Иммунологические реакции кафедра микробиологии и вирусологии фгбоу во. Иммунологические реакции выявления специфических антигенов Иммунологические реакции

1.1. РЕАКЦИЯ АГГЛЮТИНАЦИИ (РА)

РЕАКЦИЯ АГГЛЮТИНАЦИИ (РА)

Благодаря своей специфичности, простоте постановки и демонстративности, реакция агглютинации получила широкое распространение в микробиологической практике для диагностики многих инфекционных заболеваний.

Реакция агглютинации основана на специфичности взаимодействия антител (агглютининов) с целыми микробными или другими клетками (агглютиногенами). В результате такого взаимодействия образуются частицы – агломераты, выпадающие в осадок (агглютинат) в виде хлопьев.

В реакции агглютинации могут участвовать как живые, так и убитые бактерии, спирохеты, грибы, простейшие, риккетсии, а также эритроциты и другие клетки. Реакция протекает в две фазы: первая (невидимая) – специфическая, соединение антигена и антител, вторая (видимая) – неспецифическая, склеивание антигенов, т.е. образование агглютината.

Агглютинат образуется при соединении одного активного центра двухвалентного антитела с детерминантной группой антигена. Реакция агглютинации, как и любая серологическая реакция, протекает в присутствии электролитов.

Внешне проявление положительной реакции агглютинации имеет двоякий характер. У безжгутиковых микробов, имеющих только соматический О– антиген, происходит склеивание непосредственно самих микробных клеток. Такая агглютинация называется мелкозернистой. Он происходит в течение 18 – 22 часов. v

У жгутиковых микробов имеются два антигена – соматический О– антиген и жгутиковый Н– антиген. Если клетки склеиваются жгутиками, образуются крупные рыхлые хлопья и такая реакция агглютинации называется крупнозернистой. Она наступает в течение 2 – 4 часов.

Реакцию агглютинации можно ставить как с целью качественного и количественного определения специфических антител в сыворотке крови больного, так и с целью определения видовой принадлежности выделенного возбудителя. v

Реакцию агглютинации можно ставить как в развернутом варианте, позволяющем работать с сывороткой разведенной до диагностического титра, так и в варианте постановки ориентировочной реакции, позволяющем в принципе обнаружить специфические антитела или определить видовую принадлежность возбудителя.

При постановке развернутой реакции агглютинации, с целью выявления в сыворотке крови обследуемого специфических антител, исследуемую сыворотку берут в разведении 1:50 или 1:100. Это обусловлено тем, что в цельной или мало разведенной сыворотке могут находиться нормальные антитела в очень высокой концентрации, и тогда результаты реакции могут быть неточными. Исследуемым материалом при этом варианте постановки реакции является кровь больного.

Кровь берут натощак или не ранее чем через 6 часов после еды (в противном случае в сыворотке крови могут быть капельки жира, делающие ее мутной и непригодной для исследования). Сыворотку крови больного обычно получают на второй неделе заболевания, набирая стерильно из локтевой вены 3 – 4 мл крови (к этому времени концентрируется максимальное количество специфических антител). В качестве известного антигена используется диагностикум, приготовленный из убитых, но не разрушенных микробных клеток конкретного вида с конкретной антигенной структурой.

При постановке развернутой реакции агглютинации с целью определения видовой, типовой принадлежности возбудителя, антигеном является живой возбудитель, выделенный из исследуемого материала. Известными являются антитела, содержащиеся в иммунной диагностической сыворотке. v

Иммунную диагностическую сыворотку получают из крови вакцинированного кролика. Определив титр (максимальное разведение, в котором обнаруживаются антитела), диагностическую сыворотку разливают по ампулам с добавлением консерванта. Эту сыворотку и используют для идентификации по антигенной структуре выделенного возбудителя.

ВАРИАНТЫ РЕАКЦИИ АГГЛЮТИНАЦИИ

В этих реакциях принимают участие антигены в виде частиц (микробные клетки, эритроциты и другие корпускулярные антигены), которые склеиваются антителами и выпадают в осадок.

Для постановки реакции агглютинации (РА) необходимы три компонента: 1) антиген (агглютиноген); 2) антитело (агглютинин) и 3) электролит (изотонический раствор натрия хлорида).

ОРИЕНТИРОВОЧНАЯ (ПЛАСТИНЧАТАЯ) РЕАКЦИЯ АГГЛЮТИНАЦИИ (РА)

Ориентировочная, или пластинчатая, РА ставится на предметном стекле при комнатной температуре. Для этого пастеровской пипеткой на стекло наносят раздельно каплю сыворотки в разведении 1:10 – 1:20 и контрольную каплю изотонического раствора натрия хлорида. В ту и другую бактериологической петлей вносят колонии или суточную культуру бактерий (каплю диагностикума) и тщательно перемешивают их. Реакции учитывают через несколько минут визуально, иногда с помощью лупы (х5). При положительной РА в капле с сывороткой отмечают появление крупных и мелких хлопьев, при отрицательной – сыворотка остается равномерно мутной.

РЕАКЦИЯ НЕПРЯМОЙ (ПАССИВНОЙ) ГЕМАГГЛЮТИНАЦИИ (РНГА, РПГА)

Реакция ставится: 1) для обнаружения полисахаридов, белков, экстрактов бактерий и других высокодисперстных веществ, риккетсий и вирусов, комплексы которых с агглютининами в обычных РА увидеть не удается, или 2) для выявления антител в сыворотках больных к этим высокодисперстным веществам и мельчайшим микроорганизмам.

Под непрямой, или пассивной, агглютинацией понимают реакцию, в которой антитела взаимодействуют с антигенами, предварительно адсорбированными на инертных частицах (латекс, целлюлоза, полистерол, оксид бария и др. или эритроциты барана, I(0)–группы крови человека).

В реакции пассивной гемагглютинации (РПГА) в качестве носителя используют эритроциты. Нагруженные антигеном эритроциты склеиваются в присутствии специфических антител к данному антигену и выпадают в осадок. Сенсибилизированные антигеном эритроциты используют в РПГА как эритроцитарный диагностикум для обнаружения антител (серодиагностика). Если нагрузить эритроциты антителами (эритроцитарный антительный диагностикум), то можно применять для выявления антигенов.

Постановка. В лунках полистироловых планшетов готовят ряд последовательных разведений сыворотки. В предпоследнюю лунку вносят – 0,5 мл заведомо положительной сыворотки и в последнюю 0,5 мл физиологического раствора (контроли). Затем во все лунки добавляют по 0,1 мл разведенного эритроцитарного диагностикума, встряхивают и помещают в термостат на 2 ч. v

Учет. В положительном случае эритроциты оседают на дне лунки в виде ровного слоя клеток со складчатым или зазубренным краем (перевернутый зонтик), в отрицательном – оседают в виде пуговки или колечка.

1.2. РЕАКЦИЯ НЕЙТРАЛИЗАЦИИ. ЛИЗИСА,
ОПСОНО–ФАГОЦИТАРНАЯ РЕАКЦИЯ, РЕАКЦИЯ ПОВЫШЕННОЙ ЧУВСТВИТЕЛЬНОСТИ

РЕАКЦИЯ НЕЙТРАЛИЗАЦИИ ЭКЗОТОКСИНА АНТИТОКСИНОМ (РН)

Реакция основана на способности антитоксической сыворотки нейтрализовать действие экзотоксина. Она применяется для титрования антитоксических сывороток и определения экзотоксина.

При титровании сыворотки к разным разведениям антитоксической сыворотки прибавляется определенная доза соответствующего токсина. При полной нейтрализации антигена и отсутствия не израсходованных антител наступает инициальная флокуляция. Реакцию флокуляции можно применять не только для титрования сыворотки (например, дифтерийной), но и для титрования токсина и анатоксина. Реакция нейтрализации токсина антитоксином имеет большое практическое значение как метод определения активности антитоксических лечебных сывороток. Антигеном в этой реакции является истинный экзотоксин.

Сила антитоксической сыворотки определяется условными единицами АЕ.

1 АЕ ботулиновой сыворотки – ее количество нейтрализующее 1000 DLM ботулинового токсина. Реакцию нейтрализации с целью определения видовой или типовой принадлежности экзотоксина (при диагностике столбняка, ботулизма, дифтерии и др.) можно проводить in vitro (по Рамону), а при определении токсигенности микробных клеток – в геле (по Оухтерлони).

Реакция лизиса (РЛ)

Одним из защитных свойств иммунной сыворотки является ее способность растворять микробы или клеточные элементы, поступающие в организм.

Специфические антитела, обуславливающие растворение (лизис) клеток, называются лизинами. В зависимости от характера антигена они могу быть бактериолизинами, цитолизинами, спирохетолизинами, гемолизинами и др.

Лизины проявляют свое действие только в присутствии дополнительного фактора – комплемента. Комплемент, как фактор неспецифического гуморального иммунитета, обнаружен почти во всех жидкостях организма, кроме спинномозговой жидкости и жидкости передней камеры глаза. Довольно высокое и постоянное содержание комплемента отмечено в сыворотке крови человека и очень много его в сыворотке крови морской свинки. У остальных млекопитающих содержание комплемента в сыворотке крови различно.

Комплемент – это сложная система сывороточных протеинов. Он нестоек и разрушается при 55 градусах в течение 30 минут. При комнатной температуре комплемент разрушается в течение двух часов. Очень чувствителен к продолжительному встряхиванию, к действию кислот и ультрафиолетовых лучей. Однако, комплемент длительно (до шести месяцев) сохраняется в высушенном состоянии при низкой температуре. Комплемент способствует лизису микробных клеток и эритроцитов.

