Новейший российский прибор мгновенно диагностирует рак - нпп "биочип". Биочипы в биологии и медицине xxi века Что американцам запросто

Биочипы, созданные в Институте молекулярной биологии, никуда вживлять не надо.

Эти маленькие штучки могут за один день сказать, какими лекарствами надо лечить туберкулез у данного пациента, различить ужасный вирус птичьего гриппа среди других вирусов и показать, есть ли у человека вероятность заболеть раком.

ИСТОРИЯ "РУССКОГО БИОЧИПА"

Даже не верится, что миниатюрное устройство, закрепленное на предметном стекле (таком, на которое обычно помещают препарат для рассмотрения под микроскопом), может заменить собой целую диагностическую лабораторию. Но это действительно так! "Подобно электронным чипам, биочипы обрабатывают большой массив информации методом параллельного анализа", - объясняет сотрудник лаборатории биологических микрочипов ИМБ Дмитрий Грядунов. Проще говоря, в одно и то же время на одном чипе проходит множество - до нескольких сотен - всевозможных анализов.

Еще более удивительна история происхождения биочипа, который продукт сугубо отечественный, не случайно за рубежом его до сих пор называют "русский биочип". Началось же все в конце 80-х годов прошлого века, когда команда ученых из Института молекулярной биологии РАН (ИМБ) под руководством академика Андрея Мирзабекова, ушедшего из жизни прискорбно рано, в 2003 году, взялась за изготовление универсального миниатюрного анализатора. Идея, конечно, уже витала в воздухе. Но только нашим специалистам удалось воплотить эту идею в жизнь .

Как рассказывал в свое время Андрей Мирзабеков, в то время весь мир был увлечен процессом расшифровки генома человека, и они с коллегами предложили использовать для этих целей биочипы. Но очень скоро поняли, что новые устройства могут пригодиться для решения самых разных практических задач, поэтому поспешили сделать следующий шаг - разработать технологию. И преуспели в этом! Биочипы начали свое победное шествие по миру.

В середине 90-х, когда финансирование российской науки практически полностью прекратилось, академика Мирзабекова пригласили в Аргонскую национальную лабораторию США. Он заявил, что будет работать в Чикаго, только если там создадут совместную исследовательскую группу, в которую войдут как американские, так и российские специалисты. Именно так российским молекулярным биологам удалось пережить "веселые 90-е", самые тяжелые для отечественной науки. За время работы в США они получили больше 10 патентов. На заработанные деньги закупили оборудование и создали комплексную лабораторию в ИМБ.

"Русский биочип", как его называли за рубежом, получил признание. Право на использование технологии купили компании Motorola и НР, а затем зарегистрировали свой патент на модифицированную технологию. В ответ на это ученые из ИМБ разработали и запатентовали более совершенную технологию.

АТАКА НА ТУБЕРКУЛЕЗ

Первым объектом для апробации нового метода стал туберкулез. Ежегодно в мире им заражаются около 30 млн человек, порядка 2 млн от него умирают. Особенно тяжелая ситуация по туберкулезу сложилась в России, где в 90-е годы из-за многочисленных социальных проблем возбудители туберкулеза - микобактерии, или, как их еще называют, палочки Коха, мутировали, став невосприимчивыми к традиционным препаратам. На сегодняшний день известно около 40 мутантных штаммов.

При традиционном подходе после выявления у пациента туберкулеза рентгенологическими методами его лечат препаратами так называемого первого ряда, к которым относятся рифампицин и изониазид. Параллельно проводят микробиологическое исследование возбудителя, чтобы установить его чувствительность к этим лекарствам. Это занимает от двух до трех месяцев. А когда выясняется, что эти лекарства на данную форму микобактерии не действуют, больной уже в течение нескольких месяцев принимал ненужные и, более того, вредные препараты, успев передать лекарственно-устойчивую форму туберкулеза всем, с кем контактировал. Конечно, в запасе у медиков остаются препараты "второго ряда", но и с ними может произойти та же история. Поэтому быстрая и точная диагностика туберкулеза очень и очень важна.

Если использовать биочипы, диагноз можно поставить менее чем за сутки. Из пробы больного выделяют ДНК и проводят полимеразно-цепную реакцию (ПЦР), чтобы многократно размножить участок ДНК, на котором могут встречаться мутировавшие гены устойчивости к антибиотикам. Последующий анализ на биочипе поможет определить, каким именно из десятков мутантных штаммов туберкулеза заражен пациент. Но эти волшебные биочипы надо было еще создать.

Начиная с 1998 года ученые из ИМБ совместно со специалистами Московского центра по борьбе с туберкулезом бились над решением этой проблемы. В 2004 году их труды увенчались успехом - диагностика с использованием биочипов была сертифицирована. Сегодня выпускается два вида устройств: для выявления чувствительности микобактерий к препаратам первого и второго ряда. "Мы производим 1,5-2 тыс. биочипов в месяц, а в будущем собираемся выйти на 3-4 тыс., - рассказывает Виктор Барский. - Хотя для страны нужно не менее 2 млн биочипов в год. Но это так называемый неплатежеспособный спрос. Наши биочипы используют в 8 противотуберкулезных диспансерах России: в Москве, Санкт-Петербурге, Екатеринбурге, Новосибирске, Казани и Саратове. Сейчас мы получили заказ на оснащение еще 10 медицинских центров". Заключено также соглашение с Главным управлением исполнения наказаний Министерства юстиции РФ о диагностике туберкулеза у заключенных. Важность этого решения трудно переоценить, ведь именно в российских лагерях зародился лекарственно-устойчивый туберкулез и пошел собирать свою страшную жатву по миру.

БИОЧИП БРОСАЕТ ВЫЗОВ РАКУ

Впрочем, на этом исследователи из ИМБ не остановились. Им удалось создать биочипы для диагностики некоторых видов рака. Биочипы эти нескольких типов и работают принципиально по-разному.

С помощью одного вида биочипов можно, к примеру, выявить предрасположенность к раку молочной железы, яичников, простаты и пр. "Достигается это за счет того, что наши биочипы видят, есть ли в геноме данного человека мутации предрасположенности к раку, - объясняет Виктор Барский. - Но такие биочипы трудно сертифицировать, поскольку они показывают лишь вероятность болезни, а человек ведь, к счастью, может и не заболеть".

Иначе обстоит дело с биочипами для диагностики рака крови, лейкемии. Вызывают ее разные хромосомные перестройки. Внешне эти типы лейкозов неотличимы друг от друга, но лечить их нужно по-разному. При одних лейкозах пациента можно вылечить современными лекарствами, а при других - не стоит даже пробовать, надо сразу делать пересадку костного мозга. Биочипы позволяют сразу же выявить, какой тип хромосомных перестроек явился причиной лейкемии, что позволяет врачу изначально выбрать правильную стратегию лечения. Сейчас биочипы для диагностики лейкемии проходят сертификацию. Также биочипы позволяют сразу же различить, какой формой рака груди - хорошо излечимой или плохо излечимой - страдает пациентка.

