Отличие генетических и эпигенетических заболеваний. Эпигеном: параллельная реальность внутри клетки Эпигенетика основные понятия механизмы примеры заболеваний

), за счет различной экспрессии генов в различных типах клеток, может осуществляться развитие многоклеточного организма, состоящего из дифференцированных клеток. Нужно отметить, что многие исследователи до сих пор относятся к эпигенетике скептически, поскольку в её рамках допускается вероятность негеномного наследования в качестве адаптивного ответа на изменения внешней среды, что противоречит доминирующей в настоящее время геноцетрической парадигме .

Примеры

Одним из примеров эпигенетических изменений у эукариот является процесс клеточной дифференцировки . Во время морфогенеза тотипотентные стволовые клетки формируют различные плюрипотентные клеточные линии эмбриона, которые в свою очередь дают начало полностью дифференцированным клеткам. Другими словами, одна оплодотворенная яйцеклетка - зигота - дифференцируется в различные типы клеток, включая: нейроны , мышечные клетки, эпителий , эндотелий сосудов и др., путем множественных делений. Это достигается активацией одних генов, и, в то же время, ингибированием других, с помощью эпигенетических механизмов .

Второй пример может быть продемонстрирован на мышах-полевках . Осенью, перед похолоданием, они рождаются с более длинной и густой шерстью, чем весной, хотя внутриутробное развитие «весенних» и «осенних» мышей происходит на фоне практически одинаковых условий (температуры, длины светового дня, влажности и т. д.). Исследования показали, что сигналом, запускающим эпигенетические изменения, приводящие к увеличению длины шерсти, является изменение градиента концентрации мелатонина в крови (весной он снижается, а осенью - повышается). Таким образом, эпигенетические адаптивные изменения (увеличение длины шерсти) индуцируются ещё до наступления холодов, адаптация к которым выгодна для организма.

Этимология и определения

Термин «эпигенетика» (как и «эпигенетический ландшафт») был предложен Конрадом Уоддингтоном в 1942 году, как производное от слов генетика и эпигенез. Когда Уоддингтон ввел этот термин, физическая природа генов не была до конца известна, поэтому он использовал его в качестве концептуальной модели того, как гены могут взаимодействовать со своим окружением при формировании фенотипа.

Робин Холлидэй определил эпигенетику как «изучение механизмов временного и пространственного контроля активности генов в процессе развития организмов» . Таким образом, термин «эпигенетика» может быть использован, чтобы описать любые внутренние факторы, которые влияют на развитие организма, за исключением самой последовательности ДНК.

Современное использование этого слова в научном дискурсе является более узким. Греческий префикс epi- в слове, подразумевает факторы, которые влияют «поверх» или «в дополнение к» генетическим, а значит эпигенетические факторы воздействуют вдобавок или помимо традиционных молекулярных факторов наследствености.

Сходство со словом «генетика» породило много аналогий в использовании термина. «Эпигеном» является аналогом термина «геном», и определяет общее эпигенетическое состояние клетки. Метафора «генетический код» была также адаптирована, а термин «эпигенетический код» используется, чтобы описать набор эпигенетических особенностей, которые создают разнообразные фенотипы в различных клетках. Широко используется термин «эпимутация», которым обозначают вызванное спорадическими факторами изменение нормального эпигенома, передающееся в ряде клеточных поколений.

Молекулярные основы эпигенетики

Молекулярная основа эпигенетики достаточно сложна при том, что она не затрагивает структуру ДНК, а изменяет активность определенных генов. Это объясняет, почему в дифференцированных клетках многоклеточного организма экспрессируются только гены, необходимые для их специфической деятельности. Особенностью эпигенетических изменений является то, что они сохраняются при клеточном делении. Известно, что большинство эпигенетических изменений проявляется только в пределах жизни одного организма. В то же время, если изменение в ДНК произошло в сперматозоиде или яйцеклетке, то некоторые эпигенетические проявления могут передаваться от одного поколения к другому . В связи с этим возникает вопрос, действительно ли эпигенетические изменения в организме могут изменить базовую структуру его ДНК? (см. Эволюция).

В рамках эпигенетики широко исследуются такие процессы как: парамутация, генетический букмаркинг, геномный импринтинг , инактивация Х-хромосомы , эффект положения, материнские эффекты, а также другие механизмы регуляции экспрессии генов.

В эпигенетических исследованиях используется широкий спектр методов молекулярной биологии, в том числе - иммунопреципитация хроматина (различные модификации ChIP-on-chip и ChIP-Seq), гибридизация in situ , чувствительные к метилированию рестриктазы , идентификации ДНК-аденин-метилтрансферазы (DamID) и бисульфитное секвенирование . Кроме того, все большую роль играет использование методов биоинформатики (компьютерная эпигенетика).

Механизмы

Метилирование ДНК и ремоделирование хроматина

Эпигенетические факторы влияют на активность экспрессии определенных генов на нескольких уровнях, что приводит к изменению фенотипа клетки или организма. Одним из механизмов такого влияния является ремодуляция хроматина. Хроматин - это комплекс ДНК с белками гистонами: ДНК накручивается на белки гистоны, которые представлены сферическими структурами (нуклеосомами) в результате чего, обеспечивается её компактизация в ядре. От густоты расположения гистонов в активно экспрессирующихся участках генома зависит интенсивность экспрессии генов. Ремоделирование хроматина - это процесс активного изменения «густоты» нуклеосом и сродства гистонов с ДНК. Оно достигается двумя нижеописанными путями.

Метилирование ДНК

Наиболее хорошо изученным к настоящему времени эпигенетическим механизмом является метилирование цитозиновых оснований ДНК. Начало интенсивным исследованиям роли метилирования в регуляции генетической экспрессии, в том числе при старении, было положено ещё в 70-е годы прошлого века пионерскими работами Ванюшина Б. Ф. и Бердышева Г. Д. с соавт. Процесс метилирования ДНК заключается в присоединении метильной группы к цитозину в составе CpG-динуклеотида в позиции С5 цитозинового кольца. Метилирование ДНК , в основном, присуще эукариотам. У человека метилировано около 1 % геномной ДНК. За процесс метилирования ДНК отвечают три фермента, называемые ДНК-метилтрансферазами 1, 3a и 3b (DNMT1, DNMT3a и DNMT3b). Предполагается, что DNMT3a и DNMT3b - это de novo метилтрансферазы, которые осуществляют формирование паттерна метилирования ДНК на ранних стадиях развития, а DNMT1 осуществляет метилирование ДНК на более поздних этапах жизни организма. Функция метилирования заключается в активации/инактивации гена. В большинстве случаев, метилирование приводит к подавлению активности гена, особенно при метилировании его промоторных областей, а деметилирование - к его активации. Показано, что даже незначительные изменения в степени метилирования ДНК могут существенно изменять уровень генетической экспрессии .

Модификации гистонов

Хотя модификации аминокислот в гистонах происходят на всей молекуле белка, модификации N-хвостов происходит значительно чаще. Эти модификации включают: фосфорилирование, убиквитилирование, ацетилирование, метилирование, сумоилирование. Ацетилирование является найболее изученной модификацией гистонов. Так, ацетилирование ацетилтрансферазой K14 и K9 лизинов хвоста гистона H3 коррелирует с транскрипционной активностью в данном районе хромосомы. Это происходит из-за того, что ацетилирование лизина меняет его положительный заряд на нейтральный, что делает невозможным его связь с негативно заряженными фосфатными группами в ДНК. В результате, происходит отсоединение гистонов от ДНК, что приводит к посадке на «голую» ДНК комплекса SWI/SNF и других транскрипционных факторов которые запускают транскрипцию. Это - «цис»-модель эпигенетического регулирования.

Гистоны способны поддерживать свое модифицированное состояние и выступать матрицей для модификации новых гистонов, которые связываются с ДНК после репликации .

Механизм воспроизведения эпигенетических меток более изучен для метилирования ДНК чем для гистоновых модификаций. Так, фермент DNMT1 имеет высокое сродство с 5-метилцитозином. Когда DNMT1 находит «полуметилированый сайт» (сайт в котором метилирован цитозин только в одной цепи ДНК), он метилирует цитозин на второй нити в том же сайте.

Прионы

МикроРНК

В последнее время большое внимание привлечено к изучению роли в процессах регуляции генетической активности малых интерферирующих РНК (si-RNA) . Интерферирующие РНК могут изменять стабильность и трансляцию мРНК путем моделирования функций полисом и структуры хроматина.

Значение

Эпигенетическое наследование в соматических клетках играет важнейшую роль в развитии многоклеточного организма. Геном всех клеток почти одинаков, в то же время многоклеточный организм содержит различно дифференциированные клетки, которые по-разному воспринимают сигналы окружающей среды и выполняют различные функции. Именно эпигенетические факторы обеспечивают «клеточную память».

Медицина

Как генетические, так и эпигенетические явления оказывают значительное влияние на здоровье человека. Известно несколько заболеваний которые возникают из-за нарушения метилирования генов, а также из-за гемизиготности по гену, подверженному геномному импринтингу . Для многих организмов доказана связь активности ацетилирования/деацетилирования гистонов с продолжительностью жизни. Возможно, эти же процессы влияют и на продолжительность жизни людей.