Различают реакцию бактериолиза и гемолиза.

Суть реакции бактериолиза состоит в том, что при соединении специфической иммунной сыворотки с соответствующими ей гомологичными живыми микробными клетками в присутствии комплемента происходит лизис микробов.

Реакция гемолиза состоит в том, что при воздействии на эритроциты специфической, иммунной по отношению к ним сывороткой (гемолитической) в присутствии комплемента, наблюдается растворение эритроцитов, т.е. гемолиз.

Реакция гемолиза в лабораторной практике используется для определения тира комплемента, а также для учета результатов диагностических реакций связывания комплемента. Титр комплемента – это наименьшее его количество, которое обуславливает лизис эритроцитов в течение 30 минут в гемолитической системе в объеме 2,5мл. Реакция лизиса, как и все серологические реакции происходит в присутствии электролита.

РЕАКЦИИ ГИПЕРЧУВСТВИТЕЛЬНОСТИ (АЛЛЕРГИЧЕСКИЕ)

Определенные формы антигена при повторном контакте с организмом могут вызвать реакцию, специфическую в своей основе, но включающую неспецифические клеточные и молекулярные факторы острого воспалительного ответа. Известны две формы повышенной реактивности: гиперчувствительность немедленного типа (ГНТ) и гиперчувствительность замедленного типа (ГЗТ). Первый тип реакции проявляется при участии антител, при этом реакция развивается не позднее 2 ч после повторного контакта с аллергеном. Второй тип реализуется с помощью Т–клеток воспаления, (Тгзт) как основных эффекторов реакции, обеспечивающих накопление в зоне воспаления макрофагов, реакция проявляется через 6–8 ч и позже.

Развитию реакции гиперчувствительности предшествует встреча с антигеном и возникновение сенсибилизации, т.е. появление антител, активно сенсибилизированных лимфоцитов и пассивно сенсибилизированных цитофильными антителами других лейкоцитов (макрофагов, гранулоцитов).

Реакции гиперчувствительности имеют три фазы развития: иммунологическую; патохимическую; патофизиологическую.

В первой, специфической, фазе аллерген взаимодействует с антителами и (или) сенсибилизированными клетками. Во второй фазе происходит выброс биологически активных веществ из активированных клеток. Освободившиеся медиаторы (гистамин, серотонин, лейкотриены, брадикинин и др.) вызывают различные периферические эффекты, свойственные соответствующему типу реакции – третья фаза.

Реакции повышенной чувствительности четвертого типа

Реакции этого типа обусловлены патогенными межклеточными взаимодействиями сенсибилизированных Т–хелперов, цитотоксических Т–лимфоцитов (Т–киллеров) и активированных клеток системы мононуклеарных фагоцитов, вызванных длительной стимуляцией системы иммунитета бактериальными антигенами, при которой возникает относительная недостаточность системы иммунитета организма элиминировать из внутренней среды бактериальные возбудители инфекционных заболеваний. Данные реакции повышенной чувствительности обуславливают туберкулезные каверны легких, их казеозный некроз и общую интоксикацию у пациентов с туберкулезом. Кожный грануломатоз при туберкулезе и проказе в морфопатогенетическом отношении во многом составляется реакциями повышенной чувствительности четвертого типа.

Наиболее известный пример реакции повышенной чувствительности четвертого типа – это реакция Манту, развивающаяся в месте внутрикожного введения туберкулина больному, организм и система которого сенсибилизированы к антигенам микобактерий. В результате реакции образуется плотная гиперемированная папула с некрозом в центре, которая появляется только через несколько часов (замедленно) после внутрикожного введения туберкулина. Формирование папулы начинается с выхода из сосудистого русла в межклеточные пространства мононуклеарных фагоцитов циркулирующей крови. Одновременно начинается эмиграция из сосудистого русла полиморфонуклеаров. Затем инфильтрация нейтрофилами спадает, и инфильтрат начинает преимуще ственно состоять из лимфоцитов и мононуклеарных фагоцитов. Этим реакция Манту отличается от реакции Артюса, при которой в месте поражения накапливаются преимущественно полиморфонуклеарные лейкоциты.

При реакциях повышенной чувствительности четвертого типа длительная стимуляция антигенами сенсибилизированных лимфоцитов приводит в местах патологических изменении тканей к патологически интенсивному и длительному высвобождению Т–хелперами цитокинов. Интенсивный выброс цитокинов в локусах тканевых повреждений обуславливает гиперактивацию находящихся там клеток системы мононуклеарных фагоцитов, многие из которых в гиперактивированном состоянии образуют тяжи эпителиоидных клеток, а некоторые сливаются между собой с образованием гигантских клеток. Макрофаги, на поверхности которых экспонированы бактериальные и вирусные антигены могут уничтожаться через функционирование Т–киллеров (натуральных киллеров).

Реакция повышенной чувствительности четвертого типа индуцируется распознаванием чужеродного бактериального антигена сенсибилизированными по отношению к нему Т–хелперами. Необходимое условие распознавания – взаимодействие индукторов с антигенами, экспонированными на поверхности антиген–презентирующих клеток после эндоцитоза и переработки мононуклеарными фагоцитами чужеродных иммуногенов. Еще одно необходимое условие – экспонирование антигенов в комплексе с молекулами I класса из главного комплекса тканевой совместимости. После распознавания антигена сенсибилизированные хелперы высвобождают цитокины и, в частности, интерлейкин–2, активирующий натуральные киллеры и мононуклеарные фагоциты. Активированные мононуклеарные фагоциты высвобождают протеолитические ферменты и свободные кислородные радикалы, что повреждает ткани.

Кожно–аллергические пробы – тесты на установление сенсибилизации организма к аллергенам, определение его инфицированности, например, туберкулезом, бруцеллезом, уровня коллективного иммунитета, например, к туляремии. По месту введения аллергена различают: 1) накожные пробы; 2) скарификационные; 3) внутрикожные; 4) подкожные. Клиническая реакция на аллерген при кожно–аллергической пробе подразделяются на местные, общие и очаговые, а также на немедленные и замедленные.

Местные реакции медиаторного типа ГНТ возникают через 5–20 мин, выражаются в виде эритемы и волдыря, исчезают через несколько часов, оцениваются плюсовым методом по величине эритемы, измеряемой в мм. Местные реакции ГЗТ возникают через 24–48 ч, держатся долго, проявляются в виде инфильтрата, иногда с некрозом в центре, оцениваются по величине инфильтрата в мм, также по плюсовой системе. При цитотоксическом и иммунокомплексном типах ГНТ гиперемия и инфильтрация отмечаются через 3–4 ч, достигают максимума на 6–8 ч и затихают примерно через сутки. Иногда наблюдаются комбинированные реакции.

1.3. РЕАКЦИЯ СВЯЗЫВАНИЯ КОМПЛЕМЕНТА (РСК)

Эту реакцию применяют при лабораторных исследованиях для обнаружения антител в сыворотке крови при различных инфекциях, а также для идентификации возбудителя по антигенной структуре.

Реакция связывания комплемента относится к сложным серологическим реакциям и отличается высокой чувствительностью и специфичностью.

Особенностью этой реакции является то, что изменение антигена при его взаимодействии со специфическими антителами происходит только в присутствии комплемента. Комплемент адсорбируется только на комплексе «антитело – антиген». Комплекс «антитело – антиген» образуется только в том случае, если между антигеном и антителом, находящемся в сыворотке, имеется сродство.

Адсорбция комплемента на комплексе «антиген – антитело» может по разному отразиться на судьбе антигена в зависимости от его особенностей.

Некоторые из антигенов подвергаются при этих условиях резким морфологическим изменениям, вплоть до растворения (гемолиз, феномен Исаева – Пфейфера, цитолитическое действие). Другие изменяют скорость передвижения (иммобилизация трепонем). Третьи погибают без резких деструктивных изменений (бактерицидное или цитотоксическое действие). Наконец, адсорбция комплемента может и не сопровождаться изменениями антигена, легко доступными для наблюдения.

По механизму РСК протекает в две фазы:

  1. Первая фаза – это образование комплекса «антиген – антитело» и адсорбция на этом комплексе комплемента. Результат фазы визуально не видим (взаимодействие антигена и антител при обязательном участии комплемента).
  2. Вторая фаза – это изменение антигена под влиянием специфических антител в присутствии комплемента. Результат фазы может быть видимым визуально или не видимым (выявление результатов реакции при помощи индикаторной гемолитической системы (эритроциты барана и гемолитическая сыворотка).

Разрушение эритроцитов гемолитической сывороткой происходит только в случае присоединения комплемента к гемолитической системе. Если же комплемент адсорбировался ранее на комплексе антиген–антитело, то гемолиз эритроцитов не наступает.

Результат опыта оценивают, отмечая наличие или отсутствие гемолиза во всех пробирках. Реакцию считают положительной при полной задержке гемолиза, когда жидкость в пробирке бесцветна и эритроциты оседают на дно, отрицательной – при полном лизисе эритроцитов, когда жидкость интенсивно окрашена («лаковая» кровь). Степень задержки гемолиза оценивают в зависимости от интенсивности окраски жидкости и величины осадка эритроцитов на дне (++++, +++, ++, +).

В случае, когда изменения антигена остаются недоступными для визуального наблюдения, приходится использовать вторую систему, выполняющую роль индикатора, позволяющую оценить состояние комплемента и сделать заключение о результате реакции.

