Слизи, эмульсии и суспензии. Итак, нормативно-техническая документация предъявляет высокие требования к чистоте инъекционных растворов, что достигается фильтрованием

ПлохоОтлично

У многих людей возникает закономерный и логичный вопрос - чем отличаются друг от друга суспензии и эмульсии. В данной статье мы разберем суспензии и эмульсии, как лекарственные формы, но это сравнение применительно и в быту, и в пищевой промышленности.

К жидким лекарственным формам относятся растворы, слизи, эмульсии, сус­пензии , настои и отвары, настойки, жидкие экстракты, микстуры. В рамках данной статьи будет произведен обзор суспензии и эмульсий + разницы между ними. Такое большое разнообразие жидких форм создает некие сложности в классификации и понимании, поэтому мы обратимся к официальным государственным фармакопеям, и на основе этих определений будем строить последующие умозаключения:

Суспензии

Суспензии (взвеси) – жидкие лекарственные формы, в которых твердые мелкораздробленные нерастворимые лекарственные вещества находятся во взве­шенном состоянии в какой-либо жидкости.


Суспензии – жидкая лекарственная форма, представляющая собой гетерогенную дисперсную систему, содержащую одно или несколько твердых действующих веществ, распределенных в жидкой дисперсионной среде.

Суспензии представляют собой дисперсные системы, состоящие из дисперсион­ной среды (вода, растительное масло, глицерин и т.п.) и дисперсной фазы (частицы твердых лекарственных веществ, практически нерастворимые в данной жидкости). Назначают суспензии для наружного и внутреннего употребления. Некоторые суспензии применяют парентерально. При этом надо иметь в виду, что суспензии следует вводить внутримышечно или в полости тела.

Чем меньше размер дисперсной фазы в суспензии, тем более (при прочих равных условиях) выражено ее терапевтическое действие. У суспензий, как и у других лекарственных форм, имеются свои преимуществ и недостатки. Они оказывают пролонгированное действие на организм. При назначении суспензий снижается отрицательное воздействие желудочного сока на лекарственные вещества, находящиеся в виде мелких частиц.

Таким образом, к преимуществам суспензий следует отнести:

Более высокую дисперсность твердых веществ по сравнению с таблетками и порошками, что, в свою очередь, обеспечивает лучший терапевтический эффект;
более быстрое проявление фармакологического действия (при размере час тиц менее 10 мкм) по сравнению с твердыми лекарственными формами;
выраженное пролонгированное действие по сравнению с фармацевтическими растворами;
удобство приема;
возможность корригирования вкуса и запаха, что имеет существенное значение в педиатрической практике;
возможность отпуска в виде сухого полуфабриката, который впоследствии суспендируют в воде непосредственно перед употреблением (это позволяет хранить действующие вещества достаточно длительное время).

Недостатком суспензий является возможность гидролитического разложения лекарственного вещества при длительном взаимодействии с дисперсионной (в основном водной) средой, что проявляется в процессе их хранения.

Пример суспензии

Одной из важнейших особенностей суспензий является их седиментационная (кинетическая) и агрегативная неустойчивость, которая определяет способы изготовления, хранения и приема данной лекарственной формы. Для обеспечения высокой эффективности препарата суспензии должны обладать высокой агрегативной устойчивостью - способностью противостоять укрупнению частиц и образованию агломератов, кинетической устойчивостью - способностью противостоять оседанию частиц и сохранять равномерное распределение частиц по всему объему суспензии, а также иметь низкую скорость седиментации.

Обычно частицы дисперсной фазы настолько велики (более 10 мкм), что оседают под действием силы тяжести (седиментируют). Суспензии, в которых седиментация идёт очень медленно из-за малой разницы в плотности дисперсной фазы и дисперсионной среды, иногда называют взвесями.

Эмульсии

Эмульсия – это жидкая лекарственная форма, в которой нерастворимые в воде жидкости (жирные масла, бальзамы) находятся в водной среде во взвешенном состоянии в виде мельчайших капель. Внешне эмульсии имеют сходство с молоком.

Согласно Государственной Фармакопее
Эмульсии – жидкие лекарственные формы, представляющие собой гетерогенную двухфазную дисперсную систему с жидкой дисперсной фазой и жидкой дисперсионной средой

Простыми слова, опуская государственные определения, эмульсию проще всего представить и понять, как молоко. В случае с молоком это капли молочного жира, равномерно распределённые в воде. Если изучать более глубоко, то мы говорим о смеси трех веществ, два из которых - несмешивающиеся между собой жидкости, а третье - эмульгатор. Одна жидкость - это вода, вторая - молочный жир а эмульгатором выступает комплекс белка и лецитина.

Самое главное отличие эмульсий от суспензий и других лекарственных форм заключается в том, что Эмульсии могут быть типа масло/вода и вода/масло. Эмульсии могут расслаиваться, но при взбалтывании должны легко восстанавливаться . Для обеспечения устойчивости в состав эмульсий вводят эмульгаторы.

Применение лекарственных веществ в виде эмульсий позволяет совмещать в одной лекарственной форме несмешивающиеся жидкости, маскировать неприятный вкус масел, смягчать раздражающее действие на слизистую оболочку некоторых лекарственных веществ, вводить в состав лекарства нерастворимые лекарственные вещества. Кроме того, масла в виде эмульсий лучше усваиваются в организме, так как всасывание масел в желудочно-кишечном тракте происходит только в присутствии ПАВ, способных их эмульгировать. К недостаткам эмульсий следует отнести их малую устойчивость, необходимость использования эмульгаторов и длительность приготовления.

По способу приготовления эмульсии подразделяют на масляные (Emulsa oleosa) и семенные (Emulsa seminalia).

Масляные эмульсии готовят из жидких масел: касторового (Oleum Ricini), миндального (Oleum Amygdalarum), рыбьего жира (Oleum jecoris) и др.
Чтобы из масла и воды образовалась эмульсия, необходимо эмульгировать масло, т.е. разделить его на мельчайшие капли. С этой целью масло смешивают со специальными веществами – эмульгаторами. В качестве эмульгаторов исполь­зуют камеди, например камедь абрикосовую (Gummi Armeniacae), а также желатозу (Gelatosa).

