Дыхательные объемы. Дыхательный объем и минутный объем дыхания (МОД), дыхательный эквивалент Как считать минутный объем дыхания формула

Объемы дыхания определяются спирометрически и должны причисляться к наиболее показательным вентиляционным величинам.

Минутный объем дыхания

Под этим понимают количество воздуха, вентилируемое при спокойном дыхании за минуту.

Методика определения. Испытуемому, соединенному со спирографом, дают сначала возможность несколько минут привыкать к не совсем обычному для него дыханию. После того как имеющаяся вначале в большинстве случаев гипервентиляция уступит место спокойному дыханию, определяют минутный объем дыхания, умножая объем дыхания при вдохе на число дыханий в минуту. При неспокойном дыхании измеряют объемы, вентилируемые за каждое дыхание на протяжении минуты и результаты складывают.

Нормальные величины. Должный минутный объем дыхания получают, умножая должный основный обмен (должное число калорий за 24 часа в сопоставлении с общей поверхностью тела) на 4,73.

Полученные величины будут в пределах 6-9 л. На них влияют высота метаболизма (интенсивность) (например, тиреотоксикоз) и величина вентиляции мертвого пространства. Это позволяет иногда относить уклонения от нормы за счет патологии одного из этих факторов.

При замене дыхания воздухом на дыхание кислородом у здоровых лиц не происходит изменений в минутном объеме дыхания. Наоборот, при очень выраженной дыхательной недостаточности минутный объем при дыхании кислородом уменьшается и одновременно повышается потребление в минуту кислорода. Наступает «успокоение дыхания». Объясняется такой эффект лучшей артериализацией крови при дыхании чистым кислородом по сравнению с дыханием атмосферным воздухом. Это еще больше обращает на себя внимание при нагрузке.

Сравните с этим сказанное в разделе о кардио-пульмональном (сердечно-легочном) кислородном дефиците.

Проба на максимальный объем выдоха (проба Тиффно)

Под максимальным объемом выдоха понимают экспираторную работу легких за секунду, т. е. количество воздуха, выдыхаемой с силой за секунду после максимального вдоха.

Длительность выдоха у больных эмфиземой больше, чем у здоровых лиц. Этот факт, впервые зарегистрированный на спирометре Hutchinson, был затем подтвержден Tiffeneau и Pinelli, которые указали и на совершенно определенные соотношения его с жизненной емкостью.

В немецкой литературе количество воздуха, выдыхаемое в пробе за секунду, называется «полезной долей жизненной емкости», англичане говорят о «timed capacity» (емкость за определенный промежуток времени), во французской литературе применяется термин «capacite pulmonaire utilisable a l’effort» (легочная емкость, утилизируемая при усилии).

Эта проба приобретает особое значение потому, что она позволяет делать общие выводы о широте дыхательных путей и соответственно о величине сопротивления дыханию в бронхиальной системе, а также об эластичности легких, подвижности грудной клетки и силе дыхательной мускулатуры.

Нормальные величины. Максимальный объем выдоха выражается в процентах к жизненной емкости. У здоровых он равняется 70-80% жизненной емкости. При этом в первую половину секунды должно быть экспирировано не менее 55% имеющейся жизненной емкости.

У здоровых для полного выдоха после глубокого вдоха нужно 4 секунды. Через 2 секунды выдыхают 94%, через 3 секунды - 97% жизненной емкости.

Объем выдоха снижается с возрастом с 83% жизненной емкости в юности до 69% в старости. Этот факт подтвержден Gitter в его обширных исследованиях более чем на 1000 промышленных рабочих. Tiffeneau считает нормальным такой максимальный объем выдоха а первую секунду, который составляет 83,3% истинной или фактической емкости, Biicherl - 77,3% для мужчин и 82,3% для женщин.

Методика выполнения. Применяют спирограф, кимограф которого быстро передвигает ленту (не менее 10 мм/сек). После записи жизненной емкости обычным способом испытуемому предлагают еще раз сделать максимальный вдох, чуть задержать дыхание, потом быстро и насколько возможно глубоко выдохнуть. Некоторого упрощения можно достигнуть, если запись так называемой экспирограммы провести с одновременным определением жизненной емкости и максимального объема выдоха за один выдох после максимального вдоха.