И, наконец, благодаря биочипам стала реальностью мечта многих поколений врачей о диагностике рака на самых ранних стадиях заболевания, когда он еще легко излечим. В основу этой методики положен тот факт, что при тех или иных видах рака в крови появляются определенные белки-онкомаркеры, их и диагностируют биочипы. Правда, для нахождения и анализа онкомаркеров нужны уже не ДНК-овые, а белковые биочипы. Зондами в них служат белки-антигены, которые пространственно соответствуют белкам-антителам в крови больного. Впрочем, именно в этой области российские ученые не одиноки. Подобные биочипы весьма успешно производятся и за рубежом. Отечественным ученым надо очень постараться, чтобы выиграть в этой конкурентной борьбе.

НА ВСЕ РУКИ МАСТЕРА

Но этим область применения биочипов не ограничивается. Выпускаются биочипы для самых разных целей. Для выявления возбудителей гриппа А, в том числе птичьего гриппа, герпеса, гепатита В и С, разнообразных инфекций у беременных женщин и новорожденных, для определения предрасположенности к сердечно-сосудистым заболеваниям. А есть и такие, которые могут сослужить службу криминалистам, поскольку определяют пол и группу крови. Ученые работают над биочипами для обнаружения стафилококкового, холерного, дифтерийного, столбнячного токсинов, возбудителей сибирской язвы и чумы, разновидностей вируса оспы. "С помощью биочипов можно определить, будет ли человек переносить то или иное лекарство и даже то, насколько человек генетически подходит для той или иной профессии, - рассказывает Виктор Барский. - Например, существуют гены, отвечающие за хорошую устойчивость человека к недостатку кислорода. Значит, обладатели этих генов могут работать, например, на высоте. Эти гены можно выявить".

Надо сказать, что биочипами в России занимаются и другие исследовательские группы. Биочип для экспресс-диагностики вирусов гриппа разрабатывают ученые из НИИ гриппа РАМН в Санкт-Петербурге совместно с Институтом биоорганического синтеза в Москве. Это устройство внешне напоминает кредитную карту со встроенными рецепторами для распознавания человеческих и птичьих вирусов. Как объяснил директор института академик РАМН Олег Киселев, нанеся на биочип биологический материал от заболевшей птицы, можно оперативно выяснить, какой разновидностью вируса гриппа она страдает.

Специалисты ГУ НИИ экспериментальной медицины РАМН разрабатывают биологический микрочип для выявления на ранней стадии одного из тяжелых осложнений сахарного диабета - диабетической нефропатии. Это белковый биочип, зондами на нем служат фрагменты генно-инженерного белка G, который связывает человеческий альбумин. Биочип способен уловить очень маленькие концентрации альбумина в моче, которые свидетельствуют о поражении почек, и отслеживать изменение этого показателя в течение всего лечения.

В Гематологическом научном центре РАМН создают белковые биочипы на основе иммуноглобулинов, которые позволяют найти в крови возбудителей различных заболеваний, а также антитела, гормоны, цитокины и опухолевые клетки.

ЗАГРАНИЦА НАМ ПОМОЖЕТ?

Со времени своего изобретения российские биочипы снискали заслуженную популярность как у нас в стране, так и за рубежом. "Есть европейские партнеры, которые заинтересованы в самом широком внедрении нашей технологии, - рассказывает заместитель директора по науке ИМБ РАН доктор биологических наук Александр Заседателев. - Так, французский госпиталь в Тулузе использует российские биочипы для диагностики разновидностей вируса гепатита С, поскольку разные типы заболевания надо лечить по-разному. В скором времени они будут применяться и в других французских госпиталях". Российские биочипы для диагностики рака крови с успехом используют в Бразилии. В странах бывшего СНГ технологию собираются применять в Белоруссии, Украине, Киргизии. Поступил запрос и из Кореи. В США российские приборы и биочипы есть в нескольких организациях: в Центре контроля заболеваемости, в Food and Drug Administration и в госпитале в Арканзасе, который занимается лечением туберкулеза среди мигрантов. "Мы не продаем наши биочипы за границу, а передаем их в рамках научных проектов", - подчеркивает Виктор Барский. Для биочипов открылись и совершенно не-ожиданные перспективы: не так давно NASA заинтересовалось возможностями их использования для обнаружения внеземной жизни.

Конечно, биочипы производят и за рубежом: несколько биотехнологических фирм в США (Affymetrix, Clontech, Motorola и др.), в Японии (Hitachi, Matsushita, Fuji), в Европе. Американцы добились рекордного количества ДНК-зондов, размещенных на одной матрице: до десятков и сотен тысяч. Отечественные биочипы имеют относительно небольшое количество ячеек с зондами: от 1000 до 4000. Но для диагностики какой-то одной группы заболеваний этого вполне достаточно. За счет простоты удалось снизить цену и упростить проведение анализа. "Цена одного анализа с помощью российского биочипа - 500 рублей, - говорит Дмитрий Грядунов, - а в США проведение одного анализа стоит 2 тысячи долларов. Поэтому наши биочипы в отличие от зарубежных годятся для массового применения".

В последние годы биочипами заинтересовались и в России. Проект "Биочипы" получил государственный контракт с Федеральным агентством по науке и инновациям (Роснаука) в рамках приоритетного направления "Живые системы".

ЛАБОРАТОРИЯ РАЗМЕРОМ С ПОЧТОВУЮ МАРКУ

Биочип устроен следующим образом. На матрице-подложке расположено множество ячеек с гидрогелем (диаметром около 100 микрон, так что на одном квадратном сантиметре могут разместиться до тысячи ячеек). В ячейках содержатся молекулы-зонды: в зависимости от назначения биочипа это могут быть фрагменты ДНК, РНК или белки. Каждая ячейка - это аналог микропробирки, в которой происходит реакция между молекулами-зондами и молекулами исследуемой пробы. Если эти молекулы подходят друг к другу как ключ к замку, происходит так называемая гибридизация - молекулы соединяются химическими связями. Ячейка, в которой произошла реакция, флуоресцирует (потому что пробу предварительно обрабатывают светящейся меткой). В специальном приборе-анализаторе под названием "чип-детектор" конфигурация светящихся точек покажет, какие мутации есть в клетках пациента, обнаружит бактерии и вирусы, выявит генетические формы микроорганизмов - возбудителей болезни.

КАК ДЕЛАЮТ БИОЧИПЫ

Биочипы можно изготавливать разными способами. Лидирующая в этом направлении американская фирма Affymetrix производит их тем же способом, что и электронные чипы (она и располагается в Силиконовой долине в Калифорнии). По этой методике фрагменты ДНК - зонды - наращиваются прямо на стеклянной пластинке методом фотолитографии. Именно высокий уровень развития микроэлектроники позволил добиться таких впечатляющих результатов - десятки и сотни тысяч зондов на одном биочипе.

В ИМБ РАН применяют другой подход. Фрагменты ДНК синтезируют отдельно, а затем наносят на подложку в строго определенном порядке. Эту работу выполняют роботы под управлением компьютера. На отечественном чипе размещается от 100 до 4000 зондов.

ПОСЛЕДНИЕ ДОСТИЖЕНИЯ

Сферы применения биочипов расширяются с каждым годом. Вот только наиболее интересные из них.

