подразделяются мезодермальные сомиты, в дальнейшем развитии дифференцируются соответственно в фибробласты соединительной ткани собственно кожи (дермы), хондробласты хряща и миобласты скелетной мускулатуры. В этих случаях говорят о состоянии детерминации. Конкретные факторы и механизмы клеточной детерминации однозначно не определены. Предположительно речь идет об активном состоянии определенных генов и экспрессии клетками соответствующих белков. Свою роль, видимо, играют характер дистантных (действующих на расстоянии) и местных (локальных) межклеточных взаимодействий и положение клеток в организме, органе или клеточной тканевой системе (см. п. 3.2) - морфогенетические поля: клеточные контакты с другими структурами, например клеток базального слоя эпидермиса с базальной мембраной, особенности микроокружения по маршруту перемещения клеток-предшественниц в процессе их превращения в «каемчатые» или железистые дифференцированные эпителиальные клетки выстилки тонкой кишки из придонных участков крипт на ворсинку - все то, что объединяется понятием эпигенетический ландшафт.

Представления о механизмах цитодифференцировки имеют свою историю (рис. 3.6). Гипотезы, связывающие клеточную дифференцировку с неравнозначностью наследственного материала в разных типах клеток (А. Вейсман), имеют историческое значение. К настоящему времени собрано много доказательств того, что соматические клетки подавляющего большинства животных, в том числе высокоорганизованных, характеризуются неизменным диплоидным набором хромосом. Цитофотометриче-ские исследования показали, что количество ДНК в ядрах клеток разных тканей и органов не различается. Оно одинаково и, как правило, соответствует диплоидному (2с). Результаты, полученные методом молекулярной гибридизации (см. п. 5.2.2.3-б), свидетельствуют об отсутствии различий в нуклеотидных последовательностях ДНК клеток разных направлений

Рис. 3.6. Развитие представлений о механизмах цитодифференцировки

специализации. О сохранении соматическими клетками функционально-генетического потенциала говорят успешные опыты по репродуктивному клонированию организмов (см. п. 3.1.1).

Современная биология связывает генетический механизм клеточной дифференцировки с явлением дифференциальной (избирательной) активности генов. Различия между характеристиками соматических клеток разных направлений структурно-функциональной специализации (дифференцировки) видят в том, что в различных типах клеток активны (транскрибируются) разные гены и, соответственно, экспрес-сируются (транслируются) разные белки. Естественно, что выше речь шла о белках, относящихся к семейству «белков роскоши», а не о белках «домашнего хозяйства» (см. п. 2.4.4.4-е). К дифференцированным клеткам относятся, в частности, эритроциты. Хотя в зрелых эритроцитах белковые синтезы сведены к нулю, в клетках-предшественницах эритроцитов (полихроматофильные и базофильные, в терминологии классической гистологии - эритробласты, ретикулоциты) активны гены, обусловливающие экспрессию полипептидов гемоглобина - α- и β-глобинов. Пример с глобинами показателен тем, что эти гены имеют кластерную организацию, т.е. представлены совокупностью генов, каждый из которых активен в строго определенный период онтогенеза. Так, β-глобиновый кластер (β-мультигенное семейство) человека представлен 7 генами. У эмбрионов активен ген ε, у плода - Gγ и Αγ (Джи-гамма и Эй-гамма), после рождения - δ и β. Кроме того, имеется два так называемых псевдогена. Активация очередного гена кластера сопряжена с инактивацией гена, который транскрибировался в предшествующий период онтогенеза. Предположительно смена активных β-глобиновых генов оптимизирует функцию транспорта кислорода в различных условиях существования организма человека (эмбрион - доплацентарный период внутриутробного развития, плод - плацентарный период, после рождения - дыхание атмосферным воздухом).

Важное место в процессе клеточной дифференцировки принадлежит экспрессии белков цитоскелетных структур и плазмолеммы. Наличие цитоскелета - непременное условие приобретения и поддержания дифференцированной клеткой требуемой формы, а в случае необходимости - полярности (всасывающий «каемчатый» эпителий кишки), построения таких структур, как микроворсинки (всасывающий эпителий тонкой кишки) или реснички (реснитчатый эпителий трахеи и крупных бронхов). В случае плазмолеммы речь идет, в частности, о рецепторных и других белках (см. п. 2.4.2).

Самостоятельное значение в плане выполнения дифференцированной клеткой специфических функций имеет закономерное распределение белков и структур в клеточном объеме. Так, микроворсинки и реснички, о которых шла речь выше, располагаются на обращенных в просвет соответствующих органов полюсах клеток. Показателен пример эпителиально-мышечной клетки актинии, выполняющей одновременно опорную, сократительную и чувствующую (рецепторную) функции. Названная клетка имеет бокаловидную форму, в ее основании находится пучок миофибрилл, а у апикальной поверхности - чувствующий волосок (рис. 3.7).

Рис. 3.7. Эпителиально-мышечная клетка актинии. Схема: 1 - мышечные волокна; 2 - митохондрии; 3 - ядро; 4 - чувствующий волосок

В связи с проблемой клеточной дифференцировки важным представляется вопрос о механизме избирательной активности конкретного гена (и следовательно, экспрессии соответствующего белка) клетками разных органов. Имеющиеся данные указывают на несомненную роль энхансеров (рис. 3.8), промоторов, транскрипционных факторов, гор-

Рис. 3.8. Регуляторная зона тканеспецифичного гена estS (фермент эстераза) плодовой мухи. Показано расстояние (в п.н.) энхансеров, ответственных за транскрипцию гена клетками разных органов мухи, от стартовой точки трансляции

монов, факторов роста и других сигнальных молекул, изменение плотности упаковки хроматина - гетерохроматизация эухроматиновых участков и эухроматизация гетерохроматиновых.