Оценка. Проба Tiffeneau считается надежным критерием для распознавания обструкционного бронхита и обусловленной им эмфиземы. В этих случаях при нормальной жизненной емкости находят значительное снижение максимального объема выдоха, тогда как при рестриктивной вентиляционной недостаточности жизненная емкость хотя и снижена, но процентная доля максимального объема выдоха остается нормальной.

Так как причиной обструкционных нарушений наряду с органически обусловленными препятствиями в дыхательных путях может быть также функциональный спазм, для дифференциально-диагностического выявления подлинной причины рекомендуется проба с астмолизином.

Проба с астмолизином . После предварительного определения жизненной емкости и максимального объема выдоха вводят подкожно 1 мл астмолизина или гистамина и через 30 минут повторно определяют те же величины. Если полученные вентиляционные величины указывают на тенденцию к нормализации, то речь идет о функциональном компоненте обструкционного бронхита.

Статью подготовил и отредактировал: врач-хирург

Общее количество нового воздуха , входящего в дыхательные пути за каждую минуту, называют минутным объемом дыхания. Он равняется произведению дыхательного объема на частоту дыхания в минуту. В покое дыхательный объем составляет около 500 мл и частота дыхания - около 12 раз в минуту, следовательно, минутный объем дыхания составляет в среднем около 6 л/мин. Человек в течение короткого периода времени может жить при минутном объеме дыхания около 1,5 л/мин и частоте дыхания 2-4 раза в минуту.

Иногда частота дыхания может вырасти до 40-50 раз в минуту, а дыхательный объем у молодого взрослого мужчины может достигать примерно 4600 мл. Минутный объем при этом может оказаться больше 200 л/мин, т.е. в 30 раз и более, чем в покое. Большинство людей не способны поддерживать эти показатели даже на уровне 1/2-2/3 приведенных значений в течение более 1 мин.

Главной задачей легочной вентиляции является постоянное обновление воздуха в газообменных зонах легких, где воздух находится недалеко от легочных капилляров, наполненных кровью. К таким зонам относятся альвеолы, альвеолярные мешочки, альвеолярные протоки и бронхиолы. Количество нового воздуха, достигающего этих зон за минуту, называют альвеолярной вентиляцией.

Некоторое количество вдыхаемого человеком воздуха не доходит до газообменных зон, а просто наполняет дыхательные пути - нос, носоглотку и трахею, где газообмена нет. Этот объем воздуха называют воздухом мертвого пространства, т.к. он не участвует в газообмене.

При выдохе воздух, наполняющий мертвое пространство , выдыхается первым - до того, как в атмосферу возвращается воздух из альвеол, поэтому мертвое пространство является дополнительным элементом при удалении выдыхаемого воздуха из легких.

Измерение объема мертвого пространства . На рисунке показан простой способ измерения объема мертвого пространства. Испытуемый делает резкий глубокий вдох чистым кислородом, наполняя им все мертвое пространство. Кислород смешивается с альвеолярным воздухом, но не заменяет его полностью. После этого испытуемый делает выдох через нитрометр с быстрой записью (полученная при этом запись приведена на рисунке).

Первая порция выдыхаемого воздуха состоит из воздуха, который находился в мертвом пространстве дыхательных путей, где он был полностью заменен кислородом, поэтому в первой части записи присутствует только кислород и концентрация азота равна нулю. Когда до нитрометра начинает доходить альвеолярный воздух, концентрация азота резко возрастает, потому что содержащий большое количество азота альвеолярный воздух начинает смешиваться с воздухом из мертвого пространства.

С выходом все большего количества выдыхаемого воздуха из дыхательных путей вымывается весь воздух, находившийся в мертвом пространстве, и остается только альвеолярный воздух, поэтому концентрация азота на правой части записи вырисовывается как плато на уровне содержания его в альвеолярном воздухе. Серая область на рисунке представляет собой воздух, который не содержит азота и является мерой объема воздуха мертвого пространства. Для точного измерения используют следующее уравнение: Vd = Серая область х Ve / Розовая область + Серая область, где Vd - воздух мертвого пространства; Ve - общий объем выдыхаемого воздуха.