Эволюция

Хотя эпигенетику, в основном, рассматривают в контексте клеточной памяти, существует также ряд трансгенеративных эпигенетических эффектов, при которых генетические изменения передаются потомкам. В отличие от мутаций, эпигенетические изменения обратимы и, возможно, могут быть направлены (адаптивны). Поскольку большинство из них исчезает через несколько поколений, они могут носить характер лишь временных адаптаций. Также активно обсуждается вопрос о возможности влияния эпигенетики на частоту мутаций в определенном гене . Было показано, что семейство белков цитозин-дезаминаз APOBEC/AID принимает участие как в генетической, так и в эпигенетичской наследственности, используя схожие молекулярные механизмы. У многих организмов было обнаружено более 100 случаев трансгенеративных эпигенетических явлений .

Эпигенетические эффекты у человека

Геномный импринтинг, и связанные с ним заболевания

Некоторые человеческие заболевания связаны с геномным импринтингом , феноменом при котором одни и те же гены имеют разный паттерн метилирования в зависимости от того, от родителя какого пола они получены. Самыми известными случаями заболеваний, связанных с импринтингом, являются синдром Ангельмана и синдром Прадера-Вилли. Причиной развития обоих является частичная делеция в регионе 15q . Это связано с наличием геномного импринтинга в данном локусе.

Трансгенеративные эпигенетические эффекты

Маркус Пембри (Marcus Pembrey) с соавторами установили, что внуки (но не внучки) мужчин, которые были подвержены голоду в Швеции в 19 веке, менее склонны к сердечно-сосудистым заболеваниям, но сильнее подвержены диабету, что, как считает автор, является примером эпигенетической наследственности .

Рак и нарушения развития

Многие вещества имеют свойства эпигенетических канцерогенов: они приводят к увеличению частоты возникновения опухолей, не проявляя при этом мутагенного эффекта (например: диэтилстилбестрола арсенит, гексахлорбензол, и соединения никеля). Многие тератогены , в частности диэтилстилбестрол, оказывают специфическое воздействие на плод на эпигенетическом уровне .

Изменения в ацетилировании гистонов и метилировании ДНК приводит к развитию рака простаты путем изменения активности различных генов. На активность генов при раке простаты может влиять питание и образ жизни .

В 2008 году Национальный Институт Здоровья США объявил, что 190 миллионов долларов будет потрачено на изучение эпигенетики в течение следующих 5 лет. По мнению некоторых исследователей, которые стали инициаторами выделения средств, эпигенетика может играть большую роль в лечении заболеваний человека, чем генетика.

Эпигеном и старение

В последние годы накоплено большое количество доказательств того, что эпигенетические процессы играют важную роль на поздних этапах жизни. В частности, при старении происходят широкомасштабные изменения паттернов метилирования. Предполагается, что эти процессы находятся под генетическим контролем. Обычно наибольшее количество метилированых цитозиновых оснований наблюдается в ДНК, выделенной из эмбрионов или новорожденных животных, и это количество постепенно уменьшается с возрастом. Подобное снижение уровня метилирования ДНК обнаружено в культивируемых лимфоцитах мышей, хомяков и людей. Оно имеет систематический характер, но может быть ткане- и геноспецифичным. Например, Tra с соавт. (Tra et al., 2002) при сопоставлении более чем 2000 локусов в Т-лимфоцитах, изолированных из периферической крови новорожденных, а также людей среднего и старшего возраста, выявили, что 23 из этих локусов с возрастом подвергаются гиперметилированию и 6 - гипометилированию, причем сходные изменения характера метилирования выявлены и в других тканях: поджелудочной железе, легких и пищеводе. Выраженные эпигенетические искажения выявлены у больных прогирией Хатчинсона-Гилфорда.

Предполагается, что деметилирование с возрастом приводит к хромосомным перестройкам за счет активации мобильных генетических элементов (МГЭ), которые обычно подавляются при помощи метилирования ДНК (Barbot et al., 2002; Bennett-Baker, 2003). Систематическое возрастное снижение уровня метилирования может, по крайней мере отчасти, быть причиной возникновения многих комплексных заболеваний, которые нельзя объяснить с помощью классических генетических воззрений. Ещё одним процессом, происходящим в онтогенезе параллельно с деметилированием и влияющим на процессы эпигенетического регулирования, является конденсация хроматина (гетерохроматинизация), приводящая с возрастом к снижению генетической активности. В ряде работ возраст-зависимые эпигенетические изменения были продемонстрированы также в половых клетках; направление этих изменений, по всей видимости, является геноспецифичным.

Литература

  • Несса Кэри . Эпигенетика: как современная биология переписывает наши представления о генетике, заболеваниях и наследственности. - Ростов-на-Дону: Феникс, 2012. - ISBN 978-5-222-18837-8 .

Примечания

  1. New research links common RNA modification to obesity
  2. http://woman.health-ua.com/article/475.html Эпигенетическая эпидемиология ассоциированных с возрастом заболеваний
  3. Holliday, R., 1990. Mechanisms for the control of gene activity during development. Biol. Rev. Cambr. Philos. Soc. 65, 431-471
  4. «Epigenetics». Bio-Medicine.org. Retrieved 2011-05-21.
  5. V.L. Chandler (2007). «Paramutation: From Maize to Mice». Cell 128 (4): 641-645. doi:10.1016/j.cell.2007.02.007. PMID 17320501 .
  6. Jan Sapp, Beyond the Gene. 1987 Oxford University Press. Jan Sapp, «Concepts of organization: the leverage of ciliate protozoa» . In S. Gilbert ed., Developmental Biology: A Comprehensive Synthesis, (New York: Plenum Press, 1991), 229-258. Jan Sapp, Genesis: The Evolution of Biology Oxford University Press, 2003.
  7. Oyama, Susan; Paul E. Griffiths, Russell D. Gray (2001). MIT Press. ISBN 0-26-265063-0 .
  8. Verdel et al, 2004
  9. Matzke, Birchler, 2005
  10. O.J. Rando and K.J. Verstrepen (2007). «Timescales of Genetic and Epigenetic Inheritance». Cell 128 (4): 655-668. doi:10.1016/j.cell.2007.01.023. PMID 17320504 .
  11. Jablonka, Eva; Gal Raz (June 2009). «Transgenerational Epigenetic Inheritance: Prevalence, Mechanisms, and Implications for the Study of Heredity and Evolution». The Quarterly Review of Biology 84 (2): 131-176. doi:10.1086/598822. PMID 19606595 .
  12. J.H.M. Knoll, R.D. Nicholls, R.E. Magenis, J.M. Graham Jr, M. Lalande, S.A. Latt (1989). «Angelman and Prader-Willi syndromes share a common chromosome deletion but differ in parental origin of the deletion». American Journal of Medical Genetics 32 (2): 285-290. doi:10.1002/ajmg.1320320235.

В эпигенетических исследованиях используется широкий спектр методов молекулярной биологии, в том числе - иммунопреципитация хроматина (различные модификации ChIP-on-chip и ChIP-Seq), гибридизация in situ , чувствительные к метилированию рестриктазы , идентификации ДНК-аденин-метилтрансферазы (DamID), бисульфитное секвенирование . Кроме того, всё большую роль играет использование методов биоинформатики (компьютерная эпигенетика).

Энциклопедичный YouTube

    1 / 5

    Эпигенетика. Рассказывает молекулярный биолог Борис Фёдорович Ванюшин.

    What is epigenetics? - Carlos Guerrero-Bosagna

    Елена Григоренко. Что изучает эпигенетика

    Эпигенетические ярлыки на ДНК

    Гордон - Диалоги: Эпигенетика

    Субтитры

Примеры

Одним из примеров эпигенетических изменений у эукариот является процесс клеточной дифференцировки . Во время морфогенеза плюрипотентные стволовые клетки формируют различные полипотентные клеточные линии эмбриона, которые в свою очередь дают начало полностью дифференцированным клеткам. Другими словами, одна оплодотворённая яйцеклетка - зигота - дифференцируется в различные типы клеток, включая: нейроны , мышечные клетки, эпителий , эндотелий сосудов и др., путём множественных делений. Это достигается активацией одних генов, и, в то же время, ингибированием других с помощью эпигенетических механизмов .

Второй пример может быть продемонстрирован на мышах-полевках . Осенью, перед похолоданием, они рождаются с более длинной и густой шерстью, чем весной, хотя внутриутробное развитие «весенних» и «осенних» мышей происходит на фоне практически одинаковых условий (температуры, длины светового дня, влажности и т. д.). Исследования показали, что сигналом, запускающим эпигенетические изменения, приводящие к увеличению длины шерсти, является изменение градиента концентрации мелатонина в крови (весной он снижается, а осенью - повышается). Таким образом, эпигенетические адаптивные изменения (увеличение длины шерсти) индуцируются ещё до наступления холодов, адаптация к которым выгодна для организма.