БИОЧИПЫ ДЛЯ АРМИИ

Специалисты из Нортвестернского университета в США разработали для американской армии биочип, который может обнаружить бактериальное заражение окружающей среды. Если на него попадает ДНК от патогенных микробов, то фрагменты ДНК-зондов с прикрепленными к ним микроскопическими частицами золота выстраиваются в ряд. Между электродами идет ток, и биочип сигнализирует об угрозе.

БИОЧИПЫ ДЛЯ СПОРТСМЕНОВ

Биочип, позволяющий определить влияние тренировок на организм спортсменов, изобрела испанская компания Sabiobbi. Он одновременно исследует 17 генов, связанных с физическими и метаболическими возможностями организма. Результаты анализов можно соотнести с нагрузками, которые испытывает спортсмен при тренировках, и скорректировать программу. Это изобретение, считают авторы, позволит избежать случаев преждевременной смерти из-за физических перегрузок.

БИОЧИПЫ ДЛЯ ПОЛИЦЕЙСКИХ

Чипы-биосенсоры на основе магнитных наночастиц и сверхчувствительных магнитных сенсоров реагируют на связывание определенных биомолекул из пробы зондами на поверхности наночастиц. Передовые разработки в этой области принадлежат Philips Research Laboratories. Такой биосенсор способен за 1 минуту определять следовые концентрации морфина в слюне - 10 нанограмм в миллилитре.

БИОЧИПЫ ДЛЯ ВРАЧЕЙ

Швейцарский фармакологический концерн Roche начал поставку на американский рынок первого в мире биочипа, с помощью которого врач может заранее определить, насколько эффективным будет тот или иной препарат для данного пациента и какие побочные реакции он может у него вызвать. В основе биочипа лежит технология, разработанная американской фирмой Affymetrix. Биочип анализирует мутации двух генов, играющих важную роль в усвоении примерно четверти всех продаваемых медикаментов, - например, антидепрессантов и средств, снижающих давление.

БИОЧИПЫ ДЛЯ АСТРОНАВТОВ

Специалисты Американского космического центра Маршалла развивают технологию биочипов с электронными компонентами. Такой чип может обнаруживать бактерии, белки, ДНК и, по замыслу NASA, пригодится для двух видов работ. Во-первых, в будущих автоматических системах, ищущих признаки жизни на Марсе и других планетах. А во-вторых, как часть системы безопасности будущих марсианских пилотируемых кораблей и исследовательских станций, чтобы находить биологические загрязнения, возможно неземного происхождения, внутри обитаемых помещений.

Материалы по теме

Российские ученые из МФТИ и еще нескольких академических институтов создали чип, который позволяет с высокой точностью определять один из самых распространенных раков - колоректальный (так называют злокачественные опухоли толстой и прямой кишки).

ЧТО АМЕРИКАНЦАМ ЗАПРОСТО...

Крайне важно, что новый тест очень прост, кровь для него берут из вены точно так же, как для обычного так называемого биохимического анализа. Поэтому он будет хорошо подходить для скрининга - быстрого и простого отбора пациентов даже с ранними формами рака. Сейчас в мире для этого рекомендуют колоноскопию, которую после 50 лет нужно проводить не реже одного раза в десятилетие. Это совсем непростая и не очень приятная процедура, при которой гибкий эндоскоп вводят через прямую кишку в толстый кишечник. В США это профилактическое исследование для людей старше пятидесяти поставлено на поток. Каждый эпизодически получает по почте приглашение на такую диагностическую процедуру.

У нас такое исследование проводят по показаниям, когда есть симптомы какого-либо заболевания толстого кишечника. Если же кто-то хочет просто провести такое профилактическое исследование, как это делают в США, чтобы не проморгать болезнь, это можно сделать на платной основе в индивидуальном порядке. Может быть, всем поголовно его и не стоит делать, но тем, у кого есть факторы риска развития колоректального рака, это исследование лишним не будет.

Почему ранняя диагностика рака толстой и прямой кишки так важна? Во-первых, это заболевание одно из самых распространенных - в развитых странах эта злокачественная опухоль стоит на 3-м месте среди всех видов рака. Во-вторых, болезнь весьма тяжелая и тяжело лечится. Несмотря на большие достижения в ее лечении, результаты далеко не самые лучшие: пятилетнее выживание после хорошей терапии бывает примерно у 60-65% пациентов. И в-третьих, если опухоль выловить на ранних стадиях, то результаты будут гораздо лучшими. Для этого и нужен скрининг. И лучше простой и не очень затруднительный, как колоноскопия.

НАУКА - ПРАКТИКЕ

Над поиском такой методики трудится немало ученых в мире. Например, в США недавно появился метод диагностики по сложному анализу стула. Но наши ученые предложили еще более удачное решение. Про-цедура исследования сведена к забору крови из вены, как это делают при биохимическом анализе крови. Российский биочип построен на совсем иных принципах, чем американский набор для диагностики. Хорошо известно, что в крови есть маркеры, которые могут свидетельствовать о наличии опухоли. Они тем или иным образом связаны с обменом веществ в злокачественных клетках и с ответом организма на опухоль. И таких маркеров много. Беда в том, что они весьма капризны: могут быть не только при колоректальном раке, но и при других опухолях и даже при иных состояниях. То есть их специфичность для данного вида рака не всегда достаточна для уверенной постановки диагноза. Наши ученые нашли выход из этой проблемы: они сделали комбинированный чип, который определяет сразу не один маркер, а много. Благодаря этому точность диагностики повысилась многократно.

Не будем приводить названия маркеров, которые определяются при использовании чипа. Для нас гораздо важнее чувствительность предложенного теста - она составляет 88%. То есть он определяет наличие опухоли у 88% больных из 100. Это очень хороший показатель.

Отчет об исследовании отечественного чипа опубликован на днях во влиятельном международном журнале Cancer Medicine, и есть все основания полагать, что скоро такая полезная диагностическая система поступит в практическое здравоохранение. И самое главное, по этому же принципу можно разработать диагностические чипы и для других видов рака.

Материал подготовил Олег Днепров

Фото THESTAR.COM

ФАКТОРЫ РИСКА КОЛОРЕКТАЛЬНОГО РАКА:

  • наличие таких болезней, как дивертикулы толстой кишки и неспецифический язвенный колит (болезнь Крона);
  • возраст старше 50 лет;
  • наличие этой опухоли у кровных родственников;
  • большое содержание жиров и мяса в питании;
  • пристрастие к алкоголю;
  • курение;
  • сахарный диабет, ожирение, низкая физическая активность.

План.

ВВЕДЕНИЕ.

1.БИОЧИПЫ В БИОЛОГИИ И МЕДИЦИНЕ XXI ВЕКА.

1.2. Биочипы определение.

1.3. Виды, свойства и функции биочипов.

2.Основная часть.

2.1. Гелевые биочипы, их свойства, производство и анализ.

2.2. Олигонуклеотиды и ДНКовые микрочипы.

2.3. Клеточные микрочипы.

ЗАКЛЮЧЕНИЕ.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ.

БИОЧИПЫ В БИОЛОГИИ И

МЕДИЦИНЕ XXI ВЕКА.