Для примера: пусть площадь серой области на графике составляет 30 см, розовой области - 70 см, а общий объем выдоха - 500 мл. Мертвое пространство в этом случае равно 30: (30 + 70) х 500 = 150 мл.

Нормальный объем мертвого пространства . Нормальный объем воздуха в мертвом пространстве у молодого взрослого мужчины составляет около 150 мл. С возрастом эта цифра немного увеличивается.

Анатомическое мертвое пространство и физиологическое мертвое пространство. Приведенный ранее способ измерения мертвого пространства позволяет измерить весь объем системы дыхания, кроме объема альвеол и расположенных около них зон газообмена, который называют анатомическим мертвым пространством. Но иногда некоторые из альвеол не функционируют или функционируют частично из-за отсутствия или уменьшения кровотока в близлежащих капиллярах. С функциональной точки зрения эти альвеолы также представляют собой мертвое пространство.

При включении альвеолярного мертвого пространства в общее мертвое пространство последнее называют не анатомическим, а физиологическим мертвым пространством. У здорового человека анатомическое и физиологическое пространства почти равны, но если у человека в некоторых участках легких часть альвеол не функционирует или функционирует только частично, объем физиологического мертвого пространства может оказаться в 10 раз больше анатомического, т.е. 1-2 л. Эти проблемы будут рассматриваться далее в связи с газообменом в легких и некоторыми болезнями легких.

Учебное видео - показатели ФВД (спирометрии) в норме и при болезни

При проблемах с просмотром скачайте видео со страницы

Дыхание - это единый процесс, осуществляемый целостным организмом и состоящий из трех неразрывных звеньев: а) внешнего дыхания, то есть газообмена между внешней средой и кровью легочных капилляров; б) переноса газов, осуществляемого системами кровообращения; в) внутреннего (тканевого) дыхания, то есть газообмена между кровью и клеткой, в процессе которого клетки потребляют кислород и выделяют углекислоту (рис. ).

Органы грудной полости (а). Периферическая и центральная нервная система (б).
а: 1 - полость носа, 2 - гортань, 3 - трахея, 4 - бронхи, 5 - верхушка легкого, 6 - ротовая часть глотки, 7 - ветви нижне-долевого бронха, 8 - диафрагма, 9 - альвеолы.
б: 1 - головной мозг, 2 - спинной мозг, 3 - седалищный нерв, 4 - зрительный нерв, 5 - лицевой нерв, 6 - блуждающий нерв, 7 - узлы симпатического ствола, 8 - солнечное сплетение, 9 - межреберные нервы, 10 - поясничное сплетение, 11 - крестцовое сплетение, 12 - бедренный нерв, 13 - запирательный нерв, 14 - локтевой нерв, 15 - срединный нерв, 16 - лучевой нерв, 17 - плечевое сплетение.

Основу тканевого дыхания составляют сложные окислительно-восстановительные реакции, сопровождающиеся освобождением энергии, которая необходима для жизнедеятельности организма.

Работоспособность человека (в частности, спортсмена) определяется в основном тем, какое количество кислорода (O 2) забрано из наружного воздуха в кровь легочных капилляров и доставлено в ткани и клетки. Указанные выше три системы дыхания тесно связаны между собой и обладают взаимной компенсацией. Так, при сердечной недостаточности наступает одышка, при недостатке O 2 в атмосферном воздухе (например, в среднегорье) увеличивается количество эритроцитов - переносчиков кислорода, при заболеваниях легких наступает тахикардия.

Система внешнего дыхания

Система внешнего дыхания состоит из легких, верхних дыхательных путей и бронхов, грудной клетки и дыхательных мышц (межреберные, диафрагма и др.).

Внешнее дыхание обеспечивает обмен газов между альвеолярным воздухом и кровью легочных капилляров, то есть насыщение венозной крови кислородом и освобождение ее от избытка углекислоты, что свидетельствует о взаимосвязи функции внешнего дыхания с регуляцией кислотно-щелочного равновесия.

В физиологии дыхания функцию внешнего дыхания разделяют на три основные процесса - вентиляцию, диффузию и перфузию (кровоток в капиллярах легких).

Под вентиляцией следует понимать обмен газа между альвеолярным и атмосферным воздухом. От уровня альвеолярной вентиляции зависит постоянство газового состава альвеолярного воздуха.