3.1.4. ОНКОТРАНСФОРМАЦИЯ КАК ОДНА ИЗ ВОЗМОЖНЫХ СОСТАВЛЯЮЩИХ ЖИЗНЕННОГО ЦИКЛА КЛЕТКИ

Идея о том, что опухолевый рост представляет собой биологическую проблему, возникла давно. В разное время эта идея наполнялась различным конкретным содержанием. В частности, высказывались предположения, что рак - это следствие дерепрессии клеточного генома в связи с потерей хромосомами гистонов, а онкогенез, как явление, можно рассматривать в качестве побочного эффекта «противостояния» клеток процессу старения. В настоящее время распространение получила точка зрения, также связывающая онкотрансформацию с изменениями клеточного генома. Предположительно путь к опухолевому перерождению клетки представляет собой перестройку генома, а не единичную мутацию определенного гена. Действительно, описаны опухоли, удовлетворяющие понятию «моногенная наследственная болезнь», например ретинобластома (retina: средневеков. от лат.: rete - сеть, самая внутренняя оболочка глаза; греч. blastos - почка, росток, побег, завязь; греч. oma - опухоль). Это злокачественное новообразование сетчатки с аутосомно-доминантным типом наследования. К развитию ретино-бластомы приводят точковые мутации в гене RB1 (13q14.1). С другой стороны, названная опухоль развивается при транслокациях между хромосомами Х и 13, причем место разрыва приходится на участок хромосомы 13, не имеющий отношения к месту расположения названного гена, а находящийся от него за несколько миллионов пар нуклеотидов - 13q12-q13. При этом допускается, что в случае транслокаций речь тоже идет об инактивации гена RB1, но не вследствие его мутации, а в результате разобщения областей промотора и энхансера, т.е. фактически эффекта положения.

Рассмотренный пример возвращает нас к идее, что онкотрансформа-ция как самостоятельная траектория жизненного цикла соматической клетки связана с изменениями в геноме, причем затрагивающими конкретные системы генетической регуляции состояния клеток, в частности, связанные с их пролиферацией. Подсчитано, что к онкогенезу у человека из общего числа примерно в 30 тыс. имеют отношение 120-150 генов. Далеко не все они являются структурными (кодирующими аминокис-

лотные последовательности полипептидов) в понимании классической генетики. Многие из них выполняют регуляторные, сервисные и/или конценсусные функции. Факторами, провоцирующими превращение клеток в опухолевые, являются мутагены окружающей среды, такие, как промышленные и сельскохозяйственные яды, табачный дым.

Согласно современным взглядам, онкогенез - многоступенчатый процесс. Единичной мутации в протоонкогене или гене-супрессоре онкотрансформации достаточно для инициации клеточного роста, который через ряд стадий, связанных с закономерными изменениями в геномах клеток растущей популяции, может приобрести черты злокачественного (рис. 3.9).

Таким образом, в случае клеточной онкотрансформации речь идет о геномных изменениях, затрагивающих генетические системы регуляции существенных составляющих клеточного цикла, прежде всего процессов пролиферации и апоптоза. Это дает основание рассматривать онкогенез, воспринимаемый как биологический в своей основе феномен, в связи с организацией жизненного цикла эукариотической клетки многоклеточного организма. Дополнительный аргумент заключается в том, что, согласно новейшим данным, опухолевые клетки постоянно циркулируют в кровотоке, причем если их количество не превышает 0,5 млн, то ситуация оценивается как онкологически спокойная. При количестве клеток в диапазоне от 0,5 млн до 1 трлн ситуация оценивается как настораживающая - предрак. На обеих названных стадиях какие-либо признаки наличия злокачественной опухоли в организме существующими диагностическими методами не выявляются. Опухоль диагностируется и становится предметом профессионального внимания врачей, если количество клеток превышает 1 трлн.

3.2. клеточные тканевые системы (клеточные популяции). регенеративная медицина

Тело взрослого человека образовано 220-250 типами дифференцированных клеток, каждый из которых соответствует конкретному направлению функциональной специализации (цитотип, цитофенотип). Отдельные клеточные типы закономерно (по набору и количеству) представлены в различных органах и структурах организма. В гистологии сложилось представление о клеточной популяции, к которой относят совокупность клеток одного цитотипа (гепатоциты или печеночные клетки, кардиомиоциты, нервные клетки с подразделением по

Рис. 3.9. Многоступенчатый характер процесса онкогенеза (на примере рака прямой кишки)

вариантам или субпопуляциям - нейроны Пуркинье коры мозжечка, пирамидные нейроны коры головного мозга). Введение указанного понятия, с одной стороны, создает перспективу оценить суммарный функциональный потенциал организма по отдельным направлениям клеточной специализации. С другой стороны, осознаются подходы к решению вопроса о путях поддержания требуемого уровня этого потенциала во времени - путем клеточной пролиферации или другими способами (клеточная гипертрофия, внутриклеточная регенерация). Классифицируя клеточные популяции, классическая гистология в качестве ведущего, практически исключительного критерия использует сохранение клетками пролиферативного потенциала - в прямом виде (гепатоциты) или благодаря наличию матричных (камбиальных) про-лиферативных зон (клетки периферической крови, эпидермис кожи). Соответственно классификация вариантов клеточных популяций в многоклеточном организме строится на оценке баланса между темпами потери и восполнения клеточного материала за счет митотического деления. Так, выделяются популяции обновляющиеся (клетки эпителиальной выстилки тонкой кишки, соединительной ткани), растущие (гепатоциты), стабильные (нейроны, кардиомиоциты). Возможные варианты клеточных популяций, если исходить из названного выше критерия, приведены на рис. 3.10.

Рис. 3.10. Возможные типы клеточных популяций (схема): а - простая транзитная; б - распадающаяся; в - статичная закрытая; г - делящаяся транзитная; д - стволовых клеток; з - делящаяся закрытая. Стрелки - поступление клеток в популяцию, выход из нее и деление клеток внутри популяции (двойные стрелки)

Согласно современным представлениям источником, из которого образуются все дифференцированные клетки, являются стволовые (прогениторные) клетки, а процесс, благодаря которому в индивидуальном развитии и/или при регенерации органов и тканей в организме появляются клетки требуемых цитотипов, носит название гистогенеза (см. п. 3.1.3).

Стволовые клетки отличаюся рядом особенностей. Во-первых, они составляют в организме самоподдерживающуюся популяцию в том смысле, что определенное их количество восстанавливается путем деления, если часть клеток покидают популяцию, встав на путь клеточной дифференцировки. Предполагается, однако, что по мере увеличения возраста особи численность указанных популяций (имеются в виду, прежде всего, популяции региональных резидентных стволовых клеток) сокращается. Во-вторых, стволовые клетки способны к так называемому асимметричному митотическому делению, когда одна из образующихся дочерних клеток вступает в следующий митотический цикл, способствуя поддержанию количества стволовых клеток, тогда как другая встает на путь дифференцировки. Если обе дочерние клетки, возникшие вследствие деления стволовой клетки, возвращаются в митотический цикл, говорят о симметричном митозе. Природа сигналов и клеточный механизм разграничения симметричного и асимметричного митозов не выяснены.