Плюсы и Минусы

В этом разделе мы рассмотри разницу между эмульсиям и суспензиями. Сказать правде в глаза, в случае эмульсий и суспензий тяжело заметить один и тот же препарат в разных лекарственных формах, поэтому сравнительный анализ затруднен и дальнейшее сравнение будет строиться на объективных факторах и свойствах этих лекарственных форм:

Суспензии Эмульсии

Достоинствами этой лекарственной формы являются:

  • разнообразие способов и удобство приема (жидкая ЛФ);
  • регулирование терапевтического эффекта: увеличение по сравнению с порошками и таблетками и пролонгирование в сравнении с растворами;
  • возможность корригирования вкуса, запаха и цвета ЛВ,
    что весьма важно для детской практики;
  • возможность отпуска в виде сухих полуфабрикатов
    (порошков или гранул) - так называемые “сухие” суспензии.

К достоинствам эмульсий относятся:

  • возможность совмещения в одной лекарственной форме несмешивающихся жидкостей;
  • маскировка неприятного вкуса масел, что имеет существенное значение в детской фармакотерапии;
  • смягчение раздражающего действия некоторых лекарственных веществ на слизистую оболочку;
  • масла в виде эмульсий лучше всасываются в желудочно-кишечном тракте;
  • точность дозировки жидкостей, не смешиваемых с водой;
  • в форме эмульсий ускоряется процесс гидролиза жиров ферментами в желудочно-кишечном тракте.

Недостатки связаны с гетерогенностью:

  • нестабильность:
  • - седиментационная (нарушение однородности и точности дозирования);
  • - агрегативная (рекристаллизация);
  • - гидролитическая нестабильность особенно в водных средах;
  • - микробиологическая (для всех нестерильных на водной среде);

К недостаткам эмульсий следует отнести:

  • - малая устойчивость;
  • - сравнительная длительность приготовления;
  • - применение эмульгаторов;
  • - благоприятная среда для развития микрофлоры.

Примеры суспензий и эмульсий

Лекция 8. Понятие о грубодисперсных системах. Общая характеристика эмульсий, суспензий, пен, порошков.

Системы, в которых размер частиц дисперсной фазы не менее 10-5см, называются грубодисперсны-ми. Это гетерогенные системы и обладают сильно развитой поверхностью раздела фаз. К ним отно-сятся эмульсии, пены, порошки, суспензии.

1. Эмульсии. Эмульсия – система «жидкость – жидкость» (ж/ж). Для образования эмульсии обе жидкости должны быть нерастворимы или мало растворимы друг в друге, а в системе должен присутствовать стабилизатор, называемый эмульгатором. Эмульсия тем седиментаци-онно устойчивее, чем ближе плотность обоих фаз. Отличительной особенностью эмульсий является сферическая форма частиц (капель). Эмульсии классифицируются:

1.По состоянию дисперсной среды и дисперсной фазы:

А) масло в воде (м/в) – например, молоко, мясной бульон, сливки, соусы;

Б) вода в масле (в/м) – например, майонез, масляный крем, масляные пасты, маргарин. Для эмульсий характерным является свойство обращения фаз. При введении в эмульсию в условиях интенсивного перемешивания большого количества поверхностно-активных веществ (ПАВ), являю-щегося стабилизатором эмульсии противоположного типа, первоначальная эмульсия может обра-щаться, т.е. дисперсная фаза становится дисперсионной средой и наоборот (масло + вода = вода + масло)

2.По концентрации:

а) Разбавленные 0,01 – 0,1%;

б) Концентрированные до 74%;

в) Высоко концентрированные до 90%. Все эмульсии термодинамически нестабильные структуры, за исключением критических эмульсий. Это структуры двух ограниченно растворимых жидкостей при температуре, близкой к критической. Седиментационная устойчивость эмульсий аналогична суспензиям. Агрегативная неустойчивость проявляется в самопроизвольном образовании агрегата капелек с последующим их слиянием (коа-лесценция). Количественно это характеризуется скоростью расслоения или временем жизни отдель-ных капелек в контакте с другими. Велико значение эмульсий и эмульгирования в кулинарной практике. Физиология питания ставит перед технологией приготовления пищи задачу не только увеличить усвояемость пищи, но и умень-шит энергетические затраты на её усвоение и облегчить процесс биохимических процессов в пище-варительном тракте.

2. Пены. Типичные пены представляют собой сравнительно весьма грубые высоко концентри-рованные дисперсии газа в жидкости. Пузырьки газа имеют размер порядка от несколько миллиметров, а иногда и сантиметров. Благодаря избытку газовой фазы и взаимному сдавли-ванию пузырьков, они имеют не сферическую, а полиэдрическую форму. Стенки их состоят из весьма тонких пленок жидкой дисперсионной среды. Вследствие этого пены имеют сото-образную структуру, большой размер отдельных пузырьков и тесное расположение их исклю-чают возможность броуновского движения. Кроме того, в результате особой структуры пены обладают некоторой механической прочностью. Пены образуются при диспергировании газа в жидкости в присутствии стабилизатора. Без стабилизатора устойчивые пены не получаются. Прочность и продолжительность существования пены зависит от свойств и содержания пенообразователя, адсорбированного на межфазной границе. Устойчивость пен зависит от следующих основных факторов:

а) Природы и концентрации пенообразователя.

Б)Температуры (чем выше температура, тем ниже устойчивость, т.к. уменьшается вязкость межпу-зырьковых слоев и происходит десорбция стабилизатора, т.е. увеличивается растворимость поверх-ностно-активных веществ (ПАВ) в воде). К пенам относятся в пищевой промышленности следующие пищевые продукты: хлеб, суфле, мусс, зефир, пастила и др.

3. Суспензии. Формально суспензии от лиозолей (коллоидных растворов) отличаются только размерами частиц дисперсной фазы. Размеры твердых частиц в суспензиях (более 10-5 см.) могут быть на несколько порядков больше, в лиозолях (10-7-10-5 см). Это количественное различие обусловливает чрезвычайно важную особенность суспензий: в большинстве суспен-зий частички твердой фазы не участвуют в броуновском движении. Поэтому свойства суспензий существенно отличаются от свойств коллоидных растворов; их рассматривают как самостоятельный вид дисперсных систем. Суспензии классифицируются по нескольким признакам:

1. По природе дисперсионной среды: органосуспензии (дисперсионная среда - органическая жид-кость) и водные суспензии.

2. По размерам частиц дисперсной фазы: грубые суспензии (d > 10-2 см), тонкие суспензии (-5Ч10-5< d < 10-2 см), мути (1Ч10-5< d < 5Ч10-5 см).

