Лекарственные средства, действующие преимущественно на периферическую нервную систему. Медицинские препараты для восстановления нервных тканей Восстановление нервно мышечной проводимости

Восстановление функции нерва после его повреждения проходит несколько этапов.

Начало восстановления функции нерва характеризуется появлением на месте ранения нерва недифференцированных, нелокализованных, склонных к широкому распространению и длительному последействию ощущений с высоким порогом раздражения, воспринимаемых как с особо неприятным оттенком. Такие ощущения (гиперпатия) возникают при раздражениях различного характера.

Иногда самопроизвольно появляются парестезии на месте ранения и в дистальных отделах конечностей в виде ползания мурашек, пульсации, толчков, приливов, жара. Исследование состояния регенерирующих нервных волокон в период возникновения этих первых признаков восстановления функций показывает, что проводниками такой чувствительности являются безмякотные или мякотные нервные волокна, находящиеся в начальной стадии миелинизации, а окончания нервов, не полностью восстановившиеся. Очень возможно, что в этот период в рубце и в периферическом конце происходит распространение центробежных и центростремительных импульсов в поперечном направлении, т. е. имеется «феномен обобщения импульсов», описанный П. К. Анохиным и доказанный электрофизиологическими исследованиями его учеников.

В дальнейшем восстановлении функции нерва, по мере роста и созревания регенерирующих нервных волокон на периферии, происходит перемещение этих ощущений в дистальном направлении с постепенным изменением их характера. Появляются более дифференцированные ощущения, утрачивается диффузность их распространения и высокий порог раздражения; ощущения приобретают локальный характер, исчезает неприятный оттенок при местном раздражении. Все это соответствует появлению зрелых мякотных волокон в периферическом конце и образованию полноценных конечных структур.

Началу сокращения мышц предшествует прекращение их атрофии, появление тонуса и фибриллярных подергиваний. Первые движения бывают короткими и быстро затухающими, долго не координированными. Восстановление глубоких рефлексов часто надолго задерживается. Появление полноценных движений возникает после упражнений, необходимых для восстановления условных рефлекторных связей между различными отделами двигательного анализатора. Нормальная электропроводимость регенерировавшего нерва и мышц может восстановиться после появления движений. Полное восстановление чувствительной функции нерва осуществляется реже. По-видимому, это зависит от сложности и многообразия периферических рецепторных структур и связей в области чувствительного анализатора.

Статью подготовил и отредактировал: врач-хирург

Видео:

Полезно:

Статьи по теме:

  1. Симптомы повреждения седалищного нерва наиболее выражены при его полном разрыве....
  2. Диафрагмальный нерв является смешанным нервным стволом шейного сплетения, состоящим из волокон спинномозговых корешков, симпатических волокон...
  3. Поражение малоберцового нерва чаще бывает на уровне колена и шейки малоберцовой кости....

Важнейшими функциями нервной клетки являются генерирование потенциала действия, проведение возбуждения по нервным волокнам и передача его на другую клетку (нервную, мышечную, железистую). Функция нейрона обеспечивается протекающими в нем обменными процессами. Одним из назначений метаболизма в нейроне является создание асимметричного распределения ионов на поверхности и внутри клетки, что определяет потенциал покоя и потенциал действия. Обменные процессы поставляют энергию натриевому насосу, активно преодолевающему электрохимический градиент Na+ на мембране.

Из этого следует, что все вещества и процессы, которые нарушают метаболизм и ведут к уменьшению выработки энергии в нервной клетке (гипоксемия, отравление цианидами, динитрофенолом, азидами и др.), резко угнетают возбудимость нейронов.

Функция нейрона нарушается и при изменении содержания одно- и двухвалентных ионов в окружающей среде. В частности, нервная клетка полностью утрачивает способность к возбуждению, если поместить ее в среду, лишенную Na+. Большое влияние на величину мембранного потенциала нейрона оказывает также К+ и Са2+. Мембранный потенциал, определяемый степенью проницаемости для Na+, К+ и Cl- и их концентрацией, может поддерживаться только в том случае, если мембрана стабилизирована кальцием. Как правило, повышение Са2+ в среде, где находятся нервные клетки, ведет к их гиперполяризации, а его частичное или полное удаление - к деполяризации.

Нарушение функции нервных волокон, т.е. способности проводить возбуждение, может наблюдаться при развитии дистрофических изменений в миелиновой оболочке (например, при дефиците тиамина или цианокобаламина), при сдавлении нерва, его охлаждении, при развитии воспаления, гипоксии, действии некоторых ядов и токсинов микроорганизмов.

Как известно, возбудимость нервной ткани характеризуется кривой сила - длительность, отражающей зависимость пороговой силы раздражающего тока от его длительности. В случае повреждения нервной клетки или дегенерации нерва кривая сила - длительность значительно изменяется, в частности увеличивается хронаксия (рис. 25.1).

Под влиянием различных патогенных факторов в нерве может развиться особое состояние, которое Н. Е. Введенский назвал парабиозом. В зависимости от степени повреждения нервных волокон различают несколько фаз парабиоза. При изучении явлений парабиоза в двигательном нерве на нервно-мышечном препарате видно, что при небольшой степени повреждения нерва наступает такой момент, когда на сильное или слабое раздражение мышца отвечает одинаковыми по силе тетаническими сокращениями. Это уравнительная фаза. По мере углубления альтерации нерва возникает парадоксальная фаза, т.е. в ответ на сильное раздражение нерва мышца отвечает слабыми сокращениями, в то время как умеренные по силе раздражения вызывают более энергичный ответ со стороны мышцы. Наконец, в последней фазе парабиоза - фазе торможения, никакие раздражения нерва не способны вызвать мышечное сокращение.

Если нерв поврежден настолько, что утрачивается его связь с телом нейрона, он подвергается дегенерации. Основным механизмом, ведущим к дегенерации нервного волокна, является прекращение аксоплазматического тока и транспорта веществ аксоплазмой. Процесс дегенерации, подробно описанный Уоллером, заключается в том, что уже через сутки после травмы нерва миелин начинает отходить от узлов нервного волокна (перехватов Ранвье). Затем он собирается в крупные капли, которые постепенно рассасываются. Нейрофибриллы подвергаются фрагментации. От нерва остаются узкие трубочки, образованные нейролеммоцитами. Через несколько дней после начала дегенерации нерв утрачивает возбудимость. В разных группах волокон потеря возбудимости наступает в различные сроки, что, по-видимому, зависит от запаса веществ в аксоне. В нервных окончаниях дегенерирующего нерва изменения наступают тем быстрее, чем ближе к окончанию перерезан нерв. Вскоре после перерезки нейро-леммоциты начинают проявлять фагоцитарную активность по отношению к нервным окончаниям: их отростки проникают в синаптическую щель, постепенно отделяя терминали от постсинаптической мембраны и фагоцитируя их.

После травмы нерва наступают изменения и в проксимальном отделе нейрона (первичное раздражение), степень и выраженность которых зависят от вида и интенсивности повреждения, его отдаленности от тела нейроцита, типа и возраста нейрона. При ранении периферического нерва изменения в проксимальном отделе нейрона, как правило, минимальны, и в дальнейшем нерв регенерирует. Наоборот, в центральной нервной системе нервное волокно дегенерирует ретроградно на значительном протяжении и нередко нейрон погибает.

    Роль нарушений медиаторного обмена в возникновении заболеваний ЦНС.

Синапсы - это специализированные контакты, через которые осуществляется передача возбуждающих или тормозящих влияний с нейрона на нейрон или другую клетку (например, мышечную). У млекопитающих существуют главным образом синапсы с химическим типом передачи, при котором активность от одной клетки к другой передается с помощью медиаторов. Все синапсы делятся на возбуждающие и тормозящие. Основные структурные компоненты синапса и процессы, происходящие в нем, показаны на рис. 25.2, где схематично представлен холинэргический синапс.

Нарушение синтеза медиатора . Синтез медиатора может быть нарушен в результате снижения активности ферментов, участвующих в его образовании. Например, синтез одного из медиаторов торможения - γ-аминомасляной кислоты (ГАМК) - может быть угнетен при действии семикарбазида, блокирующего фермент, катализирующий превращение глутаминовой кислоты в ГАМК. Нарушается синтез ГАМК и при недостатке в пище пиридоксина, являющегося кофактором этого фермента. В этих случаях в центральной нервной системе страдают процессы торможения.

Процесс образования медиаторов связан с затратой энергии, которая поставляется митохондриями, присутствующими в большом количестве в нейроне и нервных окончаниях. Поэтому нарушение этого процесса может быть вызвано блокадой метаболических процессов в митохондриях и снижением содержания макроэргов в нейроне вследствие гипоксии, действия ядов и др.

Нарушение транспорта медиатора . Медиатор может синтезироваться как в теле нервной клетки, так и непосредственно в нервном окончании. Образующийся в нервной клетке медиатор транспортируется по аксону в пресинаптическую часть. В механизме транспорта большую роль играют цитоплазматические микротрубочки, построенные из особого белка тубулина, близкого по своим свойствам к сократительному белку актину. По микротрубочкам к нервному окончанию проходят медиаторы, ферменты, участвующие в обмене медиаторов, и т.д. Микротрубочки легко распадаются под воздействием анестетиков, повышенной температуры, протеолитических ферментов, веществ типа колхицина и др., что может приводить к уменьшению количества медиатора в пресинаптических элементах. Например, гемохолин блокирует транспорт ацетилхолина в нервные окончания и тем самым нарушает передачу нервных влияний в холинэргических синапсах.

Нарушение депонирования медиатора в нервных окончаниях . Медиаторы хранятся в пресинаптических пузырьках, в которых находится смесь молекул медиатора, АТФ и специфических белков. Предполагают, что пузырьки формируются в цитоплазме нейроцита, а затем транспортируются по аксону к синапсу. Некоторые вещества могут нарушать процесс депонирования медиатора. Так, например, резерпин препятствует накоплению в пресинаптических пузырьках норадреналина и серотонина.

Нарушение секреции медиатора в синаптическую щель . Процесс выхода медиатора в синаптическую щель может нарушаться под действием некоторых фармакологических препаратов и токсинов, в частности столбнячного токсина, препятствующего выходу медиатора торможения глицина. Ботулинический токсин блокирует выброс ацетилхолина. По-видимому, в механизме секреции медиатора имеет значение сократительный белок тубулин, входящий в состав пресинаптической мембраны. Блокада этого белка колхицином угнетает выделение ацетилхолина. Кроме того, на секрецию медиатора нервным окончанием оказывают влияние ионы кальция и магния, простагландины.

Нарушение взаимодействия медиатора с рецептором . Имеется большое количество веществ, влияющих на связь медиаторов со специфическими рецепторными белками, расположенными на постсинаптической мембране. Главным образом это вещества, обладающие конкурентным типом действия, т.е. легко вступающие в связь с рецептором. В их числе можно назвать тубокурарин, блокирующий Н-холинорецепторы, стрихнин, блокирующий рецепторы, чувствительные к глицину, и др. Эти вещества блокируют действие медиатора на эффекторную клетку.