Эта индикаторная система представлена компонентами реакции гемолиза, в составе которой находятся бараньи эритроциты и гемолитическая сыворотка, содержащая к эритроцитам специфические антитела (гемолизины), но не содержащая комплемент. Эта индикаторная система добавляется в пробирки через час после постановки основной РСК. Если реакция связывания комплемента положительна, то образуется комплекс антитело – антиген», адсорбирующий на себе комплемент. Поскольку комплемент используется в количестве необходимом только для одной реакции, а лизис эритроцитов может произойти только при наличии комплемента, то при его адсорбции на комплексе «антиген – антитело», лизис эритроцитов в гемолитической (индикаторной) системе не произойдет. Если реакция связывания комплемента отрицательная, комплекс «антиген – антитело» не образуется, комплемент остается свободным, и при добавлении гемолитической системы наступает лизис эритроцитов.

1.4. ДНК–ЗОНДЫ. ПОЛИМЕРАЗНО–ЦЕПНАЯ РЕАКЦИЯ (ПЦР),
ИММУНО–ФЕРМЕНТНЫЙ МЕТОД (ИФА), МЕТОД ФЛУОРЕСЦИРУЮЩИХ АНТИТЕЛ (МФА)

МЕТОДЫ ГЕННОГО ЗОНДИРОВАНИЯ

Интенсивное развитие молекулярной биологии и создание совершенной методической базы генетических исследований явились основой генетической инженерии. В области диагностики возникло и бурно развивается направление по определению специфических нуклеотидных последовательностей ДНК и РНК, так называемое генное зондирование. В основе подобных методик лежит способность нуклеиновых кислот к гибридизации – образованию двухцепочных структур за счет взаимодействия комплементарных нуклеотидов (А–Т, Г–Ц).

Для определения искомой последовательности ДНК (или РНК) специально создается, так называемый, зонд полинуклеотид с определенной последовательностью оснований. В его состав вводят специальную метку, позволяющую идентифицировать образование комплекса.

Хотя генное зондирование нельзя отнести к методам иммунохимического анализа, основной его принцип (взаимодействие комплементарных структур) методически реализуется теми же способами, что и индикаторные методы иммунодиагностики. Кроме того, методы генного зондирования позволяют восполнить информацию об инфекционном агенте в отсутствии его фенотипической экспрессии (вирусы, встроенные в геном, «молчащие» гены).

Для проведения анализа ДНК пробу подвергают денатурации с целью получения одноцепочных структур, с которыми и реагируют молекулы ДНК– или РНК–зонда. Для приготовления зондов используют либо различные участки ДНК (или РНК), выделенные из естественного источника (например, того или иного микроорганизма), как правило представленные в виде генетических последовательностей в составе векторных плазмид, либо химически синтезированные олигонуклеотиды. В некоторых случаях в качестве зонда применяют препараты геномной ДНК, гидролизованной на фрагменты, иногда – препараты РНК, особенно часто – рибосомальная РНК. В качестве метки используют те же индикаторы, что и при различных видах иммунохимического анализа: радиоактивные изотопы, флуоресцеины, биотоп (с дальнейшим проявлением комплексом авидин–фермент) и т. п.

Порядок проведения анализа определяется свойствами имеющегося зонда

В настоящее время все чаще применяются коммерческие наборы, содержащие все необходимые ингредиенты.

В большинстве случаев процедуру проведения анализа можно разделить на следующие стадии: подготовка образцов (в том числе экстракция и денатурация ДНК), фиксация пробы на носителе (чаще всего – полимерный мембранный фильтр), предгибридизация, собственно гибридизация, отмывание несвязавшихся продуктов, детекция. При отсутствии стандартного препарата ДНК– или РНК–зонда предварительно проводится его получение и введение метки.

Для подготовки пробы может быть необходимо предварительное «подращивание» исследуемого материала для идентификации отдельных колоний бактерий или увеличения концентрации вирусов в клеточной культуре. Проводится и непосредственный анализ образцов сыворотки крови, мочи, форменных элементов крови или цельной крови на присутствие инфекционного агента. Для освобождения нуклеиновых кислот из состава клеточных структур проводят лизис клеток, а в некоторых случаях очищают препарат ДНК с помощью фенола.

Денатурация ДНК, т. е. переход ее в одноцепочную форму, происходит при обработке щелочью. Затем образец нуклеиновых кислот фиксируют на носителе – нитроцеллюлезной или нейлоновой мембране, обычно путем инкубации от 10 мин до 4 час при 80° С в вакууме. Далее, в процессе предгибридизации достигается инактивация свободных мест связывания для уменьшения неспецифического взаимодействия зонда с мембраной. Процесс гибридизации занимает от 2 до 20 ч, в зависимости от концентрации ДНК в образце, концентрации используемого зонда и его размера.

После окончания гибридизации и отмывания несвязавшихся продуктов проводится детекция образовавшегося комплекса. Если в состав зонда входит радиоактивная метка, то для проявления реакции мембрану экспонируют с фотопленкой (ауторадиография). Для других меток используют соответствующие процедуры.

Наиболее перспективным является получение нерадиоактивных (так называемых – холодных) зондов. На этой же основе развивается методика гибридизации, позволяющая устанавливать наличие патогена в препаратах срезов, пунктатов ткани, что особенно важно при патоморфологическом анализе (гибридизация insitu).

Существенным этапом в развитии методов генного зондирования явилось использование полимеразной реакции амплификации (ПЦР). Этот подход позволяет увеличить концентрацию определенной (заранее известной) последовательности ДНК в пробе за счет синтеза многочисленных копий in vitro. Для проведения реакции к исследуемому образцу ДНК добавляют препарат фермента ДНК–полимеразы, избыток дезоксинуклеотидов для синтеза и, так называемые, праймеры – два типа олигонуклеотидов величиной 20–25 оснований, соответствующих концевым участкам интересующей последовательности ДНК. Один из праймеров должен быть копией начала участка считывания кодирующей цепи ДНК при направлении считывания 5–3, а второй – копией противоположного конца некодирующей цепи. Тогда при каждом цикле полимеразной реакции происходит удвоение количества ДНК–копий.

Для осуществления связывания праймеров необходима денатурация ДНК (плавление) при 94°С с последующим доведением смеси до 40–55°С.

Для проведения реакции сконструированы программируемые инкубаторы микропроб, позволяющие легко чередовать изменения температуры, оптимальной для каждого этапа реакции.

Реакция амплификации позволяет существенно повысить чувствительность анализа при генном зондировании, что особенно важно при низкой концентрации инфекционного агента.

Одним из существенных достоинств генного зондирования с амплификацией является возможность исследования субмикроскопического количества патологического материала.

Другой особенностью метода, более важной для анализа инфекционного материала, является возможность выявления скрытых (молчащих) генов. Методы, связанные с использованием генного зондирования безусловно, будут более широко внедряться в практику диагностики инфекционных заболеваний по мере их упрощения и удешевления.

Методы ИФА и РИФ в большей степени носят качественный или полуколичественный характер. При очень низких концентрациях компонентов образование комплекса антиген – антитело не может быть зарегистрировано ни визуально, ни простыми инструментальными средствами. Индикация комплекса антиген – антитело в таких случаях может быть осуществлена, если в один из исходных компонентов – антиген или антитело – ввести метку, которую можно легко детектировать в концентрациях, сопоставимых с определяемой концентрацией анализируемого вещества.

В качестве метки могут использоваться радиоактивные изотопы (например, 125I), флюоресцентные вещества, ферменты.

В зависимости от используемой метки различают радиоиммуный (РИА), флюоресцентный иммунный (ФИА), иммуноферментый (ИФА) методы анализа и др. В последние годы широкое практическое применение получил ИФА, что связано с возможностью количественных определений, высокой чувствительности, специфичности и автоматизации учета.

Иммуноферментные методы анализа – группа методов, которые позволяют выявить комплекс антиген – антитело с помощью субстрата, который расщепляется ферментом с появлением окраски.

Суть метода заключена в соединении компонентов реакции антиген – антитело с измеряемой ферментной меткой. Антиген или антитело, вступающие в реакцию, метятся ферментом. По превращению субстрата под действием фермента можно судить о количестве вступившего во взаимодействие компонента реакции антиген – антитело. Фермент в данном случае служит маркером иммунной реакции и позволяет наблюдать ее визуально или инструментально.

Ферменты представляют собой очень удобные метки, поскольку их каталитические свойства позволяют им действовать в качестве усилителей, так как одна молекула фермента может способствовать образованию более 1?105 молекул продукта каталитической реакции в минуту. Необходимо подобрать такой фермент, который длительно сохраняет свою каталитическую активность, не теряет ее при связывании с антигеном или антителом, и обладает высокой специфичностью по отношению к субстрату.

Основные способы получения антител или антигенов, меченых ферментом, – конъюгатов: химические, иммунологические и генно–инженерные. Для постановки ИФА наиболее часто используются ферменты: пероксидаза хрена, щелочная фосфатаза, галактозидаза и др.

Для выявления активности фермента в комплексе антиген–антитело с целью визуального и инструментального учета реакции используют хромогенные субстраты, растворы которых, изначально бесцветные, в процессе ферментативной реакции приобретают окраску, интенсивность которой пропорциональна количеству фермента. Так, для выявления активности пероксидазы хрена в твердофазном ИФА в качестве субстрата используют 5–аминосалициловую кислоту, дающую интенсивное коричневое окрашивание, орто–фенилендиамин, образующий оранжево–желтое окрашивание. Для выявления активности щелочной фосфатазы и?–галатозидазы используют нитрофенилфосфаты и нитрофенилгалактозиды соответственно.

Результат реакции при образовании окрашенного продукта определяют визуально или с помощью спектрофотометра, измеряющего поглощение света с определенной длиной волны.

Известно много вариантов постановки ИФА. Различают гомогенный и гетерогенный варианты.

