Виды микроскопов: описание, основные характеристики, назначение. Чем электронный микроскоп отличается от светового? Что такое микроскоп? Определение, фото Что такое микроскоп определение

На протяжении нескольких столетий этот оптический прибор являлся не только одним из двигателей научно-технического прогресса, но и воодушевлял исследователей на расширение границ собственного познания. Благодаря ему сделано множество величайших открытий, используемых в современной жизнедеятельности человека. Зачем нужен микроскоп - этот вопрос актуален и для молодого поколения, жаждущего знаний и не равнодушного к науке. Нет никаких сомнений, что самое интересное - еще впереди. Поэтому, если вас или ребенка посетила мысль о занятиях биологией - это уже хорошо, так как растет достойная смена, которая в будущем определит вектор развития цивилизации.

Да просто увидеть своими глазами, что рядом с нами тысячелетиями существует невидимый мир, который практически нереально уловить без увеличительных инструментов. Остановимся подробнее на основных преимуществах, ведь помимо микроорганизмов, клеток и бактерий, привычные вещи также обретают зрительно новую удивительную форму, стоит лишь посмотреть на них сквозь отверстие окуляра.

Наглядное обучающее пособие. Микроскопами оборудуются классы в общеобразовательных учреждениях, например, в школах, лицеях и ВУЗах. Министерство образования еще во времена СССР разработало методику, при которой ученик может лицезреть инфузорию туфельку, эвглену, амебу не только на картинке учебника, но и вживую. При этом информация лучше откладывается в голове, а ребятишки могут более осознано выбирать свою профессию.

Увлекательное хобби. Приобретая микроскоп для своего смышленого чада, родители иногда пожимают плечами - мол, зачем он ему нужен. Однако, как только письменный стол превращается в домашнюю лабораторию, во впечатляющие наблюдения втягиваются не только дети, но и мамы и папы. В итоге это может превратиться в яркое семейное увлечение! Рассматривать можно абсолютно все - не только микроскопические организмы и их на первый взгляд забавную суетливую деятельность в обычной капле воды, но и все, что попадается под руку - монеты, ткани, бумажные изделия и пластик, камушки, песок, соль и сахар. Если фантазии и жажда узнать что-то новенькое не иссякают - то вопрос «что еще увеличить» отпадет сам собой.

Проверка продуктов питания на качество. Действительно, сегодня сформировалась целая прослойка граждан, желающих вести здоровый образ жизни. И микроскоп тут пригодится как нельзя кстати. Смотрите на мясо, молоко, хлеб, муку, злаки в общем на все, что потребляется в пищу. И на основе увиденного можно делать выводы - пригодно это для еды или надо подкорректировать рацион.

Творческий процесс. В век компьютерных технологий микроскопия также не осталась в стороне. С помощью специальных камер можно снимать фотографии и видео увеличенных предметов! А если полученные результаты исследований в виде файлов выкладывать на соответствующих Интернет-ресурсах или в социальных сетях, то в скором времени у биолога-новичка появится круг поклонников его необычного творчества. А как насчет ювелирного дела и создания украшений с изящным маленьким узором? Это тоже реально, правда для этого понадобится инструментальная модель.

МИКРОСКОП
оптический прибор с одной или несколькими линзами для получения увеличенных изображений объектов, не видимых невооруженным глазом. Микроскопы бывают простые и сложные. Простой микроскоп - это одна система линз. Простым микроскопом можно считать обычную лупу - плосковыпуклую линзу. Сложный микроскоп (который часто называют просто микроскопом) представляет собой комбинацию двух простых. Сложный микроскоп дает большее увеличение, чем простой, и обладает большей разрешающей способностью. Разрешающая способность - это возможность различения деталей образца. Увеличенное изображение, на котором неразличимы подробности, дает мало полезной информации. Сложный микроскоп имеет двухступенчатую схему. Одна система линз, называемая объективом, подводится близко к образцу; она создает увеличенное и разрешенное изображение объекта. Изображение далее увеличивается другой системой линз, называемой окуляром и помещающейся ближе к глазу наблюдателя. Эти две системы линз расположены на противоположных концах тубуса.