Этимология и определения

Термин «эпигенетика» (как и «эпигенетический ландшафт») был предложен Конрадом Уоддингтоном (Conrad Hal Waddington ) в 1942 году, как производное от слов «генетика» и аристотелевского слова «эпигенез». Когда Уоддингтон ввёл этот термин, физическая природа генов не была до конца известна, поэтому он использовал его в качестве концептуальной модели того, как гены могут взаимодействовать со своим окружением при формировании фенотипа.

Сходство со словом «генетика» породило много аналогий в использовании термина. «Эпигеном» является аналогом термина «геном», и определяет общее эпигенетическое состояние клетки. Метафора «генетический код» была также адаптирована, а термин «эпигенетический код» используется, чтобы описать набор эпигенетических особенностей, которые создают разнообразные фенотипы в различных клетках. Широко используется термин «эпимутация», которым обозначают вызванное спорадическими факторами изменение нормального эпигенома, передающееся в ряде клеточных поколений.

Молекулярные основы эпигенетики

Молекулярная основа эпигенетики достаточно сложна при том, что она не затрагивает первичную структуру ДНК, а изменяет активность определенных генов. Это объясняет, почему в дифференцированных клетках многоклеточного организма экспрессируются только гены, необходимые для их специфической деятельности. Особенностью эпигенетических изменений является то, что они сохраняются при клеточном делении. Известно, что большинство эпигенетических изменений проявляется только в пределах жизни одного организма. В то же время, если изменение в ДНК произошло в сперматозоиде или яйцеклетке, то некоторые эпигенетические проявления могут передаваться от одного поколения к другому .

Метилирование ДНК

Наиболее хорошо изученным к настоящему времени эпигенетическим механизмом является метилирование цитозиновых оснований ДНК. Начало интенсивным исследованиям роли метилирования в регуляции генетической экспрессии, в том числе при старении, было положено ещё в 70-е годы XX века пионерскими работами Бориса Фёдоровича Ванюшина и Геннадия Дмитриевича Бердышева с соавторами. Процесс метилирования ДНК заключается в присоединении метильной группы к цитозину в составе CpG-динуклеотида в позиции С5 цитозинового кольца. Метилирование ДНК , в основном, присуще эукариотам. У человека метилировано около 1 % геномной ДНК. За процесс метилирования ДНК отвечают три фермента, называемые ДНК-метилтрансферазами 1, 3a и 3b (DNMT1, DNMT3a и DNMT3b). Предполагается, что DNMT3a и DNMT3b - это de novo метилтрансферазы, которые осуществляют формирование профиля метилирования ДНК на ранних стадиях развития, а DNMT1 осуществляет метилирование ДНК на более поздних этапах жизни организма. Фермент DNMT1 имеет высокое сродство с 5-метилцитозином. Когда DNMT1 находит «полуметилированный сайт» (сайт, в котором метилирован цитозин только в одной цепи ДНК), он метилирует цитозин на второй нити в том же сайте. Функция метилирования заключается в активации/инактивации гена. В большинстве случаев, метилирование промоторных областей гена приводит к подавлению активности гена. Показано, что даже незначительные изменения в степени метилирования ДНК могут существенно изменять уровень генетической экспрессии.

Модификации гистонов

Хотя модификации аминокислот в гистонах происходят на всей молекуле белка, модификации N-хвостов происходит значительно чаще. Эти модификации включают: фосфорилирование, убиквитилирование, ацетилирование, метилирование , сумоилирование. Ацетилирование является наиболее изученной модификацией гистонов. Так, ацетилирование ацетилтрансферазой 14-го и 9-го лизинов гистона H3 (H3K14ac и H3K9ac, соответственно) коррелирует с транскрипционной активностью в данном районе хромосомы. Это происходит из-за того, что ацетилирование лизина меняет его положительный заряд на нейтральный, что делает невозможным его связь с негативно заряженными фосфатными группами в ДНК. В результате, происходит отсоединение гистонов от ДНК, что приводит к посадке на «голую» ДНК комплекса SWI/SNF и других транскрипционных факторов которые запускают транскрипцию. Это «цис»-модель эпигенетического регулирования.

Гистоны способны поддерживать своё модифицированное состояние и выступать матрицей для модификации новых гистонов, которые связываются с ДНК после репликации .

Ремоделирование хроматина

Эпигенетические факторы влияют на активность экспрессии определенных генов на нескольких уровнях, что приводит к изменению фенотипа клетки или организма. Одним из механизмов такого влияния является ремоделирование хроматина. Хроматин - это комплекс ДНК с белками, прежде всего, с белками-гистонами . Гистоны формируют нуклеосому , вокруг которой накручивается ДНК, в результате чего обеспечивается её компактизация в ядре. От густоты расположения нуклеосом в активно экспрессирующихся участках генома зависит интенсивность экспрессии генов . Хроматин, свободный от нуклеосом, называется открытым хроматином . Ремоделирование хроматина - это процесс активного изменения «густоты» нуклеосом и сродства гистонов с ДНК.

Прионы

МикроРНК

В последнее время большое внимание привлечено к изучению роли в процессах регуляции генетической активности малых некодирующих РНК (miRNA) . МикроРНК могут изменять стабильность и трансляцию мРНК путём комплементарного связывания с 3"-нетранслируемым участком мРНК.

Значение

Эпигенетическое наследование в соматических клетках играет важнейшую роль в развитии многоклеточного организма. Геном всех клеток почти одинаков, в то же время многоклеточный организм содержит различно дифференцированные клетки, которые по-разному воспринимают сигналы окружающей среды и выполняют различные функции. Именно эпигенетические факторы обеспечивают «клеточную память».

Медицина

Как генетические, так и эпигенетические явления оказывают значительное влияние на здоровье человека. Известно несколько заболеваний, которые возникают из-за нарушения метилирования генов, а также из-за гемизиготности по гену, подверженному геномному импринтингу . В настоящее время разрабатывается эпигенетическая терапия , направленная на лечение этих заболеваний посредством воздействия на эпигеном и коррекции нарушений. Для многих организмов доказана связь активности ацетилирования/деацетилирования гистонов с продолжительностью жизни. Возможно, эти же процессы влияют и на продолжительность жизни людей.

Эволюция

Хотя эпигенетику в основном рассматривают в контексте соматической клеточной памяти, существует также ряд трансгенеративных эпигенетических эффектов, при которых генетические изменения передаются потомкам. В отличие от мутаций эпигенетические изменения обратимы и, возможно, могут быть направлены (адаптивны) . Поскольку большинство из них исчезает через несколько поколений, они могут носить характер лишь временных адаптаций. Также активно обсуждается вопрос о возможности влияния эпигенетики на частоту мутаций в определенном гене геномным импринтингом , феноменом, при котором аллели гена имеют разный профиль метилирования в зависимости от того, от родителя какого пола они получены. Самыми известными случаями заболеваний, связанных с импринтингом, являются синдром Ангельмана и синдром Прадера - Вилли . Причиной развития обоих является частичная делеция в регионе 15q . Это связано с наличием геномного импринтинга в данном локусе.

Трансгенеративные эпигенетические эффекты

Маркус Пембри (Marcus Pembrey ) с соавторами установили, что внуки (но не внучки) мужчин, которые были подвержены голоду в Швеции в 19 веке, менее склонны к сердечно-сосудистым заболеваниям, но сильнее подвержены диабету, что, как считает автор, является примером эпигенетической наследственности .

Рак и нарушения развития

Многие вещества имеют свойства эпигенетических канцерогенов: они приводят к увеличению частоты возникновения опухолей, не проявляя при этом мутагенного эффекта (например, диэтилстилбестрола арсенит, гексахлорбензол, соединения никеля). Многие тератогены , в частности диэтилстилбестрол, оказывают специфическое воздействие на плод на эпигенетическом уровне .

Изменения в ацетилировании гистонов и метилировании ДНК приводят к развитию рака простаты путём изменения активности различных генов. На активность генов при раке простаты может влиять питание и образ жизни .

В 2008 году Национальный Институт Здоровья США объявил, что 190 миллионов долларов будет потрачено на изучение эпигенетики в течение следующих 5 лет. По мнению некоторых исследователей, которые стали инициаторами выделения средств, эпигенетика может играть бо́льшую роль в лечении заболеваний человека, чем генетика.

Эпигенетика – направление генетики, сравнительно недавно оформившееся в самостоятельную область исследований. Но уже сегодня этамолодая динамичная наука предлагает революционный взгляд на молекулярные механизмы развития живых систем .

Одна из наиболее дерзких и вдохновляющих эпигенетических гипотез о том, что активность многих генов подвержена влиянию извне, сейчас находит подтверждение во множестве экспериментов на модельных животных. Исследователи осторожно комментируют их результаты, но не исключают, что и Homo sapiens не в полной мере зависит от наследственности, а значит может на нее целенаправленно воздействовать.

В перспективе, если ученые окажутся правы и им удастся подобрать ключи к механизмам управления генами, человеку станут подвластны физические процессы, происходящие в организме. В их числе вполне может оказаться и старение.

На рис. механизм РНК- интерференции.