3. По концентрации частиц дисперсной фазы: разбавленные суспензии (взвеси) и концентрирован-ные суспензии (пасты). В разбавленных суспензиях частицы свободно перемещаются в жидкости, сцепление между части-цами отсутствует и каждая частица кинетически независима. Разбавленные суспензии - это свобод-нодисперсные бесструктурные системы. В концентрированных суспензиях (пастах) между частица-ми действуют силы, приводящие к образованию определенной структуры (пространственной сетки). Таким образом, концентрированные суспензии - это связнодисперсные структурированные системы. Конкретные значения концентрационного интервала, в котором начинается структурообразование, индивидуальны и зависят, в первую очередь от природы фаз, формы частиц; дисперсной фазы, тем-пературы, механических воздействий. Механические свойства разбавленных суспензий определяют-ся, главным образом, свойствами дисперсионной среды, а механические свойства связнодисперсных систем определяются, кроме того, свойствами дисперсной фазы и числом контактов между частица-ми. Суспензии, так же как и любую другую дисперсную систему, можно получить двумя группами методов: со стороны грубодисперсных систем - диспергационными методами, со стороны истинных растворов - конденсационными методами. Наиболее простым и широко распространенным как в промышленности, и в быту методом получе-ния разбавленных суспензий является взбалтывание соответствующего порошка в подходящей жид-кости с использованием различных не перемешивающих устройств (мешалок, миксеров и т. д.). Для получения концентрированных суспензий (паст) соответствующие порошки растирают с небольшим количеством жидкости. Так как суспензии отличаются от лиозолей только тем, что частицы в них на несколько порядков больше, все методы, которые используются для получения золей, можно применять и для получения суспензий. При этом необходимо, чтобы степень измельчания диспергациониыми методами была меньше, чем при получении лиозолей. При конденсационных методах конденсацию необходимо проводить так, чтобы образовывались частицы, имеющие размеры 10-5 – 10-2 см. Размер образую-щихся частиц зависит от соотношения скоростей образования зародышей кристаллов и их роста. При небольших степенях пресыщения обычно образуются крупные частицы, при больших - мелкие. Предварительное введение в систему зародышей кристаллизации приводит к образованию практически монодисперсных суспензий. Уменьшение дисперсности может быть достигнуто в результате изотермической перегонки при нагревании, когда мелкие кристаллы растворяются, а за их счет растут крупные. При этом должны соблюдаться условия, ограничивающие возможности значительного разрастания и сцепления частиц дисперсной фазы. Дисперсность образующихся суспензий можно регулировать также введением ПАВ. Суспензии очищают от примесей растворенных веществ диализом, электродиализом, фильтровани-ем, центрифугированием. Суспензии образуются также в результате коагуляции лиозолей. Следовательно, способы осуществ-ления коагуляции - это одновременно и методы получения суспензий. Отсутствие структуры в раз-бавленных суспензиях и наличие ее в концентрированных обусловливает резкое различие в свойст-вах этих систем.

Пасты

Пасты – это высоко концентрированные суспензии, обладающие структурой. Структура – это пространственная сетка, образованная частицами дисперсной фазы, в петлях которой находится дисперсионная среда.

Можно сказать, что пасты занимают промежуточное положение между порошками и разбавленными суспензиями. Их получают, соответственно:

растирая порошок в жидкости, обладающей достаточно большой вязкостью; например, некоторые сорта зубной пасты готовят путем смешивания мела с вязкой жидкостью, полученной путем варки крахмала в глицериновом водном растворе с добавлением небольшого количества ПАВ;

в результате седиментации разбавленной суспензии.

Так как пасты – структурированные системы, определяющим является их структурно – механические свойства, которые характеризуются такими параметрами, как вязкость, упругость, пластичность. Пасты обладают упруговязкопластическими свойствами.

Пасты имеют коагуляционную структуру, поэтому их механические свойства определяются, главным образом, механическими свойствами межчастичных жидких прослоек. Через эти прослойки действуют силы притяжения между частицами, зависящие от расстояния между ними (толщина прослоек) и обусловлена ван – дер – ваальсовыми и водородными связями. Прочность коагуляционного контакта составляет величину порядка 10 -10 Н и ниже. Причем, прочность контакта могут уменьшать силы отталкивания между частицами, обеспечивающими агрегатную устойчивость суспензии, именно по этому структуры в агрегативно устойчивых суспензиях не образуются или, если и образуются, то очень непрочные.

Таким образом, механические свойства паст обусловливаются совокупностью двух различных основных причин:

· молекулярным сцеплением частиц дисперсной фазы друг с другом в местах контакта, там, где толщина прослоек дисперсионной среды между ними минимальна. В предельном случае возможен полный фазовый контакт. Коагуляционное взаимодействие частиц вызывает образование структур с выраженными обратимыми упругими свойствами;

· наличие тончайшей пленки в местах контакта между частицами.

Коагуляционные структуры отличаются резко выраженной зависимостью структурно – механических свойств от интенсивности механических взаимодействий. Примером исключительной чувствительности структурно механических свойств коагуляционных структур к механическим воздействиям является зависимость равновесной эффективной вязкости h(р) от скорости деформации g или напряжения сдвига Р. Уровень h(р) отвечает вполне определенной степени разрушения трехмерного структурного каркаса в условиях деформации системы. Диапазон изменений h(р) = ¦(Р) может достигать 9 – 11 десятичных порядков.

Для паст, так же как и для любой коагуляционной структуры, характерны следующие свойства: невысокая механическая прочность (обусловлена малой прочностью коагуляционного контакта – порядка 10 -10 Н и ниже), тиксотропия, синерезис, ползучесть, пластичность, набухание.

Никакие массообменные процессы в структурированных системах нельзя осуществить, не разрушив предварительно в них структуру.

Разрушение пространственных структур в пастах – достаточно сложный процесс, характеризуемый тем, что по мере увеличения степени разрушения существенно изменяется и сам механизм распада структуры.

Можно выделить три основных этапа разрушения структуры:

разрушение сплошной структуры сетки, сопровождающиеся распадом структуры на отдельные, достаточно крупные агрегаты;

разрушение агрегатов, сопровождается уменьшением их размера и увеличением их числа, высвобождением из агрегатов и увеличением числа отдельных частиц, образованием новых агрегатов;

предельное разрушение структуры при полном отсутствии агрегатов из частиц.