Прогениторными называются стволовые клетки, вступившие в гистогенез, то есть для которых направление специализации определено (начальное событие клеточной дифференцировки в виде детерминации состоялось): предположительно прогениторными являются региональные или резидентные стволовые клетки. Принято считать, что вероятность онкотрансформации прогениторных клеток сопоставима с вероятностью онкотрансформации обычных симатических клеток на завершающей стадии гистогенеза.

С учетом отмеченного, представления о клеточных популяциях трансформируются в представления о тканевых клеточных системах (рис. 3.11). Все процессы, ведущие к оформлению (индивидуальное развитие) или к поддержанию и восстановлению (физиологическая и репаративная регенерация) в организме групп клеток определенного цитофенотипа, имеют в своей основе соответствующие гистогенезы. Принципиальная структура гистогенеза показана на рис. 3.12. Место и роль различных клеточных механизмов в гистогенезе отражены в рис. 3.13. Из рисунка 3.12 следует, что гистогенез начинается со стволо-

Рис. 3.11. Тканевая клеточная система (принцип организации)

Рис. 3.12. Динамика клеточных форм в гистогенезе

Рис. 3.13. Динамика клеточных форм в тканевых системах

вой (эмбриогенез) или прогениторной (родившийся человек, возможно плод на стадии органогенезов) клетки.

Данные по биологии стволовых и прогениторных клеток-предшественниц дифференцированных клеток различных цитотипов (цитофено-типов) служат основой для разработки терапевтических биомедицинских клеточных технологий нового поколения, относящихся к формирующемуся разделу практического здравоохранения - регенеративной медицине.

Вопросы для самоконтроля

1. Что такое жизненный и митотический циклы клетки?

2. Какие процессы реализуются в различных фазах митотического цикла, и как осуществляется его регуляция?

3. Что представляет собой апоптоз и в чем его значение для организма?

4. В чем суть клеточной дифференцировки?

Биология: учебник: в 2 т. / под ред. В. Н. Ярыгина. - 2011. - Т. 1. - 736 с. : ил.

Его варианты. Основное содержание и значение периодов жизненного цикла клетки.

Закономерные изменения структурно-функциональных характеристик клетки во времени составляют содержание ее жизненного цикла (клеточного цикла). Клеточный цикл - это период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или смерти.

Обязательным компонентом клеточного цикла является митотический (пролиферативный) цикл - комплекс взаимосвязанных и детерминированных хронологически событий, происходящих в процессе подготовки клетки к делению и на протяжении самого деления, Кроме того, в жизненный цикл включается период выполнения клеткой многоклеточного организма специальных функций, а также периоды покоя. В периоды покоя ближайшая судьба клетки неопределенна: она может либо начать подготовку к митозу, либо стать на путь специализации.
Жизнь клетки от момента её возникновения в результате деления материнской клетки

до ее собственного деления или смерти называется жизненным (или

клеточным ) циклом.

Обязательным компонентом клеточного цикла является митотический цик л,

включающий подготовку к делению и само деление. В жизненном цикле есть также

периоды покоя , когда клетка только исполняет свой функций и избирает свою

дальнейшую судьбу (погибнуть либо возвратится в митотический цикл. Подготовка

клетки к делению, или интерфаза , составляет значительную часть

митотического цикла. Она состоит из трех подпериодов: постмитотический ,

или пресинтетический - G1, синтетический – S и

постсинтетический , или премитотический – G2.

Период G1 – самый вариабельный по продолжительности. Во время его в клетке

активизируются процессы биологического синтеза, в первую очередь структурных

и функциональных белков. Клетка растет и готовится к следующему периоду.

Период S – главный в митотическом цикле. В делящихся клетках млекопитающих он

длится около 6 – 10 ч. В это время клетка продолжает синтезировать РНК,

белки, но самое важное осуществляет синтез ДНК. Редупликация ДНК происходит

асинхронно. Но к концу S – периода вся ядерная ДНК удваивается, каждая

хромосома становится двунитчатой, то есть состоит из двух хроматид –

идентичных молекул ДНК.

Период G2 относительно короток, в клетках млекопитатающих он составляет около

2 – 5 ч. В это время количество центриолей, митохондрей и пластид

удваивается, идут активные метаболические процессы, накапливаются белки и

энергия для предстоящего деления. Клетка приступает к делению.

Описано три способа деления эукариотических клеток: амитоз (прямое

деление), митоз (непрямое деление) и мейоз (редукционное

деление).

Амитоз – относительно редкий и малоизученный способ деления клетки. Описан он

для стареющих и патологически измененных клеток. При амитозе интерфазное ядро

делится путем перетяжки, равномерное распределение наследственного материала

не обеспечивается. Нередко ядро делится без последующего разделения

цитоплазмы и образуются двухъядерные клетки. Клетка, претерпевшая амитоз, в

дальнейшим не способна вступать в нормальный митотический цикл. Поэтому

амитоз встречается, как правило, в клетках и тканях, обреченных на гибель,

например, в клетках зародышевых оболочек млекопитающих, в клетках опухолей.

Митоз (от греч. mitos - нить), кариокинез, непрямое деление клетки, наиболее

распространённый способ воспроизведения (репродукции) клеток, обеспечивающий

тождественное распределение генетического материала между дочерними клетками

и преемственность хромосом в ряду клеточных поколений. Биологическое значение

М. определяется сочетанием в нём удвоения хромосом путём продольного

расщепления их и равномерного распределения между дочерними клетками. Началу

М. предшествует период подготовки, включающий накопление энергии, синтез

дезоксирибонуклеиновой кислоты (ДНК) и репродукцию центриолей. Источником

энергии служат богатые энергией, или так называемые макроэргические

соединения. М. не сопровождается усилением дыхания, т. к. окислительные

процессы происходят в интерфазе (наполнение "энергетического резервуара").

Периодическое наполнение и опустошение энергетического резервуара - основа

энергетики М.

Стадии митоза . Единый процесс М. обычно подразделяют на 4 стадии:

профазу , метафазу , анафазу и телофазу . Препрофаза -

синтетическая стадия М., соответствующая концу интерфазы (S - G2 периоды),

включает удвоение ДНК и синтез материала митотического аппарата.

В профазе происходят реорганизация ядра с конденсацией и спирализацией

хромосом, разрушение ядерной оболочки и формирование митотического аппарата

путём синтеза белков и "сборки" их в ориентированную систему веретена деления

Метафаза заключается в движении хромосом к экваториальной плоскости (

метакинез , или прометафаза ), формировании экваториальной пластинки

("материнской звезды") и в разъединении хроматид, или сестринских хромосом.