Нарушение удаления медиатора из синаптической щели . Для того чтобы синапс функционировал нормально, медиатор после его взаимодействия с рецептором должен удаляться из синаптической щели. Существует два механизма удаления:

    разрушение медиаторов ферментами, локализованными на постсинаптической мембране;

    обратный захват медиаторов нервным окончанием. Ацетилхолин, например, разрушается в синаптической щели холинэстеразой. Продукт расщепления (холин) снова захватывается пресинаптическим пузырьком и используется для синтеза ацетилхолина. Нарушение этого процесса может быть вызвано инактивацией холинэстеразы, например, с помощью фосфорорганических соединений. При этом ацетилхолин на длительное время связывается с большим количеством холинорецепторов, оказывая сначала возбуждающее, а затем угнетающее действие.

В адренэргических синапсах прекращение действия медиатора происходит главным образом за счет обратного захвата его симпатическим нервным окончанием. При воздействии токсических веществ может нарушаться транспорт медиатора из синаптической щели в пресинаптические пузырьки.

    Этиология двигательных расстройств. Центральные и периферические параличи, их характеристика.

Сокращения скелетных мышц, а также их тонус связаны с возбуждением а-мотонейронов, находящихся в спинном мозге. Сила сокращения мышцы и ее тонус зависят от количества возбужденных мотонейронов и частоты их разрядов.

Мотонейроны возбуждаются прежде всего благодаря импульсации, поступающей к ним непосредственно от афферентных волокон чувствительных нейронов. Этот механизм лежит в основе всех спинальных рефлексов. Кроме того, функция мотонейронов регулируется многочисленными импульсами, поступающими к ним по проводящим путям спинного мозга от различных отделов мозгового ствола, мозжечка, базальных ядер и коры большого мозга, осуществляющих высший моторный контроль в организме. По всей видимости, эти регулирующие влияния воздействуют либо непосредственно на α-мотонейроны, повышая или понижая их возбудимость, либо опосредованно через систему Реншоу и фузимоторную систему.

Система Реншоу представлена клетками, оказывающими тормозящее действие на мотонейроны. Активизируясь импульсами, поступающими прямо от α-мотонейронов, клетки Реншоу контролируют ритмичность их работы.

Фузимоторная система представлена γ-мотонейронами, аксоны которых идут к мышечным веретенам. Возбуждение γ-мотонейронов приводит к сокращению веретен, что сопровождается увеличением-в них частоты импульсации, которая по афферентным волокнам достигает α-мотонейронов. Следствием этого является возбуждение α-мотонейронов и повышение тонуса соответствующих мышц.

Двигательные расстройства возникают как при повреждении указанных отделов центральной нервной системы, так и при нарушении проведения импульсов по двигательным нервам и передачи импульсов с нерва на мышцу.

Наиболее распространенной формой двигательных нарушений являются паралич и парез - потеря или ослабление движений вследствие нарушения двигательной функции нервной системы. Паралич мышц одной половины тела называется гемиплегией, обоих верхних или нижних конечностей - параплегией, всех конечностей - тетраплегией. В зависимости от патогенеза паралича тонус пораженных мышц может быть либо утрачен (вялый паралич), либо повышен (спастический паралич). Кроме того, различают паралич периферический (если он связан с повреждением периферического мотонейрона) и центральный (в результате поражения центральных двигательных нейронов).

Двигательные расстройства, связанные с патологией концевой пластинки и моторных нервов. Нервно-мышечное соединение представляет собой холинэргический синапс. В нем могут возникать все те патологические процессы, которые были рассмотрены в разделе "Нарушения функций синапсов".

Одним из наиболее известных примеров нарушения нервно-мышечной передачи в условиях патологии является миастения. Если больного миастенией попросить несколько раз подряд с силой сжать руку в кулак, ему это удастся только в первый раз. Затем с каждым последующим движением сила в мышцах его рук стремительно уменьшается. Такая мышечная слабость наблюдается во многих скелетных мышцах больного, в том числе мимических, глазодвигательных, глотательных и др. Электромиографическое исследование показало, что при повторных движениях у таких больных нарушается нервно-мышечная передача.

Введение антихолинэстеразных препаратов в известной степени устраняет это нарушение. Этиология заболевания неизвестна.

Для объяснения причин миастении были выдвинуты различные гипотезы. Одни исследователи предполагают, что в крови таких больных накапливаются курареподобные вещества, другие усматривают причину в избыточном накоплении холинэстеразы в области концевых пластинок, в нарушении синтеза или выделения ацетилхолина. Исследования последних лет показали, что у больных миастенией в сыворотке крови довольно часто обнаруживают антитела к ацетилхолиновым рецепторам. Блокада нервно-мышечного проведения может возникать за счет соединения антител с рецепторами. Удаление вилочковой железы в этих случаях приводит к улучшению состояния больных.

При поражении двигательных нервов в иннервируемых мышцах развивается паралич (периферического типа), исчезают все рефлексы, они атоничны (вялый паралич) и с течением времени атрофируются. В эксперименте такой тип двигательных расстройств обычно получают путем перерезки передних спинномозговых корешков или периферического нерва.

Особый случай представляет собой рефлекторный паралич, обусловленный тем, что при повреждении какого-либо чувствительного нерва импульсы, исходящие от него, могут оказывать тормозящее действие на мотонейроны соответствующей мышцы.

Двигательные расстройства, связанные с нарушением функций спинного мозга . Экспериментальное нарушение функции спинного мозга можно воспроизвести путем его перерезки, которая вызывает у позвоночных резкое уменьшение двигательной рефлекторной активности, связанной с нервными центрами, расположенными ниже места перерезки, - спинальный шок. Длительность и выраженность этого состояния у разных животных различны, но тем больше, чем выше стоит животное по своему развитию. У лягушки восстановление двигательных рефлексов наблюдается уже через 5 мин, у собаки и кошки частично через несколько часов, а для полного восстановления требуются недели. Наиболее выражены явления спинального шока у человека и обезьяны. Так, у обезьяны после перерезки спинного мозга коленный рефлекс отсутствует в течение суток и более, между тем как у кролика лишь 15 мин.

Картина шока зависит от уровня перерезки. Если мозговой ствол перерезан выше продолговатого мозга, дыхание сохраняется и артериальное давление почти не снижается. Перерезка ствола ниже продолговатого мозга приводит к полной остановке дыхания и резкому снижению давления крови, потому что при этом жизненно важные центры полностью отделяются от исполнительных органов. Перерезка спинного мозга на уровне пятого шейного сегмента не нарушает дыхания. Это объясняется тем, что и дыхательный центр, и ядра, иннервирующие дыхательные мышцы, остаются выше перерезки и в то же время не теряют связи с ними, поддерживая ее посредством диафрагмальных нервов.

Спинальный шок не является простым следствием травмы, поскольку после восстановления рефлекторных функций повторная перерезка ниже предыдущей не вызывает шока. Существуют различные предположения относительно патогенеза спинального шока. Одни исследователи полагают, что шок возникает вследствие выпадения возбуждающего влияния со стороны высших нервных центров на активность нейронов спинного мозга. Согласно другому предположению, перерезка устраняет угнетающее влияние высших двигательных центров на спинальное торможение.

Спустя некоторое время после исчезновения явлений спинального шока рефлекторная деятельность оказывается резко усиленной. У человека с перерывом спинного мозга все спинальные рефлексы вследствие иррадиации возбуждения в спинном мозге теряют нормальную ограниченность и локализацию.

Двигательные расстройства при нарушении стволовой части головного мозга. Для изучения двигательных расстройств, связанных с нарушением функций различных структур головного мозга, осуществляющих высший двигательный контроль, чаще всего перерезают мозг на разных его уровнях.

После перерезки мозга между нижними и верхними холмиками покрышки среднего мозга наблюдается резкое повышение тонуса разгибательных мышц - децеребрационнная ригидность. Чтобы согнуть конечность в суставе, нужно приложить значительное усилие. На определенной стадии сгибания сопротивление внезапно ослабевает - это реакция удлинения. Если после реакции удлинения несколько разогнуть конечность, сопротивление сгибанию восстанавливается - реакция укорочения. Механизм развития децеребрационной ригидности заключается в резком усилении импульсации мотонейронами. Повышение тонуса мышц имеет рефлекторное происхождение: при перерезке задних канатиков спинного мозга тонус мышц соответствующей конечности исчезает. У децеребрированного животного наряду с увеличением тонуса отмечается снижение фазических рефлексов на растяжение, о чем можно судить по усилению сухожильных рефлексов.

Патогенез децеребрационной ригидности сложен. В настоящее время известно, что и тонические, и фазические рефлексы регулируются сетчатым образованием. В сетчатом образовании существуют две различные по своей функции зоны. Одна из них, более обширная, простирается от гипоталамуса до продолговатого мозга. Раздражение нейронов этой зоны оказывает облегчающее влияние на рефлексы спинного мозга, усиливает сокращения скелетных мышц, вызванные раздражением коры большого мозга. Вероятный механизм облегчения заключается в подавлении тормозящих импульсов клеток Реншоу. Вторая зона находится только в передне-медиальной части продолговатого мозга. Возбуждение нейронов этой зоны приводит к торможению спинномозговых рефлексов и снижению мышечного тонуса. Импульсы из этой зоны оказывают активирующее действие на клетки Реншоу и, кроме того, непосредственно снижают активность мотонейронов. Функция нейронов этой зоны поддерживается импульсацией от мозжечка, а также от коры большого мозга через экстрапирамидные пути. Естественно, у децеребрированного животного эти пути перерезаются и активность тормозящих нейронов сетчатого образования снижается, что приводит к преобладанию облегчающей зоны и резкому повышению тонуса мышц. Активность облегчающей зоны поддерживается афферентной импульсацией от чувствительных нейронов спинного и вестибулярных ядер продолговатого мозга. Эти ядра играют важную роль в поддержании мышечного тонуса, и при их разрушении у подопытного животного децеребрационная ригидность мышц на соответствующей стороне резко ослабевает.

Двигательные расстройства, связанные с нарушением функций мозжечка. Мозжечок является высокоорганизованным центром, оказывающим регулирующее влияние на функцию мышц. К нему стекается поток импульсов от рецепторов мышц, суставов, сухожилий и кожи, а также от органов зрения, слуха и равновесия. От ядер мозжечка нервные волокна идут к гипоталамусу, красному ядру среднего мозга, вестибулярным ядрам и сетчатому образованию мозгового ствола. По этим путям осуществляется влияние мозжечка на двигательные центры, начиная от коры большого мозга и кончая спинальными мотонейронами. Мозжечок корригирует двигательные реакции организма, обеспечивая их точность, что особенно ярко проявляется при произвольных движениях. Основная его функция состоит в согласовании фазических и тонических компонентов двигательного акта.

При поражении мозжечка у человека или удалении его у экспериментальных животных возникает ряд характерных двигательных нарушений. В первые дни после удаления мозжечка резко повышается тонус мышц, особенно разгибательных. Однако затем, как правило, тонус мышц резко ослабевает и развивается атония. Атония через длительный срок может смениться опять гипертонией. Таким образом, речь идет о нарушении мышечного тонуса у животных, лишенных мозжечка, что, по-видимому, связано с отсутствием регулирующего влияния его, в частности передней доли, на у-мотонейроны спинного мозга.