Молекулы дцРНК могут представлять собой РНК-шпильку или две спаренные комплементарные друг другу цепи РНК.
Длинные молекулы дцРНК нарезаются (процессируются) в клетке на короткие ферментом Dicer : один из его доменов специфически связывает конец молекулы дцРНК (отмечен звездочкой), при этом другой — производит разрывы (отмечены белыми стрелками) в обеих цепях дцРНК.

В результате образуется двунитевая РНК длиной 20-25 нуклеотидов (siРНК), а Dicer переходит к следующему циклу разрезания дцРНК, связываясь с ее новообразованным концом.


Эти siРНК могут включаться в состав комплекса, содержащего белок Argonaute (AGO) . Одна из цепей siРНК в комплексе с белком AGO находит в клетке комплементарные ей молекулы матричной РНК (мРНК). AGO разрезает молекулы мРНК-мишени, в результате чего мРНК деградирует, или останавливает трансляцию мРНК на рибосоме. Короткие РНК могут также подавлять транскрипцию (синтез РНК) гомологичного им по нуклеотидной последовательности гена в ядре.
(рисунок, схема и комментарий / журнал «Природа» №1, 2007 г.)

Возможны и другие, пока не известные, механизмы.
Разница между эпигенетическими и генетическими механизмами наследования в их стабильности, воспроизводимости эффектов. Генетически обусловленные признаки могут воспроизводиться неограниченно долго, пока в соответствующем гене не возникает определенное изменение (мутация).
Индуцированные определенными стимулами эпигенетические изменения обычно воспроизводятся в ряду клеточных поколений в пределах жизни одного организма. Когда они передаются в следующие генерации, то могут воспроизводиться не более 3-4 поколений, а потом, если индуцировавший их стимул исчезает, постепенно сходят на нет.

А как это выглядит на молекулярном уровне? Эпигенетические маркеры , как принято называть эти химические комплексы, находятся не в нуклеотидах, образующих структурную последовательность молекулы ДНК, а на них и непосредственно улавливают определенные сигналы?

Совершенно верно. Эпигенетические маркеры действительно находятся не В нуклеотидах а НА них (метилирование) либо ВНЕ их (ацетилирование гистонов хроматина, микроРНК).
То, что происходит при передаче этих маркеров в следующие поколения, лучше всего объяснить, используя в качестве аналогии новогоднюю елку. Переходящие из поколения в поколение «игрушки» (эпигенетические маркеры) полностью снимаются с нее в процессе формирования бластоциста (8-клеточного зародыша), а потом, в процессе имплантации «надеваются» на те же места, где находились раньше. Это было известно уже давно. А вот то, что стало известно недавно, и что полностью перевернуло наши представления в биологии, имеет отношение к эпигенетическим модификациям, приобретенным на протяжении жизни данного организма.

Например, если у организма под влиянием определенного воздействия (теплового шока, голодания и т.д.), происходит устойчивая индукция эпигенетических изменений («покупка новой игрушки»). Как предполагалось раньше, подобные эпигенетические маркеры бесследно стираются при оплодотворении и образовании зародыша и, таким образом, не передаются потомкам. Оказалось, что это не так. В большом количестве работ последних лет эпигенетические изменения, индуцированные средовыми стрессами у представителей одного поколения, обнаруживались у представителей 3-4 последующих поколений. Это свидетельствует о возможности наследования приобретенных признаков, что до последнего времени считалось абсолютно невозможным.

Каковы важнейшие факторы, вызывающие эпигенетические изменения?

Это все факторы, действующие на протяжении чувствительных (сенситивных) этапов развития. У человека это весь период внутриутробного развития и первые три месяца после рождения. К важнейшим можно отнести питание, вирусные инфекции, курение матери во время беременности, недостаточная наработка витамина D (при инсоляции), материнский стресс.
То есть, они увеличивают адаптацию организма к изменяющимся условиям. А какие «мессенджеры» существуют между факторами окружающей среды и эпигенетическими процессами – пока никому не известно.

Но, кроме того, есть данные, говорящие о том, что наиболее «сенситивный» период, во время которого возможны основные эпигенетические модификации – периконцептуальный (первые два месяца после зачатия). Возможно, действенными могут оказаться попытки направленного вмешательства в эпигенетические процессы даже до зачатия, то есть на половые клетки еще до образования зиготы. Однако эпигеном остается достаточно пластичным и после окончания этапа эмбрионального развития, некоторые исследователи пытаются его корректировать и у взрослых людей.

Например, Мин Джу Фан (Ming Zhu Fang ) и ее коллеги из Университета Рутгерса в Нью-Джерси (США) обнаружили, что у взрослых людей при помощи определенного компонента зеленого чая (антиоксидант — эпигаллокатехингаллат (EGCG)) можно за счет деметилирования ДНК активизировать гены-супрессоры (подавители) опухолевого роста.

Сейчас в США и в Германии в стадии разработки уже находятся около десятка препаратов, в основу создания которых легли результаты недавних исследований эпигенетиков в диагностике раковых заболеваний.
А какие вопросы в эпигенетике сейчас являются ключевыми? Как их решение может продвинуть изучение механизмов (процесса) старения?

Я считаю, что процесс старения по своей сути является эпигенетическим (« как этап онтогенеза»). Исследования в этой области начались только в последние годы, но, если они увенчаются успехом, возможно, человечество получит новое мощное средство для борьбы с болезнями и продления жизни.
Ключевыми сейчас являются вопросы эпигенетической природы заболеваний (например, рака) и разработка новых подходов к их предупреждению и лечению.
Если удастся изучить молекулярные эпигенетические механизмы возрастных заболеваний, можно будет успешно противодействовать их развитию.

Ведь, например, рабочая пчела живет 6 недель, а пчеломатка – 6 лет.
При полной генетической идентичности они различаются только тем, что будущую пчеломатку во время развития кормят маточным молочком на несколько дней больше, чем обычную рабочую пчелу.

В результате у представителей этих пчелиных каст формируются несколько отличные эпигенотипы. И, несмотря на внешнее и биохимическое подобие, длительность их жизни различается в 50 раз!

В процессе исследований в 60-е годы было показано, что уменьшается с возрастом. Но удалось ли ученым продвинуться в ответе на вопрос: почему это происходит?

Есть масса работ, свидетельствующих о том, что особенности и темп старения зависят от условий раннего онтогенеза. Большинство связывает это именно с корригировкой эпигенетических процессов.

Метилирование ДНК действительно уменьшается с возрастом, почему это происходит – пока не известно. Одна из версий – что это следствие адаптации, попытка организма приспособиться как к внешним стрессам, так и ко внутреннему «сверхстрессу» — старению.

Возможно, что «включающиеся» при возрастном деметилировании ДНК – дополнительный адаптивный ресурс, одно из проявлений процесса витаукта (как его назвал выдающийся геронтолог Владимир Вениаминович Фролькис) — физиологического процесса, противодействующего старению.


Чтобы произвести изменения на генном уровне, нужно выявить и заменить мутировавшую «букву» ДНК, может быть участок генов. Пока наиболее перспективный путь для осуществления таких операций — биотехнологический. Но до сих пор это экспериментальное направление и особых прорывов в нем пока нет. Метилирование более пластичный процесс, его проще изменять — в том числе, с помощью фармакологических препаратов. Возможно ли научиться избирательно контролировать ? Что еще для этого еще предстоит сделать?

Метилирование – вряд ли. Оно неспецифично, действует на все «оптом». Можно научить обезьяну лупить по клавишам пианино, и она будет извлекать из него громкие звуки, но «Лунную сонату» исполнит вряд ли. Хотя есть примеры, когда при помощи метилирования удавалось изменить фенотип организма. Наиболее известен пример с мышами – носителями мутантного гена агути (я его уже приводил). Реверсия к нормальному цвету шерсти происходила у этих мышей, потому, что «дефектный» ген был у них «выключен» за счет метилирования.

Но избирательно влиять на экспрессию генов можно, и для этого прекрасно подходят интерферирующие РНК, которые действуют высокоспецифично, только на «собственные» . Такие работы уже проводятся.

Например, недавно американские исследователи пересаживали мышам, у которых была подавлена функция иммунной системы, опухолевые человеческие клетки, которые могли свободно размножаться и метастазировать в иммунодефицитных мышиных организмах. Ученым удалось определить экспрессированные в метастазирующих клетках и, синтезировав соответствующую интерферирующую РНК и введя ее мышам, заблокировать синтез «раковой» информационной РНК и, соответсвенно, подавить опухолевый рост и метастазирование.

То есть, исходя из современных исследований, можно говорить о том, что в основе различных процессов, происходящих в живых организмах, лежат эпигенетические сигналы. Что они из себя представляют? Какие факторы влияют на их формирование? Удается ли ученым эти сигналы дешифровать?

Сигналы могут быть самыми разными. При развитии и стрессе – это сигналы прежде всего гормональной природы, но есть данные, что к экспрессии генов белков теплового шока (HSP70) в культуре клеток может приводить даже влияние низкочастотного электромагнитного поля определенной частоты, интенсивность которого в миллион (!) раз меньше естественного электромагнитного поля. В данном случае это поле, конечно же, действует не «энергетически», а является неким сигнальным «триггером», «запускающим» экспрессию гена. Тут многое еще загадочно.