Работа с микроскопом. На иллюстрации представлен типичный биологический микроскоп. Штативная подставка выполняется в виде тяжелой отливки, обычно подковообразной формы. К ней на шарнире прикреплен тубусодержатель, несущий все остальные части микроскопа. Тубус, в который вмонтированы линзовые системы, позволяет перемещать их относительно образца для фокусировки. Объектив расположен на нижнем конце тубуса. Обычно микроскоп снабжен несколькими объективами разного увеличения на револьверной головке, которая позволяет устанавливать их в рабочее положение на оптической оси. Оператор, исследуя образец, начинает, как правило, с объектива, имеющего наименьшее увеличение и наиболее широкое поле зрения, находит детали, интересующие его, а затем рассматривает их, пользуясь объективом с большим увеличением. Окуляр вмонтирован в конец выдвижного держателя (который позволяет изменять длину тубуса, когда это необходимо). Весь тубус с объективом и окуляром можно передвигать вверх и вниз, наводя микроскоп на резкость. Образец обычно берется в виде очень тонкого прозрачного слоя или среза; его кладут на прямоугольную стеклянную пластинку, называемую предметным стеклом, и накрывают сверху более тонкой стеклянной пластинкой меньших размеров, называемой покровным стеклом. Образец часто окрашивают химическими веществами, чтобы увеличить контраст. Предметное стекло кладут на предметный столик так, чтобы образец находился над центральным отверстием столика. Столик обычно снабжается механизмом для плавного и точного перемещения образца в поле зрения. Под предметным столиком находится держатель третьей системы линз - конденсора, который концентрирует свет на образце. Конденсоров может быть несколько, и здесь же располагается ирисовая диафрагма для регулировки апертуры. Еще ниже расположено осветительное зеркало, устанавливаемое в универсальном шарнире, которое отбрасывает свет лампы на образец, за счет чего вся оптическая система микроскопа и создает видимое изображение. Окуляр можно заменить фотоприставкой, и тогда изображение будет формироваться на фотопленке. Многие исследовательские микроскопы оснащаются специальным осветителем, так что в осветительном зеркале нет необходимости.
Увеличение. Увеличение микроскопа равно произведению увеличения объектива на увеличение окуляра. Для типичного исследовательского микроскопа увеличение окуляра равно 10, а увеличение объективов - 10, 45 и 100. Следовательно, увеличение такого микроскопа составляет от 100 до 1000. Увеличение некоторых микроскопов достигает 2000. Повышать увеличение еще больше не имеет смысла, так как разрешающая способность при этом не улучшается; наоборот, качество изображения ухудшается.
Теория. Последовательную теорию микроскопа дал немецкий физик Эрнст Аббе в конце 19 в. Аббе установил, что разрешение (минимально возможное расстояние между двумя точками, которые видны по отдельности) определяется выражением


где R - разрешение в микрометрах (10-6 м), l - длина волны света (создаваемого осветителем), мкм, n - показатель преломления среды между образцом и объективом, а a - половина входного угла объектива (угла между крайними лучами конического светового пучка, входящего в объектив). Величину Аббе назвал числовой апертурой (она обозначается символом NA). Из приведенной формулы видно, что разрешаемые детали исследуемого объекта тем меньше, чем больше NA и чем меньше длина волны. Числовая апертура не только определяет разрешающую способность системы, но и характеризует светосилу объектива: интенсивность света, приходящаяся на единицу площади изображения, приблизительно равна квадрату NA. Для хорошего объектива величина NA составляет примерно 0,95. Микроскоп обычно рассчитывают так, чтобы его полное увеличение составляло ок. 1000 NA.
Объективы. Существуют три основных типа объективов, различающихся степенью исправления оптических искажений - хроматических и сферических аберраций. Хроматические аберрации связаны с тем, что световые волны с разной длиной волны фокусируются в разных точках на оптической оси. В результате изображение оказывается окрашенным. Сферические аберрации обусловлены тем, что свет, проходящий через центр объектива, и свет, идущий через его периферийную часть, фокусируется в разных точках на оси. В результате изображение оказывается нечетким. Ахроматические объективы в настоящее время являются наиболее распространенными. В них хроматические аберрации подавляются благодаря применению стеклянных элементов с разной дисперсией, обеспечивающих схождение крайних лучей видимого спектра - синих и красных - в одном фокусе. Небольшая окрашенность изображения остается и проявляется иногда в виде слабых зеленых полос вокруг объекта. Сферическая аберрация может быть скорректирована только для одного цвета. Во флюоритовых объективах используются добавки к стеклу, улучшающие цветовую коррекцию до такой степени, что окрашенность изображения почти полностью устраняется. Апохроматические объективы - это объективы с самой сложной цветовой коррекцией. В них не только почти полностью устранены хроматические аберрации, но и коррекция сферических аберраций выполнена не для одного, а для двух цветов. Увеличение апохроматов для синего цвета несколько больше, чем для красного, и поэтому для них нужны специальные "компенсирующие" окуляры. Большинство объективов являются "сухими", т.е. они рассчитаны на работу в таких условиях, когда промежуток между объективом и образцом заполнен воздухом; величина NA для таких объективов не превышает 0,95. Если между объективом и образцом ввести жидкость (масло или, что бывает реже, воду), то получится "иммерсионный" объектив с величиной NA, достигающей 1,4, и с соответствующим улучшением разрешения. В настоящее время промышленность выпускает и различного рода специальные объективы. К ним относятся объективы с плоским полем для микрофотографирования, объективы без внутренних напряжений (релаксированные) для работы в поляризованном свете и объективы для исследования непрозрачных металлургических образцов, освещаемых сверху.
Конденсоры. Конденсор формирует световой конус, направляемый на образец. Обычно в микроскопе предусматривается ирисовая диафрагма для согласования апертуры светового конуса с апертурой объектива, чем обеспечиваются максимальное разрешение и максимальный контраст изображения. (Контраст в микроскопии имеет столь же важное значение, как и в телевизионной технике.) Самый простой конденсор, вполне подходящий для большинства микроскопов общего назначения, - это двухлинзовый конденсор Аббе. Для объективов с большей апертурой, особенно иммерсионных масляных, нужны более сложные конденсоры с коррекцией. Масляные объективы с максимальной апертурой требуют специального конденсора, имеющего иммерсионный масляный контакт с нижней поверхностью предметного стекла, на котором лежит образец.
Специализированные микроскопы. В связи с различными требованиями науки и техники были разработаны микроскопы многих специальных видов. Стереоскопический бинокулярный микроскоп, предназначенный для получения трехмерного изображения объекта, состоит из двух отдельных микроскопических систем. Прибор рассчитан на небольшое увеличение (до 100). Обычно применяется для сборки миниатюрных электронных компонентов, технического контроля, хирургических операций. Поляризационный микроскоп предназначен для исследования взаимодействия образцов с поляризованным светом. Поляризованный свет нередко позволяет выявлять структуру объектов, лежащую за пределами обычного оптического разрешения. Отражательный микроскоп снабжен вместо линз зеркалами, формирующими изображение. Поскольку изготовить зеркальный объектив затруднительно, полностью отражательных микроскопов очень мало, и зеркала в настоящее время применяются в основном лишь в приставках, например, для микрохирургии отдельных клеток. Люминесцентный микроскоп - с освещением образца ультрафиолетовым или синим светом. Образец, поглощая это излучение, испускает видимый свет люминесценции. Микроскопы такого типа применяются в биологии, а также в медицине - для диагностики (особенно рака). Темнопольный микроскоп позволяет обойти трудности, связанные с тем, что живые материалы прозрачны. Образец в нем рассматривается при столь "косом" освещении, что прямой свет не может попасть в объектив. Изображение формируется светом, дифрагированным на объекте, и в результате объект выглядит очень светлым на темном фоне (с очень большим контрастом). Фазово-контрастный микроскоп применяется для исследования прозрачных объектов, особенно живых клеток. Благодаря специальным устройствам часть света, проходящего через микроскоп, оказывается сдвинутой по фазе на половину длины волны относительно другой части, чем и обусловлен контраст на изображении. Интерференционный микроскоп - это дальнейшее развитие фазово-контрастного микроскопа. В нем интерферируют два световых луча, один из которых проходит сквозь образец, а другой отражается. При таком методе получаются окрашенные изображения, дающие очень ценную информацию при исследовании живого материала. См. также
ЭЛЕКТРОННЫЙ МИКРОСКОП ;
ОПТИЧЕСКИЕ ПРИБОРЫ ;
ОПТИКА .
ЛИТЕРАТУРА
Микроскопы. Л., 1969 Проектирование оптических систем. М., 1983 Иванова Т.А., Кирилловский В.К. Проектирование и контроль оптики микроскопов. М., 1984 Кулагин С.В., Гоменюк А.С. и др. Оптико-механические приборы. М., 1984