У животных, лишенных мозжечка, мышцы не способны к слитному тетаническому сокращению. Это проявляется в постоянном дрожании и качании туловища и конечностей животного (астазия). Механизм этого нарушения заключается в том, что при отсутствии мозжечка не затормаживаются проприоцептивные рефлексы и каждое мышечное сокращение, раздражая проприорецепторы, вызывает новый рефлекс.

У таких животных нарушается и координация движений (атаксия). Движения теряют плавность (асинэргия), становятся шаткими, неловкими, слишком сильными, размашистыми, что свидетельствует о расстройстве взаимосвязи между силой, скоростью и направлением движения (дисметрия). Развитие атаксии и дисметрии связано с нарушением регулирующего влияния мозжечка на активность нейронов коры большого мозга. При этом меняется характер импульсов, которые кора посылает по кортикоспинальным путям, вследствие чего кортикальный механизм произвольных движений не может привести их объем в соответствие с требуемым. Одним из характерных симптомов нарушения функции мозжечка является замедленность произвольных движений вначале и резкое усиление их к концу.

При удалении клочково-узелковой доли мозжечка у обезьян нарушается равновесие. Спинальные рефлексы, рефлексы положения тела и произвольные движения при этом не нарушаются. В положении лежа у животного не обнаруживается никаких нарушений. Однако сидеть оно может только прислонившись к стене, а стоять вовсе не способно (абазия).

Наконец, для безмозжечкового животного характерно развитие астении (чрезвычайно легкой утомляемости).

Двигательные расстройства, связанные с нарушением функций пирамидной и экстрапирамидной систем. Как известно, по пирамидному пути импульсы поступают от крупных пирамидных клеток коры большого мозга к мотонейронам спинного мозга. В эксперименте для того, чтобы освободить мотонейроны от влияний пирамидных клеток, производят одно-или двустороннюю перерезку пирамидных путей. Легче всего такая изолированная перерезка выполняется в стволе мозга на уровне трапециевидных тел. При этом, во-первых, у животного теряются или в значительной степени нарушаются постановочные и прыжковые рефлексы; во-вторых, нарушаются некоторые фазические движения (царапание, удары лапой и т.д.). Односторонняя перерезка пирамидного пути у обезьян показывает, что животное очень редко и как бы неохотно пользуется конечностью, утратившей связь с пирамидной системой. Пораженная конечность пускается в ход лишь при сильном возбуждении и выполняет простые, стереотипные движения (ходьба, лазанье и т.д.). Нарушаются тонкие движения в пальцах, животное не может взять предмет. Снижается тонус мышц в пораженных конечностях. Нарушение фазических движений наряду с гипотонией мышц свидетельствует о понижении возбудимости спинальных мотонейронов. После двусторонней перерезки пирамидных путей для выполнения произвольных движений может служить только экстрапирамидная система. Гипотония при этом наблюдается в мышцах как конечностей, гак и туловища: голова качается, изменяется осанка, живот выпячивается. Через несколько недель двигательные реакции у обезьяны отчасти восстанавливаются, но все движения она выполняет очень неохотно.

Экстрапирамидные пути оканчиваются на базальных ядрах коры большого мозга (которые состоят из двух главных частей - полосатого тела и бледного шара), красном ядре, черной субстанции, клетках сетчатого образования и, вероятно, на других субкортикальных структурах. От них импульсы по многочисленным нервным путям передаются мотонейронам продолговатого и спинного мозга. Отсутствие симптомов облегчения после перерезки пирамидных путей позволяет предположить, что все тормозящие влияния коры большого мозга на спинальные мотонейроны осуществляются через экстрапирамидную систему. Эти влияния распространяются как на фазические, так и на тонические рефлексы.

Одной из функций бледного шара является тормозящее влияние на нижележащие ядра экстрапирамидной системы, в частности красное ядро среднего мозга. При повреждении бледного шара значительно повышается тонус скелетных мышц, что объясняется освобождением красного ядра от тормозящих влияний бледного шара. Поскольку через бледный шар проходят рефлекторные дуги, обусловливающие различные вспомогательные движения, сопровождающие двигательный акт, то при его поражении развивается гипокинезия: движения становятся скованными, неловкими, однообразными, исчезает активность мимических мышц.

Полосатое тело посылает эфферентные импульсы главным образом к бледному шару, регулируя и частично затормаживая его функции. Этим, по-видимому, объясняется то, что при его поражении возникают явления, противоположные тем, которые наблюдаются при поражении бледного шара. Появляется гиперкинезия - усиление вспомогательных движений при сложном двигательном акте. Кроме того, могут возникнуть атетоз и хорея. Атетоз характеризуется медленными "червеобразными" движениями, локализующимися главным образом в верхних конечностях, особенно в пальцах. При этом в сокращении участвуют одновременно мышцы-агонисты и антагонисты. Для хореи характерны быстрые размашистые неритмичные движения конечностей, головы и туловища.

Черная субстанция участвует в регуляции пластического тонуса и имеет значение при выполнении мелких движений пальцев рук, требующих большой точности и тонкой регуляции тонуса. При повреждении черной субстанции мышечный тонус повышается, однако какова в этом роль самой субстанции, сказать трудно, так как нарушается ее связь с сетчатым образованием и красным ядром.

Нарушение функции черной субстанции лежит в основе болезни Паркинсона, при которой наблюдается повышение мышечного тонуса и постоянный тремор конечностей и туловища. Полагают, что при паркинсонизме нарушается равновесие между черной субстанцией и бледным шаром. Разрушение путей, проводящих импульсы от бледного шара, снимает состояние повышенного тонуса мышц и тремор при этом заболевании.

Двигательные расстройства, связанные с нарушением функций коры большого мозга. Изолированное нарушение чувствительно-двигательной области коры, а также полная декортикация животных ведут к двум основным последствиям - нарушению тонких дифференцированных движений и повышению тонуса мышц.

Очень важна проблема восстановления двигательных функций у животных с удаленными участками двигательных зон коры. После удаления всей коры большого мозга собака или кошка очень быстро восстанавливает способность прямо стоять, ходить, бегать, хотя некоторые дефекты (отсутствие прыжкового и постановочного рефлексов) остаются навсегда. Двустороннее удаление двигательной зоны у обезьян делает их неспособными подниматься, стоять и даже есть, они беспомощно лежат на боку.

С нарушением функций коры большого мозга связан еще один тип двигательных расстройств - судороги, которые наблюдаются при эпилепсии. В тонической фазе эпилептического припадка ноги больного резко разогнуты, а руки согнуты. Ригидность при этом отчасти напоминает децеребрационную. Затем наступает клоническая фаза, выражающаяся в непроизвольных, прерывистых сокращениях мышц конечностей, чередующихся с расслаблением. Как выяснилось, в основе эпилептического припадка лежит чрезмерная синхронизация разрядов в нейронах коры. Электроэнцефалограмма, снятая во время судорожного припадка, состоит из ритмически следующих друг за другом пиковых разрядов с большой амплитудой, широко распространенных по коре (рис. 25.4). Такая патологическая синхронизация вовлекает в эту усиленную активность множество нейронов, вследствие чего они прекращают выполнять обычные для них дифференцированные функции.

Причиной развития судорожного припадка может быть опухоль или рубцовые изменения, локализующиеся в двигательной или чувствительной области коры. В некоторых случаях в патологической синхронизации разрядов может участвовать таламус. Хорошо известно, что неспецифические ядра таламуса в норме синхронизируют разряды клеток коры большого мозга, что и обусловливает характерный ритм электроэнцефалограммы. По-видимому, повышенная активность этих ядер, связанная с возникновением в них генераторов патологически усиленного возбуждения, может сопровождаться судорожными разрядами в коре.

В эксперименте судорожные разряды могут быть вызваны различными фармакологическими препаратами, действующими непосредственно на поверхность коры. Например, при действии на кору стрихнином появляются серии разрядов большой амплитуды, свидетельствующие о том, что в их генерации синхронно участвует много клеток. Судорожную активность можно вызвать также, раздражая кору сильным электрическим током.

Механизм запуска залпов судорожных разрядов в коре еще неизвестен. Существует мнение, что критическим моментом, ведущим к возникновению эпилептического разряда, является стойкая деполяризация апикальных дендритов. Это вызывает прохождение тока через остальные части клетки и появление ритмических разрядов.

    Гиперкинезы. Виды, причины возникновения. Роль нарушения функций мозжечка в возникновении двигательных нарушений.

    Нарушение чувствительности. Виды. Характеристика и механизмы анестезий, гиперестезий, парестезий. Диссоциированный тип расстройства чувствительности. Синдром Броун-Секара.

Все виды чувствительности от кожи, мышц, суставов и сухожилий (соместезия) передаются в центральную нервную систему через три нейрона. Первый нейрон находится в спинномозговых узлах, второй - в задних рогах спинного мозга (болевая и температурная чувствительность) или в тонком и клиновидном ядрах продолговатого мозга (глубокая и тактильная чувствительность). Третий нейрон находится в таламусе. От него аксоны поднимаются к чувствительным зонам коры большого мозга.

Патологические процессы и связанные с ними нарушения чувствительности могут локализоваться на любом участке сенсорного пути. При повреждении периферических нервов (перерезка, воспаление, авитаминоз) в соответствующей зоне нарушаются все виды чувствительности. Потеря чувствительности называется анестезией, понижение - гипестезией, повышение - гиперестезией. В зависимости от характера утраченной чувствительности различают анестезию тактильную (собственно анестезию), болевую (аналгезию), термическую (термоанестезию), а также потерю глубокой, или проприоцептивной, чувствительности.

Если патологический процесс локализуется в спинном или головном мозге, нарушение чувствительности зависит от того, какие именно восходящие пути поражены.

Существует две центростремительные системы чувствительности. Одна из них называется лемнисковой и содержит нервные волокна большого диаметра, которые проводят импульсы от проприорецепторов мышц, сухожилий, суставов и частично от кожных рецепторов прикосновения и давления (тактильных рецепторов). Волокна этой системы входят в спинной мозг и идут в составе задних столбов в продолговатый мозг. От ядер продолговатого мозга начинается медиальная петля (лемнисковый путь), которая переходит на противоположную сторону и заканчивается в заднебоковых вентральных ядрах таламуса, нейроны которых передают полученную информацию в соматосенсорную зону коры большого мозга.

Вторая восходящая система - это спиноталамический (передний и боковой) путь, несущий болевую, температурную и частично тактильную чувствительность. Волокна его идут вверх в составе передних и боковых канатиков спинного мозга и оканчиваются в клетках ядер таламуса (антеролатеральная система).

Весьма характерные изменения чувствительности наблюдаются при перерезке правой или левой половины спинного мозга (синдром Броун-Секара): на стороне перерезки ниже ее исчезает глубокая чувствительность, в то время как температурная и болевая исчезают на противоположной стороне, поскольку проводящие пути, относящиеся к антеролатеральной системе, перекрещиваются в спинном мозге. Тактильная чувствительность частично нарушена с обеих сторон.

Нарушение лемнисковой системы возможно при повреждении периферических нервов (толстых миелиновых волокон), а также при различных патологических процессах в спинном мозге (нарушение кровообращения, травма, воспаление). Изолированное поражение задних канатиков спинного мозга встречается редко, но наряду с другими проводящими путями они могут быть повреждены опухолью или во время травмы.