Например, недавно открытый bystander effect («эффект свидетеля»).
Вкратце его суть такова. Когда мы облучаем культуру клеток, у них возникают реакции широкого спектра, от хромосомных аберраций до радиоадаптивных реакций (способности выдерживать большие дозы облучения). Но если мы удалим все облученные клетки и в оставшуюся питательную среду перенесем другие, необлученные, у них проявятся те же реакции, хотя их никто не облучал.


Предполагается, что облученные клетки выделяют в среду некие эпигенетические «сигнальные» факторы, которые и вызывают в необлученных клетках аналогичные изменения. Какова природа этих факторов – пока никто не знает.

Большие ожидания в улучшении качества жизни и продолжительности жизни связаны с научными достижениями в области изучения стволовых клеток. Удастся ли эпигенетике оправдать возлагающиеся на нее надежды в перепрограммировании клеток? Есть ли для этого серьезные предпосылки?

Если будет разработана надежная методика «эпигенетического перепрограммирования» соматических клеток в стволовые, это, безусловно, окажется революцией в биологии и медицине. Пока в этом направлении сделаны только первые шаги, но они обнадеживают.

Известная сентенция: человек — то, что он ест. Какой эффект оказывает еда на наши ? Например, генетики из Университета Мельбурна , изучавшие механизмы работы клеточной памяти, обнаружили, что после получения одноразовой дозы сахара, клетка в течение нескольких недель хранит соответствующий химический маркер.

Есть даже специальный раздел эпигенетики — Nutritional Epigenetics , занимающийся именно вопросом зависимости эпигенетических процессов от особенностей питания. Особенно важны эти особенности на ранних стадиях развития организма. Например, при вскармливании младенца не материнским молоком, а сухими питательными смесями на основе коровьего молока, в клетках его тела происходят эпигенетиеские изменения, которые, фиксируясь по механизму импринтинга (запечатления), приводят со временем к началу аутоиммунного процесса в бета-клетках поджелудочной железы и, как следствие, заболеванию диабетом I типа.


На рис. развитие диабета (рис. увеличивается при нажатии курсором). При таких аутоиммунных заболеваниях, как диабет 1-го типа, иммунная система человека атакует его собственные органы и ткани.
Некоторые из аутоантител начинают вырабатываться в организме задолго до появления первых симптомов болезни. Их выявление может помочь в оценке риска развития заболевания.

(рисунок из журнала «В МИРЕ НАУКИ» , июль 2007 № 7)

А неполноценное (ограниченное по количеству калорий) питание в период внутриутробного развития – прямой путь к ожирению во взрослом возрасте и диабету II типа.

Это означает, что человек все-таки несет ответственность не только за себя, но и за своих потомков: детей, внуков, правнуков?

Да, конечно, причем в значительно большей степени, чем это было принято считать раньше.

А какова эпигенетическая составляющая в, так называемом, геномном импринтинге?

При геномном импринтинге один и тот же ген фенотипически проявляется по-разному в зависимости от того, от отца или матери он попадает к потомку. То есть, если ген наследуется от матери, то он уже метилирован и не экспрессируется, тогда как ген, наследуемый от отца не метилирован, и экспрессируется.

Наиболее активно изучается геномный импринтинг при развитии различных наследственных заболеваний, которые передаются только от предков определенного пола. Например, ювенильная форма болезни Гентингтона проявляется только при наследовании мутантного аллеля от отца, а атрофическая миотония — от матери.
И это при том, что сами , вызывающие эти заболевания, абсолютно одинаковы независимо от того, наследуются ли они от отца или матери. Различия заключаются в «эпигенетической предыстории», обусловленной их пребыванием в материнском или, наоборот, отцовском, организмах. Другими словами, они несут «эпигенетический отпечаток» пола родителя. При нахождении в организме предка определенного пола они метилируются (функционально репрессируются), а другого – деметилируются (соответственно, экспрессируются), и в таком же состоянии наследуются потомками, приводя (или не приводя) к возникновению определенных заболеваний.

Вы занимались изучением влияния радиации на организм. Известно, что малые дозы радиации положительно влияют на продолжительность жизнь плодовых мушек дрозофил . Возможна ли тренировка человеческого организма малыми дозами облучения? Александра Михайловича Кузина , высказанному им еще в 70-х годах прошлго века, к стимулирующему эффекту приводят дозы, примерно на порядок большие фоновых.

В Керале, например, уровень фона не в 2, а в 7,5 раз превышает «среднеиндийский» уровень, но ни заболеваемость раком, ни смертность от него не отличаются от общей индийской популяции.

(См., напр., последнее на эту тему: Nair RR, Rajan B, Akiba S, Jayalekshmi P, Nair MK, Gangadharan P, Koga T, Morishima H, Nakamura S, Sugahara T. Background radiation and cancer incidence in Kerala, India-Karanagappally cohort study. Health Phys. 2009 Jan;96(1):55-66 )

В одном из исследований Вы проанализировали данные по датам рождения и смерти 105 тысяч киевлян, которые умерли в период с 1990 по 2000 гг. Какие выводы были сделаны?

Наибольшей оказалась продолжительность жизни людей, родившихся в конце года (особенно в декабре), наименьшей – у «апрельских-июльских». Различия между минимальными и максимальными среднемесячными значениями оказались очень велики и достигали 2,6 года у мужчин и 2,3 года у женщин. Результаты, полученные нами, говорят о том, что то, сколько человек проживет, в значительной степени зависит от сезона года, в который он родился.

Возможно ли прикладное применение полученной информации?

Какими могли бы быть рекомендации? Например, зачинать детей весной (лучше всего – в марте), чтобы они были потенциальными долгожителями? Но это абсурд. Природа не дает одним все, а другим – ничего. Так и с «сезонным программированием». Например, в исследованиях, осуществленных во многих странах (Италии, Португалии, Японии), выявлено, что наивысшими интеллектуальными возможностями обладают школьники и студенты, родившиеся в конце весны – начале лета (по нашим данным – «короткожители»). Эти исследования демонстрируют бессмысленность “прикладных” рекомендаций по рождению детей в определенные месяцы года. А вот серьезным поводом для дальнейшего научного исследования механизмов, определяющих «программирование», а также поиска средств направленной коррекции этих механизмов с целью продления жизни в будущем, эти работы, безусловно, являются.

Один из пионеров эпигенетики в России, профессор МГУ Борис Ванюшин в своей работе «Материализация эпигенетики или Небольшие изменения с большими последствиями» написал, что век прошлый был веком генетики, а нынешний — век эпигенетики.

Что позволяет оценивать позиции эпигинетики так оптимистично?

После завершения программы «Геном человека» ученое сообщество было в шоке: оказалось, что информация о строении и функционировании человека заключена в приблизительно 30 тысячах генов (по разным оценкам, это всего около 8-10 мегабайт информации). Специалисты, которые работают в сфере эпигенетики, называют ее «второй информационной системой» и считают, что расшифровка эпигенетических механизмов контроля развития и жизнедеятельности организма приведет к революции в биологии и медицине.

Например, в ряде исследований уже удалось выявить типичные закономерности в таких рисунках. На их основе врачи могут диагностировать формирование онкозаболеваний на ранней стадии.
Но осуществим ли такой проект?

Да, конечно, хотя он очень затратный и вряд ли может быть реализован во время кризиса. А вот в перспективе – вполне.

Еще в 1970 году группа Ванюшина в журнале „Nature“ опубликовала данные о том, что регулирует клеточную дифференцировку, приводя к различиям в экспрессии генов. И Вы об этом говорили. Но если у организма в каждой клетке содержится один и тот же геном, то эпигеном у каждого типа клеток — свой, соответственно и ДНК метилирована по-разному. Учитывая, что типов клеток в человеческом организме порядка около двухсот пятидесяти — объем информации может быть колоссальным.

Именно поэтому проект «Эпигеном человека» и является очень сложным (хоть и не безнадежным) для реализации.

Он считает, что самые незначительные явления могут оказывать огромное влияние на жизнь человека: «Если окружающая среда играет такую роль в изменении нашего генома, тогда мы должны построить мост между биологическими и социальными процессами. Это абсолютно изменит наш взгляд на вещи».

Все настолько серьезно?

Конечно. Сейчас в связи с последними открытиями в области эпигенетики многие ученые говорят о необходимости критического переосмысления многих положений, которые казались либо незыблемыми, либо навсегда отвергнутыми, и даже о необходимости смены основополагающих парадигм в биологии. Подобная революция мышления, безусловно, может сказаться самым существенным образом на всех аспектах жизни людей, начиная от мировоззрения и стиля жизни и заканчивая взрывом открытий в биологии и медицине.