Энциклопедия Кольера. - Открытое общество . 2000 .

Синонимы :

Смотреть что такое "МИКРОСКОП" в других словарях:

    Микроскоп … Орфографический словарь-справочник

    МИКРОСКОП - (от греч. mikros малый и skopeo смотрю), оптический инструмент для изучения малых предметов, недоступных непосредственному рассмотрению невооруженным глазом. Различают простой М., или лупу, и сложный М., или микроскоп в собственном смысле. Лупа… … Большая медицинская энциклопедия

    микроскоп - а, м. microscope m.<гр. mikros малый + skopeo смотрю. Оптический прибор с системой сильно увеличивающих стекол для рассматривания предметов или частей их, не видимых вооруженным глазом. БАС 1. Микроскоп, мелкозор. 1790. Кург. // Мальцева 54.… … Исторический словарь галлицизмов русского языка

    МИКРОСКОП (Microscopus), небольшое созвездие южного неба. Самая яркая его звезда имеет звездную величину 4,7. МИКРОСКОП, оптический прибор, позволяющий получить увеличенное изображение мелких предметов. Первый микроскоп был создан в 1668 г.… … Научно-технический энциклопедический словарь

    - (греч., от mikros маленький, и skopeo смотрю). Физический снаряд для рассматривания самых малых предметов, которые представляются, при посредстве его, в увеличенном виде. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н.,… … Словарь иностранных слов русского языка

    - (от микро... и...скоп) инструмент, позволяющий получать увеличенное изображение мелких объектов и их деталей, не видимых невооруженным глазом. Увеличение микроскопа, достигающее 1500 2000, ограничено дифракционными явлениями. Невооруженным… … Большой Энциклопедический словарь

    Микротекстил, ортоскоп Словарь русских синонимов. микроскоп сущ., кол во синонимов: 11 биомикроскоп (1) … Словарь синонимов

    МИКРОСКОП, а, муж. Увеличительный прибор для рассматривания предметов, неразличимых простым глазом. Оптический м. Электронный м. (дающий увеличенное изображение с помощью пучков электронов). Под микроскопом (в микроскоп) рассматривать что н. |… … Толковый словарь Ожегова

    - (от греч. mikros малый и skopeo смотрю), оптич. прибор для получения сильно увеличенных изображений объектов (или деталей их структуры), не видимых невооружённым глазом. Различные типы М. предназначаются для обнаружения л изучения бактерий,… … Физическая энциклопедия

    МИКРОСКОП, микроскопа, муж. (от греч. mikros маленький и skopeo смотрю) (физ.). Оптический прибор, с системой сильно увеличивающих стекол, для рассматривания предметов, которые не могут быть видимы невооруженным глазом. Толковый словарь Ушакова.… … Толковый словарь Ушакова

    Оптический прибор для получения увеличенного изображения объектов, не различимых невооруженным глазом. В микробиол. используется световой и электронный М. Один из основных показателей М. – разрешение – возможность различать два соседних объекта… … Словарь микробиологии

В обычной жизни многие хотя бы раз, но могли познакомиться с таким устройством, как микроскоп. Например, кто-то работает в сфере, где необходим такой прибор, кто-то другой в школе на биологии пользовался им. При помощи микроскопа можно наблюдать за самыми маленькими частицами и организмами.