Нарушение проводимости в волокнах медиальной петли вызывает различные нарушения чувствительности, выраженность которых зависит от степени повреждения системы. При этом может теряться способность определять скорость и направление движения конечностей. Значительно нарушается чувство раздельного восприятия прикосновений одновременно в двух местах, а также способность ощущать вибрацию и оценивать тяжесть поднимаемого груза. Испытуемый не может на ощупь определить форму предметов и идентифицировать буквы и числа, если написать их на коже: он ощущает только механическое прикосновение и не может точно судить о месте и силе тактильного ощущения. Ощущение боли и температурная чувствительность при этом сохраняются.

Повреждение постцентральной извилины коры большого мозга. У обезьян удаление постцентральной извилины вызывает расстройство чувствительности на противоположной стороне тела. В известной степени о характере этих расстройств можно судить исходя из того, что нам известно о функциях лемнисковой системы и что такая операция вызывает лемнисковую денервацию на противоположной стороне, на которой, однако, сохраняются элементы антеролатеральной системы. Расстройство при этом заключается, очевидно, в том, что утрачивается мышечно-суставная чувствительность. Животное часто прекращает движение, оставаясь в неудобной позе в течение длительного времени. В то же время тактильная, болевая и температурная чувствительность на этой стороне сохраняются, хотя порог их может повышаться.

У человека изолированное поражение постцентральной извилины бывает очень редко. Например, хирурги иногда удаляют часть этой извилины для лечения эпилепсии коркового происхождения. В этом случае возникают уже описанные расстройства: утрачивается ощущение положения конечностей в пространстве, способность на ощупь определять форму предметов, их размеры, массу, характер поверхности (гладкая, шероховатая и т.д.), теряется дискриминационная чувствительность.

    Боль, значение для организма. Боли соматические и висцеральные. Механизмы возникновения. Зоны Захарьина-Геда. Роль ноцицептивной и антиноцицептивной систем в формировании боли.

В понятие боли включается, во-первых, своеобразное ощущение и, во-вторых, реакция на болевое ощущение, которая характеризуется определенной эмоциональной окраской, рефлекторными изменениями функций внутренних органов, двигательными безусловными рефлексами и волевыми усилиями, направленными на избавление от болевого фактора. Эта реакция по своему характеру близка чувству страдания, которое испытывает человек при существовании угрозы для его жизни, и чрезвычайно индивидуальна, так как зависит от влияния факторов, среди которых основное значение имеют следующие: место, степень повреждения тканей, конституциональные особенности нервной системы, воспитание, эмоциональное состояние в момент нанесения болевого раздражения.

Наблюдения показывают, что при действии повреждающего фактора человек может ощущать две разновидности боли. Если, например, горячим угольком спички коснуться кожи, то сначала возникает ощущение, подобное уколу, - "первая" боль. Эта боль четко локализована и быстро стихает.

Затем, спустя небольшой промежуток времени, появляется диффузная жгучая "вторая" боль, которая может длиться довольно долго. Такой двойственный характер боли наблюдается при повреждении кожи и слизистой оболочки некоторых органов.

Значительное место в симптоматике различных болезней занимает висцеральная боль, т.е. локализующаяся во внутренних органах. Эта боль с трудом поддается четкой локализации, носит разлитой характер, сопровождается тягостными переживаниями, угнетением, подавленностью, изменением деятельности вегетативной нервной системы. Висцеральная боль очень сходна со "второй" болью.

Исследования, проведенные в основном на людях во время оперативных вмешательств, показали, что не все анатомические образования могут быть источником болевых ощущений. Органы брюшной полости нечувствительны к обычным хирургическим воздействиям (разрез, сшивание), болезненны только брыжейка и париетальная брюшина. Но все внутренние органы с неисчерченной мышечной тканью болезненно реагируют на растяжение, спазм или судорожное сокращение.

Очень чувствительны к боли артерии. Сужение артерий или их внезапное расширение вызывает острую боль.

Ткань легких и висцеральная плевра нечувствительны к болевому раздражению, однако очень чувствительной в этом отношении является париетальная плевра.

Результаты операций на людях и животных показали, что сердечная мышца, по-видимому, нечувствительна к механической травме (укол, разрез). Если же у животного потянуть одну из венечных артерий, возникает болевая реакция. Очень чувствительна к боли сердечная сумка.

Сложным и пока еще не решенным является вопрос о том, какие нервные образования принимают участие в рецепции, проведении и восприятии боли. По этому вопросу существует две принципиально различные точки зрения. Согласно одной из них, боль не является специфическим, особым чувством и не существует специальных нервных приборов, воспринимающих только болевое раздражение. Любое ощущение, основанное на раздражении тех или иных рецепторов (температурных, тактильных и др.), может перейти в боль, если сила раздражения достаточно велика и превзошла известный предел. С этой точки зрения болевое ощущение отличается от других только количественно - ощущения давления, тепла могут сделаться болевыми, если вызвавший их раздражитель обладает чрезмерной силой (теория интенсивности).

Согласно другой точке зрения, которая в настоящее время получила широкое распространение (теория специфичности), существуют специальные болевые рецепторы, специальные афферентные пути, передающие болевое раздражение, и специальные структуры в головном мозге, которые перерабатывают болевую информацию.

Исследования показывают, что рецепторы кожи и видимых слизистых, реагирующие на болевые стимулы, принадлежат к двум типам чувствительных волокон антеролатеральной системы - тонким миелиновым АД-волокнам со скоростью проведения возбуждения 5 - 50 м/с и немиелиновым С-волокнам со скоростью проведения 0,6 - 2 м/с. Активность в тонких миелиновых АА-волокнах вызывает у человека ощущение острой колющей боли, тогда как возбуждение медленно проводящих С-волокон вызывает ощущение жжения.

Вопрос о механизмах активации болевых рецепторов пока еще окончательно не выяснен. Есть предположение, что сама по себе сильная деформация свободных нервных окончаний (вызванная, например, сжатием или растяжением ткани), служит адекватным стимулом для рецепторов боли, влияет на проницаемость клеточной мембраны в них и приводит к возникновению потенциала действия.

В соответствии с другой гипотезой, свободные нервные окончания, относящиеся к АД- или С-волокнам, содержат одно или несколько специфических веществ, которые выделяются под действием механических, термических и других факторов, взаимодействуют с рецепторами наружной поверхности мембраны нервных окончаний и вызывают их возбуждение. В дальнейшем эти вещества разрушаются соответствующими ферментами, окружающими нервные окончания, и ощущение боли исчезает. В качестве активаторов ноцицептивных рецепторов предложены гистамин, серотонин, брадикинин, соматостатин, субстанция Р, простагландины, ионы К+. Однако следует сказать, что не все из названных веществ обнаруживаются в нервных окончаниях. В то же время известно, что многие из них образуются в тканях при повреждении клеток и развитии воспаления, и с их накоплением связывают возникновение боли.

Полагают также, что образование эндогенных биологически активных веществ в небольших (подпороговых) количествах снижает порог реакции болевых рецепторов на адекватные стимулы (механические, термические и др.), что является физиологической основой для состояния повышенной болевой чувствительности (гипералгезии, гиперпатии), которое сопровождает некоторые патологические процессы. В механизмах активации болевых рецепторов может иметь значение и повышение концентрации ионов Н+.

Вопрос о том, какие центральные механизмы участвуют в формировании болевого ощущения и сложных реакций организма в ответ на болевую стимуляцию, не является окончательно выясненным и продолжает изучаться. Из современных теорий боли наиболее разработанной и признанной является теория "входных ворот", предложенная Р. Мелзаком и П. Уоллом.

Одно из основных положений этой теории заключается в том, что передача нервных импульсов от афферентных волокон к нейронам спинного мозга, передающим сигналы в головной мозг, регулируется "спинальным воротным механизмом" - системой нейронов желатинозной субстанции (рис. 25.3). Предполагается, что боль возникает при большой частоте разрядов в нейронах Т. На телах этих нейронов оканчиваются терминали как толстых миелинизированных волокон (М), относящихся к лемнисковой системе, так и тонких волокон (А) антеролатеральной системы. Кроме того, коллатерали и толстых, и тонких волокон образуют синаптические связи с нейронами желатинозной субстанции (SG). Отростки нейронов SG в свою очередь образуют аксоаксонные синапсы на терминалях как толстых, так и тонких волокон М и А и способны тормозить передачу импульсов с обоих видов волокон на нейроны Т. Сами же нейроны SG возбуждаются импульсами, поступающими по волокнам лемнисковой системы, и тормозятся при активации тонких волокон (на рисунке возбуждающее влияние показано знаком "+", а тормозящее - знаком "-"). Таким образом, нейроны SG могут играть роль ворот, открывающих или закрывающих путь импульсам, возбуждающим нейроны Т. Воротный механизм ограничивает передачу нервных импульсов к нейронам Т при высокой интенсивности импульсации по афферентным волокнам лемнисковой системы (закрывает ворота) и, наоборот, облегчает прохождение нервных импульсов к нейронам Т в случаях, когда возрастает афферентный поток по тонким волокнам (открывает ворота).

Когда возбуждение нейронов Т превышает критический уровень, их импульсация приводит к возбуждению системы действия. В эту систему входят те нервные структуры, которые обеспечивают соответствующие формы поведения при действии болевого раздражителя, двигательные, вегетативные и эндокринные реакции и где формируются ощущения, характерные для боли.

Функция спинального воротного механизма находится под контролем различных отделов головного мозга, чьи влияния передаются нейронам спинного мозга по волокнам нисходящих путей (подробнее см. ниже об антиноцицептивных системах мозга). Система центрального контроля боли активируется импульсами, поступающими по толстым волокнам лемнисковой системы.

Теория входных ворот позволяет объяснить природу фантомных болей и каузалгии. Фантомная боль возникает у людей после ампутации конечностей. В течение длительного времени больной может ощущать ампутированную конечность и сильную, подчас невыносимую боль в ней. При ампутации обычно перерезаются крупные нервные стволы с обилием толстых нервных волокон, прерываются каналы для поступления импульсации с периферии. Нейроны спинного мозга становятся менее управляемыми и могут давать вспышки на самые неожиданные стимулы. Каузалгия - жестокая, мучительная боль, наблюдающаяся при повреждении какого-либо крупного соматического нерва. Всякое, даже самое незначительное воздействие на больную конечность вызывает резкое усиление боли. Каузалгия возникает чаще в случае неполной перерезки нерва, когда повреждается большая часть толстых миелиновых волокон. При этом увеличивается поток импульсов к нейронам задних рогов спинного мозга - "ворота открываются". Таким образом, и при фантомных болях, и при каузалгии в спинном мозге или выше появляется генератор патологически усиленного возбуждения, образование которого обусловлено растормаживанием группы нейронов в связи с нарушением внешнего аппарата контроля, который локализован в поврежденной структуре.

Следует еще отметить, что предложенная теория позволяет объяснить и тот давно известный в лечебной практике факт, что боль заметно стихает, если применять отвлекающие процедуры - согревание, растирание, холод, горчичники и т.д. Все эти приемы усиливают импульсацию в толстых миелиновых волокнах, что уменьшает возбуждение нейронов антеролатеральной системы.