Биологические микрочипы являются одним из наиболее быстро развивающихся экспериментальных направлений современной биологии. Существует два основных типа биочипов. Первый рассматриваемый тип - это микроматрицы различных соединений, главным образом биополимеров, иммобилизованных на поверхности стекла, в микрокаплях геля, в микрокапиллярах. Другим типом биочипов являются миниатюризованные "микролаборатории". Эффективность биочипов обусловлена возможностью параллельного проведения огромного количества специфических реакций и взаимодействий молекул биополимеров, таких как ДНК, белки, полисахариды, друг с другом и низкомолекулярными лигандами. Удается в достаточно простых параллельных экспериментах собрать и обработать на отдельных элементах биочипа огромное количество биологической информации. В этом заключается фундаментальное информационное сходство биочипов с электронными микрочипами. Однако между ними имеется и ряд принципиальных различий.

На рис. 1 показан принцип действия ячейки ДНК или олигонуклеотидного биочипа, основанный на комплементарных взаимодействиях основания аденина (А) с тимином (Т) и гуанина (G) с цитозином (С) в двух нитях ДНК. Если последовательность оснований в одной нити ДНК (или олигонуклеотида) полностью комплементарна последовательности другой нити, то образуется стабильная совершенная двухнитчатая спираль - дуплекс. Однако присутствие в дуплексе даже одной неправильной пары, например G-G, предотвращает образование дуплекса. Если иммобилизовать в одном из элементов микрочипа специфическую одноцепочечную ДНК или, положим, 20-мерный олигонуклеотид (пробу), то при добавлении к микрочипу меченных флюоресцентными красителями фрагментов ДНК, например генома человека, будет происходить их высокоспецифичное взаимодействие. Заданный олигонуклеотидный элемент биочипа специфически свяжет только одну комплементарную последовательность из 420 = 1.09 х 1012 всех возможных последовательностей этой длины в ДНК. В результате флюоресцентное свечение наблюдается только на этом комплементарном элементе биочипа. Таким образом, один элемент биочипа производит одну выборку примерно из триллиона возможных вариантов, в отличие от элемента электронного чипа, где происходит двоичная выборка: ДА или НЕТ.

Рис. 1. Схема образования двойной спирали ДНК на биочипе

Олигонуклеотид фиксирован на одном из элементов биочипа и избирательно связывает из многих флуоресцентно меченых фрагментов ДНК только комплементарный. В результате только этот элемент начинает светиться. Это происходит благодаря высоко-специфичным взаимодействиям комплементарных пар нуклеотидов А с Т и G с С. Присутствие некомплементарной пары, например G-G, предотвращает взаимодействие и оставляет элемент микрочипа темным

Стремительное развитие биологии во второй половине прошлого века тесно связано с появлением молекулярной и клеточной биологии, которая основана на концепции о редукционизме -сводимости сложных биологических процессов к процессам, протекающим на уровне отдельных молекул биополимеров, прежде всего белков и нуклеиновых кислот и их различных клеточных комплексов и структур. Редукционизму противопоставлялась концепция интегратизма о необходимости комплексного изучения структуры и функционирования в клетке всей совокупности макромолекул. В последние годы появились такие новые интегративные подходы, как геномика, протеомика и селломика, развиваемые большими коллективами или часто целыми "научными фабриками". Эти направления позволяют устанавливать структуру и изучать процессы на уровне генов всего генома, белков всей клетки или клеток всей ткани. Развиваемые в последние годы биологические микрочипы позволяют реализовать в доступной форме весьма сложные интегративные подходы геномики, протеомики и селломики. Например, олигонуклеотидные и ДНКовые микрочипы, выпускаемые рядом фирм, позволяют в достаточно простых, доступных отдельным исследователям экспериментах изучать экспрессию большинства генов различных бактерий и многих генов человека. На очереди создание белковых чипов, содержащих большое количество иммобилизованных клеточных белков или специфичных к ним антител.

Макроматрицы ДНК и белков иммобилизованных на фильтре, или фиксированных в лунках планшет, были известны достаточно давно. Однако первая работа по ДНКовым микрочипам и одна из первых по белковым микрочипам в современном формате были опубликованы нашей лабораторией в Институте молекулярной биологии им. В.А. Энгельгардта РАН (ИМБ). Этот принципиальный скачок был предложен для использования в новом методе секвенирования ДНК гибридизацией. В 1968 г. Советский Союз, а вслед за ним США и другие страны приняли государственные программы установления полной последовательности всех 3 миллиардов нуклеотидов генома человека. Широко дискутировался вопрос, должна ли эта задача решаться масштабированием существующих подходов или должны быть разработаны новые, более эффективные методы. В связи с временными ограничениями, ученые пошли по пути существенного улучшения и гигантского масштабирования уже существующего метода, основанного на считывании одного нуклеотида за другим с конца коротких фрагментов ДНК. Этот метод в химическом и ферментативном варианте был предложен В. Гилбертом и Ф. Сенгером, которые и разделили Нобелевскую премию за 1967 г. В развитии химического метода большую роль сыграли академики Е.Д. Свердлов и А.Д. Мирзабеков. В своей Нобелевской речи В. Гилберт отметил, что "идея метода пришла только после второго визита А. Мирзабекова" в его лабораторию.

Рис. 2. Секвенирование фрагмента ДНК гибридизацией с полным олигонуклеотидным микрочипом, содержащим все 4096 6-меров

6-меры микрочипа, образующие при гибридизации с флуоресцентно меченым фрагментом ДНК совершенные дуплексы, интенсивно светятся. Такие соседствующие 6-меры перекрываются на пять нуклеотидов; это перекрывание позволяет однозначно восстановить нуклеотидную последовательность ДНК

В поисках новых подходов к секвенированию ДНК нами, а также независимо двумя другими группами в Англии и Сербии было предложено в 1988 г секвенирование гибридизацией. В этом методе секвенирование проводится не отдельными нуклеотидами, а словами в составе полного "словаря" нуклеотидных слов определенной величины. Такой словарь может содержать все возможные 4096 гексануклеотидов, т.е. шестибуквенных генетических слов. Для нас стала очевидной необходимость создания микрочипов, и в следующем году появилась первая статья, описывающая приготовление и свойства предложенных нами гелевых микрочипов. Позднее нами были созданы полные микрочипные гексануклеотид-ные словари. С этого момента и по настоящее время наша группа сконцентрировалась на развитии биочипов: создании ДНКовых, белковых и клеточных биочипов, на развитии технологий их производства и на их применении в фундаментальных исследованиях и их различных приложениях в медицине, биотехнологии и др. областях. Эти исследования рассмотрены в обзорной работе.

Рис. 2 показывает такой полный 6-мерный олигонуклеотидный микрочип и секвенирование на нем 50-нуклеотидного фрагмента ДНК. Для приведенного случая идентификация всех 6-меров, комплементарных к ДНК, и перекрывание соседних 6-меров на пять нуклеотидов позволяет восстановить полную нуклеотидную последовательность ДНК. В действительности метод в данном варианте работает только в части случаев, его широкому применению должно предшествовать решение ряда экспериментальных проблем, которые будут рассмотрены далее. .