Микроскоп - это довольно сложный прибор, он имеет длительную историю. Она будет интересна и полезна для каждого человека. Сперва нужно рассмотреть, что же это такое - микроскоп.

Определение

На данный момент в школе используются микроскопы, которые могут увеличивать до 300-600 крат. Для того чтобы рассмотреть живую клетку, этого будет вполне достаточно. При помощи микроскопа можно увидеть ее вакуоли, стенки, ядро. Но для того, чтобы стать настолько мощным приспособлением, он прошел большой путь открытий и разочарований со стороны ученых.

Значение

Что означает слово "микроскоп"? Оно образуется из двух греческих слов: micros, что значит маленький, и skopeo, что в переводе означает смотрю. Таким образом, прямое предназначение устройства - это рассматривать маленькие объекты. Если говорить о более точной характеристике, то микроскопом является оптический прибор, который работает с одной или несколькими линзами. Благодаря ему можно получать изображение многих объектов, которые нельзя увидеть невооруженным глазом.

История открытия микроскопа

Что такое микроскоп, мы уже рассмотрели. Самое время поговорить о истории его открытия. Точная дата неизвестна. Дело в том, что устройство для рассмотрения небольших объектов археологи находили в совершенно разных эпохах. В старые времена они были обычной лупой. На тот момент она представляла собой двояковыпуклое устройство, которое могло увеличить объект всего лишь в несколько раз. Качество изображения было на низшем уровне, так как изготавливались они не из стекла, а из прозрачного камня.

Развитие

Чуть позже появилось такое понятие, как микроскопы. Принцип работы на тот момент был основан на использовании двух линз. Первая являлась объективом, который необходимо было направить на изучаемый объект. Вторая же была окуляром. В нее смотрел наблюдатель. Из-за хроматических отклонений, а также сферических, получаемое изображение было сильно испорчено. Более того картинка была неточной, нечеткой, а также окрашенной в неправильные цвета. Но даже в то время кратность устройства достигала несколько сот, что являлось неслабым показателем.

Значение слова "микроскоп" обрело смысл с разработкой системы линз, которая была осложнена только в начале XIX века. На тот момент в устройстве объектива уже устанавливалась сложнейшая система, в которую были добавлены собирательные и рассеивающие линзы. Они были созданы из специального стекла, которое компенсировало недостатки друг друга.

Чуть позже был создан микроскоп, который получил предметный столик. Туда можно было складывать все объекты, которые следует изучить. В конструкцию также был добавлен винт, который позволял столик перемещать. И уже немного позже появилось зеркало, которое позволяло идеально освещать объекты. Лабораторные микроскопы на данный момент имеют похожее строение. Они идеально показывают себя в эксплуатации и являются незаменимыми помощниками.

Строение микроскопа

На данный момент существуют простые и сложные микроскопы. Первые работают с одной системой линз, именно такое строение получила лупа. В сложном же сочетают две простейшие линзы. Поговорим немного о последнем варианте.

Сложный микроскоп будет давать большее увеличение, также он имеет хорошую разрешающую способность. Именно благодаря ей можно различать элементы образцов. Например, клетка под микроскопом сложной конструкции будет идеально разложена на составляющие. Увеличенное изображение, где нельзя различать подробности, никакой полезной информации не несет.

Большая часть сложных микроскопов основана на двухступенчатых схемах. Одна линза подносится практически вплотную к объекту, то есть благодаря ей и создается увеличенное изображение. После при помощи окуляра, то есть другой системы линз, само изображение увеличивается. Именно он располагается ближе к глазу наблюдателя. Описанные системы линз должны находиться на разных концах тубуса прибора.

Современные микроскопы

Что такое микроскоп в современном мире? Это приборы, которые могут давать колоссальное увеличение. Оно достигает 2000 крат. При этом нужно отметить, что качество получаемого изображения просто идеальное. Чаще всего такие микроскопы, фото которых имеются в статье, используются в лабораториях для того, чтобы проводить исследования.

Огромную популярность получили бинокулярные микроскопы, так как в них изображение раздваивается, имея один объектив. За счет двух окуляров можно смотреть на объект сразу двумя глазами. А за счет этого можно рассмотреть даже самые мелкие детали.

Виды микроскопов

Первый и самый древний микроскоп - световой. Определение данного устройства звучит таким образом: прибор, который позволяет увеличивать изображение и их структуру, которую нельзя заметить невооруженным глазом. Соответственно, данное устройство работает с набором линз, которые могут регулировать расстояние и зеркало. Последнее необходимо для того, чтобы подсвечивать объект. Довольно часто, когда нет возможности установить рабочую поверхность, можно использовать независимый источник света. Суть этого микроскопа заключается в том, чтобы можно было менять длину волны оптического спектра, который является видимым.