По методике постановки различают конкурентный и неконкурентный методы ИФА. Если на первой стадии в системе присутствуют только анализируемое соединение и соответствующие ему центры связывания (антиген и специфические антитела), то метод является неконкурентным. Если на первой стадии присутствуют анализируемое соединение (антиген) и его аналог (меченый ферментом антиген), конкурирующие между собой за связывание с имеющимися в недостатке центрами специфического связывания (антителами), то метод является конкурентным. В этом случае чем больше исследуемого антигена содержит раствор, тем меньше количество связывающихся меченых антигенов.

МЕТОД ФЛЮОРЕСЦИРУЮЩИХ АНТИТЕЛ (МФА) или РЕАКЦИИ ИММУНОФЛЮОРЕСЦЕНЦИИ (РИФ)

Иммунофлюоресцентный метод является методом выбора для быстрого выявления и идентификации неизвестного микроорганизма в исследуемом материале.

Аг + АТ + электролит = светящийся в УФ – лучах комплекс

Микроб сыворотка, меченная флюорохромом

Часто используют краситель изотиоционат флюоресциина – ФИТЦ

При исследовании этим методом используют люминесцентный микроскоп.

Постановка РИФ

На мазок наносят 30 мкл раствора ФИТЦ–меченных антител.

Помещают стекло во влажную камеру и выдерживают при комнатной температуре в течение 20–25 мин, или в термостате при 37°С в течение 15 мин.

Промывают стекло в проточной водопроводной воде 2 мин, ополаскивают дистиллированной водой и высушивают на воздухе.

На высушенный мазок наносят каплю монтирующей жидкости, мазок накрывают покровным стеклом и микроскопируют с использованием люминесцентного микроскопа или люминесцентной насадки к обычному оптическому микроскопу.

Применяют с одинаковым успехом для двух целей. Во-первых, по извест­ному антигену (диагностикуму ) определяют в исследуемой сыворотке наличие и количественное содержание специфических к данному антигену антител. Последнее устанавливают путем титрования сыворотки.Титром иммунной сыворотки называют то ее максимальное разведение, которое еще дает положительную реакцию. Во-вторых, с помощью известногоантитела , т. е. диагностической иммунной сыворотки или моноклональных антител, определяют наличие в исследуемом материале специфического микробного антигена или осуществляют серологическую идентификацию выделенного возбудителя.

С диагностической целью используют следующие серологические реакции:

1. Реакция агглютинации в ее различных вариантах.

2. Реакция преципитации и ее различные модификации.

3. Реакции иммунофлуоресценции (РИФ) в прямом и непрямом вариантах.

4. Реакции, протекающие с участием комплемента.

5. Реакции, протекающие с участием фагоцитов.

6. Реакции иммуносорбентного анализа твердой фазы.

7. Реакции нейтрализации биологической активности возбудителя или токсинов.

I. Реакция агглютинации

Агглютинация (от лат.agglutinatio- склеивание) - склеивание (соединение) антигеннесущих корпускулярных частиц (цельные клетки, частицы латекса и др.) молекулами стецифических антител в присутствии электролитов, которое заканчивается образованием видимых невооруженным глазом хлопьев или осадка (агглютината). При помощи реакции агглютинации определяюттолько полные (двухвалентные) антитела .Неполные (моновалентные, блокирующие) антитела этими методамине выявляются , так как, соединяясь с антигеном, блокируют его, но не могут вызвать агрегации антигена в крупные конгломераты.Неполными (блокирующими) называют антитела, у которых функционирует только один активный центр; второй активный центр по неизвестной причине не срабатывает.

Различают агглютинацию прямую , при которой во взаимодействии -со специфическими антителами непосредственно участвуют собственные антигены бактериальной или любой другой клетки, напримерэритроцитов ; инепрямую, илипассивную , при которой бактериаль­ные клетки или эритроциты, или частицы латекса являются носителями не собственных, а сорбиро­ванных на них чужих антигенов (или антител) для выявления специфических к ним антител (или антигенов). В реакции агглютинации участвуют главным образом антитела, относящиеся к классамIgGиIgM. Она протекает в две фазы: вначале происходит специфическое взаимодействие активного центра антител с детерминантом антигена, эта стадия может происходить в отсутствие электролитов и не сопровождается видимыми изменениями реагирующей системы. Для второй стадии - образова­ния агглютината - необходимо наличие электролитов, которые снижают электрический заряд комп­лексов антиген + антитело и ускоряют процесс их склеивания. Эта фаза заканчивается образовани­ем агглютината.

Реакции агглютинации ставят либо на стеклянных, либо в пробирках. Реакции агглютинации (прямые и пассивные) на стекле обычно применяют в качестве ускоренного метода обнаружения специфических антител в сыворотке больного (например, при бруцеллезе) или для серологической идентификации возбудителя. Несомненным достоинством реакции агглютинации на стекле является простота ее постановки и то, что она протекает несколько минут или даже секунд, так как оба компонента в ней используются в концент­рированном виде. Однако она имеет лишь качественное значение и менее чувствительна, чем пробирочная.

Развернутая реакция агглютинации в пробирках дает более точные результаты, ибо она позволяет определить количественное содержание антител в сыворотке (установить ее титр) и при необходимости зарегистрировать факт нарастания титра антител, что имеет диагностическое значе­ние.

Для постановки реакции в агглютинационные пробирки вносят определенным образом разведен­ную 0,85%-ным раствором NaClсыворотку и равный объем (обычно 0,5 мл) суспензии стандартного диагностикума (или исследуемой культуры), содержащего в 1 мл 1 млрд бактерий. Учет результатов реакции агглютинации производят предварительно через 2 ч инкубации пробирок при 37 °С и окончательно через 20-24 ч по двум признакам: наличию и величине осадка и степени прозрачности надосадочной жидкости. Оценку осуществляют по четырехкрестной системе. Реакция обязательно сопровождается контролем сыворотки к антигена.

Необходимо учесть, что при смешивании растворов гомологичных антигенов и антител не всегда наблюдаются видимые проявления реакции агглютинации. Осадок образуется только при оптимальных соотношениях обоих компонентов реакции. Вне этих пределов, при значительном избытке антигена или антител, реакции не наблюдается. Это явление получило название «феномена прозоны » или ложно отрицательного результата. Он наблюдается как при реакции агглютинации, так и при реакции преципитации. Появление прозоны в иммунных реакциях объясняется тем, что участвующие в них антигены, как правило, являются полидетерминантными, а молекулы антителIgGимеют два активных центра. При избытке антител поверхность каждой частицы антигена покрывается молекулами антител так, что не остается свободных детерминантных групп, поэтому второй, несвязанный активный центр антител не может взаимодействовать с другой антигенной частицей и связывать их друг с другом. Образование видимого агглютината или преципитата подавляется также при избытке антигена, когда не остается ни одного свободного активного центра антител, и поэтому комплексы антиген + антитело + антиген не могут более укрупняться.

Иммунологическая реакция это взаимодействие антигена с антителом, которое определяется специфическим взаимодействием активных центров антитела (паратопа) с эпитопами антигенов.

Общая классификация иммунологических реакций:

    серологические реакции – реакции между антигенами (Aг) и антителами (Ig) in vitro ;

    клеточные реакции с участием иммунокомпетентных клеток;

    аллергические пробы – выявление гиперчувствительности.

2.7 Серологические реакции: цели постановки, общая классификация.

Цели постановки :

а) для идентификации антигена:

      в патологическом материале (экспресс-диагностика);

      в чистой культуре:

    серологическая идентификация (определение вида);

    серотипирование (определение серовара);

б) для выявления антител (Ig):

      наличия (качественные реакции);

      количества (нарастание титра – метод «парных сывороток»).

Общая классификация серологических реакций:

а) простые (2-х компонентные: Ag + Ig):

    реакции агглютинации РА (с корпускулярным антигеном);

    реакции преципитации РП (с растворимым антигеном);

б) сложные (3-х компонентные: Ag + Ig + C);

в) с использованием метки.

2.8 Варианты реакции агглютинации и преципитации

Реакция агглютинации :

а) с корпускулярным антигеном:

    пластинчатая;

    объемная;

    непрамая:

    латекс-агглютинация;

    ко-агглютинация;

    реакция непрямой гемагглютинации (РНГА) = пассивной гемагглютинации (РПГА).

Реакция преципитации:

а) с растворимым антигеном:

    объемная (например, реакция кольцепреципитации);

    в геле (иммунодиффузия):

    простая (по Манчини);

    двойная или встречная (по Оухтерлони);

реакция нейтрализации токсина антитоксином (РН) (например реакция флокулляции);

другие варианты:

  1. иммуноэлектрофорез;

    иммуноблотинг.

      Сложные серологические реакции ( 3–х компонентные: Aг+Ig+C):

а) видимые:

    иммобилизация;

    иммунного прилипания;

    лизиса (в том числе гемолиза);

б) невидимые:

    реакция связывания комплемента (РСК).

2.10 Реакции с использованием метки:

    РИФ – реакция иммунофлюоресценции;

    ИФА – иммуноферментный анализ;

    РИА – радиоиммунный анализ;

    ИЭМ – иммунная электронная микроскопия.

Иммунный ответ. КИО. ГИО

4 Клеточный иммунный ответ

Иммунный ответ (ИО)– это комплекснаястадийная реакция иммунной системы организма, индуцированная антигеном и направленная на его элиминацию .

По механизмам эффекторного действия различают ИО:

гуморальный (обеспечивается В- системой иммунитета),

клеточный (обеспечивается Т-системой иммунитета).