Анафаза - стадия расхождения хромосом к полюсам. Анафазное движение

связано с удлинением центральных нитей веретена, раздвигающего митотические

полюсы, и с укорочением хромосомальных микротрубочек митотического аппарата.

Удлинение центральных нитей веретена происходит либо за счёт поляризации

"запасных" макромолекул, достраивающих микротрубочки веретена, либо за счёт

дегидратации этой структуры. Укорочение хромосомальных микротрубочек

обеспечивается свойствами сократительных белков митотического аппарата,

способных к сокращению без утолщения.

Телофаза заключается в реконструкции дочерних ядер из хромосом,

собравшихся у полюсов, разделении клеточного тела (цитотомия ,

цитокинез ) и окончательном разрушении митотического аппарата с образованием

промежуточного тельца. Реконструкция дочерних ядер связана с деспирализацией

хромосом, восстановлением ядрышка и ядерной оболочки. Цитотомия осуществляется

путём образования клеточной пластинки (в растительной клетке) или путём

образования борозды деления (в животной клетке). Механизм цитотомии связывают

либо с сокращением желатинизированного кольца цитоплазмы, опоясывающего экватор

(гипотеза "сократимого кольца"), либо с расширением поверхности клетки

вследствие распрямления петлеобразных белковых цепей (гипотеза "расширения

мембран").

Продолжительность митоза зависит от размеров клеток, их плоидности, числа

ядер, а также от условий окружающей среды, в частности от температуры. В

животных клетках М. длится 30-60 мин, в растительных - 2-3 часа. Более

длительны стадии М., связанные с процессами синтеза (препрофаза, профаза,

телофаза); самодвижение хромосом (метакинез, анафаза) осуществляется быстро.

Мейоз (от греч. meiosis - уменьшение), редукционное деление, деления

созревания, способ деления клеток, в результате которого происходит

уменьшение (редукция) числа хромосом в два раза и одна диплоидная клетка

делении даёт начало 4 гаплоидным (содержащим по одному набору хромосом).

Восстановление диплоидного числа хромосом происходит в результате

оплодотворения. М. - обязательное звено полового процесса и условие

формирования половых клеток (гамет). Биологическое значение М. заключается в

поддержании постоянства кариотипа в ряду поколений организмов данного вида и

обеспечении возможности рекомбинации хромосом и генов при половом процессе.

М. - один из ключевых механизмов наследственности и наследственной

изменчивости. Поведение хромосом при М. обеспечивает выполнение основных

законов наследственности.

Первая фаза М. - профаза I , наиболее сложная и длительная (у человека

22,5, у лилии 8-10 суток), подразделяется на 5 стадий. Лептотена -

стадия тонких нитей, когда хромосомы слабо спирализованы и наиболее длинны,

видны утолщения - хромомеры. Зиготена - стадия начала попарного, бок о

бок соединения (синапсиса , конъюгации ) гомологичных хромосом;

при этом гомологичные хромомеры взаимно притягиваются и выстраиваются строго

друг против друга. Пахитена - стадия толстых нитей; гомологичные

хромосомы стабильно соединены в пары - биваленты, число которых равно

гаплоидному числу хромосом; под электронным микроскопом видна сложная

ультраструктура в месте контакта двух гомологичных хромосом внутри бивалента:

т. н. синаптонемальный комплекс, который начинает формироваться ещё в зиготене;

в каждой хромосоме бивалента обнаруживаются 2 хроматиды; т. о., бивалент

(тетрада, по старой терминологии) состоит из 4 гомологичных хроматид; на этой

стадии происходит кроссинговер, осуществляющийся на молекулярном уровне;

цитологические последствия его обнаруживаются на следующей стадии.

Диплотена - стадия раздвоившихся нитей; гомологичные хромосомы начинают

отталкиваться друг от друга, но оказываются связанными, обычно в 2-3 точках на

бивалент, где видны хиазмы (перекресты хроматид) - цитологическое проявление

кроссинговера. Диакинез - стадия отталкивания гомологичных хромосом,

которые по-прежнему соединены в биваленты хиазмами, перемещающимися на концы

хромосом (терминализация); хромосомы максимально коротки и толсты (за счёт

спирализации) и образуют характерные фигуры: кресты, кольца и др. Следующая

фаза М. - метафаза I , во время которой хиазмы ещё сохраняются;

биваленты выстраиваются в средней части веретена деления клетки, ориентируясь

центромерами гомологичных хромосом к противоположным полюсам веретена. В

анафазе I гомологичные хромосомы с помощью нитей веретена расходятся к

полюсам; при этом каждая хромосома пары может отойти к любому из двух полюсов,

независимо от расхождения хромосом др. пар. Поэтому число возможных сочетаний

при расхождении хромосом равно 2n, где n - число пар хромосом. В отличие от

анафазы митоза, центромеры хромосом не расщепляются и продолжают скреплять 2

хроматиды в хромосоме, отходящей к полюсу. В телофазе I у каждого полюса начинается деспирализация хромосом и формирование дочерних ядер и

интеркинез , и начинается второе деление М. Профаза II , метафаза

II , анафаза II и телофаза II проходят быстро; при этом в

конце метафазы II расщепляются центромеры, и в анафазе II расходятся к полюсам

хроматиды каждой хромосомы.
2). Половые генетические аномалии. Роль генотипических факторов в формировании патологических изменений фенотипа человека.

Роль генотипа в развитии признаков пола.

Отталкиваясь от определения, что пол - совокупность генетически

детерминированных признаков особи, определяющих её роль в процессе

оплодотворения, нужно сказать, что развитие половой принадлежности организмов

и их половых признаков зависит от сочетания или количества половых хромосом.

Начало изучению генотипического определения пола было положено открытием

американскими цитологами у насекомых различия в форме, а иногда и в числе

хромосом у особей разного пола (Маккланг, 1906, Уилсон, 1906) и классическими

опытами немецкого генетика Корренса по скрещиванию однодомного и двудомного

видов брионии.