При развитии в некоторых внутренних органах патологических процессов может возникать отраженная боль. Например, при заболеваниях сердца появляется боль в левой лопатке и в зоне иннервации локтевого нерва левой руки; при растяжении желчного пузыря боль локализуется между лопатками; при прохождении камня по мочеточнику боль из области поясницы иррадирует в паховую область. Отраженная боль объясняется тем, что повреждение внутренних органов вызывает возбуждение, которое по афферентным волокнам вегетативных нервов достигает тех же нейронов задних рогов спинного мозга, на которых оканчиваются афферентные волокна от кожи. Усиленная афферентная импульсация от внутренних органов понижает порог возбудимости нейронов таким образом, что раздражение соответствующего участка кожи воспринимается как боль.

Экспериментальные и клинические наблюдения указывают на то, что в формировании болевого ощущения и реакции организма на боль участвуют многие отделы центральной нервной системы.

Через спинной мозг реализуются моторные и симпатические рефлексы, там же происходит первичная обработка болевых сигналов.

Многообразные функции по переработке болевой информации выполняет ретикулярная формация. К этим функциям относятся подготовка и передача болевой информации в высшие соматические и вегетативные отделы головного мозга (таламус, гипоталамус, лимбическую систему, кору), облегчение защитных сегментарных рефлексов спинного мозга и ствола мозга, вовлечение в рефлекторный ответ на болевые стимулы вегетативной нервной системы, дыхательного и гемодинамического центров.

Зрительный бугор обеспечивает анализ качества болевого ощущения (его интенсивность, локализацию и др.).

Болевая информация активирует нейрогенные и нейрогормональные структуры гипоталамуса. Это сопровождается развитием комплекса вегетативных, эндокринных и эмоциональных реакций, направленных на перестройку всех систем организма в условиях действия болевых стимулов. Болевое раздражение, идущее с поверхностных покровов, а также от некоторых других органов при их травме, сопровождается общим возбуждением и симпатическими эффектами - усилением дыхания, повышением артериального давления, тахикардией, гипергликемией и т.д. Активируется гипофизарно-надпочечниковая система, наблюдаются все компоненты стресса. Чрезмерное болевое воздействие может привести к развитию шока. Боль, исходящая из внутренних органов и по своему характеру сходная со "второй болью", чаще всего сопровождается общим угнетением и вагусными эффектами - снижением артериального давления, гипогликемией и т.д.

Лимбическая система играет важную роль в создании эмоциональной окраски поведения организма в ответ на болевую стимуляцию.

Мозжечок, пирамидная и экстрапирамидная системы осуществляют программирование двигательных компонентов поведенческих реакций при возникновении болевого ощущения.

При участии коры реализуются сознательные компоненты болевого поведения.

Антиноцицептивные (анальгетические) системы мозга. Экспериментальные исследования последних лет позволили выяснить, что в нервной системе имеются не только болевые центры, возбуждение которых ведет к формированию болевого ощущения, но и структуры, активизация которых способна изменить болевую реакцию у животных вплоть до ее полного исчезновения. Показано, например, что электрическая стимуляция или химическое раздражение некоторых зон центрального серого вещества, покрышки моста, миндалевидного тела, гиппокампа, ядер мозжечка, сетчатого образования среднего мозга вызывает отчетливую аналгезию. Общеизвестно также большое значение эмоциональной настроенности человека для развития ответной реакции на болевое воздействие; страх усиливает реакцию на боль, снижает порог болевой чувствительности, агрессивность и ярость, напротив, резко уменьшают реакцию на действие болевых факторов. Эти и другие наблюдения привели к формированию представления о том, что в организме есть антиноцицептивные системы, которые могут подавлять восприятие боли. Имеются доказательства того, что таких систем в мозге четыре:

    нейронная опиатная;

    гормональная опиатная;

    нейронная неопиатная;

    гормональная неопиатная.

Нейронная опиатная система локализована в среднем, продолговатом и спинном мозге. Найдено, что центральное серое вещество, ядра шва и ретикулярная формация содержат тела и окончания энкефалинэргических нейронов. Часть из этих нейронов посылает свои аксоны к нейронам спинного мозга. В задних рогах спинного мозга также обнаружены энкефалинэргические нейроны, которые распределяют свои окончания на нервных проводниках болевой чувствительности. Выделяющийся энкефалин тормозит передачу боли через синапсы к нейронам спинного мозга. Показано в эксперименте, что эта система активируется при болевой стимуляции животного.

Функция гормональной опиатной анальгезирующей системы заключается в том, что афферентная импульсация из спинного мозга достигает также гипоталамуса и гипофиза, вызывая выделение кортиколиберина, кортикотропина и β-липотропина, из которого образуется мощный анальгезирующий полипептид β-эндорфин. Последний, попав в кровеносное русло, тормозит активность нейронов болевой чувствительности в спинном мозге и таламусе и возбуждает тормозящие боль нейроны центрального серого вещества.

Нейронная неопиатная анальгетическая система представлена серотонинэргическими, норадренэргическими и дофаминэргическими нейронами, которые образуют ядра в стволе мозга. Обнаружено, что стимуляция важнейших моноаминэргических структур ствола мозга (ядер шва, голубого пятна черной субстанции, центрального серого вещества) приводит к возникновению выраженной аналгезии. Все эти образования имеют прямой выход на нейроны болевой чувствительности спинного мозга и выделяющиеся серотонин и норадреналин вызывают существенное угнетение болевых рефлекторных реакций.

Гормональную неопиатную анальгетическую систему связывают главным образом с функцией гипоталамуса и гипофиза и их гормоном вазопрессином. Известно, что у крыс с генетически нарушенным синтезом вазопрессина повышена чувствительность к болевым стимулам. Введение же вазопрессина в кровь или в полости желудочков мозга вызывает у животных глубокое и продолжительное состояние аналгезии. Кроме того, вазопрессинэргические нейроны гипоталамуса посылают свои аксоны к различным структурам головного и спинного мозга, в том числе и к нейронам желатиновой субстанции, и могут влиять на функцию спинального воротного механизма и других анальгетических систем. Возможно также, что в гормональной неопиатной анальгетической системе участвуют и другие гормоны гипоталамо-гипофизарной системы. Имеются сведения о выраженном антиноцицептивном действии соматостатина и некоторых других пептидов.

Все анальгетические системы взаимодействуют друг с другом и позволяют организму управлять болевыми реакциями и подавлять отрицательные последствия, вызванные болевыми стимулами. При нарушении функции этих систем могут возникать различные болевые синдромы. С другой стороны, одним из эффективных путей борьбы с болью является разработка способов активации антиноцицептивных систем (акупунктура, внушение, применение фармакологических препаратов и др.).

Значение боли для организма. Боль так часто встречается в повседневной жизни людей, что вошла в их сознание как неизбежный спутник человеческого существования. Однако следует помнить о том, что это влияние является не физиологическим, а патологическим. Боль вызывается различными факторами, единственным общим свойством которых является способность повреждать ткани организма. Она относится к категории патологических процессов и как любой патологический процесс противоречива по своему содержанию. Боль имеет как защитно-приспособительное, так и патологическое значение. В зависимости от характера боли, причины, времени и места ее возникновения могут преобладать либо защитные, либо собственно патологические элементы. Значение защитных свойств боли поистине огромно для жизни человека и животных: они являются сигналом опасности, информируют о развитии патологического процесса. Однако, сыграв роль информатора, боль в дальнейшем сама становится компонентом патологического процесса, порой весьма грозным.

    Нарушения функций вегетативной нервной системы, их виды и механизмы, понятие о вегетативных дистониях.

Как известно, вегетативная нервная система состоит из двух частей - симпатической и парасимпатической. Симпатические нервы берут свое начало в узлах, расположенных вдоль позвоночного столба. Клетки узлов получают волокна от нейронов, расположенных в грудных и поясничных сегментах спинного мозга. Центры парасимпатической части вегетативной нервной системы лежат в мозговом стволе и в крестцовой части спинного мозга. Отходящие от них нервы идут к внутренним органам и образуют синапсы в узлах, расположенных вблизи или внутри этих органов.

Большинство органов иннервируется как симпатическими, так и парасимпатическими нервами, оказывающими на них противоположное влияние.

Центры вегетативной нервной системы находятся постоянно в состоянии тонуса, вследствие чего внутренние органы непрерывно получают от них тормозящие или возбуждающие импульсы. Поэтому, если орган по какой-либо причине лишается иннервации, например симпатической, все функциональные изменения в нем определяются преобладающим влиянием парасимпатических нервов. При парасимпатической денервации наблюдается обратная картина.

В эксперименте для нарушения вегетативной иннервации того или иного органа перерезают соответствующие симпатические и парасимпатические нервы или же удаляют узлы. Кроме того, понизить активность какой-либо части вегетативной нервной системы или на некоторое время полностью выключить ее можно с помощью фармакологических препаратов - холинолитиков, симпатолитиков.

Существует также метод иммунологической "экстирпации" симпатической части вегетативной нервной системы. У мышей в слюнных железах вырабатывается вещество белковой природы, стимулирующее рост клеток симпатических нервов. При иммунизации этим веществом другого животного можно получить сыворотку, содержащую антитела против данного вещества. Если ввести такую сыворотку новорожденным животным, узлы симпатического ствола у них прекращают развиваться и подвергаются дегенерации. У этих животных исчезают все периферические проявления активности симпатической части вегетативной нервной системы, они вялы и апатичны. В различных условиях, требующих напряжения организма, в частности при перегревании, охлаждении, кровопотере, обнаруживается меньшая выносливость десимпатизированных животных. У них нарушается система терморегуляции, и для поддержания температуры тела на нормальном уровне необходимо повысить температуру окружающей среды. Система кровообращения при этом утрачивает свойство приспосабливаться к изменениям потребности организма в кислороде в связи с повышением физической нагрузки. У таких животных снижается резистентность к гипоксии и другим состояниям, что в условиях стресса может привести к смерти.

Дуги вегетативных рефлексов замыкаются в спинном, продолговатом и среднем мозге. Поражение этих отделов центральной нервной системы может привести к нарушениям функций внутренних органов. Например, при спинальном шоке, помимо двигательных расстройств, резко снижается артериальное давление, нарушаются терморегуляция, потовыделение, рефлекторные акты дефекации и мочеиспускания.

При поражении спинного мозга на уровне последнего шейного и двух верхних грудных сегментов отмечаются сужение зрачка (миоз), глазной щели и западение глазного яблока (энофтальм).

При патологических процессах в продолговатом мозге поражаются нервные центры, возбуждающие слезоотделение, секрецию слюнных и поджелудочной желез и желез желудка, вызывающие сокращение желчного пузыря, желудка и тонкой кишки. Поражаются также центры дыхания и центры, регулирующие деятельность сердца и тонус сосудов.

Вся деятельность вегетативной нервной системы подчинена высшим центрам, расположенным в ретикулярной формации, гипоталамусе, таламусе и коре большого мозга. Они интегрируют взаимоотношения между различными частями самой вегетативной нервной системы, а также взаимосвязь между вегетативной, соматической и эндокринной системами. Большая часть из 48 ядер и центров, находящихся в ретикулярной формации ствола мозга, участвуют в регулировании кровообращения, дыхания, пищеварения, экскреции и других функций. Их наличие наряду с соматическими элементами в ретикулярной формации обеспечивает необходимый вегетативный компонент для всех видов соматической деятельности организма. Проявления нарушений функций ретикулярной формации разнообразны и могут касаться расстройств деятельности сердца, сосудистого тонуса, дыхания, функций пищевого канала и т.д.