В отличие от В-системы иммунитета , которая нейтрализует антиген с помощью антител,

–Т-система иммунитета уничтожает антигены, представленные на клетках, через прямое взаимодействие субпопуляции T-клеток – специфических цитотоксических T-клеток (=CD8 T-клеток = T-киллеров) с измененными собственными или чужеродными клетками;

–Т-клетки распознают не собственно антигенный пептид (эпитоп) , а его комплекс с молекулами МНС I или МНС II .

Реакции КИО лежат в основе:

    реакции отторжения трансплантанта,

    аллергической реакции замедленного типа,

    противоопухолевого иммунитета,

Этапы КИО:

    поглощение и процессинг АГ

В качестве антигенпрезентирующих (АПК) клеток в КИО участвуют дендритные клетки или макрофаги.

Процессинг сводится к:

– расщеплению исходной молекулы до уровня специфических пептидов,

– активации синтеза в АПК антигенов МНС I или II классов,

– образованию комплекса антигенный пептид + МНС I или II класса и к экспрессии его на мембране АПК.

    презентация АГ:

– комплекс антигенный пептид + МНС I презентируется для опознания прецитотоксическим Т-лимфоцитам с фенотипом CD8+;

комплекс антигенный пептид + МНС II - Т-хелперам, имеющим фенотип CD4+.

узнавание Т-клеточным рецептором (TCR) комплекса антигенный пептид + МНС I или II класса. При этом важную роль играют адгезивные молекулы CD28 на Т-лимфоцитах и CD80 (CD86) – на АПК, выполняющие функцию корецепторов;

    активация Т-лимфоцитов – переход из стадии покоя в стадию G 1 клеточного цикла. Условие активации – передача сигнала от клеточной мембраны к ядру. В результате образуется ряд транскрипционных молекул, активирующих гены важнейших цитокинов. Синтезируются ИЛ2 и рецептора для него – ИЛ2R, гамма-интерферон (γИФН) и ИЛ4.

    Пролиферация – размножение специфического по отношению к данному антигену клона Т-лимфоцитов (клональная экспансия ) под действие ИЛ2. Лишь размножившийся клон лимфоцитов способен выполнять функции по элиминации антигена.

    Дифференцировка – процесс специализации функций клеток внутри специфического клона:

– под действием γИФН активируется процесс синтеза антигенпрезентирующими клетками ИЛ12, который воздействует на исходные специфические Т-хелперы нулевые (Th0) и тем самым способствует их дифференцировке в Тh1.

– Th1 продуцируют γИФН, ИЛ2 и факторы некроза опухоли альфа- и бета- , а также контролируют развитие клеточного иммунного ответа, и гиперчувствительности замедленного типа.

    эффекторная фаза – уничтожение клетки-мишени. Происходит активация киллерной функции прецитотоксических лимфоцитов (специфических киллеров), натуральных киллеров, моноцитов, макрофагов и гранулоцитов. ПреЦТЛ дифференцируются в ЦТЛ, экспрессируя рецепторы к ИЛ2.

ЦТЛ убивают внутриклеточные бактерии и простейшие, инфицированные вирусами клетки, а также клетки опухоли и аллогенного трансплантата.

Каждый ЦТЛ способен лизировать несколько чужеродных клеток-мишеней.

Этот процесс осуществляется в три стадии:

    распознавание и контакт с клетками-мишенями;

    летальный удар – перфорины и цитолизины действуют на мембрану клетки-мишени и образуют в ней поры;

    лизис клетки-мишени – через образовавшиеся под влиянием перфоринов и цитолизинов поры проникает вода, разрывающая клетки.

Схема клеточного иммунного ответа

Закономерности развития гуморального иммунного ответа на проникновение тимусзависимых и тимуснезависимых антигенов.

Протекание процесса презентации АГ лимфоциту зависит от типа антигена. Все АГ делятся на тимусзависимые и тимуснезависимые. Большинство антигенов тимусзависимые. Презентация тимуснезависимого антигена проходит по схеме: М––>Вл. Презентация тимусзависимого антигена проходит по схеме: М––>Тх2––> Вл.

Тимуснезависимый антигенов мало. Они являются сильными митогенами. Должны быть полимеризованного характера и иметь большое количество одинаковых эпитопов (например: липополисахариды клеточной Гр(-) микроорганизмов). На поверхности В-лимфоцитов очень большое число антигенраспознающих рецепторов одной специфичности. Эти рецепторы подвижные. Как только на них действует липополисахарид, происходит агрегация рецепторов, приводящая к концентрированию их в одном месте в виде «шапочки» – это первый сигнал к активации В-лимфоцитов. Второй сигнал В-лимфоциты получают от макрофага в виде медиатора, которым является ИЛ1. После этого происходит активация В-лимфоцита и трансформация его в бластные клетки; они увеличиваются в размере, 6-7 раз делятся и дифференцируются в плазматические клетки, синтезирующие иммуноглобулин малой специфичности IgМ.

Тимуснезависимый антиген индуцирует пролиферацию клона клеток с АГ-специфическими рецепторами. Особенностью ИО в данном случае заключается в следующем: 1) не происходит переключения синтеза IgМ на синтез иммуноглобулинов класса G и др. классов; 2) тормозится ИО, т.к. не образуются клетки памяти; 3) быстро возникает иммунологическая толерантность.

Тимусзависимые антигены вызывают ИО, включающий следующие стадии: 1) Презентация антигена Т-хелперу; 2) специфическое распознание Т-хелпером антигена на поверхности макрофага через антигенраспознающий рецептор. Распознание идет в комплексе с молекулами HLA–DR. На этом этапе, получив антигенную информацию от макрофага, Т-хелпер получает медиаторный сигнал от макрофага в виде ИЛ-1. Это активирует Т-хелпер. Активированный Т-хелпер выделяет различные лимфокины (ИЛ-2,ИЛ-4, ИЛ-5, ИЛ-6, ИЛ-10, митогенный и бластогенный фактор), что способствует экспрессии на поверхности Т-лимфоцитов рецепторов для ИЛ-2 и ИЛ-4. Это продукты самого Т-хелпера, которые поддерживают его в активном состоянии. Кроме этого, эти продукты активируют В-лимфоциты вместе с ИЛ-1, который В-лимфоцит получает от макрофага.

Основными элементами иммунной системы организма являются белые клетки крови – лимфоциты, существующие в двух формах. Обе формы происходят из клеток-предшественников в костном мозге, т.н. стволовых клеток. Незрелые лимфоциты покидают костный мозг и попадают в кровяное русло. Некоторые из них направляются к тимусу (вилочковой железе), расположенному у основания шеи, где происходит их созревание. Прошедшие через тимус лимфоциты известны как Т-лимфоциты, или Т-клетки (Т от «тимус»). В экспериментах на цыплятах было показано, что другая часть незрелых лимфоцитов закрепляется и созревает в сумке Фабрициуса – лимфоидном органе около клоаки. Такие лимфоциты известны как В-лимфоциты, или В-клетки (B от bursa – сумка). У человека и других млекопитающих В-клетки созревают в лимфатических узлах и лимфоидной ткани всего организма, эквивалентных сумке Фабрициуса у птиц.

Оба типа зрелых лимфоцитов имеют на своей поверхности рецепторы, которые могут «узнавать» специфический антиген и связываться с ним. Контакт В-клеточных рецепторов со специфическим антигеном и связывание определенного его количества стимулируют рост этих клеток и последующее многократное деление; в результате образуются многочисленные клетки двух разновидностей: плазматические и «клетки памяти». Плазматические клетки синтезируют антитела, выделяющиеся в кровоток. Клетки памяти являются копиями исходных В-клеток; они отличаются большой продолжительностью жизни, и их накопление обеспечивает возможность быстрого иммунного ответа в случае повторного попадания в организм данного антигена.

Что касается Т-клеток, то при связывании их рецепторами значительного количества определенного антигена они начинают секретировать группу веществ, называемых лимфокинами. Некоторые лимфокины вызывают обычные признаки воспаления: покраснение участков кожи, местное повышение температуры и отек за счет увеличения кровотока и просачивания плазмы крови в ткани. Другие лимфокины привлекают фагоцитирующие макрофаги – клетки, которые могут захватывать и поглощать антиген (вместе со структурой, например бактериальной клеткой, на поверхности которой он находится). В отличие от Т- и В-клеток эти макрофаги не обладают специфичностью и атакуют широкий спектр разных антигенов. Еще одна группа лимфокинов способствует разрушению инфицированных клеток. Наконец, ряд лимфокинов стимулирует добавочное количество Т-клеток к делению, что обеспечивает быстрое возрастание числа клеток, которые отвечают на тот же антиген и выделяют еще больше лимфокинов.

Антитела, вырабатываемые В-клетками и поступающие в кровь и другие жидкости организма, относят к факторам гуморального иммунитета (от лат. humor – жидкость). Защита организма, осуществляемая с помощью Т-клеток, называется клеточным иммунитетом, так как в ее основе лежит взаимодействие отдельных клеток с антигенами. Т-клетки не только активируют другие клетки путем выделения лимфокинов, но и атакуют антигены с помощью содержащих антитела структур на поверхности клетки.

Антиген может индуцировать оба типа иммунного ответа. Более того, в организме происходит определенное взаимодействие между Т- и В-клетками, причем Т-клетки осуществляют контроль над В-клетками. Т-клетки могут подавлять B-клеточный ответ на безвредные для организма чужеродные вещества или, наоборот, побуждать В-клетки вырабатывать антитела в ответ на вредные вещества с антигенными свойствами. Повреждение или недостаточность данной контролирующей системы может проявляться в виде аллергических реакций на вещества, обычно безопасные для организма.