Человек в отношении определения пола относится к типу XX-XY. При гаметогенезе

наблюдается типичное менделевское расщепление по половым хромосомам. Каждая

яйцеклетка содержит одну Х-хромосому, а другая половина

Одну Y-хромосому. Пол потомка зависит от того, какой спермий оплодотворит

яйцеклетку. Пол с генотипом ХХ называют гомогаметным, так как у него

образуются одинаковые гаметы, содержащие только Х-хромосомы, а пол с

генотипом XY - гетерогаметным, так как половина гамет содержит Х-хромосому, а

половина Y-хромосому. У человека генотипический пол данного индивидуума

определяют, изучая неделящиеся клетки. Одна Х-хромосома всегда оказывается в

активном состоянии и имеет обычный вид. Другая, если она имеется, бывает в

покоящемся состоянии в виде плотного темно-окрашенного тельца, называемого

тельцем Барра (факультативный гетерохроматин). Число телец Барра всегда на

единицу меньше числа наличных Х-хромосом, т.е. в мужском организме их нет

вовсе, у женщин (ХХ) - одно. У человека Y-хромосома является генетически16

инертной, так как в ней очень мало генов. Однако влияние Y-хромосомы на

детерминацию пола у человека очень сильное. Хромосомная структура мужчины

44A+XY и женщины 44A+XX такая же, как и у дрозофилы, однако у человека особь

кариотипом 44A+XD оказалась женщиной, а особь 44A+XXY мужчиной. В обоих

случаях они проявляли дефекты развития, но все же пол определялся наличием или

отсутствием Y-хромосомы. Люди генотипа XXX2A представляют собой

бесплодную женщину, с генотипом XXXY2A - бесплодных умственно отстающих

мужчин. Такие генотипы возникают в результате нерасхождения половых

хромосом, что приводит к нарушению развития (например, синдром

Клайнфельтера (XXY)). Нерасхождение хромосом изучаются как в мейозе, так и в

митозе. Нерасхождение может быть следствием физического сцепления Х-

хромосом, в таком случае нерасхождение имеет место в 100% случаев.

Несмотря на то, что женщины имеют две Х-хромосомы, а мужчины - только

одну, экспрессия генов Х-хромосомы происходит на одном и том же уровне у обоих

полов. Это объясняется тем, что у женщин в каждой клетке полностью

инактивирована одна Х-хромосома (тельце Барра), о чем уже было сказано выше. Х-

хромосома инактивируется на ранней стадии эмбрионального развития , 17

соответствующей времени имплантации, при этом в разных клетках отцовская и

материнская Х-хромосомы выключаются случайно. Состояние инактивации данной

Х-хромосомы наследуется в ряду клеточных делений. Таким образом, женские

особи, гетерозиготные по генам половых хромосом, представляют собой мозаики

(например, черепаховые кошки).

Таким образом, пол человека представляет собой менделирующий признак,

наследуемый по принципу обратного (анализирующего) скрещивания.

Гетерозиготой оказывается гетерогаметный пол (XY), который скрещивается с

рецессивной гомозиготой, представленной гомогаметным полом (XX). В результате

в природе обнаруживается наследственная дифференцировка организмов на

мужской и женский пол и устойчивое сокращение во всех поколениях

количественного равенства полов.

Значение средовых и генотипических факторов в формировании

патологически измененного фенотипа человека

Как известно, фенотип -

совокупность всех признаков и свойств организма, сформировавшихся в процессе

его индивидуального развития. Фенотип складывается в результате взаимодействия

наследственных свойств организма, то есть генотипа, и условий среды обитания.

В ядрах клеток содержится полученный от родителей набор хромосом, несущих

совокупность генов, которые характерны для данного вида вообще и для данного

организма в частности. Эти гены несут информацию о белках, которые могут

синтезироваться в этом организме, а также о механизмах, определяющих их синтез

и его регуляцию; в процессе развития осуществляется

последовательное включение генов и синтез тех белков, которые они кодируют19

(экспрессия генов). В результате происходит развитие всех признаков и свойств

организма, которые и составляют его фенотип.

Таким образом, фенотип - это продукт реализации той генетической программы,

которая содержится в генотипе, однако генотип не однозначно

определяет фенотип - в большей или меньшей степени он зависит и от внешних

условий.

Говоря о роли вышеупомянутых факторов в формировании патологически

измененного фенотипа особи того или иного пола, стоит отметить хромосомные

патологии.

Хромосомные болезни - наследственные заболевания, обусловленные

изменением числа или структуры хромосом. Частота хромосомных болезней среди

новорождённых детей около 1%. Многие изменения хромосом несовместимы с

жизнью и являются частой причиной спонтанных абортов и мертворождений. При

спонтанных абортах обнаружено около 20% эмбрионов с аномальными

кариотипами (хромосомными наборами).

Фенотипические проявления хромосомных мутаций зависят от следующих

главных факторов:1) особенности вовлеченной в аномалию хромосомы

(специфический набор генов); 2) тип аномалии (трисомия, моносомия, полная,

частичная); 3) размер недостающего генетического материала при частичной

моносомии или избыточного генетического материала при частичной трисомии;

4) степень мозаичности организма по аберрантным клеткам;

содержится только одна хромосома X, в остальных случаях наблюдаются различные

типы структурных перестроек хромосомы X.

У новорожденных и детей грудного возраста отмечаются признаки дисплазии:

короткая шея с избытком кожи и крыловидными складками, лимфатический отек

стоп, голеней, кистей рук и предплечий, вальгусная деформация стоп (деформация

большого пальца стопы), множественные пигментные пятна, низкорослость. В

подростковом возрасте выявляются отставание в росте (рост взрослых 135-145 см) и

в развитии вторичных половых признаков. Для взрослых характерно низкое

расположение ушных раковин, недоразвитие первичных и вторичных половых

признаков, дисгенезия гонад, сопровождающаяся первичной аменореей. У 20%

больных имеются пороки сердца (коарктация аорты, стеноз аорты, пороки развития

митрального клапана), у 40% - пороки почек (удвоение мочевыводящих путей,

подковообразная почка). У больных, имеющих клеточную линию с Y-хромосомой,

может развиться гонадобластома (опухоль, возникающая в дисгенетических гонадах

у пациенток с мужским псевдогермафродитизмом), часто наблюдается

аутоиммунный тиреоидит. Недоразвитие яичников приводит к бесплодию. Для

подтверждения диагноза наряду с исследованием клеток периферической крови

проводятся биопсия кожи и исследование фибробластов. Больные с синдромом

Шерешевского - Тернера низкого роста, имеют своеобразную “щитовидную”

грудную клетку и широко расставленные соски (90%). У них очень часто

наблюдаются вальгусная деформация локтей, короткая IV пястная кость,

остеопороз, множество родимых пятен на коже. Лицо больных очень напоминает

лицо “сфинкса” из-за уменьшенного подбородка, широкой переносицы и

гипертелоризма, эпиканта (вертикальная складка кожи полулунной формы,

прикрывающая внутренний угол глазной щели), птоза (опущение верхнего века). В23

50 % случаев больные умственно отсталые. Они пассивны, астеничны (повышенной

утомляемости и истощаемости, сниженном пороге чувствительности, крайней

неустойчивости настроения, нарушении сна), склонны к психогенным реакциям и

реактивным психозам. Кроме того, часто отмечается нарушение слуха (около 40%).