Второй вид микроскопа - это электронный. Он устроен гораздо сложнее, чем описанный выше световой. Последний имеет некоторые недостатки, например, такой микроскоп не сможет дать рассмотреть клетку вируса или любого другого организма, который имеет небольшие размеры, так как свет просто будет его огибать. В этом случае используются электронные приборы. Учитывая, что его магнитное поле делает волны света намного тоньше, можно рассмотреть даже самые маленькие детали. Чаще всего используют такой прибор в биологии.

Третий вид - это зондирующий. Если говорить упрощенно, то это устройство работает при помощи зонда, который посредством движений и колебаний создает трехмерное или же растровое изображение и переносит на компьютер.

Электронные микроскопы

Многих интересует вопрос, что за микроскоп это? Определение будет таким же, как и было описано выше. Разница заключается в совершенно другой конструкции. Благодаря таким микроскопам можно рассмотреть изображения атомов. При этом глагол рассмотреть используется в переносном смысле, так как изображение получается не при помощи объектива. Человеку не нужно смотреть в линзу, все данные переносятся на компьютер. Программное обеспечение само обрабатывает полученную информацию. Конструкция электронного микроскопа имеет другие физические принципы. Для исследования поверхность объектов пронзается тончайшей иглой. Ее кончик имеет размер всего лишь в один атом.

USB-микроскопы

Определение слова "микроскоп" в общем виде мы рассмотрели выше. Но надо также немного узнать об одном из видов этого прибора - USB-технологии. На данный момент, в свете развития цифровых данных, практически каждый человек может приобрести накладку на свой телефон. Благодаря такому USB-микроскопу можно сделать очень мощные и красивые фотографии. Также существуют хорошие микроскопы такого типа, которые подключаются к компьютеру. Нередко они оснащаются памятью, сохраняя полученные изображения. Множество цифровых фотоаппаратов работают с режимом макросъемки. Профессиональная техника позволит сделать фото мельчайших объектов. Если установить собирающую линзу перед объективом фотоаппарата, то можно получить увеличение изображения до 500 крат.

Рентгеновский микроскоп

Рентгеновский микроскоп, фото которого есть в статье, представляет собой устройство, которое может исследовать даже самые маленькие объекты, размеры которых имеют длину рентгеновской волны. Довольно часто такие устройства используют для исследования различных материалов, которые имеют большой атомный номер. На данный момент по разрешающей способности эти устройства находятся между электронными и оптическими микроскопами. Сейчас существуют приборы, показатель которых составляет 5 нанометров.

Разработка такого микроскопа имела ранее серьезные трудности. К сожалению, рентгеновские лучи имеют такое строение, из-за которого фокусировать обычными линзами их невозможно. Дело заключается в том, что они слишком сильно преломляются в прозрачных средах, соответственно, их довольно сложно уловить. В электрических и магнитных полях преломление отсутствует, поэтому линзы такого типа также нельзя использовать для фокусировки.

Устройство

Сейчас в современной оптике имеются отличные линзы, которые имеют эффект обратного лучепреломления.

Человеческий глаз не может уловить рентгеновский луч. Именно поэтому приходится использовать фототехнику или преобразователь, которые помогут увидеть их. Первый рентгеновский микроскоп, который использовался в коммерческих целях, был создан в пятидесятых годах XX века. На тот момент он являлся проекционным микроскопом, в котором были использованы фотопластинки.

На данный момент имеется два типа рентгеновских микроскопов. Они называются "отражательный" и "проекционный". В первом используется явление, которое действует при скользящем падении. Это позволяет максимально улучшить и увеличить проникающую способность лучей. Для того чтобы работать с такими приборами, необходимо поместить источник излучения за изучаемым объектам. Тогда рентгеновские лучи будут просвечиваться. За счет этого такой метод позволяет давать не только информацию о структуре, но и о химическом составе объекта.

Проекционные же представляют собой камеры, расположенные на противоположных концах. С одной стороны находится источник излучения, а с другой человек смотрит.

С микроскопами такого типа довольно часто используются дополнительные оптические приборы. Для того, чтобы получить максимальное увеличение необходимо размещать объект на минимальном расстоянии от излучения. Для этого необходимо фокус расположить на окне рентгеновской трубки. Последнее время ведутся разработки микроскопов, которые будут использовать специальные пластинки френеля, чтобы максимально сфокусировать изображение. Такие микроскопы получили разрешающую способность до 30 нанометров.

Использование и польза

Проекционный микроскоп получил применение во многих сферах науки. Речь идет как минимум о медицине, минералогии, металловедении. Что же можно сделать при помощи рентгеновского проекционного микроскопа? С легкостью изучить качество тонких покрытий. Благодаря данному устройству, можно увеличить срезы ботанических и биологических объектов с толщиной до 200 мкм. Также можно их использовать для того, чтобы провести анализ порошков металлов, как легких, так и тяжелых, изучая строение объектов. Как правило, таковые вещества являются непрозрачными для световых лучей и электронов. Именно поэтому используются рентгеновские микроскопы. Важное достоинство таких приборов заключается в том, что в них можно наблюдать жизненный цикл непрепарированной живой клетки.