ГЕЛЕВЫЕ БИОЧИПЫ, ИХ СВОЙСТВА, ПРОИЗВОДСТВО И АНАЛИЗ

Своеобразием и отличием развиваемых нами биочипов является то, что они представляют собой полусферические капли гидрогеля, фиксированные химической связью на поверхности стекла, пластика или силикона. Различные биомолекулы равномерно распределяются и иммобилизуются химическими связями в объеме геля. Иммобилизация не на двумерной поверхности, а в трехмерном объеме геля дает ряд существенных преимуществ. В десятки и сотни раз увеличивается емкость биочипа на единицу поверхности и соответственно увеличивается чувствительность измерений. Иммобилизованные макромолекулы как бы фиксированы в гомогенной водной среде, составляющей около 95% объема геля. Это исключает их взаимодействие как друг с другом, так и с твердой поверхностью, где гетерофазные процессы с участием фиксированных на ней биомолекул протекают более сложным образом. Это особенно существенно для белковых чипов, поскольку молекулы белков имеют тенденцию денатурации в интерфазе, образованной между твердой поверхностью и водной средой. Наконец, гелевые элементы на воздухе или под маслом превращаются как бы в изолированные микро- и нанолитровые пробирки, в каждой из которых можно проводить индивидуально различные специфические взаимодействия, химические и ферментативные реакции. Благодаря этому гелевые биочипы объединяют в себе свойства и микроматриц и микролабораторий.

Технология производства гелевых биочипов прошла три этапа развития.

Громоздкая и малоэффективная технология первого поколения состояла из пяти стадий и была разработана и запатентована в ИМБ в 1989-1993 гг. Она была перенесена в совместную биочипную лабораторию, организованную ИМБ и Аргонской национальной лабораторией (АНЛ, США) в 1994-2000 гг. и стала технологией первого поколения, была лицензирована американскими фирмами "Моторолой" и "Пакардом". Однако из-за ее несовершенства фирмы стали производить биочипы не как микроматрицы гелевых элементов, а как сплошную поверхность полиакриламидного геля.

В ИМБ за последние три года разработаны технологии производства биочипов второго и третьего поколения. Технология второго поколения состоит из трех этапов: модификация иммобилизуемых биополимеров мономерными группами геля, нанесение раствора этих веществ в смеси с мономерными звеньями геля с помощью игольчатого или пьезоэлектрического робота и, наконец, фотоиндуцированная сополимеризация свободных и связанных с биополимерами молекул мономера. Это приводит к равномерной иммобилизации веществ во всем объеме геля. В еще более простой двухэтапной технологии третьего поколения первая и третья стадии получения биочипов объединены с помощью своеобразной химической реакции.

Достаточно простая, универсальная и дешевая технология третьего поколения позволяет производить даже в лабораторных условиях сотни и в скором будущем тысячи олигонуклеотидных, ДНКовых или белковых микрочипов в день. Разработан также метод получения сополимеризацией микрочипов с размерами гелевых микроячеек до 5х5х5 мкм. Биочипы содержат от десятков до нескольких тысяч гелевых элементов с иммобилизованными в них соединениями. Элементы микрочипа представляют собой гидрогелевые полусферы (диаметром около 100 мкм), находящиеся на расстоянии 250 мкм друг от друга на гидрофобизованной поверхности стекла. Одноцепочечные ДНК длиной до 200-300 нуклеотидов и белки с массой до 150 кД легко и достаточно быстро диффундируют в гидрогелевые элементы микрочипов специально разработанного состава. Сам биочип помещен в реакционную камеру с капиллярным входом и выходом, в которой можно проводить различные процессы в строго контролируемых условиях.

АНАЛИЗ БИОЧИПОВ

Регистрация происходящих на биочипах процессов осуществляется с помощью флюоресцент-ных, а также в некоторых случаях хемилюминис-центных и масс-спектрометрических методов. Для количественного флюоресцентного анализа нами были разработаны совместно с РНЦ "Государственный оптический институт им. С.И. Вавилова" флюоресцентные широкопольные высоко-апертурные микроскопы, снабженные ПЗС-камерой и компьютером. Прибор позволяет проводить в реакционной камере количественный анализ в реальном времени сразу всех элементов биочипа в автоматическом режиме, одновременно при четырех длинах волн, при заданной или меняющейся температуре. Более 20 таких достаточно дорогих исследовательских анализаторов биочипов поставлены в лаборатории России и США. Для клиник нами разработан более простой и дешевый лазерный анализатор. Он позволяет проводить количественную регистрацию флюоресценции одновременно со всего биочипа с помощью более простой ПЗС-камеры и обрабатывать результаты на прилагаемом портативном компьютере с помощью специально созданных программ.

Хемилюминисцентные методы, хотя и уступают по чувствительности люминесцентным, позволяют значительно упростить и удешевить регистрирующую аппаратуру. Кроме того, разработан специальный метод прямого анализа соединений непосредственно в гелевых элементах с помощью MALDI-TOF масс-спектрометрии. Этот важный в протеомике метод позволяет проводить дополнительную идентификацию взаимодействующих с биочипами соединений по их массе.

ОЛИГОНУКЛЕОТИДНЫЕ И ДНКовые МИКРОЧИПЫ

Процесс комплементарных взаимодействий двух нитей ДНК (гибридизация) осложняется существенно меньшей стабильностью совершенного дуплекса А-Т по сравнению с G-C дуплексом и неодинаковым дестабилизирующим эффектом различных неправильных пар оснований. Поэтому в некоторых типах экспериментов была введено измерение кривых плавления, то есть количественной регистрации флюоресценции параллельно во всех ячейках микрочипа в градиенте повышающейся температуры. Это позволяет вычислить термодинамические параметры образования дуплексов: свободную энергию, энтропию и энтальпию. Проведение таких исследований на производимых нами микрочипах, содержащих всевозможные 6-мерные нуклеотиды (всего их 4096), открывает уникальные возможности. Сейчас измеряются термодинамические параметры для 4096 совершенных гексамерных дуплексов и 73728 дуплексов, содержащих всевозможные неправильные пары оснований во всех положениях гексануклеотидов. Составление полного каталога термодинамических параметров гексамерных дуплексов позволит создать более точную теорию гибридизации и оценить влияние на гибридизацию первичной и вторичной структур в ДНК. Эта теория необходима для практических работ с ДНК и, в свою очередь, будет способствовать завершению развития метода секвенирования ДНК гибридизацией.

Для широкого применения секвенирования ДНК гибридизацией с полными, например 6-мерными или более сложными, микрочипами требуется решение ряда проблем. Важной задачей является надежная дискриминация совершенных и неправильных дуплексов, образующихся на био-чипе, что затруднено различиями в стабильности А-Т и G-C пар оснований. Измерение кривых плавлений дуплексов и применение алгоритмов, вычисляющих поверхность под кривой плавления для каждого дуплекса, увеличивают надежность анализа. Другим серьезным препятствием является частое присутствие в ДНК повторяющихся гексануклеотидных и более длинных последовательностей. Эту частоту можно оценить количественно, измеряя и сравнивания интенсивности флуоресценции различных элементов биочипа.