У 58 % больных с кариотипом Х0 наблюдаются отиты и почти у 35 % есть дефект

слуха, что объясняется аномальным расположением слуховой трубы из-за

неправильного формирования каудального отдела наружного слухового прохода.

При патологоанатомическом исследовании вместо гонад у таких больных

находят недифференцированный тяж, не содержащий фолликулов и секреторных

клеток. В 60 % случаев встречаются аномалии мочевой системы, чаще

подковообразная почка, удвоение почек и мочевыводящих путей; реже описывают

врожденные аномалии сердца (20 % случаев). У спонтанных и индуцированных

абортусов с кариотипом Х0 находят лимфангиомы шеи, подковообразную почку,

однорогую матку, патологические изменения в гонадах, иногда отсутствует

пупочная артерия.

В некоторых случаях генетическое исследование позволяет выявить синдром

Нуннан, который имеет схожие фенотипические проявления, однако этиологически

не связан с синдромом Шерешевского-Тернера. В отличие от последнего при

синдроме Нуннан заболеванию подвержены как мальчики, так и девочки, а в

клинической картине доминирует задержка умственного развития, характерен

Тернер-фенотип при нормальном мужском или женском кариотипе. У большинства

больных синдромом Нуннан имеется нормальное половое развитие и сохранена

фертильность. В большинстве случаев заболевание не сказывается на

продолжительности жизни пациентов.

Предварительный диагноз синдрома Шерешевского - Тернера основан на

характерной клинической картине и исследовании полового хроматина,

окончательный - на результатах цитогенетического анализа. Дифференциальную

диагностику проводят с синдромом Боневи - Ульриха - аутосомно-доминантной

болезнью, при которой у некоторых больных сохраняется генеративная функция,

наблюдается передача патологического гена или генов из поколения в поколение и

отсутствует характерная цитогенетическая картина (Х0).24

Лечение в основном симптоматическое и обычно направлено на коррекцию

вторичных половых признаков.

Синдром XXY хромосом (синдром Клайнфельтера)

Синдром Клайнфельтера встречается у 1 из 500 мальчиков. Больные с

классическим вариантом синдрома имеют кариотип 47,XXY . Возможны и другие

кариотипы, а у 10% больных выявляется мозаицизм 46,XY/47,XXY, встречаются и

более редкие кариотипы: 48,XXXY; 49,XXXX; 48,XXYY; 49,XXXYY . Синдром

обычно проявляется в подростковом возрасте как задержка полового развития.

Половой член и яички уменьшены, телосложение евнухоидное , имеются

гинекомастия (увеличение молочных желез у мужчин) и умеренная задержка

психического развития. Больные предрасположены к сахарному диабету,

заболеваниям щитовидной железы и раку молочной железы. Наличие в кариотипе

не менее двух Х-хромосом и одной Y-хромосомы - самая распространенная причина

первичного гипогонадизма у мужчин.

Примерно у 10% больных с синдромом Клайнфельтера наблюдается мозаицизм

46,XY/47,XXY. Поскольку в формировании фенотипа участвует клон клеток с

нормальным кариотипом, больные с мозаицизмом 46,XY/47,XXY могут иметь

нормально развитые половые железы и быть фертильными. Добавочная Х-

хромосома в 60% случаев наследуется от матери, особенно при поздней

беременности. Риск наследования отцовской Х-хромосомы не зависит от возраста

Для синдрома Клайнфельтера характерен фенотипический полиморфизм.

Наиболее частые признаки: высокорослость, непропорционально длинные ноги,

евнухоидное телосложение, маленькие яички (длинная ось менее 2 см).

Производные вольфова протока формируются нормально. В детском возрасте

нарушения развития яичек незаметны и могут не выявляться даже при биопсии. Эти

нарушения обнаруживают в пубертатном периоде и позднее. В типичных случаях

при биопсии яичка у взрослых находят гиалиноз извитых семенных канальцев

(белковая дистрофия, приводящая к утолщению коллагеновых волокон),

гиперплазию клеток Лейдига (клетки, рассеянные между извитыми семенными25

канальцами яичек), уменьшение численности или отсутствие клеток Сертоли

(соматические клетки, расположенные в извитых канальцах семенников);

сперматогенез отсутствует. Больные, как правило, бесплодны (даже если есть

признаки сперматогенеза). Формирование вторичных половых признаков обычно

нарушено: оволосение лица и подмышечных впадин скудное или отсутствует;

наблюдается гинекомастия; отложение жира и рост волос на лобке по женскому

типу. Как правило, психическое развитие задерживается, но у взрослых нарушения

интеллекта незначительны. Нередко встречаются нарушения поведения,

эпилептическая активность на электроэнцефалограмме, эпилептические припадки.

Сопутствующие заболевания: рак молочной железы, сахарный диабет, болезни

щитовидной желез, хронические обструктивные заболевания легких.

Способы лечения бесплодия при синдроме Клайнфельтера пока не разработаны.

Заместительную терапию тестостероном обычно начинают с 11-14 лет; при

дефиците андрогенов она существенно ускоряет формирование вторичных половых

признаков. У взрослых больных на фоне лечения тестостероном повышается

половое влечение. При гинекомастии может потребоваться хирургическое

вмешательство. Психотерапия способствует социальной адаптации больных с

синдромом Клайнфельтера и больных с другими аномалиями половых хромосом.

Общий вывод о роли факторов генотипа и среды в развитии патологически

измененного фенотипа человека

Таким образом, значение средовых и генотипических факторов в формировании

патологически измененного фенотипа человека очень велико, так как фенотип есть

реализация генотипа в ходе индивидуального развития и в определенных условиях

среды обитания, факторы которой часто оказывают определяющее значение на

проявление и развитие того или иного признака и свойства. Поэтому организмы,

имеющие одинаковые генотипы, могут заметно отличаться друг от друга по

фенотипу.

Следствием генетических нарушений могут возникать врожденные заболевания и

аномалии развития. Врожденные болезни могут быть результатом генетических26

нарушений и следствием вредных воздействий на плод, развивающийся из

нормальных половых клеток, без генетических мутаций.