При раздражении гипоталамуса возникают различные вегетативные эффекты, близкие к полученным при стимуляции парасимпатических и симпатических нервов. На основании этого в нем выделяют две зоны. Раздражение одной из них, динамогенной зоны, включающей заднюю, латеральную и часть промежуточной гипоталамических областей, вызывает тахикардию, повышение артериального давления, мидриаз, экзофтальм, пилоэрекцию, прекращение перистальтики кишок, гипергликемию и другие эффекты симпатической нервной системы.

Раздражение другой, трофогенной, зоны, которая включает предоптические ядра и переднюю гипоталамическую область, вызывает противоположные реакции, характерные для возбуждения парасимпатических нервов.

На функции гипоталамуса большое влияние оказывают вышерасположенные отделы центральной нервной системы. После их удаления вегетативные реакции сохраняются, однако теряется их эффективность и тонкость контроля.

Структуры лимбической системы вызывают вегетативные эффекты, проявляющиеся в органах дыхания, пищеварения, зрения, системе кровообращения, терморегуляции. Вегетативные эффекты возникают чаще при раздражении структур, чем при их выключении.

Мозжечок также участвует в контроле деятельности вегетативной нервной системы. Раздражение мозжечка вызывает в основном симпатические эффекты - повышение артериального давления, расширение зрачков, восстановление работоспособности утомленных мышц. После удаления мозжечка нарушается регуляция деятельности системы кровообращения, пищевого канала.

Кора большого мозга оказывает существенное влияние на регуляцию вегетативных функций. Топография вегетативных центров коры тесно сплетается с топографией соматических центров на уровне как чувствительной, так и двигательной зон. Это свидетельствует об одновременной интеграции в ней вегетативных и соматических функций. При электрическом раздражении моторной и промоторной областей и сигмовидной извилины отмечаются изменения в регуляции дыхания, кровообращения, потоотделения, деятельности сальных желез, моторной функции пищевого канала, мочевого пузыря.

    Патология высшей нервной деятельности. Неврозы. Виды неврозов. Причины возникновения. Методы получения неврозов в эксперименте. Психотерапия.

    Патогенное влияние алкоголя на организм. Характеристика проявлений. Стадии алкоголизма. Абстинентный синдром.

    Наркомании. Токсикомании.

Полинейропатия нижних конечностей - это распространенная проблема человечества. Многим знакомо ощущение зябкости, похолодания стоп, онемения и ползания мурашек по ногам, судорог в икроножных мышцах. А все это не что иное, как проявление полинейропатии нижних конечностей. И, к сожалению, далеко не всегда, имея подобные симптомы, человек обращается за медицинской помощью. А полинейропатия тем временем не дремлет и медленно прогрессирует. Постепенно слабеют мышцы, нарушается походка, возникают трофические изменения кожи. На этом этапе побороть болезнь становится сложнее, но все же еще возможно. Основной упор в лечении этого состояния современная медицина делает на медикаментозную терапию в сочетании с физиотерапевтическими методиками. В этой статье мы поговорим о лекарственных препаратах, способных устранить или свести к минимуму симптомы полинейропатии нижних конечностей.

Во многом лечение полинейропатии зависит от непосредственной причины заболевания. Так, например, если причиной является злоупотребление алкоголем, то необходимо в первую очередь полностью отказаться от употребления спиртных напитков. Если основа заболевания – сахарный диабет, то нужно добиться снижения уровня сахара в крови до нормы. Если полинейропатия является свинцовой, нужно прекратить контакт со свинцом и так далее. Но в связи с тем, что при различных видах полинейропатии наблюдаются сходные патологические процессы в самих нервных волокнах, то имеется и общий подход к лечению этого состояния. Сей подход основывается на том факте, что при полинейропатии нижних конечностей страдают от повреждающих факторов самые длинные нервы организма, и разрушается либо наружная оболочка нервного волокна, либо его внутренний стержень - аксон. Чтобы устранить симптомы полинейропатии, следует восстановить структуру нервного волокна, улучшить его кровоснабжение. Для этого используют различные лекарственные препараты. В зависимости от их принадлежности к той или иной химической группе или от направленности их действия принято делить препараты на несколько групп:

  • метаболические лекарственные средства;
  • средства, влияющие на кровоток;
  • витамины;
  • обезболивающие средства;
  • средства, улучшающие проведение нервного импульса.

Познакомимся с каждой группой препаратов поподробнее.

Эти группы препаратов являются одними из самых основных при лечении полинейропатии. И в большинстве случаев механизм действия одного препарата не ограничивается только лишь, например, метаболическим эффектом. Почти всегда лекарство работает в нескольких направлениях одновременно: и «борется» со свободными радикалами, и улучшает питание нервного волокна, и способствует усилению кровотока в зоне поврежденного нерва, и способствует заживлению. За счет такого многогранного эффекта, как говорится, одним выстрелом убивают даже не двух, а нескольких зайцев! Но есть и подводные камни. Далеко не все метаболические препараты эффективны в лечении полинейропатии нижних конечностей. К средствам, восстановительное действие которых наиболее изучено, относят препараты Тиоктовой кислоты, Актовегин, Инстенон. В последнее время все чаще стали использовать с этой же целью Церебролизин, Цитохром С, Мексидол и Цитофлавин, Пантотенат кальция. Обычно предпочтение отдается какому-то одному препарату (выбор основывается на истинной причине полинейропатии нижних конечностей). Так, например, при диабетической полинейропатии главным борцом выступает Тиоктовая кислота, при облитерирующем атеросклерозе сосудов нижних конечностей предпочтение отдается Актовегину. При назначении любого метаболического препарата необходимо соблюдать сроки применения, поскольку восстановление нервных волокон – процесс длительный. Именно поэтому в большинстве случаев лекарственное средство приходится принимать довольно долго, не менее 1 месяца, а чаще и дольше. Теперь более детально поговорим о каждом из препаратов.

Тиоктовая кислота является мощным антиоксидантом, ее эффект при лечении полинейропатии признан во всем мире. Применять лекарство необходимо от одного месяца до шести. Сначала 14-20 дней необходимо внутривенное вливание препарата (в дозе 600 мг в сутки), а затем можно переходить на таблетированные формы. Те же 600 мг, но уже в виде таблеток, принимаются за полчаса до еды в первой половине дня. При лечении важно понимать, что эффект от препарата не будет заметен в первые дни приема. Это не свидетельствует от отсутствии результата. Просто нужно время, чтобы препарат смог ликвидировать все метаболические проблемы на уровне нервных волокон. Тиоктовая кислота на фармацевтическом рынке представлена весьма широко: Октолипен, Альфа-липоевая кислота, Берлитион, Эспа-липон, Тиоктацид, Нейролипон, Тиогамма.

Актовегин является продуктом, получаемым из крови телят. Не стоит пугаться слова «кровь» в данном случае. От нее в Актовегине остаются только самые необходимые компоненты клеточной массы и сыворотки. В данном случае для лечения Актовегин необходимо первое время использовать внутривенно капельно по 10-50 мл (доза зависит от выраженности симптомов полинейропатии). Обычно внутривенные инфузии длятся 10-15 дней, а затем пациент продолжает терапию в виде таблеток (по 2-3 таблетки 3 раза в день) еще 2-3-4 месяца. Комплексное действие препарата позволяет одновременно лечить не только периферические нервы, но и «проблемы» головного мозга, сосудов конечностей. За рубежом Актовегин не так активно используется, как в странах СНГ и России, а в США и Канаде даже запрещен. Это связано в первую очередь с тем, что многочисленные исследования его эффективности не проводились.

Инстенон – комплексный препарат, содержащий 3 действующих вещества. Он расширяет сосуды, оказывает активирующее влияние на нейроны, способствует улучшению передачи импульсов между ними. Он обеспечивает усиление кровотока в тканях, страдающих от недостатка кислорода. За счет этого улучшается питание нервных волокон, и они быстрее «выздоравливают». Эффект дает курсовое применение: содержимое 1-й ампулы (2 мл) вводят внутримышечно каждый день в течение 14 дней. В дальнейшем Инстенон принимают внутрь по 1 таблетке 3 раза в день еще 1 месяц.

Церебролизин – это белковый препарат, полученный из головного мозга свиньи. Считается мощным нейрометаболическим препаратом. Он приостанавливает процесс разрушения в нервных клетках, повышает синтез белка внутри них, способен защитить их от вредного воздействия различных веществ. Церебролизин обладает выраженным нейротрофическим эффектом, что благоприятно сказывается на функционировании всей нервной системы. Церебролизин повышает шансы нервных клеток остаться живыми в условиях недостатка питательных веществ. Разрешено как внутримышечное, так и внутривенное введение препарата (по 5 мл и 10-20 мл соответственно) в течение 10-20 дней. Затем делают перерыв на 14-30 дней и, если нужно, повторяют курс.

Пантотенат кальция является препаратом, стимулирующим процессы регенерации, то есть восстановления (заживления) периферических нервов и не только их. Применяют его по 1-2 таблетки 3 раза в день курсами по 1 месяцу. Медленно, но уверенно препарат будет «латать» дефекты в оболочках нервов, способствуя восстановлению их функции.

Мексидол (Мексикор, Мексиприм, Нейрокс) - мощный антиоксидант. Это препарат, работающий на мембранном уровне. Он способствует восстановлению нормального строения мембран нервных клеток, тем самым обеспечивая их нормальную работу, ведь все нервные импульсы проводятся через мембраны. Мексидол повышает устойчивость нервных клеток к отрицательным стрессовым воздействиям окружающей среды. Доза препарата, способ введения и длительность применения весьма вариабельны в зависимости от исходного уровня неврологических расстройств. При необходимости начинают с внутривенного или внутримышечного введения по 5 мл, а затем переходят на таблетки (по 125-250 мг 3 раза в день). Суммарный срок лечения составляет 1,5-2 месяца. Препарат обладает хорошей переносимостью. При внутривенном введении может вызывать першение в горле, желание покашлять. Эти ощущения довольно быстро проходят и реже возникают, если препарат вводить капельно (на 0,9% растворе натрия хлорида), а не струйно.

Цитофлавин - еще один комплексный антиоксидантный препарат. Дополняя друг друга, компоненты препарата улучшают энергетический обмен в нейронах, противостоят действию свободных радикалов, помогают клеткам «выстоять» в условиях дефицита питательных веществ. Для лечения применяется по 2 таблетки 2 раза в день за полчаса до еды в течение 25 дней.

Многие из описанных выше антиоксидантных препаратов не являются популярными, если можно так выразиться, при лечении полинейропатии нижних конечностей. Чаще применяют Тиоктовую кислоту, Актовегин. Остальные нейрометаболические препараты чаще используют при «проблемах» с центральной нервной системой, но не следует забывать, что они оказывают положительное влияние и на периферию. Некоторые препараты имеют незначительный «стаж» использования (например, Мексидол), и все сферы их влияния еще недостаточно изучены.