Четкая граница между этими этапами размыта, т.е. переход из одного состояния структуры в другое по мере постепенного увеличения интенсивности внешних воздействий, разрушающих структуру, происходит постепенно.

Однако каждый из этих этапов специфичен, условия разрушения сплошной структурной сетки кардинальным образом отличаются от условий разрушения агрегатов, «плавающих» в дисперсионной среде, а значит, и параметры внешних воздействий, необходимых для разрушения сплошной структурной сетки и отдельных агрегатов их частиц, не могут не быть существенно различными.

Количественно изменения состояния структуры пасты оценивается совокупностью реологических характеристик, прежде всего вязкостью h, напряжением сдвига Р, упругостью Е и периодом релаксации q. Наиболее резкое, на много десятичных порядков, изменения с разрушением структуры претерпевают вязкость и период релаксации.

Для разрушения структуры используются следующие воздействия:

· механическое помешивание;

· вибрация с частотой от 10 Гц до10 кГц;

· ультразвук;

· нагревание;

· электрические и магнитные поля;

изменение природы поверхности твердых частиц (главным образом, путем добавления коллоидных ПАВ).

Часто сочетают механические вибрационные воздействия с ультразвуком, тепловыми воздействиями.

Такое сочетание не только существенно меняет энергию активации процесса разрушения структуры, но в значительной степени сказывается на свойствах конечного продукта.

Совместное действие на пасту вибрации и, например, ультразвука приводит к гораздо большему разрушению структуры и вместе с тем к достижению существенно более высокой ее однородности, чем под влиянием каждого из этих видов воздействия с той же интенсивностью в отдельности.

Важным является сочетание механических воздействий с физико–химическим управлением прочностью сцепления в контактах между частицами путем изменения природы поверхности частиц.

Модифицирование твердых фаз добавками ПАВ различного строения является универсальным методом регулирования силы и энергии взаимодействия в контактах между частицами. Этот эффект – следствие сочетания двух факторов:

раздвижения частиц на двойную толщину адсорбционного слоя;

снижение поверхностного натяжения на поверхности частиц.

В последние годы все шире стали применяться методы модифицирования поверхности частиц не индивидуальными ПАВ, а смесями ПАВ различных видов, например, иогенных и неиогенных.

При правильном подборе нескольких видов ПАВ обнаруживается синергизм, т.е. взаимные усиления их действия.

Исключительная эффективность совместного действия вибрации и ПАВ объясняется характером разрушения структуры при вибрации и особенностями действия ПАВ. ПАВ, адсорбируются в первую очередь на наиболее энергетически активных участках микромозаичной поверхности частиц, ослабляют преимущественно наиболее прочные коагуляционные контакты. Введение в систему ПАВ из расчета образования монослоя на поверхности частиц позволяет почти в 500 раз понизить интенсивность вибрации, необходимую для достижения предельного разрушения структуры.

Не менее эффективно для ряда систем сочетание вибрации, добавок ПАВ и температурных воздействий. В тех случаях, когда вязкость структурированных систем весьма чувствительна к изменению температуры, такое комплексное взаимодействие наиболее целесообразно. Многие пищевые, в особенности кондитерские массы (шоколадные, пралиновые и т.п.), относятся именно к такого рода системам.

Эмульсии

Эмульсия – система «жидкость – жидкость» (ж/ж). Для образования эмульсии обе жидкости должны быть нерастворимы или мало растворимы друг в друге, а в системе должен присутствовать стабилизатор, называемый эмульгатором. Эмульсия тем седиментационно устойчивее, чем ближе плотность обоих фаз. Отличительной особенностью эмульсий является сферическая форма частиц (капель).

Эмульсии классифицируются:

1. По состоянию дисперсной среды и дисперсной фазы.

Различают:

Масло в воде

Вода в масле

Для эмульсий характерным является свойство обращения фаз. При введении в эмульсию в условиях интенсивного перемешивания большого количества поверхностно-активных веществ (ПАВ), являющегося стабилизатором эмульсии противоположного типа, первоначальная эмульсия может обращаться, т.е. дисперсная фаза становится дисперсионной средой и наоборот (масло + вода = вода + масло)

2. По концентрации:

а) Разбавленные 0,01 – 0,1%;

б) Концентрированные до 74%;

в) Высоко концентрированные до 90%.

Все эмульсии термодинамически нестабильные структуры, за исключением критических эмульсий. Это структуры двух ограниченно растворимых жидкостей при температуре, близкой к критической.

Седиментационная устойчивость эмульсий аналогична суспензиям. Агрегативная неустойчивость проявляется в самопроизвольном образовании агрегата капелек с последующим их слиянием (коалесценция). Количественно это характеризуется скоростью расслоения или временем жизни отдельных капелек в контакте с другими. Агрегативная устойчивость определятся следующими факторами:

· Соотношением поверхностного натяжения на поверхности раздела фаз;

· Присутствием в растворе электролита. Поэтому прямые эмульсии, стабилизированные мылами, характеризуются всеми свойствами, присущими типичным гидрозолям, т.е. соблюдается правило Шульце – Гарди, перезаряжание частиц поликовалентными ионами и т.д.

· Наличием эмульгатора.

Стабилизация эмульсии с помощью поверхностно-активных веществ (ПАВ) обеспечивается благодаря адсорбции и определенной ориентации молекулы поверхностно-активного вещества (ПАВ), что вызывает понижение поверхностного натяжения. Кроме этого поверхностно-активные вещества (ПАВ) с длинными радикалами на поверхности капелек могут образовывать пленки значительной вязкости (структурно-механический фактор). Для эмульгаторов справедливо правило Ван – Крофта: эмульгаторы, растворимые в углеводороде, образуют эмульсии типа «вода в масле»; эмульгаторы, растворимые в воде, образуют эмульсии типа «масло в воде».