Итоги

Что такое микроскоп, мы рассмотрели в данной статье. Его фотографии и полное описание позволят человеку полностью разобраться в данном вопросе. Следует обратить внимание, что сейчас существует большое количество видов данных устройств. Поэтому нужно четко понимать, какие из них в каких сферах используются.

Наиболее популярным сейчас и более известным является световой. Дело в том, что он используется в школах, в государственных лабораториях, то есть в тех организациях, где нет смысла приобретать более дорогостоящее оборудование.

Стоимость на микроскопы заметно варьируется также в зависимости от видов. Например, оптические и цифровые обойдутся потребителям минимум в 2500 руб. Однако у таких моделей небольшое увеличение, полностью соответствующее ценовой категории.

Что такое микроскоп? Это довольно популярное изделие, которое на слуху, и в последнее время часто пользуется спросом. Благодаря ему можно рассматривать клетки, вирусы, разные биологические объекты, которые необходимы для улучшения жизни человека.

Глаз человека устроен так, что не может разглядеть предмет, размеры которого не превышают 0,1 мм. В природе же существуют объекты, чьи размеры намного меньше. Это микроорганизмы, клетки живых тканей, элементы структуры веществ и многое другое.

Еще в античные времена для улучшения зрения применялись шлифованные природные кристаллы. С развитием стеклоделия стали изготовлять стеклянные чечевицы – линзы. Р. Бекон в XIII в. советовал людям со слабым зрением класть на предметы выпуклые стекла для того, чтобы их лучше рассмотреть. В это же время в Италии появились очки, состоявшие из двух соединенных линз.

В XVI в. мастера в Италии и Нидерландах, изготовлявшие очковые стекла, знали о свойстве системы из двух линз давать увеличенное изображение. Одно из первых таких устройств изготовил в 1590 г. голландец 3. Янсен.

Несмотря на то что увеличительная способность сферических поверхностей и линз была известна еще в XIII в., до начала XVII в. никто из естествоиспытателей даже не пытался применить их для наблюдения мельчайших предметов, недоступных невооруженному человеческому глазу.

Слово «микроскоп», произошедшее от двух греческих слов – «маленький» и «смотрю», ввел в научный обиход член академии «Dei Lyncei» (рысеглазых) Десмикиан в начале XVII века.

В 1609 г. Галилео Галилей, изучая сконструированную им зрительную трубу, использовал ее и в качестве микроскопа. Для этого он изменял расстояние между объективом и окуляром. Галилей первым пришел к выводу, что качество изготовления линз для очков и для зрительных труб должно быть различным. Он создал микроскоп, подбирая такое расстояние между линзами, при котором увеличивались не удаленные, а близко расположенные предметы. В 1614 г. Галилей рассматривал при помощи микроскопа насекомых.

Ученик Галилея Э. Торричелли перенял у своего учителя искусство шлифовки линз. Кроме изготовления зрительных труб Торричелли конструировал простые микроскопы, состоявшие из одной крошечной линзы, которую он получал из одной капли стекла, расплавляя над огнем стеклянную палочку.

В XVII в. были популярны простейшие микроскопы, состоявшие из лупы – двояковыпуклой линзы, закрепленной на подставке. На подставке укреплялся и предметный столик, на котором размещался рассматриваемый объект. Внизу под столиком находилось зеркало плоской или выпуклой формы, которое отражало солнечные лучи на предмет и подсвечивало его снизу. Для улучшения изображения лупа перемещалась относительно предметного столика при помощи винта.

В 1665 г. англичанин Р. Гук при помощи микроскопа, в котором использовались маленькие стеклянные шарики, открыл клеточное строение животных и растительных тканей.

Современник Гука голландец А. ван Левенгук изготовлял микроскопы, состоявшие из небольших двояковыпуклых линз. Они давали 150–300?кратное увеличение. При помощи своих микроскопов Левенгук исследовал строение живых организмов. В частности, он открыл движение крови в кровеносных сосудах и красные кровяные тельца, сперматозоиды, описал строение мышц, чешуйки кожи и многое другое.

Левенгук открыл новый мир – мир микроорганизмов. Он описал множество видов инфузорий и бактерий.

Много открытий в области микроскопической анатомии сделал голландский биолог Я. Сваммердам. Наиболее подробно он исследовал анатомию насекомых. В 30?е гг. XVIII в. он выпустил богато иллюстрированный труд под названием «Библия природы».

Методы расчета оптических узлов микроскопа разработал швейцарец Л. Эйлер, работавший в России.

Наиболее распространенная схема микроскопа следующая: исследуемый предмет помещается на предметном столике. Над ним располагается устройство, в котором смонтированы линзы объектива и тубус – трубка с окуляром. Наблюдаемый предмет освещается с помощью лампы или солнечного света, наклонного зеркала и линзы. Диафрагмы, установленные между источником света и предметом, ограничивают световой поток и уменьшают в нем долю рассеянного света. Между диафрагмами установлено зеркало, изменяющее направление светового потока на 90°. Конденсор концентрирует на предмете пучок света. Объектив собирает лучи, рассеянные предметом и образует увеличенное изображение предмета, рассматриваемое при помощи окуляра. Окуляр работает как лупа, давая дополнительное увеличение. Пределы увеличения микроскопа от 44 до 1500 раз.