Информация о фенотипе содержится не только в геноме, но и в эпигеноме, который пластичен и может, изменяясь под воздействием определенных средовых стимулов, влиять на проявление генов – ПРОТИВОРЕЧИЕ ЦЕНТРАЛЬНОЙ ДОГМЕ МОЛЕКУЛЯРНОЙ БИОЛОГИИ, СОГЛАСНО КОТОРОЙ ПОТОК ИНФОРМАЦИИ МОЖЕТ ИДТИ ТОЛЬКО ОТ ДНК К БЕЛКАМ, НО НЕ НАОБОРОТ.
Индуцированные в раннем онтогенгезе эпигенетические изменения могут фиксироваться по механизму импринтинга и менять всю последующую судьбу человека (в том числе психотип, метаболизм, предрасположенность к заболеваниям и т.п.) – ЗОДИАКАЛЬНАЯ АСТРОЛОГИЯ.
Причиной эволюции, помимо случайных изменений (мутаций), отбираемых естественным отбором, являются направленные, адаптивные изменения (эпимутации) – КОНЦЕПЦИЯ ТВОРЧЕСКОЙ ЭВОЛЮЦИИ французского философа (Нобелевского лауреата по литературе, 1927 г.) Анри БЕРГСОНА.
Эпимутации могут передаваться от предков потомкам – НАСЛЕДОВАНИЕ ПРИОБРЕТЕННЫХ ПРИЗНАКОВ, ЛАМАРКИЗМ.

На какие актуальные вопросы предстоит ответить м в ближайшем будущем?

Как происходит развитие многоклеточного организма, какова природа сигналов, настолько точно определяющих время возникновения, структуру и функции различных органов тела?

Можно ли, влияя на эпигенетические процессы, изменять организмы в желательном направлении?

Можно ли за счет корректировки эпигенетических процессов предотвращать развитие эпигенетически обусловленных заболеваний, например, диабета и рака?

Какова роль эпигенетических механизмов в процессе старения, можно ли с их помощью продлевать жизнь?

Возможно ли, что непонятные в наше время закономерности эволюционирования живых систем (эволюция «не по Дарвину») объясняются вовлеченностью эпигенетических процессов?

Естественно, это только мой персональный перечень, у других исследователей он может отличаться.

Генетика предполагает, а эпигенетика располагает.

Генетика предполагает, а эпигенетика располагает. Почему беременным женщинам надо принимать фолиевую кислоту?

Меня всегда поражал один интересный факт - отчего некоторые люди, так рьяно старающиеся вести здоровый образ жизни, не курить, спать положенное число часов каждый день, употреблять в пищу самые свежие и натуральные продукты, одним словом, делать всё то, о чем так любят назидательно рассказывать врачи и диетологи, порой живут гораздо меньше, чем заядлые курильщики или предпочитающие не сильно ограничивать себя в еде лежебоки? Может быть, врачи просто сгущают краски?

Что происходит?

Всё дело в том, клетки нашего организма обладают памятью, и это уже вполне доказанный факт.

Наши клетки содержат в своих ядрах одинаковый набор генов - участков ДНК, которые несут информацию о молекуле белка или РНК, определяющих путь развития организма в целом. Несмотря на то, что молекула ДНК - это самая длинная молекула в человеческом организме, в которой заключена полная генетическая информация об индивидууме, не все участки ДНК работают одинаково эффективно. В каждой конкретной клетке могут работать разные участки макромолекулы, а большая часть генов человека и вовсе неактивна. На долю генов ДНК, кодирующих белок, у человека приходится менее 2 % генома, а ведь именно они считаются носителями всех генетических признаков. Те гены, которые несут основную информацию об устройстве клетки, как раз активны на протяжении всего времени жизни клетки, но ряд других генов «работает» непостоянно, и их работа зависит от множества факторов и параметров, в том числе и внешних.

Существует достаточно большое количество наследственных заболеваний, среди которых особо выделяются генные болезни - так называемые моногенные заболевания, которые возникают при повреждениях ДНК на уровне гена - это многочисленные болезни обмена углеводов, липидов, стероидов, пуринов и пиримидинов, билирубина, металлов, соединительной ткани и так далее. Известно, что часто наследуется именно предрасположенность к тому или иному заболеванию, поэтому человек может быть лишь носителем мутаций в структурных генах и не страдать от генетического заболевания.

Памятник около Института цитологии и генетики СО РАН, Академгородок, Новосибирск

В организме человека существуют особые механизмы контроля экспрессии генов и клеточной дифференцировки, не затрагивающие саму структуру ДНК. «Регулировщики» могут находиться в геноме или представлять собой особые системы в клетках и осуществлять контроль над работой генов в зависимости от внешних и внутренних сигналов различной природы. Подобные процессы - дело рук эпигенетики, которая накладывает свой отпечаток даже на сверхблагополучную генетику, и последняя может в итоге не реализоваться. Другими словами, эпигенетика дает объяснение тому, как факторы окружающего мира могут повлиять на генотип, «активируя» или «дезактивируя» разные гены. Нобелевский лауреат по биологии и медицине Питер Медавар, ёмкое выражение которого вынесено в заголовок статьи, очень точно сформулировал важность влияния эпигенетики на конечный результат.

Что это такое и с чем её едят?

Эпигенетика - наука совсем молодая: её существование не насчитывает и ста лет, что, впрочем, вовсе не мешает ей находиться в статусе одной из самых перспективных дисциплин последнего десятилетия. Направление это настолько популярное, что заметки об эпигенетических исследованиях достаточно часто появляются в последнее время как в серьезных научных журналах, так и в ежемесячниках для широкого круга читателей.

Сам термин появился в 1942 году, и его придумал один из известнейших биологов Туманного Альбиона - Конрад Уоддингтон. А известен этот человек прежде всего тем, что именно он заложил основы междисциплинарного направления, названного в 1993 году термином «системная биология» и сплавляющего воедино собственно биологию и теорию сложных систем.

Конрад Хэл Уоддингтон (1905-1975)

В книге немецкого нейробиолога Петера Шпорка «Читая между строк ДНК» объясняется происхождение этого термина следующим образом - Уоддингтон предложил такое название, которое было чем-то средним между непосредственно термином «генетика» и пришедшим к нам ещё из трудов Аристотеля «эпигенезом» - так когда-то было названо учение о последовательном эмбриональном развитии организма, в ходе которого происходят образования новых органов. С переводе с греческого «epi » означает «на, над, сверху», эпитенетика - это как будто что-то «над» генетикой.
Вначале к эпигенетике относились очень пренебрежительно, что было, конечно же, следствием неясных представлений о том, как различные эпигенетические сигналы могут реализовываться в организме и к каким последствиям могут приводить. На момент выхода работ Конрада Уоддингтона в научном мире витали разрозненные догадки, а сам костяк теории ещё не был построен.
Вскоре стало понятно, что один из эпигенетических сигналов в клетке - это метилирование ДНК , то есть добавление метильной группы (-CH3 ) к цитозиновому основанию в матрице ДНК. Оказалось, что такая модификация ДНК приводит к снижению активности генов, поскольку этот процесс способен влиять на уровень транскрипции. Именно с этого момента эпигенетика прошла реинкарнацию и наконец превратилась в полноценную ветвь науки.
В 1980-е годы была опубликована работа, в которой показывалось, что метилирование ДНК коррелирует с репрессией - «замалчиванием» - генов. Это явление можно наблюдать у всех эукариот, кроме дрожжей. Нашими соотечественниками в дальнейшем были открыты тканевая и возрастная специфичность метилирования ДНК у эукариотических организмов, а также было показано, что ферментативная модификация генома может регулировать экспрессию генов и клеточную дифференцировку. Чуть позднее было доказано, что метилирование ДНК можно контролировать гормонально.
Профессор Моше Зиф (из Университета Макгилла, Канада) даёт такое образное сравнение: «Давайте представим гены в ДНК, как предложения, составленные из букв-нуклеотидов, полученных от родителей. Тогда метилирование - это как расстановка знаков препинания, которая может влиять на смысл фраз, акценты фраз, разбивку на параграфы. В итоге весь этот «текст» может по-разному читаться в разных органах -сердце, мозге и так далее. И, как мы знаем теперь, расстановка таких «знаков препинания» зависит и от тех сигналов, которые мы получаем извне. По всей видимости, этот механизм помогает гибче адаптироваться к изменчивым обстоятельствам внешнего мира».
Помимо метилирования ДНК, существует ещё целый ряд эпигенетических сигналов разнообразной природы - деметилирование ДНК, гистоновый код (модификация гистонов - ацетилирование ,метилирование , фосфорилирование и прочие), позиционирование элементов хроматина , транскрипционная и трансляционная репрессия генов малыми РНК . Интересно, что некоторые из этих процессов связаны с друг другом и даже взаимозависимы - это помогает надёжно осуществлять эпигенетический контроль за избирательным функционированием генов.