Система ДФРаз- мер СвойстваЛФ Истинные растворы НМС Ионы, молекулы 1 нм Гомогенные системы, диффундируют Р-ры NaCl, глюкозы, MgSO 4 Истинные растворы ВМС Макро- ионы, макро- молекулы нм Молекулярно- дисперсные системы, движение молекул аналогично броуновскому, не способны к диализу, слабо диффундируют, образуют молекулярные комплексы Растворы пепсина желатина крахмала


Система ДФ Раз- мер СвойстваЛФ Коллоидные растворы Мицеллы нм Гетерогенные системы, задерживаются в ультрафильтрах, не способны к диализу, слабо диффундируют прозрачны в проходящем свете, частицы видны под электр. микроскопом Растворы колларгола протаргола Суспензии Твердые частицы 0,1-50 мкм и более Гетерогенные грубодисперсные системы, частицы видимы, возможна седиментация, неспособны к диализу и диффузии Суспензия серы, талька, MgO


Система ДФРаз- мер СвойстваЛФ Эмульсии Капли мкм Гетерогенные грубодисперсные системы, белого цвета склонны к коацервации, возможно расслаивание, не фильтруются, неспособны к диализу и диффузии Масляные эмульсии Комбинирован- ные системы все Получаются в результате сочетания ЛВ, по-разному распределяющихся в жидкой среде Настои, отвары из ЛРС


Воду (воду для инъекций, воду очищенную)воду для инъекций, воду очищенную Спирт этиловый различной концентрации Летучие Эфир Хлороформ Глицерин Масла жирные и минеральные (персиковое, подсолнечное) Вязкие ПЭО-400 ДМСО (диметилсульфоксид, димексид) Полиорганосилоксановые жидкости (эпсилон) и другие разрешенные к медицинскому применению жидкости


Требования, предъявляемые к ДС: 1. Приемлемая растворяющая способность 2. Обеспечение биологической доступности ЛВ 3. Химическая индифферентность 4. Биологическая безвредность 5. Оптимальные органолептические свойства 6. Устойчивость к микробной контаминации 7. Экономическая доступность Экстрагенты должны обладать: избирательной растворяющей способностью высокими диффузионными способностями (для проникновения в поры ЛРС и десорбции)


Классификации дисперсионных сред По происхождению: 1. Природные Неорганические (вода очищенная, вода для инъекций) Органические (этанол, глицерин, масла жирные и минеральные). 2. Синтетические и полусинтетические - Органические (димексид, ПЭО-400) - Элементорганические (полиорганосилоксановые жидкости)


По величине молекул ДС: Низкомолекулярные вещества (вода, глицерин, этанол); Высокомолекулярные вещества и олигомеры (полиэтиленоксиды) По степени гидрофильности ДС: Гидрофильные (вода, глицерин) Липофильные (жирные и минеральные масла, хлороформ, полиорганосилоксановые жидкости, эфир) Дифильные (этанол, димексид)






Раствор – ЖЛФ, получаемая путем растворения одного или более ЛВ, предназначенная для инъекционного, внутреннего или наружного применения ЛФ растворов Растворы для наружного применения Микстуры – ЛФ для внутреннего применения, дозированные ложками Капли–ЛФ для внутреннего и наружного применения, прописываемые в небольших количествах и дозированные каплями Инъекционные/инфузионные растворы – лекарства, вводимые в организм при помощи шприца с нарушением целостности кожных и слизистых покровов


Растворение стальные, чугунные эмалированные, стеклянные реакторы; лопастная, турбинная, рамная мешалка; растворение в вязких жидкостях при температуре (паровая рубашка) Очистка растворов фильтрование (друк-фильтр) Стандартизация растворов Концентрация действующих веществ; Плотность Содержание этанола (спиртовые р-ры)





1. Ускорить терапевтическое действие ЛВ, диспергированных в неполярной жидкой фазе - маслах 2. Обеспечить всасывание масляной фазы в желудке из эмульсий первого рода (М/В), ускорить гидролиз диспергированных жиров ферментами ЖКТ 3. Ускорить всасывание масел в мелкодисперсном состоянии при парэнтеральном применении 4. Облегчить прием вязких жидкостей (масло касторовое и др.) за счет снижения вязкости масляной фазы 5. Замаскировать неприятный вкус и запах ЛВ и масел 6. Смягчить раздражающее действие на кожу и слизистые некоторых ЛВ (хлоральгидрата, бромидов, метилурацила) 7. Использовать как основу для создания комбинированных препаратов, т.к. в их состав можно вводить гидрофильные и гидрофобные ЛВ. 8. Возможность совмещения в одной ЛФ двух несмешивающихся жидкостей 9. Регуляция биодоступности ЛВ


По применению: Для наружного (клизмы, очищающие эмульсии, косметическое молочко и др.); Для внутреннего (микстуры); Для инъекционного (эмульсии для парэнтерального питания) – промышленное производство. Эмульсионные композиции входят в МЛФ (эмульсионные мази, кремы, линименты) Пенообразующие аэрозоли


Эмульсии первого рода (м/в) ДФ (масло) в виде капелек распределена в водной ДС. Эмульсии этого типа – более жидкие, по внешнему виду напоминают молоко. Применяются: внутрь, наружно, инъекционно. Эмульсии второго рода (в/м) ДФ (вода) в виде капелек распределена в масляной ДС. Эмульсии этого типа – более вязкие, густые. По внешнему виду напоминают мягкое сливочное масло. В основном применяются наружно: мази, линименты, кремы. «Множественные» эмульсии, в каплях ДФ диспергирована жидкость, являющаяся ДС, например, в/м/в или м/в/м


1 масло 2 вода 3 ПАВ I две несмешивающиеся жидкости (вода и масло) II прямая эмульсия «м/в» (частицы масла окружены слоем эмульгатора) первого рода III обратная эмульсия «в/м» (частицы воды окружены слоем эмульгатора) второго рода IV сложная эмульсия «вода/масло/вода»




Виды нестабильности эмульсий: Обращение фаз (инверсия) - изменение типа эмульсии от в/м к м/в и наоборот. На инверсию влияют соотношение фаз, природа, концентрация и гидрофильно-липофильный баланс (ГЛБ) эмульгаторов, способ приготовления эмульсииГЛБ Кинетическая, проявляется вследствие осаждения (седиментации) или всплывания (кремаж) частиц дисперсной фазы под влиянием силы тяжести, согласно закону Стокса; Кинетическая Термодинамическая (агрегативная) - проявляется в виде коалесценции (слияния) капелек. Коалесценция протекает в две стадии: первая флокуляция (слипание), когда капельки дисперсной фазы образуют агрегаты; вторая собственно коалесценция, когда агрегировавшие капли соединяются в одну большую; Термодинамическая (агрегативная)