Этапы иммунной реакции

Иммунную реакцию от начала до завершения можно разделить на три этапа:

Распознавание антигена;
формирование эффекторов;
эффекторная часть иммунного ответа.

Основу теории специфического распознавания антигенов составляют следующие постулаты:

1. На поверхности лимфоцитов присутствуют специфические антигенсвязывающие рецепторы, которые экспрессируются вне зависимости от того, встречался ли ранее организм с данным антигеном.

2. Каждый лимфоцит имеет рецептор только одной специфичности.

3. Антигенсвязывающие рецепторы экспрессируются на поверхности как Т-, так и В-лимфоцитов.

4. Лимфоциты, наделенные рецепторами одной специфичности, являются потомками одной родительской клетки и составляют клон.

5. Макрофаги осуществляют презентацию антигена лимфоциту.

6. Распознавание «чужого» напрямую связано с распознаванием « своего », т.е. антигенсвязывающий рецептор лимфоцита распознает на поверхности макрофага комплекс, состоящий из чужеродного антигена и собственного антигена гистосовместимости (МНС).

В состав молекулярного аппарата антигенного распознавания входят антигены главного комплекса гистосовместимости, антигенсвязывающие рецепторы лимфоцитов, иммуноглобулины, молекулы клеточной адгезии.

К основным этапам антигенного распознавания относятся:

Неспецифический этап;
распознавание антигена Т-клетками;
распознавание антигена В-клетками;
клональная селекция.

Неспецифический этап

Макрофаг первым вступает во взаимодействие с антигеном, осуществляя филогенетически самую древнюю разновидность иммунной реакции. Антиген подвергается фагоцитозу и перевариванию, результатом которого является «разборка» крупных молекул на составные части. Этот процесс называется «процессингом антигена». Затем процессированный антиген экспрессируется в комплексе с белками главного комплекса гистосовместимости на поверхности макрофага.

Распознавание антигена Т- клетками. Т - хелпер распознает комплекс, состоящий из чужеродного антигена и собственного антигена МНС. Для иммунного ответа необходимо одновременное распознавание как чужеродного антигена, так и собственного антигена МНС.

Распознавание антигена В- клетками. В- лимфоциты распознают антигены посредством своих иммуноглобулиновых рецепторов. Антиген также может подвергаться повторному процессингу при взаимодействии с В-лимфоцитом. Процессированный антиген помещается на поверхность В- клетки, где он распознается активированным Т - хелпером. В- лимфоцит не способен к самостоятельному ответу на антигенную стимуляцию, поэтому ему необходимо получить второй сигнал от Т -хелпера. Антигены, иммунная реакция на которые возможна только с таким повторным сигналом, называются тимусзависимыми. Иногда активация В - лимфоцитов возможна и без участия Т - клеток. Бактериальный липополисахарид в высоких концентрациях вызывает активацию В - лимфоцитов. При этом специфичность иммуноглобулиновых рецепторов В - лимфоцита не имеет значения. В данном случае собственная митогенная активность липополисахарида исполняет роль второго сигнала для В - лимфоцитов. Такие антигены называют тимуснезависимыми антигенами типа I. Некоторые линейные антигены (полисахариды пневмококков, поливинилпирролидон и др.), также стимулируют В- клетки без участия Т - лимфоцитов. Эти антигены длительное время остаются на мембране специализированных макрофагов и называются тимуснезависимыми антигенами типа II.

Клональная селекция

При попадании в организм антигена происходит селекция клонов с рецепторами, комплементарными данному антигену. Только представители этих клонов участвуют в дальнейшей антигензависимой дифференцировке клона В-лимфоцитов.

Формирование эффекторного звена иммунной реакции происходит путем дифференцировки клона В-лимфоцитов и образования цитотоксических Т-лимфоцитов.

Взаимодействие между клетками в процессе формирования иммунного ответа на антигенную стимуляцию осуществляется за счет особых растворимых медиаторов - цитокинов. Под воздействием различных цитокинов, продуцируемых макрофагами либо Т-лимфоцитами, происходит созревание В-лимфоцитов в антителообразующие клетки.

Для В- лимфоцитов конечным этапом дифференцировки является преобразование в плазматическую клетку, которая продуцирует огромное количество антител. Специфичность этих антител соответствует специфичности иммуноглобулинового рецептора В- лимфоцита -предшественника.

После того, как эффекторное звено иммунной реакции сформировано, наступает ее третий этап. На завершающем этапе иммунного ответа задействованы антитела, система комплемента, а также цитотоксические Т-лимфоциты, осуществляющие цитотоксическую реакцию.

Комплекс микроорганизма с антителом запускает классический путь активации системы комплемента, в результате чего образуется мембраноатакующий комплекс (МАК), наносящий клеточной стенке бактерии повреждения. Кроме того антитела нейтрализуют бактериальные токсины и, связываясь с инкапсулированными бактериями, облегчают их фагоцитоз макрофагами. Этот феномен называется опсонизацией. Доказано, что неопсонизированным инкапсулированным бактериям часто удается избежать фагоцитоза.

Внешне же иммунный ответ проявляется в развитии острой воспалительной реакции.

Иммунные реакции

Под иммунитетом понимают систему защиты организма от всего генетически чужеродного — будь то микробы, трансплантаты (пересаженные ткани и органы) или изменившиеся в антигенном отношении собственные клетки, включая раковые или отжившие свой срок нормальные.

Прежде чем нейтрализовать, уничтожить и элиминировать (вывести) из организма носителей генетической чужеродности, их необходимо обнаружить и распознать. Все клетки индивидуального организма имеют специальную маркировку (антигены тканевой совместимости), благодаря которой они воспринимаются иммунной системой как «свои». Клетки, не имеющие такой маркировки, воспринимаются как «чужие», атакуются и уничтожаются иммунной системой. Чужеродные вещества и клетки, вызывающие специфический иммунный ответ, называются антигенами. Различают экзогенные антигены (белки, полисахариды, искусственные полимеры, вирусы, бактерии и их токсины, трансплантаты) и эндогенные антигены , к которым относятся собственные ткани организма, измененные повреждением, и мутантные клетки, постоянно появляющиеся в организме человека (в сутки образуется до 106 мутантных клеток). Таким образом, иммунная система защищает многоклеточный организм от вторжения извне и от «внутренней измены» и, тем самым, обеспечивает генетическое постоянство всех соматических клеток, составляющих конкретный индивидуальный организм.

Иммунный ответ осуществляется иммунокомпетентными клетками и продуктами их жизнедеятельности — медиаторами иммунных реакций. Различают Т- и В-системы иммунитета. Т-система обеспечивает преимущественно противоопухолевую, антивирусную защиту, а также реакции отторжения трансплантата. В-система обеспечивает, главным образом, гуморальную антибактериальную защиту и нейтрализацию токсинов. Т-система иммунитета представлена популяцией тимусзависимых лимфоцитов (Т-лимфоцитов), которые имеют разную специализацию:

¨ Т-киллеры (Тк) — клетки-убийцы генетически чужеродных клеток;

¨ Т-хелперы (Тх) — клетки-помощники — стимулируют посредством хелперных медиаторов образование клона антигенчувствительных Т-киллеров и В-лимфоцитов;

¨ Т-супрессоры (Тс) — клетки, подавляющие посредством супрессорных медиаторов иммунный ответ.

Совместная деятельность Тх- и Тс-лимфоцитов определяет направленность, силу и продолжительность иммунного ответа. В начальный период нормального иммунного ответа превалирует активность Т-хелперов, в момент окончания — Т-супрессоров. Активность иммунокомпетентных клеток находится под контролем специальных генов иммунного ответа — Ir-генов. В частности, Ir-гены контролируют синтез антител и медиаторов иммунитета (хелперных и супрессорных).

В-система представлена популяцией В-лимфоцитов, которые, в ответ на антиген (антигенную стимуляцию), трансформируются в плазмоциты, — клетки, синтезирующие антитела (иммуноглобулины) (рис. 8.1). Фагоциты осуществляют фагоцитоз (рис. 8.2).

Рис. 8.1. Этапы формирования приобретённого иммунитета:

I — взаимодействие Т- и В-лимфоцитов с участием макрофага;

II — формирование клеток, хранящих информацию об антигенной структуре конкретного микроорганизма и способных вырабатывать специфические белки, связывающие микроорганизмы (антитела)

Рис. 8.2. Стадии фагоцитоза:

I — сближение фагоцита с объектом (комплексом антиген-антитело);

II — прилипание (адгезия) — способствуют опсонины;

III — захват фагоцитируемого объекта;

IV — переваривание комплекса антиген-антитело

Известны пять классов иммуноглобулинов: IgМ, IgG, IgА, IgE и IgD, которые продуцируются в строго определенной последовательности. IgM — низкоспецифичные антитела, которые вырабатываются первыми в ответ на антиген. Они образуют непрочную связь с антигеном и мобилизуют плазмоциты на продукцию высокоспецифичных антител (IgG и IgA). Смена синтеза IgM на синтез IgG и IgA происходит под влиянием лимфокинов (медиаторов), секретируемых Т-хелперами. IgG находятся в сыворотке крови и называются сывороточными антителами . Они прочно связывают антиген и являются самыми распространенными антителами против антигенной угрозы. IgA секретируются слизистыми оболочками носа, дыхательных путей, кишечника, урогенитальной системы. Они называются секреторными антителами и выполняют роль «первой линии обороны» в местах внедрения антигена. У млекопитающих они передаются от матери к ребенку через грудное молоко. IgE (реагины) синтезируются преимущественно в лимфоидной ткани слизистых оболочек и лимфатических узлах кишечника и бронхов. Они обладают высокой гомоцитотропностью (сродством к клеткам собственного организма) и поэтому могут выступать в качестве соучастников аллергических реакций. Роль IgD пока не установлена.