В то же время существуют патологии, обусловленные только воздействием

факторов среды. Но и при этих болезнях причины, течение и исход их будет

определяться генотипом. Следовательно, формирование патологического фенотипа

детерминировано наследственной информацией при условии влияния окружающей

среды.
3). Класс Цестоды. Морфология, жизненный цикл, патогенность лентеца широкого. Диагностика и профилактика дифиллоботриоза.

Тип: Плоские черви (Plathelminthes)

Класс: Ленточные черви (Cestoidea)

Подкласс: Cestoda

Отряд: цепни (Cyclophyllidea)
Вид: Заболевание:

Taenia solium Тениоз, цистицеркоз

(свиной или вооруженный)
Taeniarhyncus saginatus Тениаринхоз

(бычий или невооруженный)
Hymenolepis nama (карликовый) Гименолепидоз
Echinococcus granulosus (эхинококк) Эхинококкоз
Alveococcus multilocularis (альвеококк) Альвеококкоз
Отряд: лентецы (Pseudophyllidea)

Виды финн:

а)цистицерк-пузырчатое образование, размером с горошину, заполнено жидкостью и содержит ввернутый внутрь сколекс с органами фиксации (свиной и бычий цепни);

б)цистицеркоид- содержит сколекс, ввернутый внутрь двухстенного пузырька с длинным хвостовидным предатком (карликовый цепень);

в)ценур- пузырчатая финна со многими сколексами (мозговой цепень)

г)эхинококк- имеет сложное строение, полость пузыря заполнена жидкостью, стенка его образована двумя слоями: наружным-хитиноподобным и внутренним- паренхиматозным (герминативным). От внутренней оболочки отшнуровываются дочерние и внучатые пузыри, внутри которых в выводковых камерах образуются головки; число их сильно варьирует, иногда достигая 100. В результате отпочковывания новых камер размер пузыря эхинококка непрерывно возрастает (эхинококк);

д)альвеококк- плотное мелкопузырсатое образование, жидкости не имеет, обладает экзогенным ростом. На разрезе имеет ячеистое строение (альвеококк);

е)плероцеркоид- имеет червеобразную форму, длиной 6мм, на переднем конце тела находятся две продольные присасывательные ботрии(лентец широкий).

В организме человека паразитируют представители нескольких десятков видов цестод. Болезни, вызываемые цестодами, называют цестодозами. По особенностям биологии ленточных червей разделяют на группы: 1)гельминты, жизненный цикл которых связан с водной средой (гельминты этой экологической группы имеют активно плавающую личиночную стадию- корацидий и два промежуточных хозяина, обитающих в водной среде. Например- возбудители дифиллоботриозов); 2)гельминты, цикл развития которых не связан с водной средой (более специализированные паразиты, личинки их ни на какой из стадий развития не способны к самостоятельному перемещению). Матка в зрелых члениках не имеет связи с окружающей средой, поэтому яйца выводятся во внешнюю среду не по одиночке, а внутри зрелых члеников). Вторая группа подразделяется на гельминтов: а)использующих человека как окончательного хозяина: б)обитающих в человеке как в промежуточном хозяине; в)проходящих в человеке весь жизненный цикл.

Жизненный цикл клетки - это весь период существова­ния клетки (от деления до деления или от деления до смерти). Клеточный цикл состоит из митотического периода (М) и интерфазы (межмитотического периода). (Рис. 2-12). Интерфаза в свою очередь состоит из пресинтетического (G1), синтетического (S) и постсинтетического (G2) периодов. В пресинтетическом (постмитотическом, G1) периоде дочерняя клетка достигает размеров и структуры материнской, для чего в ней происходит биосинтез РНК и белков цитоплазмы и ядра. Кроме того, в ней синтезируются РНК и белки, необходимые для синтеза ДНК в следующем периоде. В синтетическом (S) периоде происходит удвоение (редупликация) ДНК и, соответственно, удваивается число хромосом (их количество становится тетраплоидным, 4n). В постсинтетическом (премитотическом, G2) периоде клетка готовится к митозу, в ней происходит синтез РНК и белков (тубулинов) веретена деления, накопление энергии, необходимой для митоза. Вышеописанный жизненный цикл характерен для популяции клеток, которые непрерывно делятся.

Рис. 2-12. Схема клеточного цикла. (По Э. Г. Улумбекову).

Кроме того, в организме есть клетки, которые временно или постоянно находятся вне митотического цикла (в G0 пе­риоде). Этот период характеризуется как состояние репродуктивного покоя. Такие клетки можно разделить на три группы: 1) клетки, которые после деления длительно не меняют своих морфологических свойств и сохраняют способность к делению; это стволовые, камбиальные клетки (в эпителии, красном костном мозге); 2) клетки, которые после деления растут, дифференцируются, выполняют в органах специфические функции, но в случае необходимости (при повреждении данного органа) восстанавливают свою способность к размножению (клетки печени); 3) высокоспециализированные клетки, которые растут, дифференцируются, выполняют свои специфические функции и в таком состоянии существуют до смерти, никогда не делясь и постоянно находясь в G0 периоде (высоко специализированные клетки сердца и мозга). Продолжительность жизни этих клеток приближается к продолжительности жизни целого организма.

После появления, в результате деления молодые клетки растут и дифференцируются. Рост клетки означает увеличение размеров её цитоплазмы и ядра, увеличение числа органоидов. Дифференцировка подразумевает морфофункциональную специализацию клетки, т. е. увеличение числа определённых органелл общего назначения, или появление органоидов специального назначения, необходимых для выполнения клеткой специльных функций.

От нескольких дней до многих лет клетка выполняет свою определённую функцию в организме, а затем постепенно стареет и погибает .

Старение клеток связано с изнашиванием структур клеток в результате длительной, интенсивной работы, прежде всего, в связи с изменениями состояния генома и, как следствие, в связи со снижением интенсивности репликации ДНК, приводящем к угнетению биосинтеза белка. При этом популяция клеток может постепенно уменьшаться (нервные клетки, кардиомиоциты), или частично (клетки печени, почек, желез) или полностью (покровные эпителии) обновляться. При этом процесс обновления может идти очень быстро: полное обновление эпидермиса кожи происходит за 3-4 недели, а эпителия желудка и кишечника – за 3-5 дней. Длительность существования этих обновляющихся популяций равна продолжительности жизни организма.