Способность системы сохранять равномерное распределение частиц ДФ по все объему или массе препарата: Закон Стокса V -скорость оседания частиц, м/с; r- радиус частиц, м ρ тв - плотность ДФ, г/м 3 ; ρ ж - плотность ДС, г/м 3; η - вязкость среды, Па·с g -ускорение свободного падения, м/с 2 Скорость седиментации прямо пропорциональна разности плотности ДФ ДС d 1 >d 2 оседание частиц d 1 d 2 оседание частиц d 1


Скорость седиментации обратно пропорциональна вязкости ДС Повышают вязкость: сироп сахарный, глицерин, растворы ВМС Скорость седиментации прямо пропорциональна размеру частиц ДФ Размер частиц изменяют измельчением Уменьшение свободной поверхностной энергии происходит за счет агрегации частиц. Необходимо сохранить максимальное значение G сохранив наибольшее значение площади удельной поверхности и снизив σ, что будет препятствовать слипанию частиц G = ΔS x σ G – изменение свободной поверхностной энергии, н/м ΔS – изменение поверхности, м 2 ; σ – поверхностное натяжение, н/м


Способность частиц ДФ противостоять слипанию (агрегации) за счет: 1. Заряд на поверхности частиц ДФ 2. Сольватный слой, оболочка из ВМС, ПАВ вокруг частиц ДФ Нарушение агрегативной устойчивости ведет нарушению седиментационной устойчивости Для повышения агрегативной устойчивости в состав эмульсий вводят стабилизаторы- эмульгаторы и стабилизаторы загустители стабилизаторы- эмульгаторы


Механизм стабилизирующего действия ПАВ обусловлен их способностью: адсорбироваться на поверхности твердых частиц или капелек жидкости. Ориентация ПАВ происходит по принципу «подобное к подобному», т. е. полярные части молекул ПАВ будут обращены к полярному веществу, а неполярные части молекул соответственно, к неполярной фазе. ; снижать межфазное натяжение на границе раздела фаз, снижать запас поверхностной энергии образовывать защитную пленку (моно – или полимолекулярный слои); сольватный слой; двойной электрический слой (в случае ионогенных ПАВ); повышать вязкость (ВМВ – производные целлюлозы, крахмал).




Стабильность ЛВ и отсутствие химических реакций между ЛВ и ВВ. Химическая неустойчивость может отражаться на физической стабильности эмульсий, которые могут разрушаться вследствие омыления, окисления, гидролиза составных компонентов, их взаимодействия между собой и с материалом упаковки.


Зависит от: микробной контаминации ВВ и упаковки, условий изготовления, гигиены обслуживающего персонала. Следует предъявлять повышенные требования к микробной чистоте таких эмульгаторов, как бентониты, альгинаты, желатин и желатоза. Эмульсии содержат воду, являющуюся благоприятной средой для развития микроорг. В эмульсионные ЛФ вводят консерванты: эфиры пара-оксибензойной кислоты (парабены), спирты (этиловый, бензиловый, хлорбутанолгидрат), кислоты (бензойная, сорбиновая), фенолы и др.


Суспензии - жидкая лекарственная форма, содержащая в качестве дисперсной фазы одно или несколько измельченных порошкообразных ЛВ, распределенных в жидкой дисперсионной среде. По применению: 1. Суспензии для внутреннего применения, 2. Суспензии для наружного применения (в том числе капли глазные) 3. Суспензии для парентерального введения (внутримышечного) Суспензии выпускаются в готовом к применению виде, или в виде порошков или гранул, к которым перед применением прибавляют воду или другую жидкость.


1. Высокая терапевтическая активность по сравнению с таблетками и порошками (при размере частиц ДФ менее 10 мкм); 2. Более высокая дисперсность твердых веществ, чем в таблетках и порошках; 3. Выраженное пролонгированное действие по сравнению с растворами (при наличии частиц ДФ размером 40 мкм) 4. Более удобны в применении, чем таблетки и порошки; 5. Снижение отрицательного воздействия желудочного сока на ЛВ; 6. Возможность отпуска суспензий в виде сухого полуфабриката (гранул), суспендируемого при добавлении воды непосредственно перед применением, что увеличивает срок хранения.


Суспензии должны обладать: Высокой агрегативной устойчивостью (способностью противостоять укрупнению частиц, образованию агрегатов) Высокой конденсационной устойчивостью (способностью противостоять оседанию частиц, сохранять равномерное распределение частиц по всему объему или массе суспензии) Низкой скоростью седиментации (оседания частиц и образования осадка). Частицы должны оседать настолько медленно, чтобы суспензию можно было точно дозировать при приеме.


Размера частиц (величины свободной поверхностной энергии, энергии Гиббса), величины межфазного натяжения вязкости среды, соотношения плотностей ДФ и ДС, наличия электрического заряда на поверхности частиц, степени сродства частиц ДФ к ДС и интенсивности взаимодействия частиц со средой


В качестве ВВ в ЛФ «Суспензии» ГФ ХI разрешает использование в-в: повышающих вязкость дисперсионной среды, ПАВ, буферных веществ, корригентов, консервантов, антиоксидантов, красителей, и других ВВ, разрешенные к медицинскому применению. В качестве стабилизаторов суспензий используются: желатоза, камеди, р-ры полисахаридов: крахмала, производных целлюлозы (МЦ, NaKMЦ, микрокристаллическая целлюлоза), ксантан, аубазидан, бентонит (3-4 %), твины, спены и др.




Получение суспензий и эмульсий осуществляется несколькими способами: интенсивным механическим перемешиванием с помощью быстроходных мешалок и РПА (роторно- пульсационными аппаратами) – дисперсионный метод; размолом твердой фазы в жидкой среде на коллоидных мельницах, ультразвуковым диспергированием с использованием магнитострикционных и электрострикционных излучателей; микрокристаллические взвеси получают конденсационным способом или направленной кристаллизацией при смешивании растворов в определенных температурных условиях и значениях рН.