Гибридизация с полным 6-мерным биочипом становится привлекательным методом для выявления известных и открытия новых мутаций и нуклеотидного полиморфизма в участках ДНК с известной структурой. Последовательная гибридизация с одним и тем же полным биочипом двух фрагментов одного и того же участка генома с известной и анализируемой структурой позволяет выявить различия во флюоресцентной картине и установить структуру и положение измененного основания в ДНК. Таким методом можно выявлять присутствие патогенных мутантов в стандартном штамме полиовируса, используемого как полиомиелитная вакцина.

Полные 6-мерные биочипы были также использованы для выявления специфичности ДНК-связывающихся соединений к определенным нуклеотидным последовательностям. Таким способом была изучена специфичность гистоноподоб-ного бактериального белка HU, низкомолекулярного красителя Хекст 33258, а также белка р50, являющегося регулятором транскрипции и трансляции и открытого группой академика Л.П. Овчинникова (рис. 3).

Рис. 3. Идентификация узнавания белком Р50 специфичных участков в ДНК

Флуоресцентно окрашенный белок Р50 связывается с полным 6-мерным олигонуклеотидным микрочипом. Проводиться измерение флуоресценции белка на каждом элементе биочипа в градиенте повышающейся температуры и ТD -температур плавления комплексов белка с олигонуклеотидами. Олигонуклеотиды микрочипа, проявляющие наибольшую температурную стабильность в комплексе с ДНК, локализованные в светлом кресте и содержащие тетрануклеотидные последовательности TGGT и GGTC, демонстрируют также и наибольшую специфичность связывания

Гибридизация с олигонуклеотидными микрочипами служит для качественной и количественной идентификации нуклеиновых кислот и для анализа структурных вариаций в них. Рибосомы присутствуют во всех живых клетках, а рибосомальные РНК являются одними из наиболее эволюционно консервативных макромолекул. Вместе с тем в рибосомальных РНК существуют несколько вариабельных участков. Различия в нуклеотидной последовательности этих участков применяются для идентификации микроорганизмов и для прослеживания их эволюции. Нами разработан ряд микрочипов для экспрессного метода идентификации нитрифицирующих бактерий, бактерий групп Bacillus и архебактерий. Присутствие рибосомальных РНК в клетке в количестве тысяч копий позволяет проводить анализ в ряде случаев без их амплификации. Разработана также простая система выделения рибосомальных РНК и их флюоресцентного мечения на одной и той же колонке, что позволило создать биочипный экспресс-метод анализа таких типов биологического оружия, как сибирская язва. Мы изучаем также возможность создания биогенов для идентификации всех или большей части известных микроорганизмов.

Для качественного и количественного анализа экспрессии генов и содержания различных информационных РНК существует несколько зарубежных коммерческих биочипных систем. Гелевые микрочипы были использованы нами также для анализа мРНК, например, для идентификации хромосомных перестроек, вызывающих восемь различных типов лейкемий. Соответствующая микрочипная диагностика лейкемий внедрена в Детском республиканском гематологическом центре.

Олигонуклеотидные микрочипы являются эффективным подходом для одновременной идентификации от десятков до тысяч генов и их структурного анализа, для выявления специфичных нуклеотидных последовательностей и нуклеотидных вариаций в их структуре. Однако когда гены присутствуют в геноме в количестве одной или нескольких копий, требуется их предварительная амплификация. Наиболее эффективным методом амплификации ДНК является полимеразная цепная реакция, в процессе которой происходит экспоненциальное увеличение количества молекул ДНК от нескольких до миллионов и более копий, достаточных для проведения их гибридизационного анализа.

В более традиционном и простом подходе амплификация ДНК и гибридизация амплифицированной ДНК с биочипом проводятся в две отдельные стадии. Такие двухстадийные методы были разработаны нами в совместных исследованиях с рядом российских и зарубежных лабораторий для идентификации мутаций в b-глобиновом гене, вызывающем наследственное заболевание b-талассемию, определения аллелей в гене гистосовместимости HLA DQAI, нуклеотидного полиморфизма в гене m-опиоидного рецептора, обуславливающего, вероятно, склонность к наркомании, определения ряда бактериальных генов, ответственных за резистентность к антибиотикам и синтез некоторых токсинов.

Гибридизация амплифицированной ДНК с reлевыми биочипами нашла применение в практике для идентификации мутаций, ответственных за резистентность туберкулезных бацилл к одному из основных противотуберкулезных препаратов - рифампицину. Этот метод прост, недорог и ускоряет анализ от нескольких недель до 1 дня. Метод был разработан совместно с Московским научно-практическим центром борьбы с туберкулезом и ГНЦ вирусологии и биотехнологии "Вектор" и опробован более чем на 150 больных в ряде клиник. Налажен коммерческий выпуск таких наборов для анализа, содержащих олигонуклеотидные микрочипы, компоненты для амплификации ДНК, включая синтетические флюоресцентно меченные олигонуклеотиды, клинический анализатор биочипов с портативным компьютером и программой для автоматического анализа биочипов. Этот метод нетрудно адаптировать для обнаружения многих других микроорганизмов, генов лекарственной резистентности и синтеза токсинов, а также для идентификации различных мутаций в вирусах, микроорганизмах, животных (включая человека) и растениях. Введение соответствующих изменений, необходимых для выполнения этих задач, можно провести за короткое время - от нескольких недель до нескольких месяцев.

В двух других разработанных методах гибридизацию на микрочипе объединяют с амплификацией на микрочипе в одну стадию, что ускоряет и упрощает анализ. Во втором методе амплификация происходит параллельно в растворе в реакционной камере и в гелевых элементах микрочипа, содержащих иммобилизованные и участвующие в амплификации олигонуклеотиды (праймеры). Такой подход был был использован для сокращения идентификации туберкулезной бациллы до 2 часов и определения ее резистентности сразу к двум лекарственным препаратам - рифампицину и изониазиду. В методе используется также аллель-специфичная амплификация, протекающая на иммобилизованных в геле олигонуклеотидах. Помимо этого, мутации и полиморфные нуклеотиды могут выявляться с помощью ферментативных реакций удлинения иммобилизованных на чипе олигонуклеотидов на один нуклеотид и их соединения с другими олигонуклеотидами - лигирования.

В третьем методе амплификация происходит исключительно в гелевых элементах микрочипа, используемых в этом случае как пробирки объемом от нескольких нанолитров до долей микролитра. Каждая из этих гелевых нанопробирок содержит необходимые для амплификации два и более специфических олигонуклеотида. Метод пока достаточно сложен в исполнении и требует дальнейшей доработки. Однако его реализация позволит анализировать на одном биочипе и в одном эксперименте тысячи полиморфных нуклео-тидов в геноме, что позволит использовать его для массового скрининга популяций. Известно, что полиморфизм примерно 3 млн. нуклеотидов из 3 млрд., составляющих человеческий геном, отличает одного человека от другого. Полиморфизм отвечает за наследственные дефекты и патологии, предрасположенность ко многим заболеваниям, в том числе злокачественным, и определяет многие Другие генетически заданные особенности человека. Поэтому создание простого и эффективного микрочипного анализа полиморфизма сразу по многим участкам для каждого индивидума приблизит человека к цели "Познай самого себя", начертанной приблизительно 2500 лет назад на стене Дельфийского храма в Греции.