При старении увеличивается объём клетки, нарушаются межклеточные контакты, уменьшается текучесть её мембран и интенсивность транспортных и обменных процессов. В результате повреждения рецепторов цитолеммы уменьшается возбудимость и реактивность клетки, дезорганизуется цитоскелет. Ядро клетки становится неровным, расширяется перинуклеарное пространство, увеличивается доля гетерохроматина. Митохондрии просветляются, в них уменьшается количество крист, наблюдается расширение цистерн эндоплазматической сети, уменьшение числа рибосом, происходит редукция комплекса Гольджи. Увеличивается число всех видов лизосом, включая остаточные тельца в которых накапливаются трудно перевариваемые вещества (например, пигмент старения липофусцин), уменьшается стабильность лизосомальных мембран, возрастает аутофагия. В результате клетка постепенно разрушается и ее остатки фагоцитируются макрофагами.

Смерть клетки. Различают две формы гибели клеток – некроз и апоптоз .

Некроз вызывается главным образом различными внешними факторами (химическими или физическими), которые нарушают проницаемость мембран и клеточную энергетику. В результате нарушается ионный состав клетки, происходит набухание мембранных органоидов, прекращается синтез АТФ, нуклеиновых кислот, белков, происходит деградация ДНК, активация лизосомных ферментов, что в итоге приводит к растворению, "самоперевариванию" клетки – лизису. Этот процесс преобладает при старении клетки (рис. 2-13А).

Апоптоз начинается с активации в ядре генов, ответственных за самоуничтожение клетки (генов запрограммированной гибели клетки ). Программа такого самоуничтожения может включаться при воздействии на клетку сигнальных молекул или наоборот, прекращении действия регулирующего сигнала. Апоптоз широко распространён в эмбриогенезе, в процессе которого в организме образуется гораздо больше клеток, чем нужно для взрослого организма. Примером запрограммированной гибели клеток во взрослом организме является атрофия молочной железы после окончания лактации, гибель клеток жёлтого тела в конце менструального цикла. Процесс апоптоза значительно отличается от некроза. В начале апоптоза синтез РНК и белка не снижается, в цитоплазме клетки возрастает содержание ионов кальция, активируются эндонуклеазы, под действием которых происходит расщепление ДНК на нуклеосомные фрагменты. При этом хроматин конденсируется, образуя грубые скопления по периферии ядра. Затем ядра начинают фрагментироваться, распадаться на «микроядра», каждое из которых покрыто ядер­ной оболочкой. При этом цитоплазма также начинает фраг­ментироваться и от клетки отшнуровываются крупные фрагменты, часто содержащие «микроядра» – апоптические тельца (рис 2-13Б). При этом клетка как бы рассыпается на фрагменты, а апоптические тельца поглоща­ются фагоцитами или некротизируются и постепенно растворяются.

Жизненный цикл клетки включает в себя ее образование и завершается концом ее существования как самостоятельной единицы. Клетка возникает в процессе деления материнской клетки и кончает существование в результат следующего ее деления или гибели. Жизненный цикл клетки состоит из интерфазы и митоза, и в этом он равнозначен клеточному циклу.

Интерфаза - период между двумя очередными митотическими делениями клетки. Воспроизведение хромосом происходит сходно с полуконсервативной репликацией (редупликацией) молекул ДНК. Ядро клетки в интерфазе окружено двухмембранной оболочкой, хромосомы раскручены (неконденсированы) и незаметны при обыкновенном световом микроскопировании, При фиксации и окрашивании клеток наблюдается скопление интенсивно окрашенного вещества - хроматина. В цитоплазме содержатся все необходимые органоиды, что обеспечивает нормальную жизнь клетки.

Первый период интерфазы (пересинтетический). В результате предшествующего митоза количество клеток увеличивается, они растут. Происходит транскрипция новых молекул информационной РНК, синтезируются молекулы других РНК, в цитоплазме и ядре синтезируются белки. Часть веществ цитоплазмы расщепляется с образованием АТФ, молекулы которой имеют макроэргические связи и переносят энергию к тем местам в клетке, где в ней есть потребность. Клетка при этом увеличивается и достигает размеров материнской. Этот период у специализированных клеток длится долго и в течение его они осуществляют свои специфические функции.

Второй период ин тер фазы (синтетически и), или период синтеза ДНК, - узловой в клеточном цикле. Его блокада приводит к остановке цикла. В это время происходят репликация молекул ДНК, синтез участвующих в построении хромосом белков. Молекулы ДНК связываются с молекулами белков и хромосомы становятся толще. В это же время происходит репродукция центриолей и их становится две пары. В каждой паре новая центриоль располагается по отношению к старой под углом 90°. В дальнейшем во время следующего митоза каждая пара центриолей отходит к полюсам клетки.

Синтетический период интерфазы характеризуется не только повышенным синтезом ДНК, но и резким увеличением образования в клетке молекул РНК и белков.

Третий период интерфазы (постсинтетический) характеризуется подготовкой клетки к следующему митотическому делению, Длительность этого периода обычно всегда меньше остальных периодов интерфазы. В некоторых случаях он может вообще выпадать.

Продолжительность жизненною (клеточного) цикла. Общая продолжительность клеточного цикла - генерационного времени – и отдельных его периодов у разных клеток различна (табл. 37). Наиболее компактный клеточный цикл у камбиальных клеток. Иногда сокращается или даже совсем выпадает постсинтетический период генерационного времени. Например, у трехнедельной крысы в клетках печени он сокращается до получаса при общей продолжительности генерационного времени 21,5 ч. Продолжительность синтетического периода наиболее стабильна.

В других случаях во время первого, пресинтетического, периода-интерфазы клетка приобретает свойства выполнять специфические функции, что связано с усложнением ее строения. Если специализация не зашла слишком далеко, клетка способна пройти весь жизненный цикл с образованием двух новых клеток в митозе. В этом случае первой период жизни клеток может значительно увеличиваться. Например, У клеток кожного эпителия мыши генерационное время (585,6 ч) в основном приходится на пресинтетический период (528 ч), а в клетках периоста молодой крысы на такой период приходится 102 ч из 114 всего

генерационного времени. Основная часть этого времени получила название G 0 -периода, когда осуществляется интенсивная специфическая функция клетки. Так, большинство клеток печени находятся в G 0 -периоде и потеряли способность к митозу. Если же удалить часть печени, то многие клетки ее переходят к полному прохождению синтетического, постсинтетического периодов и митотического процесса. Таким образом, для различных клеточных популяций доказана обратимость Go -периода. В других случаях степень специализации стала настолько высокой, что при обычных условиях клетки уже не могут митотически делиться. Иногда в таких клетках происходит эндорепродукция (см. Эндорепродукция). В некоторых клетках она повторяется много раз и хромосомы становятся настолько толстыми, что видны в обыкновенный световой микроскоп.



gastroguru © 2017