ВР 1.3. Санитарная подготовка технологической одежды ВР 1.4. Подготовка воздуха ВР.2.1. Взвешивание или отмеривание ЛВ и ВВ УМО Фасовка Кх Км Готовый продукт Карантинное хранение ВР 1. Санитарная Кт Км обработка производства УМО 4. Фасовка и упаковка На склад ТП 3. Приготовление линимента-эмульсии (линимента – суспензии) ВР 1.1 Санитарная обработка производствен. помещений ВР 1.2. Санитарная обработка оборудования ВР 1.5. Получение очищенной воды ВР.2. Подготовка исходных материалов Кт Км Потери механические Потери механические УМО Упаковка ВР.2.2. Подготовка эмульгатора ВР.2.3. Подготовка ЛВ (диспергирование) Стандартизация


Измельчение ЛВ и ВВ Приготовление концентрированной суспензии в смесителях Многократное механическое диспергирование (аппараты с пропеллерными или турбинными мешалками закрытого типа; роторно- пульсационные аппараты): процесс проводят в вакууме, т.к. воздух понижает устойчивость суспензии




На границе раздела фаз возникают зоны сжатия и разрежения, которые создают давление. Избыточное давление УЗ-волны накладывается на постоянное гидростатическое давление и в сумме составляет до нескольких атмосфер. В фазу разрежения во всем объеме жидкости, особенно у границы раздела фаз, образуются полости (кавитационные пузырьки). При повторном сжатии кавитационные пузырьки схлопываются, развивая давление до сотен атмосфер, образуя ударную волну, приводящую к разрушению твердых частиц.


Источники ультразвука: Механические излучатели жидкостный свисток 1 – металлическая пластина; 2 – сопло Частота колебаний 30 к Гц Используется для получения эмульсий электромеханические излучатели (кГЦ) электродинамические (высокочастотный ротационный аппарат) магнитострикционные Электрострикционные ВАЖНО! УЗ обладает бактерицидным действием, т.е. суспензии становятся стерильными! жидкость


ВАЖНО! Растворимость ЛВ должна изменяеться в зависимости от условий процессса (температуры, характера перемешивания, рН среды, растворителя и др.) Этапы приготовления: Приготовление раствора ЛВ в растворителе, в котором оно хорошо растворимо; Раствор добавляют в дисперсионную среду (часто в воду), при необходимости создают условия, приводящие к уменьшению растворимости. При непрерывном перемешивании в ДС происходят процессы кристаллизации, растворения, и перекристаллизации, в результате образуются кристаллы с размерами, зависящими от условий процесса. Пример, получение суспензии цинк-инсулина кристаллического для инъекций.


Ресуспендируемость (скорость оседания частиц дисперсной фазы суспензий). При наличии осадка суспензия должна восстанавливать равномерное распределение частиц по всему объему препарата при взбалтывании в течение секунд. Время отстаивания – величина отстоявшегося слоя за определенное время. Чем она меньше, тем устойчивость больше. Определение размера частиц и однородности твердой фазы в суспензиях и капель эмульсий проводится методом микроскопии. Размер частиц дисперсной фазы не должен превышать размеров, указанных в нормативных документах (ФСП). Сухой остаток – высушивание и определение массы сухого остатка для определения точности дозирования. Регламентируется значения рН среды. Контролируется термостабильность и морозостойкость эмульсий: при выдерживании пробы эмульсии (30,0 г) в термостате при 45°С в течение 8 ч отделившийся масляный слой не должен превышать 25% общей высоты эмульсии. При охлаждении до 20°С в течение 10 ч и после отстаивания при комнатной температуре не должно быть расслоения. К суспензиям и эмульсиям для парентерального введения предъявляются дополнительные требования, указанные в статье ГФ XI «Инъекционные лекарственные формы».


1. Название препарата на русском языке 2. MHН на русском языке 3. Состав 4. Описание (внешний вид, цвет) 5. Подлинность 6. Значение рН 7. Плотность 8. Вязкость 9. Посторонние примеси (родственные соединения) 10. Размеры частиц (в случае суспензии, эмульсии) 11. Определение объема 12. Микробиологическая чистота 13. Количественное определение 14. Упаковка 15. Маркировка 16. Транспортирование 17. Хранение 18. Срок годности 19. Фармакологическая группа
Качество воды очищенной зависит от: Качества исходной воды: ФЗ «О питьевой воде», Сан ПиН «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества»; Используемой аппаратуры и правильности ее эксплуатации; Соблюдения условий получения, сбора и хранения воды очищенной в соответствии с инструкцией по санитарному режиму (309)


Перед получением воды очищенной возникает необходимость проведения водоподготовки, что предполагает освобождение: От летучих веществ (отстаивание, кипячение); От механических примесей (отстаивание, фильтрование); От временной жесткости, обусловленной присутствием гидрокарбонатов кальция и магния (кипячением или обработкой 5%-ным раствором Ca(OH) 2 ; От постоянной жесткости, обусловленной присутствием СаСl 2, MgСl 2, СаSO 4, MgSO 4, (обработка 5%-ным растворами Na 2 CO 3 ; От органических веществ (обработка в течение 8 часов 1 %-ным раствором KMnO 4).


Питьевую воду или воду, прошедшую водоподготовку помещают в аквадистиллятор, состоящий из испарителя, конденсатора и сборника. В испарителе воду нагревают до кипения, образующийся пар поступает в конденсатор, где он сжижается и в виде дистиллята поступает в сборник. Все нелетучие примеси, находившиеся в исходной воде, остаются в испарителе.




Основан на использовании сетчатых полимеров различной структуры, ковалентно связанных с ионогенными группами При диссоциации этих групп в воде или растворе образуется ионная пара фиксированный на полимере ион и подвижный противоион, который и обменивается на ионы одноименного заряда из р-ра. По знаку заряда обменивающихся ионов ионообменные смолы делятся на катиониты и аниониты. В катионообменной смоле подвижными ионами являются ионы Nа+ и Н+, В анионообменной ионы С1- и ОН- Основан на удалении солей из раствора под действием постоянного электрического тока с помощью избирательно проницаемых мембран Воду помещают в ванну, разделенную на три части селективными ионообменными мембранами Мембраны, имеющие отрицательный заряд (катиониты) проницаемы для катионов. Мембраны, имеющие положительный заряд (аниониты) проницаемы для анионов. Через ванну пропускается постоянный электрический ток, все ионы солей, находящихся в воде, начинают передвигаться к мембранам, имеющим противоположный заряд: катионы - к катоду; анионы – к аноду


Осмос – самопроизвольный переход растворителя через полупроницаемую мембрану из р-ра с низкой концентрацией в р-р с более высокой концентрацией. Установка состоит из насоса высокого давления, пермиаторов и блока регулирования, поддерживающего оптимальный рабочий режим. Каждый из пермиаторов содержит большое количество полых волокон (до 1 млн.), мембранами служат эфиры целлюлозы. Вода подается в пермиатор, омывая волокна с внешней стороны. Под давлением выше осмотического (~1274 Па) проникает внутрь полых трубок, т.е. уходит от солей, содержащихся в ней и собирается внутри трубок. «Концентрат» солей выливается в сток.