Попробуем разобраться в основах

По Уоддингтону, эпигенетика - «ветвь биологии, изучающая причинные взаимодействия между генами и их продуктами, образующими фенотип». Согласно современным представлениям, фенотип многоклеточных - это результат взаимодействия огромного количества продуктов генов в онтогенезе. Таким образом, генотип развивающегося организма на самом деле представляет собой эпигенотип. Работа эпигенотипа достаточно жёстко скоординирована и задаёт определённое направление в развитии. Однако, помимо этого направления, которое в итоге приводит к реализации основной для популяции линии фенотипа (фенотип нормы), существуют «тропинки» - субтраектории, благодаря которым реализуются устойчивые, но отличные от нормы состояния фенотипа. Так реализуется поливариантность онтогенеза.
Интересно задуматься о том, что все клетки развивающейся особи вначале тотипотентны - это значит, что они обладают одинаковой потенцией к развитию и способны дать начало любому типу клеток организма. С течением времени происходит дифференцировка, в ходе которой клетки приобретают разные свойства и функции, становясь нейронами, эритроцитами, миоцитами и так далее. Расхождение свойств происходит за счет экспрессии различных паттернов генов: на определенных этапах развития клетка получает специальные сигналы, например, гормональной природы, которые реализуют тот или иной эпигенетический «маршрут», что и приводит к клеточной дифференцировке.
Конрад Уоддингтон ввел удачную метафору - «эпигенетический ландшафт», благодаря которой становится понятен механизм влияния природно-средовых факторов на развитие молодого организма эукариот. Процесс онтогенеза - это поле возможностей, представляющее собой ряд эпигенетических траекторий, по которым проложена дорога в развитии особи от зиготы до взрослого состояния. Каждая «равнина» этого ландшафта существует не просто так - она ведёт к формированию ткани или органа, а иногда и целой системы или части организма. Траектории, получающие преимущество, в работах Уоддингтон называны креодами, а холмы и хребты, разделяющие траектории, репеллерами - «отталкивателями». В сороковых годах прошлого века ученые не имели представлений о физической модели генома, поэтому предположения Уоддингтона были настоящей революцией.

Эпигенетический ландшафт по Уоддингтону

Развивающийся организм - это шар, который может катиться, следуя различным «вариациям» своего развития. Ландшафт накладывает некоторые ограничения на траекторию движения шара по мере того, как он спускается с возвышенности. Фактор из внешней среды может повлиять на изменение курса шара, тем самым спровоцировав попадание шара в более глубокую впадину, из которой не так легко выбраться.
Промежутки между эпигенетическими впадинами - это критические точки для молодого организма, в которых процесс развития приобретает чёткие формы в том числе и в зависимости от факторов среды. Переходы между соединяющимися впадинами указывают на процесс развития между основными изменениями, а склоны впадин характеризуют скорость этого процесса: пологие впадины - знак относительно устойчивых состояний, в то время как крутые склоны - сигнал быстрых изменений. При этом в местах переходов внешние факторы вызывают более серьёзные последствия, в то время как в других областях ландшафта их влияние может быть незначительным. Красота идеи эпигенетического ландшафта заключается ещё и в том, что она хорошо иллюстрирует один из принципов развития: к одинаковому результату можно прийти совершенно разными путями.

Критические точки эпигенетического ландшафта, аналогия с шаром: 2 возможных траектории

После того, как эпигенетическая траектория выстроена, клетки уже не могут свободно отойти от своего пути развития - так из зиготы, одной-единственной «стартовой» клетки, образуется эукариотический организм, обладающий набором клеток, совершенно разных по виду и функциям. Таким образом, эпигенетическое наследование - это наследование паттерна экспрессии генов.

Иллюстрация к теории эпигенетического ландшафт. Варианты развития событий

Кроме описания морфогенеза конкретной особи, вполне можно говорить об эпигенетическом ландшафте популяции, то есть о предсказуемости реализующегося фенотипа для той или иной популяции, в том числе и относительной частоты возможных вариативных признаков.

Фолиевая кислота и неслучайные случайности

Один из первых наглядных экспериментов, показывающих, что эпигенетика действительно «располагает», был проведён профессором Рэнди Джиртлом и постдоком Робертом Уотерлендом из университета Дьюка, США. Они внедрили обычным лабораторным мышами ген окраски агути. Агути или, как их ещё называют, «южноамериканские золотистые зайцы» - род млекопитающих отряда грызунов, внешне похожих на морских свинок. Эти грызуны обладают золотистой шерстью, иногда даже с оранжевым оттенком. Интегрированный в геном мышей «чужой» ген привёл к тому, что лабораторные мыши поменяли окраску - их шерсть стала жёлтой. Однако ген агути принёс мышам некоторые неприятности: после его внедрения животные приобрели лишний вес, а также предрасположенность к диабету и онкологическим заболеваниям. Такие мыши приносили нездоровое потомство, с теми же предрасположенностями. Мышата были золотистого цвета.

Симпатичный агути (Dasyprocta aguti)

Однако экспериментаторам всё же удалось «выключить» нехороший ген, не прибегая к изменению нуклеотидов ДНК. Беременных самок трансгенных мышей посадили на специальную диету, обогащённую фолиевой кислотой - источником метильных групп. В результате рождённые мышата были уже не золотистого, а естественного окраса.

Почему «сработала» фолиевая кислота? Чем больше метильных групп поступало из пищи в развивающийся зародыш, тем больше возможностей было у ферментов, катализирующих присоединение метильной группы к эмбриональной ДНК, что дезактивировало возможное действие гена. Профессор Джиртл так прокомментировал свой эксперимент и его результаты: «Эпигенетика доказывает, что мы ответственны за целостность нашего генома. Раньше мы думали, что только гены предопределяют, кто мы. Сегодня мы точно знаем: всё, что мы делаем, всё, что мы едим, пьем или курим, оказывает воздействие на экспрессию наших генов и генов будущих генераций. Эпигенетика предлагает нам новую концепцию свободного выбора».

Профессор Рэнди Джиртл и его трансгенные мыши

Не менее интересных результатов добился Майкл Мини из Университета Макгилла в канадском Монреале, наблюдая за крысами, воспитывающими своё потомство. Если крысята с рождения постоянно получали внимание и заботу матери, то они росли спокойными по характеру и достаточно смышлёными. Напротив, крысята, матери которых с самого начала игнорировали своё потомство и мало его опекали, вырастали боязливыми и нервными. Как оказалось, причина крылась в эпигенетических факторах: забота крыс-мам о детях контролировала метилирование генов, которые отвечают за реакцию на стресс-рецепторы кортизола, экспрессируемых в гиппокампе. Ещё в одном эксперименте, проведённом чуть позже, те же факторы рассматривались применительно к человеку. Эксперимент проводился с использованием магнитно-резонансной томографии и имел целью установить какую-либо зависимость между оказываемой родителями заботой во время детского возраста и организацией мозга в целом. Оказалось, что забота матери играет ключевую роль в этом процессе. Взрослый человек, страдавший в детстве от дефицита любви и внимания матери, имел меньший размер гиппокампа, чем человек, детские годы которого были благополучны. Гиппокамп, как орган лимбической системы мозга, крайне многофункционален и похож на ОЗУ компьютера: принимает участие в формировании эмоций, определяет силу памяти, участвуя в процессе перевода кратковременной памяти в долговременную, связан с удержанием внимания, отвечает за скорость мышления, а также, помимо много другого, определяет предрасположенность человека к ряду психических заболеваний, в том числе к посттравматическому стрессовому расстройству.

Эрик Нестлер, профессор нейробиологии Фридмановского института мозга при Медицинском центре Маунт-Синай, Нью-Йорк, США, изучал механизмы возникновения депрессии на опытах всё с теми же мышами. Спокойных и дружелюбных мышей помещали в клетки с агрессивными особями. Спустя десять дней некогда счастливые и мирные мыши проявляли признаки депрессии: теряли интерес к вкусной еде, общению с противоположным полом, становились беспокойными, а некоторые из них и вовсе постоянно ели, набирая вес. Иногда оказывалось, что состояние депрессии было стабильным и полный выход представлялся возможным лишь в случае лечения антидепрессантами. Исследование ДНК-клеток «системы вознаграждения » мозга мышей из эксперимента показало, что примерно у 2000 генов изменилась картина эпигенетической модификации, а у 1200 из них увеличилась степень метилирования гистонов, при котором подавляется активность генов. Как оказалось, аналогичные эпигенетические изменения были обнаружены в ДНК головного мозга людей, которые умерли, находясь в депрессивном состоянии. Разумеется, депрессия сама по себе сложный многопараметрический процесс, но, видимо, он умеет «выключать» гены той области мозга, которая связана с получением удовольствия от жизни.

Но ведь депрессии подвержены не все люди… То же самое происходило и с мышами - около трети грызунов избежали негативного состояния, находясь в стрессовой ситуации, при том, что устойчивость присутствовала на уровне генов. Иными словами, у таких мышей отсутствовали характерные эпигенетические изменения. Однако, у «стойких» мышей произошли эпигенетические изменения в других генах клеток центра «системы вознаграждения » мозга. Таким образом, возможна альтернативная эпигенетическая модификация, которая выполняет защитную функцию, а устойчивость к стрессу - это не результат отсутствия генетически обусловленной склонности, а влияние эпигенетической программы, которая включается для защиты и противостояния травмирующему воздействию на психику.