Наиболее распространенным препаратом для улучшения кровотока при поражении нервов нижних конечностей является Пентоксифиллин (Вазонит, Трентал). Препарат улучшает кровоснабжение в самых мелких сосудах всего организма в целом за счет их расширения. С усиленным током крови к нейронам попадает больше питательных веществ, что означает увеличение шансов на восстановление. Стандартная схема применения Пентоксифиллина выглядит так: внутривенно капельно по 5 мл препарата, предварительно растворенного в 200 мл 0,9% раствора натрия хлорида, в течение 10 дней. Потом таблетки по 400 мг 2-3 раза в день до 1 месяца. Для большинства препаратов, используемых для лечения полинейропатии, работает такое правило: малая выраженность симптомов - таблетированные формы препаратов. Поэтому, если симптомы заболевания нерезкие, вполне можно обойтись таблетированным месячным курсом Пентоксифиллина, пропустив инъекции.

Лечение полинейропатии нижних конечностей никогда не обходится без применения витаминов. Самыми эффективными считаются витамины группы В (В1, В6 и В12). Один их недостаток в пище сам по себе может вызвать симптомы поражения периферических нервов. Усиливая эффекты друг друга, при одновременном применении эти препараты способствуют восстановлению оболочек периферических нервов, обладают обезболивающим эффектом, в какой-то мере являются антиоксидантами. Комбинированные формы (когда в состав одного препарата входят сразу все три витамина) предпочтительнее, нежели однокомпонентные. Есть и инъекционные формы, и таблетированные. Некоторые инъекционные формы (Мильгамма, Комбилипен, КомплигамВ, Витаксон, Витагамма) содержат дополнительно лидокаин, что усиливает эффект обезболивания. Такие препараты, как Нейромультивит и Нейробион содержат «чистый» комплекс витаминов группы В без лидокаина. При лечении чаще прибегают к комбинации инъекционных форм витаминов в начале лечения и таблетированных - в последующем. В среднем витамины группы В используются не менее 1 месяца.

Относительно недавно в лечении заболеваний периферических нервов стали применять комплексный препарат Келтикан. Это биологически активная добавка. Он содержит уридинмонофосфат, витамин В12, фолиевую кислоту. Препарат предоставляет строительные компоненты для восстановления оболочек периферических нервов. Применяют Келтикан по 1 капсуле 1 раз в день в течение 20 дней.

Для лечения полинейропатии нижних конечностей используются медицинские препараты разных групп. Лечение обычно комплексное, вводится разом или поэтапно (зависит от основной причины возникновения полинейропатии). Используются следующие группы препаратов:

  1. Метаболические средства;
  2. Анальгетики (в роли них могут выступать антидепрессанты центрального действия и наркотические анальгетики);
  3. Витамины;
  4. Препараты для улучшения кровообращения в нервных волокнах;
  5. Препараты для улучшения проводимости нервных тканей.

Рассмотрим подробнее все группы средств и методы лечения нейропатии.

Подробнее про лечение препаратами

Полинейропатия нижних конечностей – это неврологическое расстройство, которое в медицине не считается обособленным заболеванием.

Мнение эксперта

Приходько Аркадий Аркадьевич

Врач-ревматолог -- городская поликлиника, Москва.

Задайте свой вопрос врачу-неврологу бесплатно

Ирина Мартынова. Закончила Воронежский государственный медицинский университет им. Н.Н. Бурденко. Клинический ординатор и невролог БУЗ ВО \"Московская поликлиника\".

Образование: ФГБНУ НИИР им.В.А.Насоновой, Астраханская государственная медицинская академия.

Под воздействием различных причин в организме человека происходит разрушение нервных тканей, а в результате этого нарушается передача нервного импульса и кровоснабжение поврежденного участка тела.

Нейропатия конечностей опасна тем, что при запущенных формах развиваются параличи и парезы. А в случае с сахарным диабетом и так называемым синдромом «диабетической стопы» это заболевание грозит ампутацией конечности. Всех этих осложнений можно избежать, если вовремя обратиться к доктору.

Вот некоторые причины развития этого заболевания — именно от них будет зависеть выбранная схема лечения:

  1. Сахарный диабет;
  2. Алкоголизм;
  3. Отравление токсинами;
  4. Обширные воспалительные процессы внутренних органов;
  5. Системные нарушения в работе нервной системы и др.

Определившись с причиной, при помощи разных методов диагностики врач подбирает пациенту самый подходящий тип лечения. Оно состоит из четырех этапов, которые могут вводиться постепенно, а могут быть назначены одновременно:

  1. Устранение или коррекция причины возникновения заболевания;
  2. Восстановление нервной ткани и проводимости нервного импульса;
  3. Восстановление кровоснабжения;
  4. Обезболивающая терапия.

Для лечения каждой болезни-первопричины используются свои виды терапии.

В этой же статье мы рассмотрим основные препараты и методы, при помощи которых лечится именно полинейропатия. Самая распространенная схема лечения включает в себя назначение препаратов и физиопроцедур. Задачи лечения:

  1. Восстановление нервной ткани;
  2. Улучшение проводимости импульса;
  3. Устранение неприятных симптомов (боль, непроизвольные подергивания, отсутствие чувствительности и др.).

Современные лекарства успешно справляются со всеми поставленными задачами.

Приведем краткий обзор групп медикаментов и их роль в лечении болезни.

Группа препаратов Общий механизм действия Названия лекарств, входящих в группу
Метаболические средства Улучшают общий обмен веществ в поврежденных тканях. Улучшают их питание и оказывают антиоксидантное действие Актовегин, Тиоктовая кислота, Инстенон, Мексидол, Мексиприм, Цитофлавин, Пантотенат кальция, Церебролизин, Пентоксифиллин и др.
Анальгетики Устраняют болевой симптом Амитриптилин, Дулоксетин, Трамадол и др.
Средства, улучшающие кровоснабжение Разогревают, способствуют притоку крови Мази для наружного применения с красным перцем: Капсикам, Артроцин и др.
Витамины Восстанавливают нервное волокно, улучшают проводимость и питают поврежденные ткани Витамины группы В: Комбилипен, Комплигам, Мильгамма и др.
Средства, улучшающие проведение нервного импульса Действуют на нервно-мышечную проводимость Нейромидин, Аксамон и др.

Показания к назначению медикаментозной терапии

Врач принимает решение о назначении медикаментозной терапии при наличии основных симптомов (и, конечно, по результатам диагностики):

  1. Разные виды боли:
  • Колющая;
  • Жгучая;
  • Режущая;
  • Ноющая.
  1. Сухость кожи, образование язв;
  2. Бледность кожных покровов, цианоз;
  3. Холодные конечности, липкий пот;
  4. Мышечная атрофия (заметное уменьшение мышечной массы);
  5. Синдром «ватных» ног;
  6. «Диабетическая стопа»;
  7. Отсутствие чувствительности подошв и нервных рефлексов;
  8. Частые и болезненные судороги в икроножных мышцах и пальцах ног;
  9. Непроизвольные мышечные сокращения и движения;
  10. Отечность и др.

Больной, обращаясь к доктору и говоря о своих симптомах, дает ему лишь приблизительную картину болезни.

Противопоказания

Противопоказаниями к терапии данными средствами может быть лишь аллергия и особенности болезни-первопричины. Препаратов существует великое множество, и врач без труда среди них найдет тот, который подходит каждому отдельно взятому пациенту. При назначении оцениваются абсолютно все параметры: и болезнь-причина, и индивидуальные реакции организма человека на лекарства, а также, в первую очередь, ожидаемый эффект.

Кроме этого, каждый конкретный препарат имеет свои противопоказания, и это тоже необходимо учитывать. На приеме у доктора нужно рассказать обо всех своих болезнях и особенностях организма. В медицинской карте порой указано не все.

Про злоупотребление алкоголем тоже нужно сказать честно, заранее оценить примерное потребляемое количество. В организме под его действием возникают необратимые процессы, которые могут спровоцировать непредвиденную реакцию на лекарства.

Болезни нервов тоже стоит подчеркнуть особо. В качестве анальгетиков при полинейропатии назначаются препараты, действующие на ЦНС (центральную нервную систему).

Они могут спровоцировать ухудшение состояния при сопутствующих нервных заболеваниях.

Обзор препаратов

У каждой группы препаратов есть свои особенности, каждая из них предназначена для достижения определенного эффекта, а в совокупности они полностью восстанавливают нервные волокна и чувствительность кожи.

Прекрасно дополняют терапию медикаментами физиопроцедуры.

Метаболические средства

Эти лекарства наиболее часто применяются при полинейропатии любого происхождения. Они имеют широкий спектр действия – от метаболического до восстанавливающего нервное волокно.

При назначении выбирается только один препарат, и чаще всего он согласуется с основным заболеванием, которое породило полинейропатию.


Например, при диабете чаще всего назначается Берлитион или Октолипен – это производные тиоктовой кислоты. Она обладает не только метаболическим действием, но и тормозит окислительные процессы, возникающие под действием свободных радикалов. Этим она сохраняет целостность тканей и восстанавливает нервные оболочки. Так как это вещество еще и снижает уровень холестерина в крови, то оно благоприятно действует и на всю сердечно-сосудистую систему. Идеальное лекарство при сахарном диабете в сочетании с атеросклерозом. Пьется препарат длительно, не менее одного месяца. Эффект накопительный и может быть не заметен с первого приема. Противопоказаниями будут: беременность, аллергические реакции, возраст до 18 лет, грудное кормление. Цена начинается от 350 рублей, в зависимости от фирмы-изготовителя. Отечественные препараты — дешевле.


Актовегин – это вытяжка из крови молодых телят. Взяты необходимые компоненты сыворотки. Препарат обладает комплексным действием и питает не только нервную ткань периферических частей тела, но и головной мозг. Прекрасно помогает при полинейропатии, вызванной атеросклерозом. Противопоказаниями будут: индивидуальная непереносимость, отек легких, отеки, возраст до 18 лет. Цена зависит от формы выпуска. Диапазон от 500 до 1500 рублей.


Церебролизин – белковая фракция, получаемая из мозга свиней. Очень сильный и эффективный препарат, действует напрямую на нервную ткань: улучшает ее трофику и способствует самовосстановлению. Применяется чаще всего при алкогольной полинейропатии. Противопоказания: острая почечная недостаточность, эпилепсия, повышенная чувствительность к компонентам лекарства. Цена от 1500 рублей, выпускается в ампулах.

Антиоксидантные средства

Антиоксиданты воздействуют на нервную ткань на уровне мембраны. Связывая свободные радикалы (элементы, разрушающие оболочки клеток), они препятствуют разрушению мембраны и увеличивают естественный период самовосстановления.

Это очень важная часть терапии – восстановление целостности мембранных клеток, потому что именно через клеточные оболочки передается нервный импульс.

Курс антиоксидантов всегда длительный по времени (около 1,5-2 месяцев) и должен проводиться строго по схеме. Это позволяет в будущем исключить развитие рецидива.

К антиоксидантным препаратам относятся:


Мексидол (Мексиприм – отечественный аналог) – это в чистом виде антиоксидантное средство, обладающее в некоторой степени и метаболической активностью. Его дополнительным эффектом считается повышение стрессоустойчивости мембран нервных клеток к неблагоприятным факторам окружающей среды. Противопоказания к лекарству: острые состояния печени и почек, индивидуальная непереносимость. Цена зависит от формы выпуска (таблетки и ампулы) – от 400 рублей.