ПАВ имеют дифильное строение, т.е. содержат в молекуле гидрофильные и гидрофобные группы. Соотношение между гидрофильной и гидрофобной частью молекул есть величина, характеризующая гидрофильно- липофильный баланс (ГЛБ), числовые значения которого имеются в справочной литературе. ГЛБ = Е / σ где Е - % массовое содержание гидрофильной части; σ - поверхностное натяжение (н/м) Значение 1-20, (это не показатель эффективности эмульгирования, а показатель типа образующейся эмульсии) Эмульсии в/м ГЛБ 3-6 Эмульсии м/в ГЛБ 8-18


По способности стабилизиро- вать эмульсии 1. эмульгаторы первого рода (м/ в/ в) - для прямого типа эмульсий; 2. эмульгаторы второго рода (в/ в/ м) - для обратного типа эмульсий По химической природе вещества с дифильным строением молекул: ПАВ твины, спены и др.; ВМС: желатин, белки, поливиниловый спирт, полисахариды и др; неорганические вещества: бентонит, аэросил и др. По способу получения синтетические и полусинтетические (МЦ, ПЭГ, спены, твины, эмульгатор Т-2) природные: животного происхождения (желатин, белки); растительного происхождения (полисахариды, крахмал, камеди, альгинаты)


Катионактивные ПАВ Четвертичные аммониевые и пиридиновые соединения (бензалкония хлорид, цетилпиридиний хлорид, этоний) Анионактивные ПАВ соли высших жирных кислот (олеат натрия) соли сульфоэфиров высших жирных спиртов (натрия лаурилсульфат) Амфотерные ПАВ Белки (желатин, желатоза, казеин, казеинат Na)Белки (желатин, желатоза, казеин, казеинат Na) Липиды (лецитин, кефалин, бетаин, стерины)Липиды (лецитин, кефалин, бетаин, стерины) Неионогенные ПАВ Высшие жирные спирты и кислоты (олеинавая к-та, спирты синтетические первичные С16-С21) Сложные эфиры гликолей и жирных кислот (спены, жиросахара, твины, пентол, эмульгатор Т2)

суспензии. эмульсии .

Эмульсия – однородная по внешнему виду ЛФ, состоящая из взаимно растворимых тонко диспергированных жидкостей, предназначенная для внутреннего, наружного и парентерального применения.

Классификация эмульсий.

1.По исходному материалу : масляные и семенные;

2.По составу: простые (масло – липофильная жидкость, эмульгатор, вода – гидрофильная жидкость) и сложные (эмульсия, раствор, суспензия в различных сочетаниях).

3.По концентрации: разбавленные (дисперсная фаза занимает по объему доли процентов, например ароматные воды); концентрированные (единицы и десятки процентов); высококонцентрированные (пенообразованные).

4.По типу : эмульсии первого рода, прямые (масло в воде, дисперсная фаза распределена в водной дисперсионной среде); эмульсии второго рода, обратные (вода в масле, дисперсная фаза распределена в масляной дисперсионной среде; множественные эмульсии, в которых капли дисперсной фазы содержат в своем объеме более мелки капли дисперсионной среды).

5. По применению : для наружного применения (питательные и лечебные клизмы, очищающие эмульсии); для внутреннего применения (микстуры); для инъекционного введения (эмульсии для парентерального питания).

Нарушение устойчивости эмульсий при хранении связано с протеканием в системе процессов седиментации, коагуляции капель, коалесценции. Эффективным способом замедления переконденсации эмульсий является введение в состав дисперсной фазы добавок, практически не раситворимых в дисперсионной среде.

Эмульсии расслаиваются под влиянием сильных электролитов, дегидратирующих веществ (этанол, глицерина дистиллированного, сиропа сахарного); веществ кислого и щелочного характера; факторов внешней среды; механического воздействия температуры.

Возможность образования эмульсий, их тип и стабильность определяются поверхностными явлениями на границе раздела фаз и зависят прежде всего от наличия в системе ПАВ - эмульгаторов , их концентрации, молекулярного строения, гидрофильно-липофильного баланса.

Молекулы ПАВ обладают дифильными свойствами.

Молекулы эмульгатора располагаются строго определенным образом в зависимости от характера групп его молекул.

Стабилизаторами прямых эмульсий являются водорастворимые ПАВ с высоким значением гидрофильно-липофильного баланса (более 8): анионные мыла (мыла щелочных металлов), неионогенные (твины, этоксилаты спиртов), катионные (четвертичные аммониевые соли), высокомолекулярные ПАВ как природные (полисахариды, белки), так и синтетические (поливиниловый спирт).

Для стабилизации обратных эмульсий используют мыла переходных металлов, моноалканоламиды, неионогенные ПАВ, этиленоксилаты высших спиртов и кислот.

Суспензия – ЖЛФ, представляющая дисперсную систему, в которой твердое вещество взвешено в жидкости, предназначенная для внутреннего, наружного и парентерального применения.

Классификация.

По применению : для внутреннего, наружного, инъекционного применения.

По характеру отпуска : готовые к применению; в виде гранулированных порошков, к которым перед применением добавляют воду очищенную или для инъекций.

По характеру частиц дисперсной фазы : суспензии гидрофильных веществ (висмута нитрат основной, цинка оксид, крахмал, магния оксид); суспензии гидрофобных веществ (парафин, ментол, тимол, камфора).

Устойчивость суспензий зависит от: формы частиц, их моно- или полидисперсности, размера, величины свободной поверхностной энергии, вязкости среды, соотношения плотностей дисперсной фазы и дисрперсионой среды, наличия ПАВ.

Суспензии должны обладать высокой агрегативной и кинетической устоичивостью, а также низкой скоростью седиментации.

Агрегативная устойчивость (способность противостоять укрупнению чпстиц и образованию агрнгатов) зависит от плотности, поверхностного электрического заряда частиц, потенциала, толщины ДЭС.

Кинетическая устойчивость – способность системы противостоять оседанию частиц, сохранять равномерное распределение частиц по всему объему или массе суспензии зависит от размера частиц, соотношения плотностей дисперсной фазы и дисперсионной среды.

Скорость седиментации прямо пропорциональна квадрату размера цастиц, разности плотностей дисперсеной фазы и дисперсионной среды и обратнопропорциональна вязкости.



gastroguru © 2017