Нестлер в своём отчете сообщил также следующее: «Мы обнаружили, что среди «защитных» генов, эпигенетически модифицированных у стойких к стрессу мышей, много таких, чья активность восстанавливается до нормы у депрессивных грызунов, которые были пролечены антидепрессантами. Это означает, что у людей, склонных к депрессии, антидепрессанты оказывают свое действие, помимо всего прочего, запуская защитные эпигенетические программы, которые естественным образом работают у более стойких индивидов. В таком случае следует искать не только новые, более мощные антидепрессанты, но и вещества, мобилизующие защитные системы организма».

Если есть в кармане пачка сигарет….

Ни для кого не секрет, что в обществе периодически вспыхивают серьезные споры, связанные с вопросом курения. Приверженцы пачки сигарет в кармане любят повторять о недоказанности вреда этой привычки, однако эпигенетика и здесь внезапно выходит из-за кулис. Всё дело в том, что у человека есть важный ген р16, способный тормозить развитие онкологических опухолей. Исследования, проведённые в последнее десятилетие, показывают, что некоторые вещества, содержащиеся в табачном дыме, заставляют выключаться р16, что, естественно, ни к чему хорошему не приводит. Но - вот что интересно! - недостаток белка, за производство которого отвечает р16, - стоп-кран для процессов старения. Учёные из Китая утверждают, что при правильном и безопасном для организма выключении гена возможно задержать процессы утраты мышечной массы и помутнения хрусталика.

В нормально функционирующей, здоровой и полноценной клетке гены, запускающие процесс образования онкологической опухоли, неактивны. Это происходит благодаря метилированию промоторов (стартовых «площадок» специфической транскрипции) этих онкогенов, называемых островками CpG. В ДНК азотистые основания цитозин (С) и гуанин (G) соединены фосфором, при этом на одном островке может находится до нескольких тысяч оснований, и около 70 % промоторов всех генов имеют эти островки.

Thymine(красный) , Adenine(зеленый) , Cytosine(синий) , Guanine(черный) - мягкие игрушки

Ацетальдегид алкоголя, побочный продуктпереработки этанола в организме человека, как и некоторые вещества, содержащиеся в табаке, ингибируют образование метильных групп на ДНК, что включает «спящие» онкогены. Известно что до 60 % всех мутаций в половых клетках приходится именно на островки CpG, что нарушает правильную эпигенетическую регуляцию генома. Метильные группы попадают в наш организм с пищей, поскольку мы не вырабатываем ни фолиевой, ни метиониновой аминокислот - богатых источников СН3 -групп. Если наш рацион не содержит этих аминокислот, то нарушение процессов метилирования ДНК неизбежно.

Разработки и планы на будущее

За последние годы эпигенетика успела существенно прорасти в технологии. В одном из обзоров Массачуссетского технологического института (США) эпигенетика названа среди десяти важнейших технологий, которые в ближайшее время могут изменить мир и оказать наибольшее влияние на человечество.
Моше Зиф так прокомментировал сложившуюся ситуацию: «В противоположность генетическим мутациям, эпигенетические изменения потенциально обратимы. Мутировавший ген скорее всего никогда не сможет вернуться в нормальное состояние. Единственное решение в данной ситуации - вырезать или дезактивировать этот ген во всех клетках, которые его несут. Гены же с нарушенным паттерном метилирования, с измененным эпигеномом могут быть возвращены к норме, и довольно просто. Уже существуют эпигенетические лекарства, например 5-азацитидин (коммерческое название - видаза), представляющий собой неметилированный аналог цитидина, нуклеозида ДНК и РНК, который, встраиваясь в ДНК, снижает ее уровень метилирования. Это лекарство используется сейчас против миелодиспластического синдрома, известного также, как прелейкемия».

Немецкая компания Epigenomics уже выпустила серию скрининг-тестов, позволяющих диагностировать онкологическое заболевание на разных стадиях его развития по эпигенетическим изменениям в организме, основанных на ДНК-метилировании. Компания продолжает свои исследования в направлении создания тестов на предмет предрасположенности к разным видам онкологии, стремясь «сделать тестирование на ДНК-метилирование в качестве обычной практики в клинической лаборатории». В том же направлении ведут работу и другие компании: Roshe Pharmaceuticals, MethylGene, NimbleGen, Sigma-Aldrich, Epigentek. В 2003 году был запущен проект Human Epigenome Project, в рамках работы над которым учёные смогли расшифровать вариабельные локусы метилирования ДНК на трех хромосомах человека: 6, 20 и 22.

Эпигенетические механизмы, участвующие в регуляции экспрессии генов

На сегодняшний день уже стало понятно, что изучение механизмов «включения-выключения» генов даёт медицине куда больше возможностей для развития, чем генная терапия. Планируется, что в будущем эпигенетика сможет рассказать нам о причинах и процессах развития некоторых заболеваний с «генетическим уклоном» - например, болезни Альцгеймера, Крона, диабета, поможет изучить механизмы, приводящие к образованию онкологических опухолей, развитию психических расстройств и так далее.

19 февраля 2015 года в журнале Nature увидела свет статья «Cell-of-origin chromatin organization shapes the mutational landscape of cancer». Группой учёных было обнаружено, что паттерн мутаций в раковой клетке соотносится со структурой хроматина. Что это означает? Очень многое. Часто онкологи развивают методы лечения конкретных видов опухолей, но плохо идентифицируют границы частных случаев. Если каждому виду онкологической опухоли поставить в соответствие изменённую структуру хроматина, то станет понятно, что та или иная опухоль развилась из конкретного типа клеток, а это полностью революционизирует лечение рака. Так называемые эпигеномные карты помогут с определением причин развития онкологии: опухолевые клетки «живут» с мутациями, распространёнными по всей ДНК клетки.

Исследуя болезнь Альцгеймера, учёные достаточно давно обнаружили некоторые «генетические вариации», связанные с заболеванием. Они были слабо изучены вследствие того, что содержались в части генома, не кодирующей белки. Биолог Манолис Келлис из Массачусетского технологического института, изучая эпигеномные карты головного мозга человека и мыши, пришёл к выводу, что эти «вариации» некоторым образом связаны с иммунной системой. «В общем-то это то, о чем многие в научной среде интуитивно догадывались, - говорит Келлис, - но на самом деле никто не показал этого на должном уровне». Исследования продолжаются.

Несмотря на превеликое множество работ, посвященных эпигенетике, в ней ещё более чем достаточно и чёрных дыр, и белых пятен. Международная организация под названием The International Human Epigenome Consortium ( http://ihec-epigenomes.org/) ставит своей целью предоставление свободного доступа к эпигенетическим материалам человека для развития фундаментальных и прикладных исследований в областях, связанных с эпигенетикой. В планах - отображение более 1000 типов клеток, исследование изменений эпигенома выбранных для испытания людей на протяжении нескольких лет с параллельным изучением влияния внешних факторов. «Эта работа будет занимать нас, по крайней мере, в ближайшие десятилетия. Геном не только трудно читать, сам процесс занимает много времени», - утверждает Манолис Келлис.

Кроме того, на данный момент ведутся серьезные разработки в области альтернативных и эффективных методов лечения психических расстройств. Уже показано, что некоторые лекарственные вещества, защищающие ацетильные группы гистонов, инактивируя ферменты-отщепители ацетильных групп, оказывают сильный антидепрессивный эффект. Фермент гистон-дезацетилаза, катализирующий отщепление, можно найти в клетках разных областей головного мозга, во многих тканях и органах, поэтому-то лекарство из-за неизбирательной активности и оказывает побочное действие. Исследователи изучают возможности создания таких веществ, которые подавляли бы активность только гистон-дезацетилазы в головном мозге, отвечающих за психическое состояние человека («центре вознаграждения»). Но никто не мешает попытаться идентифицировать другие белки, участвующие в эпигенетической модификации хроматина клеток головного мозга, или выявить гены, эпигенетически модифицирующиеся при депрессии (например, связанные с синтезом рецепторов специфических нейромедиаторов или сигнальных белков, которые участвуют в активации нейронов). Такие исследования позволят запустить поиск или синтез лекарств, которые смогут инактивировать эти конкретные гены или их продукты.

И напоследок

«Так всё-таки, как жить сейчас? Вести здоровый образ жизни? Срочно записываться в спортзал и пересматривать свой рацион питания?» - с нетерпением спросите вы. Питер Шпорк в своей книге «Читая между строк ДНК» отвечает на него с долей юмора. Он говорит о том, что резко и навсегда вычёркивать из своей жизни вечера на диване и вредную еду всё-таки не стоит, ведь такая встряска скорее всего приведёт к стрессам, которые также могут отразиться на эпигенетике. Главное, чтобы «вредности» не стали образом жизни или укоренившейся привычкой. Эпигенетика, как маячок в бурном море жизни, показывает нам, что наш организм проходит порой через критические периоды развития, когда эпигены чувствительны к раздражителям из внешней среды. Именно поэтому женщине, ждущей ребёнка, обязательно надо регулярно принимать фолиевую кислоту и оберегать себя от стрессов и негативных ситуаций.

A. and others. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 518, pp 360-364, 19 February 2015. http:// biochemies. com



gastroguru © 2017