В 1827 г. Дж. Амичи применил в микроскопе иммерсионный объектив. В нем пространство между предметом и объективом заполнено иммерсионной жидкостью. В качестве такой жидкости применяются различные масла (кедровое или минеральное), вода или водный раствор глицерина и др. Такие объективы позволяют увеличить разрешающую способность микроскопа, улучшить контрастность изображения.

В 1850 г. английский оптик Г. Сорби создал первый микроскоп для наблюдения объектов в поляризованном свете. Такие аппараты применяются для изучения кристаллов, образцов металлов, животных и растительных тканей.

Начало интерференционной микроскопии было положено в 1893 г. англичанином Дж. Сирксом. Ее суть в том, что каждый луч, входя в микроскоп, раздваивается. Один из полученных лучей направляется на наблюдаемую частицу, второй – мимо нее. В окулярной части оба луча вновь соединяются, и между ними возникает интерференция. Интерференционная микроскопия позволяет изучать живые ткани и клетки.

В XX в. появились различные виды микроскопов, имеющие разное назначение, конструкцию, позволяющие изучать объекты в широких диапазонах спектра.

Так, в инвертированных микроскопах объектив располагается под наблюдаемым объектом, а конденсор – сверху. Направление хода лучей изменяется при помощи системы зеркал, и в глаз наблюдателя они попадают, как обычно – снизу вверх. Эти микроскопы предназначены для изучения громоздких предметов, которые трудно расположить на предметных столиках обычных микроскопов. С их помощью исследуют культуры тканей, химические реакции, определяют точки плавления материалов. Наиболее широко такие микроскопы применяются в металлографии для наблюдения за поверхностями металлов, сплавов и минералов. Инвертированные микроскопы могут оснащаться специальными устройствами для микрофотографирования и микрокиносъемки.

На люминесцентных микроскопах устанавливаются сменные светофильтры, позволяющие выделить в излучении осветителя ту часть спектра, которая вызывает люминесценцию исследуемого объекта. Специальные фильтры пропускают от объекта только свет люминесценции. Источниками света в таких микроскопах служат ртутные лампы сверхвысокого давления, излучающие ультрафиолетовые лучи и лучи коротковолнового диапазона видимого спектра.

Ультрафиолетовые и инфракрасные микроскопы служат для исследования областей спектра, недоступного человеческому глазу. Оптические схемы аналогичны схемам обычных микроскопов. Линзы этих микроскопов изготовлены из материалов, прозрачных для ультрафиолетовых (кварц, флюорит) и инфракрасных (кремний, германий) лучей. Они снабжены фотокамерами, фиксирующими невидимое изображение и электронно?оптическими преобразователями, превращающими невидимое изображение в видимое.

Стереомикроскоп обеспечивает объемное изображение объекта. Это собственно два микроскопа, выполненные в единой конструкции таким образом, что правый и левый глаза наблюдают объект под разными углами. Они нашли применение в микрохирургии и сборке миниатюрных устройств.

Микроскопы сравнения представляют собой два обычных объединенных микроскопа с единой окулярной системой. В такие микроскопы можно наблюдать сразу два объекта, сравнивая их визуальные характеристики.

В телевизионных микроскопах изображение препарата преобразуется в электрические сигналы, воспроизводящие это изображение на экране электронно?лучевой трубки. В этих микроскопах можно изменять яркость и контраст изображения. С их помощью можно изучать на безопасном расстоянии объекты, опасные для рассмотрения с близкого расстояния, например радиоактивные вещества.

Лучшие оптические микроскопы позволяют увеличить наблюдаемые объекты примерно в 2000 раз. Дальнейшее увеличение невозможно, поскольку свет огибает освещаемый объект, и если его размеры меньше, чем длина волны, такой объект становится невидимым. Минимальный размер предмета, который можно разглядеть в оптический микроскоп – 0,2–0,3 микрометра.

В 1834 г. У. Гамильтон установил, что существует аналогия между прохождением световых лучей в оптически неоднородных средах и траекториями частиц в силовых полях. Возможность создания электронного микроскопа появилась в 1924 г. после того, как Л. Де Бройль выдвинул гипотезу, что всем без исключения видам материи – электронам, протонам, атомам и др. присущ корпускулярно?волновой дуализм, то есть они обладают свойствами как частицы, так и волны. Технические предпосылки для создания такого микроскопа появились благодаря исследованиям немецкого физика X. Буша. Он исследовал фокусирующие свойства осесимметричных полей и в 1928 г. разработал магнитную электронную линзу.

В 1928 г. М. Кнолль и М. Руска приступили к созданию первого магнитного просвечивающего микроскопа. Три года спустя они получили изображение объекта, сформированного при помощи пучков электронов. В 1938 г. М. фон Арденне в Германии и в 1942 г. В. К. Зворыкин в США построили первые растровые электронные микроскопы, работающие по принципу сканирования. В них тонкий электронный пучок (зонд) последовательно перемещался по объекту от точки к точке.