Цитофлавин – обладает антиоксидантной активностью, повышает стрессоустойчивость нервной клетки и даже в условиях дефицита питания поддерживает внутренние энергетические резервы на должном уровне. Противопоказания: возраст до 18 лет, аллергические реакции на компоненты препарата. Цена от 400 рублей.

Пентоксифиллин (Агапурин, Вазонит, Трентал) – механизм действия препарата заключается в его способности к расширению самых мелких сосудов организма и, за счет этого эффекта, увеличении их кровоснабжения. Приток крови несет обилие питательных веществ и возвращает мембранным оболочкам целостность. Противопоказания: острый инфаркт миокарда, порфирия, глазные кровоизлияния, беременность, период кормления, геморрагический инсульт. Цена от 50 рублей (для российских аналогов).

Витамины

Курс витаминов – это неотъемлемая часть терапии поражений нижних конечностей. Используются витамины группы В (В1, В6, В12), они отвечают за питание нервных волокон, их проводимость и питание. Даже банальная нехватка этих веществ в ежедневном рационе уже может вызвать все симптомы нейропатии.

Например, покалывание в мышцах ног.

Доктор в первую очередь анализирует именно этот параметр и при диагностике в первую очередь старается исключить именно дефицит витаминов.

Витамины группы В выполняют роль вспомогательной терапии, усиливая эффекты основных препаратов. Наиболее часто используются:


Комбилипен – комплексный препарат, в состав которого входят витамины группы В и аскорбиновая кислота + лидокаин. Курс назначается на 10 дней. Противопоказания: непереносимость компонентов, сердечно-сосудистая недостаточность, беременность и кормление грудью. Цена от 300 рублей за 10 ампул.

Комплигам В – еще один аналог Комбилипена, обладает сходными свойствами и противопоказаниями. Цена чуть ниже – от 250 руб.

Нейромультивит – лекарственное средство для людей, страдающих аллергией на лидокаин. Состав полностью идентичен Комбилипену, за исключением лидокаина. Противопоказания: беременность, кормление грудью, детский возраст, сердечно-сосудистая недостаточность. Цена от 350 рублей.

Мильгамма – импортный аналог Комбилипена. Цена от 380 рублей.

Обезболивающие

При полинейропатии в качестве болеутоляющих используются разные группы средств.

Это связано с тем, что обычные анальгетики в этом случае бессильны, ведь возникают проблемы именно центрального характера, связанные с нервной системой.

Для обезболивания используются следующие группы препаратов:

  1. Наркотические анальгетики;
  2. Антидепрессанты;
  3. Противосудорожные;
  4. Местные средства.

Рассмотрим подробнее эти группы с примерами.

Наркотические анальгетики


Среди них чаще всего назначается Трамадол (Трамал). Обладает мощным обезболивающим действием, применяется при запущенных формах полинейропатии, которые сопровождаются сильными болями. Препарат также используется в онкологии из-за хорошей переносимости и высокой активности.

Противопоказания: совместный прием с алкоголем, возраст до 1 года, индивидуальная непереносимость. Цена от 150 рублей.

Антидепрессанты

Кроме того, что эти средства обладают обезболивающей активностью, они еще и повышают настроение больного. Но этот эффект вторичен.

Ценность антидепрессантов в терапии полинейропатии – это их болеутоляющее воздействие на центральные отделы нервной системы.

Используются следующие препараты:

Амитриптилин – увеличивает обратный захват серотонина (гормона радости), повышает настроение и стрессоустойчивость в целом. Обладает центральным обезболивающим действием. Противопоказания: инфаркт миокарда, глаукома, острая интоксикация, грудное вскармливание, астма, маниакально-депрессивный психоз, алкоголизм, гипертензия (внутриглазная). Цена от 30 руб.

Дулоксетин – повышает порог болевой чувствительности в мозге. Противопоказания: закрытоугольная глаукома, сочетание с ингибиторами МАО (моноаминооксидазы), аллергии, почечная недостаточность, гипертензия, грудное вскармливание, возраст до 18 лет. Цена от 1800 рублей.

Противосудорожные

Используются при лечении нейропатии с двумя целями: снятие боли и устранение непроизвольных сокращений разных частей ног (дрожи).

Финлепсин – аналогичным образом снижает активность нервных импульсов в клетках ЦНС. Противопоказания: заболевания костного мозга, атриовентрикулярная блокада, порфирия, прием лития, индивидуальная непереносимость. Цена от 300 рублей.

Габапентин – аналог Прегабалина несколько иной структуры. Противопоказания: панкреатит, аллергические реакции, галактозная непереносимость, возраст до 3-х лет, беременность. Цена от 300 руб.

Местные средства

Чтобы при лечении патологии достичь нужного эффекта, следует воздействовать на проблему как изнутри, так и снаружи. При полинейропатии наружно используются мази и крема, обладающие разогревающим действием.

Они моментально улучшают кровообращение и устраняют боль.

В основе мазей чаще всего лежит капсаицин – это вытяжка из красного перца, он входит в состав таких мазей, как:

  1. Капсикам;
  2. Артроцин;
  3. Адов корень и др.

В Капсикаме содержание действующего вещества больше, чем в мазях, которые выпускают в виде БАДов, поэтому лучше покупать его.

Но в любом случае, необходимо посоветоваться с врачом.

Улучшение проведения нервного импульса

Ухудшение проведения нервного импульса характеризуется:

  1. Полной или частичной потерей чувствительности кожи в месте поражения;
  2. Мышечной атрофией.

При возникновении этих симптомов врач прибегает к назначению препаратов – антихолинэстеразных средств. Они усиливают нервно-мышечную проводимость. Через некоторое время после начала их приема возвращается чувствительность и прибавляются силы в мышцах, уходит синдром «ватных ног». Применяются следующие лекарства:

Нейромидин – антихолинэстеразное средство, улучшающее нервно-мышечную проводимость. Выпускается в ампулах и ставится курсами по 10 дней. Противопоказания: эпилепсия, вестибулярные расстройства, стенокардия и острые сердечные состояния, астма, брадикардия, непроходимость кишечника и мочевого пузыря, язвенная болезнь желудка и двенадцатиперстной кишки, беременность, лактация, детский возраст до 18 лет, аллергии. Цена от 1600 рублей за 10 ампул.

Аксамон, Амиридин, Ипигрикс – все это более дешевые отечественные аналоги Нейромидина.

Народные средства при полинейропатии ног

В первую очередь важно помнить, что любое народное средство должно вводиться в терапевтический курс только с одобрения врача. Вот наиболее часто используемые:

  1. Сырой желток взбивается с оливковым маслом и к этой смеси добавляется сок моркови и 2 ложки меда. Все тщательно перемешивается и принимается внутрь 2 раза в день до еды. Рецепт применяют при алкогольной полинейропатии.
  2. 1 столовая ложка измельченного лаврового листа смешивается в термосе с тремя столовыми ложками пажитника, заливают одним литром свежекипяченой горячей воды и настаивают 2 часа. Принимается в малых количествах в течение дня. Рецепт эффективен при диабетической форме болезни.
  3. Соляной раствор. На полведра теплой воды добавляют стакан соли и 2/3 стакана уксуса. Парить ноги по 20 минут каждый день в течение месяца.

Вывод

Об эффективности проведенной терапии можно судить по отсутствию симптомов заболевания и увеличению мышечной активности ног. Обилие препаратов в современной медицине гарантирует полное излечение заболевания, главное условие – это своевременное обращение врачу.

Нервная система управляет скелетными мышцами через сеть нейронов, которые связаны с мышечными волокнами через специальные соединения. Нервный импульс (командный сигнал) может активизировать все или некоторые из волокон с легким или интенсивным возбуждением.

Комплекс «нерв — мышца» называют нейромоторной частью организма. Мышцы разных типов могут работать в одной связке, чтобы обеспечить составное мышечное движение. Всеми сокращениями скелетных мышц управляет мозг. Чем лучше проводимость мышечных волокон, тем более интенсивным может быть возбуждение и гораздо быстрее и сильнее сработает возбужденный мускул. Поэтому определение мышцы «высшего качества» связано прежде всего с его нервной проводимостью.

Снабжение мышечных тканей нервами обеспечивает их связь с центральной нервной системой и называется иннервацией. Замечено, что чем более иннервирована мышца, тем она сильнее и тем выше ее способность сокращаться с большей легкостью и быстротой.

Кроме того, иннервация мышц напрямую связана со скоростью и интенсивностью протекания анаболических процессов. Фактически мышцы, которые связаны с миелинизированными нейронами (теми, которые окружены миелиновыми оболочками, служащими своего рода изоляционным материалом и способствующими прохождению более сильного нейросигнала), обладают большей силой и способностью к росту.

Если действительно существуют мышцы «высшего качества», то они должны обладать превосходной нервной проводимостью, превосходными «исполнительными способностями» и превосходной способностью использовать энергию.

Возникает вопрос: а возможно ли все это?

И сразу напрашивается ответ — скорее да, чем нет.

Существуют доказательства, что повторное интенсивное возбуждение сигнализирует мышце, что необходимо увеличить нейромускульную эффективность через иннервацию. Как отмечено ранее, в процессе иннервации усиливаются связи ЦНС с мышцами. Напрашивается вывод, что этот процесс может значительно улучшить мышечную силу и скорость сокращения даже без какого-либо изменения в массе мышцы. Но различные мышечные действия требуют различных раздражителей с различными нейромышечными регуляторами. Другими словами, чтобы иметь превосходную работоспособность, мышца должна быть связана с сетью нервных окончаний, которые при помощи импульсов произведут все необходимые мышечные действия.

В качестве воздействия на мышцы существуют два типа физической нагрузки: аэробные и анаэробные. Аэробные упражнения задействуют в основном медленные мышечные волокна. Тогда как аэробные тренировки задействуют быстрые мышечные волокна.

Как же связать мышцу с центральной нервной системой?

Это очень обширная тема, но мы постараемся объяснить все коротко и просто. В этом процессе должна быть задействована все та же иннервация. Иннервация мышцы может быть улучшена с помощью комплекса стимулирующих сигналов, а следовательно, и через комплекс специальных упражнений и тактические тренировки.

Изменение интенсивности тренировки — один из способов повлиять на иннервацию, этот же способ можно назвать лучшим, когда речь заходит об улучшении таких качеств, как сила, скорость, быстрота сокращений и выносливость.

Эта изнурительная комбинация упражнений, развивающих силу, скорость, быстроту сокращения и выносливость, должна повторяться несколько раз в неделю.

Повторяющийся комплекс упражнений вынуждает мускулы приспосабливаться, увеличивая эффективность нейропроводимости, улучшая все качества мышц одновременно.

При этом мы можем достичь прямо-таки поразительных результатов. Например, бегун на длинные дистанции может улучшить свои скоростные показатели, не ставя под угрозу выносливость, что позволит ему побить собственный рекорд скорости как на коротких дистанциях, так и на длинных.

Спортсмены, занимающиеся боевыми искусствами и боксом, тренирующие скорость, быстроту и выносливость, могут развить дополнительную силу мышц и таким образом увеличить силу удара, стремительность движения, силу захвата, а также общее сопротивление усталости при выполнении интенсивных физических упражнений.

Нервная проводимость мышцы — это только часть того, что определяет мышцы высшего качества.



gastroguru © 2017