Действие иммуноглобулинов на антигены проявляется в следующих вариантах:

1. Агглютинация (склеивание) и иммунный лизис — растворение бактериальных антигенов.

Иммунный ответ

Такие иммуноглобулины называются агглютининами и бактериолизинами. Реакции иммунного лизиса происходят при участии комплемента — составной части кровяной сыворотки.

2. Цитотоксическое действие антител (цитотоксинов) — лишение клеток жизнеспособности. Эта реакция также протекает при участии комплемента.

3. Нейтрализация токсинов антителами (антитоксинами).

4. Опсонизация — усиление антителами (опсонинами) фагоцитарной активности микро- и макрофагов.

5. Преципитация — осаждение антигенов антителами.

Полноценный иммунный ответ обеспечивается кооперативным взаимодействием Т-лимфоцитов, В-лимфоцитов и макрофагов. Включение иммунных механизмов защиты начинается с момента проникновения антигена в организм. Макрофаг (моноцит) захватывает антиген, перерабатывает и выводит его антигенные детерминанты (структуры, обусловливающие антигенную уникальность и чужеродность) на свою клеточную поверхность. Обработанный таким образом антиген в 100-1000 раз более иммуногенен, чем нативный антиген. Он включает дальнейшие иммунные механизмы. Антигенные детерминанты, представленные макрофагом, распознаются В-лимфоцитами и Тх-клетками.

При экзогенной антигенной стимуляции В-лимфоциты трансформируются в плазмоциты и начинают сразу же продуцировать низкоспецифичные IgM. Через некоторое время, под влиянием медиаторов Т-хелперов, плазмоциты переключают синтез иммуноглобулинов на высокоспецифичные к данному антигену IgG, а затем — IgA. Одновременно Тх-лимфоциты стимулируют образование клона В- лимфоцитов, в которых формируется иммунная память на данный антиген. Таким способом обеспечивается активный иммунитет .

Тх-лимфоциты стимулируют положительный хемотаксис нейтрофильных лейкоцитов (микрофагов) к месту расположения антигена, что является важным механизмом в обезвреживании бактерий.

Эндогенная антигенная стимуляция вовлекает в иммунный ответ Тк-лимфоциты. В результате кооперации макрофага, Т-хелпера и Т-киллера, последний приобретает свойства размножаться, создавая популяцию антигенчувствительных Тк-клеток, и целенаправленно уничтожать антигены. Помимо Тк-клеток цитотоксические эффекты осуществляются Нк-лимфоцитами (натуральными киллерами), которые уничтожают клеточные антигены (клетки-мишени) без предварительной кооперации (рис. 8.3).

Полноценный иммунный ответ редко осуществляется без взаимодействия его клеточного и гуморального вариантов. Так, Т-киллеры становятся антигенчувствительными, когда связываются со специфическими иммуноглобулинами, комплементарными антигенам клеток-мишений. Макрофаги, опсонизированные иммуноглобулинами, приобретают способность направленно атаковать клетки- мишени и растворять их.

Указанные механизмы иммунного ответа лежат также в основе аллергических реакций.

Предыдущая16171819202122232425262728293031Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Иммунные клетки и иммуноглобулины

Вместе с тем иммунная реакция может происходить по разным сценариям. Вначале иммунная система блокирует деятельность чужеродных объектов (иммуногенов), создавая особые химически реактивные молекулы (иммуноглобулины), ингибирующие деятельность иммуногенов.

Иммуноглобулины создаются лимфоцитами, которые являются основными клетками иммунной системы. Существует два основных вида лимфоцитов, при совместной активности создающих все виды иммунных реакций: T-лимфоциты (T-клетки) и B-лимфоциты (B-клетки). T-лимфоциты при восприятии чужеродного материала сами осуществляют иммунный ответ – уничтожают генетически чужеродные клетки. T-лимфоциты – это основа клеточного иммунитета.

Гуморальный иммунитет

B-лимфоциты нейтрализуют чужеродные объекты дистанционно, создавая особые химически реактивные молекулы – антитела. B-лимфоциты – это основа гуморального иммунитета.

Существует пять классов антител: IgM, IgD, IgE, IgG, IgA. Основным классом иммуноглобулинов ялвятеся IgG.

Что такое иммунная реакция или иммунный ответ?

Антитела IgG составляют около 70% от всех антител. Иммуноглобулины IgA составляют около 20% всех антител. Антитела остальных классов составляют всего 10% от всех антител.

Когда происходит гуморальная иммунная реакция, уничтожение чужеродного материала происходит в плазме крови в виде химической реакции. Иммуноглобулины, созданные вследствие иммунной реакции, могут оставаться на многие годы и десятилетия, обеспечивая организм защитой от повторного заражения, например свинкой, ветрянкой, краснухой. Благодаря этому процессу возможна вакцинация.

T-клетки отвечают за иммунный ответ на двух уровнях. На первом уровне они способствуют обнаружению чужеродного материала (иммуногена) и активируют B-клетки к синтезу иммуноглобулинов. На втором уровне, после стимуляции B-клеток к выработке иммуноглобулинов, T-клетки начинают расщеплять и разрушать чужеродный материал напрямую.

Такая активированная T-клетка уничтожает вредоносную клетку, сталкиваясь и прикрепляясь к ней вплотную – поэтому их стали называть клетками-убийцами или T-киллерами.

Клеточный иммунитет

Клеточная иммунная защита была открыта И.И. Мечниковым в конце XIX века. Он доказал, что защита организма от заражения микроорганизмами происходит благодаря способности особых клеток крови прикрепляться и расщеплять вредоносные микроорганизмы.

Этот процесс назвали фагоцитозом, а клеток-убийц, выслеживающих чужеродные микроорганизмы – фагоцитами. Синтез иммуноглобулинов и процесс фагоцитоза являются специфическими факторами иммунитета человека.

Неспецифический иммунитет

Помимо специфических, имеются неспецифические факторы иммунитета. Среди них:
непропускание возбудителей инфекции эпителием;
присутствие в кожных выделениях и желудочном соке веществ, негативно воздействующих на инфекционные агенты;
наличие в плазме крови, слюне, слезах и т.д. особых энзимных систем, расщепляющих бактерий и вирусов (например, мурамидаза).

Защита организма осуществляется не только разрушением внедряющегося в него генетически чужеродного материала, но и выведением из органов и тканей уже локализовавшихся в них иммуногенов. Известно, что вирусы, бактерии и отходы их жизнедеятельности, а также погибшие бактерии транспортируются наружу через потовые железы, мочевыделительную систему и кишечник.

Еще одним неспецифическим механизмом защиты служит интерферон – антивирусная белковая структура, синтезируемая инфицированной клеткой. Перемещаясь по внеклеточному матриксу и попадая в здоровые клетки, этот белок защищает клетку от вируса и от системы комплемента – комплекса белков, постоянно присутствующих в плазме крови и других жидкостях организма, которые уничтожают клетки, содержащие чужеродный материал.

Защита организма ослабевает чаще всего из-за несоблюдения здорового образа жизни или вследствие злоупотребления антибиотиками.

Перед применением необходимо проконсультироваться со специалистом.

Иммунные реакции используют при диагностических и иммунологических исследованиях у больных и здоровых людей. С этой целью применяют серологические методы (от лат. serum —сыворотка и logos — учение),т.е. методы изучения антител и антигенов с помощью реакций антиген—антитело, определяемых в сыворотке крови и других жидкостях, а также тканях организма. Обнаружение в сыворотке крови больного антител против антигенов возбудителя позволяет поставить диагноз болезни.

Серологические исследования применяют также для идентификации антигенов микробов, различных биологически активных веществ, групп крови, тканевых и опухолевых антигенов, иммунных комплексов, рецепторов клеток и др,

При выделении микроба от больного проводят идентификацию возбудителя путем изучения его антигенных свойств с помощью иммунных диагностических сывороток, т,е. сывороток крови гипериммунизированных животных, содержащих антимикробные антитела. Это так называемая серологическая идентификация микроорганизмов.

Реакция агглютинации: Реакция агглютинации (от лат. oggiutinatio — склеивание) — склеивание корпускул (бактерий, эритроцитов и др.) антителами в присутствии электролитов. Реакция агглютинации проявляется в виде хлопьев или осадка, состоящих из корпускул (например, бактерий), «склеенных» антителами (рис. 7.37).

Реакцию агглютинации используют для: определения возбудителя, выделенного от больного; определения антител в сыворотке крови больного; определения групп крови.

1. Определение возбудителя, выделенного от больного

Ориентировочная реакция агглютинации нз стекле. К капле агглютинирующей сыворотки (разведение 1:20) добавляют взвесь бактерий, выделенных от больного. Образуется хлопьевидный осадок.

Развернутая реакция агглютинации с возбудителем, выделенным от больного.

К разведениям агглютинирующей сыворотки добавляют взвесь бактерий, выделенных от больного

2.Определение антител в сыворотке крови больного:

Развернутая реакция агглютинации с сывороткой крови больного. К разведениям сыворотки больного добавляют диагностикум.

— Агглютинация с О-диагностикумом (бактерии, убитые нагреванием, сохранившие Q-антиген) происходит в виде мелкозернистой агглютинации.

— Агглютинация с Н-диогностикумом (бактерии, убитые формалином, сохранившие жгутиковый Н-антиген) — крупнохлопчатая и протекает быстрее.