Биочипы, разработанные для идентификации некоторых патогенных бактерий, вирусов и биологического оружия, а также для обнаружения мутаций, вызывающих раковые заболевания а - вируса натуральной оспы, осповакцины, оспы коров;

б - сибирской язвы, чумы, бруцеллеза на одном чипе;

в - детекция патогенов в донорской крови;

г - мутации в ген brcal, ответственных за возникновение рака молочной железы;

д - транслокаций при лейкозах

Некоторые из этих биочипов могут быть использованы для быстрого и чувствительного выявления биологического оружия, оспы, сибирской язвы и других подобного рода болезней.

Технология производства микрочипов позволяет с небольшими изменениями получать как олигонуклеотидные и ДНКовые, так и белковые микрочипы, содержащие ферменты, антитела, антигены и т.д. Стабилизирующий эффект иммобилизации в геле позволяет хранить большинство белковых микрочипов в течение месяцев без потери функциональной активности.

В сотрудничестве с лабораториями членов-корреспондентов РАН Е.В. Гришина и В.А. Несмеянова (ИБХ, РАН), а также А.Ю. Барышникова (Онкоцентр РАМН) нами было продемонстрировано эффективное применение белковых гелевых чипов для количественной диагностики ряда токсинов, а также раковых антигенов и антител в крови пациентов. Эти начальные эксперименты свидетельствуют, что биочипы конкурентоспособны в клинической иммунодиагностике со стандартными методами.

Перспективно использование белковых чипов в бурно развивающейся протеомике. В этой связи особый интерес представляют следующие две задачи:

Качественное и количественное определение параллельно большого количества белков в клетках различных тканей или в различных функциональных состояниях, для чего можно использовать специфические антитела, как продемонстрировано на рис. 7, для количественной идентификации антигена рака простаты; в ряде стран уже развернуты программы получения большинства белков человеческих и бактериальных клеток и производства специфических антител к ним; мы надеемся использовать отечественную биочипную технологию для сотрудничества с этими программами с целью создания системы количественного определения клеточных белков;

Изучение взаимодействий клеточных белков друг с другом и другими клеточными лигандами, такими как ДНК и низкомолекулярные соединения; определение специфичности ДНК связывающихся белков с помощью полных олигонуклеотидных микрочипов описано ранее; значительно более сложной задачей является идентификация белков, специфически взаимодействующих друг с другом и лигандами, если хотя бы один компонент неизвестен; для этих случаев разработан метод идентификации связывающихся с микрочипом молекул с помощью масс-спектрометрии; на белковых микрочипах, содержащих иммобилизованные ферменты, можно проводить также кинетический анализ их субстратов и ингибиторов.

КЛЕТОЧНЫЕ МИКРОЧИПЫ

Многие прокариотические и эукариотические клетки, как известно, сохраняют свою жизнедеятельность и даже могут делиться, будучи фиксированы в гидрогеле. Это открывает ряд интересных возможностей, в том числе для создания клеточных биочипов как матричных биосенсоров для параллельного определения, например, ряда антибиотиков и ксенобиотиков. Бактериальный микрочип, содержащий иммобилизованные и резистентные к различным антибиотикам штаммы Е. сoli. Фотография прокрашенного гелевого элемента свидетельствует о распределении растущих клеток по всему объему геля. Кинетика деления и роста бактерий в геле микрочипа регистрируется окрашиванием клеток флюоресцентной краской. Рост бактерий зависит от резистентности клеток к антибиотику и его присутствия в среде. Рисунок показывает бактериальный микрочип, содержащий иммобилизованные в геле 4 штамма Е. coli, чувствительные и резистентные к антибиотикам тетрациклину, хлорамфениколу и смеси хлорамфеникола и ампициллина. Подавление роста бактерий в соответствующих элементах биочипа позволяет идентифицировать присутствие этих антибиотиков в среде. После построения калибровочной кривой содержание антибиотиков в среде может быть измерено количественно. Представляет интерес также создание микрочипов, содержащих животные и растительные клетки для определения широкого диапазона различных веществ в окружающей среде.

Корреспондент телеканала «МИР 24» Ольга Климкина рассказывает о новейшей российской медицинской разработке. Речь идет о специальном биочипе, который позволит диагностировать рак за рекордно короткое время. Систему должен одобрить Росздрав, после этого тогда начнутся клинические испытания.

Российские ученые разработали специальный биочип, который позволит диагностировать рак за рекордно короткое время. Систему должен ободрить Росздрав, после этого тогда начнутся клинические испытания. Новый метод оценила корреспондент телеканала «МИР 24» Ольга Климкина.
Два года исследований, проб и ошибок. Результат — в лаборатории онкоцентра имени Блохина. Вот так выглядит биочип, и вот так выглядит транспортно-питательная среда. К ним подводят специальный сканер. Все вместе единый комплекс, который может помочь победить рак. Для Марины Савостиковой, одного из авторов разработки, это борьба не только профессиональная, но и личная. Сама дважды пережила страшное заболевание. Она знает: исход зависит от вовремя поставленного диагноза.

«Можем сказать: боже мой, у вас аденомокарценома. И у вас аденомокарценома легкого. Или, допустим, коллега, вам надо исключать колоректальный рак», — пояснила к.м.н., заведующая лабораторией ФГБУ РОНЦ им. Н.Н. Блохина Марина Савостикова.

Над тем, чтобы с такой легкостью определять диагноз, трудились ученые в Москве в онкоцентре имени Блохина и Институте микробиологии и эпидемиологии и в Нижнем Новгороде в Медицинской академии. В итоге создали биочип — пластину с 15 ячейками. В каждой находятся разные антитела. Они реагирует на определенный вид рака в клетках. Плюс специальные красители, которые показывают реакцию.

«В данный момент у нас плевральная жидкость от женщины 1929 года рождения и от другой женщины с карценомой яичников. Мы будем проводить их исследование на биочипах», — указывает врач.
Для постановки диагноза требуется не кровь, а выпотная жидкость, которая скапливается в больном организме. Из нее берут образцы, перемешивают, помещают в центрифугу и отбирают осадок.

«Вартексируем, перемешиваем, чтобы клеточная взвесь, которую мы наносим на биочип, имела равномерное распределение во всех ячейках», — отметила научный сотрудник ФГБУ РОНЦ им. Н.Н. Блохина Елена Фурминская.
После нагреть его до 37 градусов и на суд врача под флюоресцентный микроскоп. На экране красные и зеленые пятна. Для специалиста рак выглядит именно так.

Не так страшен рак, как его малюют

«Это комплекс рака серозного яичников. Вот единичные клетки, нам их надо было подтвердить, и мы их подтвердили», — указала Марина Савостикова.
Пока это не официальный диагноз, а только результат исследований. Разработчики ждут одобрения Росздравнадзора и планируют начать клинические испытания уже в апреле. После этого биочипы могут появиться в любой российской поликлинике.