В электронном микроскопе, в отличие от оптического, вместо световых лучей используются электроны, а вместо стеклянных линз – электромагнитные катушки или электронные линзы. Источником электронов для освещения объекта является электронная «пушка». В ней источником электронов является металлический катод. Затем электроны собираются в пучок с помощью фокусирующего электрода и под действием сильного электрического поля, действующего между катодом и анодом, набирают энергию. Для создания поля к электродам прикладывается напряжение до 100 киловольт и более. Напряжение регулируется ступенеобразно и отличается большой стабильностью – за 1–3 минуты оно изменяется не более чем на 1–2 миллионные доли от исходного значения.

Выходя из электронной «пушки», пучок электронов с помощью конденсорной линзы направляется на объект, рассеивается на нем и фокусируется объектной линзой, которая создает промежуточное изображение объекта. Проекционная линза вновь собирает электроны и создает второе, еще более увеличенное изображение на люминесцентном экране. На нем под действием ударяющихся в него электронов возникает светящаяся картина объекта. Если поместить под экраном фотопластинку, то можно сфотографировать это изображение.

Отличное определение

Неполное определение ↓

В статье рассказывается о том, что такое микроскоп, для чего он нужен, какие виды бывают и история его создания.

Древние времена

В истории человечества всегда находились те, кого не устраивало библейское описание устройства мира, кто хотел сам понять природу вещей и их суть. Или же кого не прельщала судьба обычного крестьянина или рыбака, как того же Ломоносова.

Наиболее широкое распространение различные дисциплины получили в Эпоху Ренессанса, когда люди стали осознавать важность значения исследования окружающего мира и прочих вещей. Особенно в этом им помогали различные оптические устройства, — телескопы и микроскопы. Так что такое микроскоп? Кто его создал и где этот прибор применяется в наше время?

Определение

Для начала, разберем само официальное определение. Согласно ему, микроскоп — это устройство для получения увеличенных изображений или их структуры. От того же телескопа он отличается тем, что нужен для изучения мелких и ближних объектов, а не космических далей. Доподлинно имя автора этого изобретения не известно, но в истории сохранились упоминания о нескольких людях, которые первыми его использовали и конструировали. Согласно им, в 1590 году некий голландец по имени Иоанн Липперсгей представил широкой общественности свое изобретение. Его авторство также приписывают и Захарию Янсену. А в 1624 году всем известный Галилео Галилей также сконструировал подобный прибор.

С тем, что такое микроскоп, разобрались, но как он повлиял на науку? Почти так же, как и его «родственник» телескоп. Пусть и примитивное, но это устройство позволило преодолеть несовершенство человеческого глаза и заглянуть в микромир. С помощью него позже было совершено множество открытий в области биологии, энтомологии, ботаники и прочих наук.

Что такое микроскоп, теперь понятно, но где они еще применяются?

Наука

Биология, физика, химия — все эти области науки порой требуют заглянуть в саму суть вещей, которую наш глаз или же простое увеличительное стекло рассмотреть не могут. Сложно представить современную медицину без этих приборов: с их помощью совершаются открытия, определяются виды болезней, заражений, а недавно даже удалось «сфотографировать» цепочку ДНК человека.

В физике все несколько иначе, особенно в тех ее областях, которые работают над изучением элементарных частиц и прочих мелких объектов. Там микроскоп лабораторный несколько отличается от привычных, и обычные помогают мало, им на смену давно пришли электронные и новейшие зондирующие. Последние позволяют не то что получать впечатляющее увеличение, но и даже регистрировать отдельные атомы и молекулы.

Сюда же можно отнести и криминалистику, которой эти приборы нужны для определения улик, детального сравнения отпечатков пальцев и прочего.

Не обходятся без микроскопов и исследователи древнего мира, такие как палеонтологи и археологи. Им они нужны для детального изучения останков растений, костей животных с людьми и рукотворных изделий минувших эпох. И кстати, мощный микроскоп лабораторный можно свободно купить для собственного использования. Правда, не всем они по карману. Подробнее разберем виды этих устройств.

Виды

Первый, основной и самый древний — это оптический световой. Подобные приборы до сих пор есть в любой школе в классе биологии. Он представляет собой набор линз с регулируемым расстоянием и зеркало для подсветки объекта. Иногда его заменяет независимый источник света. Суть микроскопа такого в том, чтобы изменять длину волн видимого оптического спектра.

Второй — это электронный. Устроен он гораздо сложнее. Если говорить простым языком, то длина волны видимого света составляет 390 до 750 нм. И если объект, к примеру, —клетка вируса или иного живого организма меньше, то свет просто будет как бы огибать его, не сможет нормально отразиться. А подобное устройство обходит такие ограничения: магнитным полем оно делает волны света «тоньше», из-за чего можно рассмотреть самые крошечные объекты. Особенно актуально это в такой науке, как биология. Микроскоп подобного рода намного превосходит оптические световые.

И третий — это зондирующий тип. Если говорить упрощенно, то это устройство, в котором поверхность того или иного образца «прощупывается» зондом и на основе его движений и колебаний составляется трехмерное или растровое изображение.



gastroguru © 2017