Реакция непрямой (пассивной) гемагглютинации выявляют антитела сыворотки крови больного с помощью антигенного зритроциторного диагностиками, который представляет собой эритроциты с адсорбированными на них антигенами

Эритроциты (или частицы латекса) с адсорбированными на них антигенами взаимодействуют с соответствующими антителами сыворотки крови,что вызывает склеивание и выпадение эритроцитов на дно пробирки или ячейки ввиде фестончатого осадка. При отрицательной реакции эритроциты оседают в виде «пуговки». РПГА ставят в пластиковых планшетках или в пробирках с разведениями сыворотки крови больного, к которым добавляют эритроцитарный диагностикум.

Иногда применяют антительный эритроцитарный диагностикам — эритроциты, на которых адсорбированы антитела, Например, можно обнаружить ботупиничес- кий токсин, добавляя к нему эритроцитарный антительный ботулинический диагностикум (такую реакцию называют реакцией обратной непрямой гемагглютинации — РОНГА).

Реакция Кумбса Реакция агглютинации для определения антирезусных антител (непрямая реакция Кумбса). У некоторых больных обнаруживают антирезусные антитела, которые являются неполными, одновалентными. Они специфически взаимодействуют с резус-положительными эритроцитами (Rh+), но не вызывают их агглютинации. Наличие таких неполных антител определяют в непрямой реакции Кумбса. Для этого в систему антирезусные антитела + резус-положительные эритроциты добавляют анти глобул и новую сыворотку (антитела против иммуноглобулинов человека), что вызывает агглютинацию эритроцитов

С помощью реакции Кумбса диагностируют патологические состояния, связанные с внутрисосудистым лизисом эритроцитов, например, гемолитическую болезнь новорожденных: эритроциты резус-положительного плода соединяются с циркулирующими в крови неполными антителами к резус-фактору, которые перешли через плаценту от резус-отрицательной матери.

Можно также выявлять неполные антитела против антигенных микробов.

Реакция торможения гемагглютинации Гемагглютинины вирусов склеивают эритроциты. Это свойство используют в реакции гемагглютинации для индикации и титрования вирусов, что необходимо для последующей постановки РТГА. Реакция торможения гемагглютинации основана на блокаде, подавлении антигенов (гемагглютининов) вирусов антитепами иммунной сыворотки, в результате чего вирусы теряют свойство агглютинировать эритроциты. РТГА применяют для диагностики многих вирусных болезней, возбудители которых (вирусы гриппа, кори, краснухи, клещевого энцефалита и др.) могут агглютинировать эритроциты различных животных.

Реакция преципитации Реакция преципитации (от лат. praecipito — осаждать) — это формирование и осаждение комплекса растворимого молекулярного антигена с антителами в виде помутнения, называемого преципитатом. Он образуется при смешивании антигенов и антител в эквивалентных количествах; избыток одного из них снижает уровень образования иммунного комплекса. Реакцию преципитации ставят в пробирках (реакция кольцепреципитации), в гелях, питательных средах и др.

Реакция кольцепреципитации , Реакцию проводят в узких преципитационных пробирках: на иммунную сыворотку наслаивают растворимый антиген. При оптимальном соотношении антигена и антител на границе этих двух растворов об- эазуется непрозрачное кольцо преципитата. Если в качестве антигенов в реакции используют прокипяченные и профильтрованные экстракты тканей, то такая реакция называется реакцией термопреципитации (реакция Асколи, при которой выявляют сибиреязвенный гаптен).

Иммуноэлектрофорез — сочетание метода электрофореза и иммунопреципитации: смесь антигенов вносится в лунки геля и разделяется в геле с помощью электрофореза, затем в канавку геля параллельно зонам электрофорезавносят иммунную сыворотку. Антитела иммунной сыворотки диффундируют в гель и образуют в месте «встречи» с антигеном линии преципитации.

Реакция флоккуляции (по Рамону) {от лат, floccus — хлопья шерсти} — появление опалесценции или хлопьевидной массы (иммунопреципитации) в пробирке при реакции токсин—антитоксин или анатоксин—антитоксин, Ее применяют для определения активности антитоксической сыворотки или анатоксина.

Штаммы возбудителя дифтерии — С, cliphtheriae могут быть токсигенными (продуцирующими экзотоксин) и нетоксигенны- МИ, Образование экзотоксина зависит от наличия в бактерияхпрофага, несущего tox-ген, кодирующий образование экзотоксина. При заболевании все изоляты тестируются на токсигенность — продукцию дифтерийного экзотоксина с помощью реакции преципитации в агаре.

Реакция нейтрализации Антитела иммунной сыворотки способны нейтрализовать повреждающее действие микробов или их токсинов на чувствительные клетки и ткани, что связано с блокадой микробных антигенов антителами, т. е. их нейтрализацией. Реакцию нейтрализации (РН) проводят путем введения смеси антиген—антитело животным или в чувствительные тест-объекты (культуру клеток, эмбрионы). При отсутствии у животных и тест-объектов повреждающего действия микроорганизмов или их антигенов, токсинов говорято нейтрализующем действии иммунной сыворотки и, следовательно, о специфичности взаимодействия комплекса антиген—антитело.

Реакция связывания комплемента Реакция связывания комплемента (РСК) заключается в том, что при соответствии друг другу антигенов и антител они образуют иммунный комплекс, к которому через Fc-фрагмент антител присоединяется комплемент (С), т.е. происходит связывание комплемента комплексом антиген—антитело. Если же комплекс антиген—антитело не образуется, то комплемент остается свободным

РСК проводят в две фазы: 1-я фаза — инкубация смеси, содержащей антиген + антитело + комплемент; 2-я фаза (индикаторная) — выявление в смеси свободного комплемента путем добавления к ней гемолитической системы, состоящей из эритроцитов барана, и гемолитической сыворотки, содержащей антитела к ним. В 1-й фазе реакции при образовании комплекса антиген—антитело происходит связывание им комплемента, и тогда во 2-й фазе гемолиз сенсибилизированных антителами эритроцитов не произойдет (реакция положительная). Если антиген и антитело не соответствуют друг другу (в исследуемом образце нет антигена или антитела), комплемент остается свободным и во 2-й фазе присоединится к комплексу эритроцит — антиэритроцитарное антитело, вызывая гемолиз (реакция отрицательная). РСК применяют для диагностики многих инфекционных болезней, в частности сифилиса (реакция Вассермана).

Реакция иммунофлюоресценции Реакция иммунофлюоресценции (РИФ, или метод Кунса). Различают три разновидности метода: прямой, непрямой, с комплементом. Реакция Кунса является методом экспресс- диагностики для выявления антигенов микробов или определения антител.

Прямой метод РИФ основан на том, что антигены тканей или микробы, обработанные иммунными сыворотками с антителами, меченными флюорохромами, способны светиться в УФ-лу- чах люминесцентного микроскопа (рис. 7.61). Бактерии в мазке, обработанные такой люминесцирующей сывороткой, светятся по периферии клетки в виде каймы зеленого цвета.

Непрямой метод РИФ заключается в выявлении комплекса антиген—антитело с помощью а нти глобул и новой (против антител) сыворотки, меченной флюорохромом. Для зтого мазки из взвеси микробов обрабатывают антителами антимикробной кроличьей диагностической сыворотки. Затем антитела, не связавшиеся антигенами микробов, отмывают, а оставшиеся на микробах антитела выявляют, обрабатывая мазок а нти глобул и новой {антикроличьей) сывороткой, меченной флюорохромами В результате образуется комплекс микроб + антимикробные кроличьи антитела + антикроличьи антитела, меченные флюорохромом. Этот комплекс наблюдают в люминесцентном микроскопе, как и при прямом методе.

IT. При определении антигена в лунки с сорбированными антителами вносят антиген (напр., сыворотку крови с искомым антигеном), добавляют диагностическую сыворотку против него и вторичные антитела (против диагностической сыворотки), меченные ферментом, а затем субстрат/хромоген для фермента.

Конкурентный ИФА для определения антигенов (рис. 7.65).

Конкурентный ИФА для определения антител: искомые антитела и меченные ферментом антитела конкурируют друг с другом за антигены, сорбированные на твердой фазе.

Иммуноблоттинг — высокочувствительный метод выявления белков, основанный на сочетании электрофореза и ИЧ>А или РИА). Иммуноблоттинг ислользуют как диагностический метод при ВИЧ-инфекции и др. Антигены возбудителя разделяют с помощью электрофореза в полиакриламидном геле, затем переносят их (блоттинг — от англ. blot — пятно) из геля на активированную бумагу или нитроцеллюлозную мембрану и проявляют с помощью ИФА, Фирмы выпускают такие полоски с «блотами» антигенов*. На эти полоски наносят сыворотку больного B). Затем, после инкубации, отмывают от несвязавшихся антител больного и наносят сыворотку против иммуноглобулинов человека, меченную ферментом C). Образовавшийся на полоске комплекс [антиген 4- антитело больного + антитело против Ig человека] выявляют добавлением хромогенного субстрата D), изменяющего окраску под действием фермента.

Полимеразная цепная реакция: основана на амплификации, т.е. увеличении количества копий специфического (маркерного) гена возбудителя. Для этого двунитевую ДНК, выделенную из исследуемого материала, денатурируют («расплетают» при нагревании) и достраивают (при охлаждении) к расплетенным нитям ДНК новые комплементарные нити. В результате из одного гена образуются два. Этот процесс копирования генов многократно повторяется при заданных температурных режимах. Достраивание новых комплементарных нитей ДНК происходит при добавлении к искомым генам праймеров (затравки из коротких од- нонитевых ДНК, комплементарных З"-концам ДНК искомого гена), ДНК-полимеразы и нуклеотидов.



gastroguru © 2017