Ежегодно в России от рака умирает более 300 тысяч человек. Получается, что каждый день в стране погибает почти тысяча больных. Если у пациента выявили первую стадию, с вероятностью в 93% он выживет, пишет Российский онкологический портал.

СПИД, туберкулез, лейкоз, гепатиты В и С, оспа, сибирская язва, чума, онкологические заболевания, холера, дифтерия, столбняк, стафилококковые инфекции – в борьбе с этими заболеваниями способен помочь универсальный инструмент диагностики – , созданный российскими учеными.

Каков диагноз, таково лечение. Эта истина очевидна даже дилетантам. Если бы медики имели возможность проводить индивидуальный анализ множества генов, внутриклеточных белков клетки и клеточных секреций каждого пациента, результаты оказались бы чрезвычайно информативными и эффективными. Однако такой многопараметрический анализ – задача сложная и очень дорогая. Поэтому для исследовательских групп и клиник так необходима доступная молекулярная диагностика, основанная на принципиально новом подходе, обеспечивающем быстрое и достоверное выяснение причин широкого круга заболеваний.

Этим запросам соответствует технология биологических микрочипов (биочипов), разработанная в Институте молекулярной биологии им. В.А.Энгельгардта РАН (ИМБ) под руководством академика Андрея Мирзабекова (1937-2003).

Биочипы, подобно электронным микрочипам, обрабатывающим массивы цифровой информации, предназначены для молекулярного считывания и обработки больших объемов биологической информации при проведении многопараметрического анализа микрообразца биологического материала.

Основой биочипов является матрица из множества полусферических гидрогелевых ячеек (диаметром около 100 микрон), каждая из которых содержит молекулярные зонды, специфичные к одной из множества биологических молекул или их фрагментов (например, к последовательностям ДНК или РНК, белкам). На одном квадратном сантиметре может быть размещено до тысячи ячеек биочипа, предназначенных для разных целей: для выявления мутаций, связанных с предрасположенностью к различным наследственным и онкологическим заболеваниям; для обнаружения бактерий и вирусов; идентификации мутаций микроорганизмов, ведущих к появлению лекарственно-устойчивых форм инфекционных заболеваний.

Для проведения анализа образец крови пациента или другой исследуемой жидкости проходит предварительную обработку, в ходе которой находящиеся в нем молекулы метятся флуоресцирующим красителем (светящимся при облучении светом определенной длины волны). Затем образец наносится на биочип, помещенный в специальную микрокамеру. Каждый тип молекул образца взаимодействует со специфичными к ним зондами, локализованными в индивидуальных ячейках микрочипа, что может быть зарегистрировано по интенсивности свечения соответствующей ячейки биочипа. По картине свечения множества ячеек биочипа специальный прибор-анализатор определяет количественно наличие характеристических последовательностей ДНК, РНК или набора белков в исследуемом образце. В ИМБ были разработаны анализаторы для научных исследований, способные анализировать биочипы содержащие тысячи ячеек, и портативные клинические анализаторы для рутинных медицинских применений, позволяющие анализировать биочипы с одной-двумя сотнями ячеек.

На сегодняшний день в ИМБ созданы диагностические варианты биочипов, позволяющие выявлять вирусы многих опасных болезней. При диагностике туберкулеза с одновременным выявлением его лекарственно-устойчивых форм, время анализа сокращается с 2-х месяцев до 1 дня. Это позволяет оперативно назначать резервные терапевтические средства тем больным, у которых обнаруживаются формы туберкулеза, устойчивые к обычно применяемым лекарствам (более 10% случаев). Как показали результаты анализа более 3000 пациентов, надежность метода превышает 90%. Впервые в мире метод быстрой идентификации лекарственно-устойчивых форм туберкулеза, основанный на оригинальной отечественной технологии биочипов, был сертифицирован для медицинского применения (МЗиСР РФ). Эта методика уже используется в 8-ми региональных медицинских центрах России, а также в нескольких научно-исследовательских Институтах, занимающихся проблемами идентификации возбудителей инфекционных заболеваний.

Созданы варианты биочипов, обнаруживающих и типирующих продукты хромосомных перестроек, приводящих к лейкозу, идентифицирущих вирусы СПИДа, гепатитов В и С. Разрабатываются биочипы для обнаружения стафилококкового, холерного, дифтерийного, столбнячного и сибиреязвенного токсинов, а также возбудителей сибирской язвы и чумы, которые могут быть использованы при биотерроризме. Созданы биочипы для определения видовой принадлежности вирусов оспы и их дискриминации от возбудителей других заболеваний, сходных по первоначальным клиническим проявлениям (герпес, ветряная оспа). Разработаны биочипы для выявления предрасположенности пациентов к некоторым онкологическим заболеваниям, определения индивидуальной чувствительности к лекарственным препаратам, используемым в противоопухолевой терапии.

Новый универсальный инструмент диагностики уже востребован в медицинских учреждениях страны. Основной потребитель на сегодняшний день - Министерство здравоохранения России. Оно выступает заказчиком биочипов, предназначенных для быстрой диагностики различных форм туберкулеза. Неудивительно, что врачи в первую очередь обратили внимание на технологию, позволяющую более эффективно бороться с этим опасным заболеванием. В настоящее время наличие туберкулеза обнаруживается с помощью рентгеновского обследования, после чего больного начинают лечить лекарствами «первого ряда» - стандартным набором, применяемым, как правило, для всех больных туберкулезом. Параллельно проводят бактериологический анализ устойчивости возбудителя туберкулеза у данного больного к применяемым лекарствам. Этот анализ занимает около 3-х месяцев, после чего выясняется, что примерно у 10-ти процентов больных – лекарственно устойчивая форма туберкулеза, с необходимостью перехода на лечение препаратами «резервного ряда». Последствия – ослабленное ошибочной терапией здоровье больного, бессмысленный расход средств на лекарства и на содержание больного в больнице, распространение лекарственно устойчивых форм туберкулеза вследствие контакта пациентов с разными формами этого заболевания. Очевидно, что самая главная проблема в излечении туберкулеза сегодня – как можно скорее определить, какая именно форма болезни развивается у больного. Технология биологических микрочипов позволяет сделать этот анализ за один день.

Продвижением новой технологии на рынок медицинских услуг занимается принадлежащая Институту молекулярной биологии компания "БИОЧИП-ИМБ", которая заключила контракт с Министерством здравоохранения РФ на поставку биочипов в сеть туберкулезных клиник страны. Согласно пилотному проекту, компания "БИОЧИП-ИМБ" уже внедрила технологию в восьми медицинских центрах страны, расположенных в Москве, Екатеринбурге, Новосибирске, Казани, Петербурге и Саратове.

Как видим, поле использования биологических микрочипов огромно, и создатели уникального диагностического инструмента постоянно расширяют сферы его применения. Коллектив Лаборатории Института создает биочипы для типирования вируса гриппа, идентификации и опознания личности, а также для исследования специфичности ДНК-белковых взаимодействий.

(По материалам беседы с зав. лаб. биологических микрочипов проф. А.Заседателевым и д.б.н. В.Е.Барским).

Елена Укусова, Центр "Открытая экономика"



gastroguru © 2017