Альвеолярная вентиляция равна разности между объемом дыхания в минуту и объемом «мертвого» пространства, умноженной на число дыханий в минуту. Объем вентиляции зависит прежде всего от потребности организма в кислороде при выведении определенного количества углекислого газа, а также от состояния дыхательных мышц, проходимости бронхов и пр.

Не весь вдыхаемый воздух достигает альвеолярного пространства, где происходит газообмен. Если объем вдыхаемого воздуха равен 500 мл, то 150 мл остается в «мертвом» пространстве, и за минуту через дыхательную зону легких в среднем проходит (500 мл - 150 мл) х 15 (частота дыхания) = 5250 мл атмосферного воздуха. Эта величина называется альвеолярной вентиляцией. «Мертвое» пространство возрастает при глубоком вдохе, его объем зависит также от массы тела и позы обследуемого.

Диффузия - это процесс пассивного перехода кислорода из легких через альвеоло-капиллярную мембрану в гемоглобин легочных капилляров, с которыми кислород вступает в химическую реакцию.

Перфузия (орошение) легких кровью по сосудам малого круга. Об эффективности работы легких судят по соотношению между вентиляцией и перфузией. Указанное соотношение определяется числом вентилируемых альвеол, которые соприкасаются с хорошо перфузируемыми капиллярами. При спокойном дыхании у человека верхние отделы легкого расправляются полнее, чем нижние. При вертикальном положении нижние отделы перфузируются кровью лучше, чем верхние.

Легочная вентиляция повышается параллельно увеличению потребления кислорода, причем при максимальных нагрузках у тренированных лиц она может возрастать в 20-25 раз по сравнению с состоянием покоя и достигать 150 л/мин и более. Такое увеличение вентиляции обеспечивается возрастанием частоты и объема дыхания, причем частота может увеличиться до 60-70 дыханий в минуту, а дыхательный объем - с 15 до 50% жизненной емкости легких (H. Monod, M. Pottier, 1973).

В возникновении гипервентиляции при физических нагрузках важную роль играет раздражение дыхательного центра в результате высокой концентрации углекислого газа и водородных ионов при высоком уровне молочной кислоты в крови.

Гипервентиляция, вызываемая физическими нагрузками, всегда ниже максимальной вентиляции, и увеличение диффузной способности кислорода в легких во время работы также не является предельным. Поэтому, если отсутствует легочная патология, дыхание не ограничивает мышечную работу. Важный показатель - потребление кислорода - отражает функциональное состояние кардиореспираторной системы. Существует связь между факторами циркуляции и дыхания, влияющими на объем потребляемого кислорода.

Во время физических нагрузок потребление кислорода значительно увеличивается. Это предъявляет повышенные требования к функции сердечно-сосудистой и дыхательной систем. Поэтому кардиореспираторная система при мышечной работе подвержена изменениям, которые зависят от интенсивности физических нагрузок.

Исследование функции внешнего дыхания в спорте позволяет наряду с системами кровообращения и крови оценить функциональное состояние спортсмена в целом и его резервные возможности.

Исследование начинают со сбора анамнеза, затем переходят к осмотру, перкуссии и аускультации.

Осмотр позволяет определить тип дыхания, установить наличие или отсутствие одышки (особенно при тестировании) и т.п. Определяют три типа дыхания: грудной, брюшной (диафрагмальный) и смешанный. При грудном типе дыхания на вдохе заметно поднимаются ключицы и происходит движение ребер. При этом типе дыхания объем легких возрастает главным образом за счет движения верхних и нижних ребер. При брюшном типе дыхания увеличение объема легких происходит в основном за счет движения диафрагмы - на вдохе она опускается вниз, несколько смещая органы брюшной полости. Поэтому стенка живота на вдохе при брюшном типе дыхания слегка выпячивается. У спортсменов, как правило, смешанный тип дыхания, где участвуют оба механизма увеличения объема грудной клетки.

Перкуссия (поколачивание) позволяет определить изменение (если оно есть) плотности легких. Изменения в легких являются обычно следствием некоторых заболеваний (воспаление легких, туберкулез и др.).

Аускультация (выслушивание) определяет состояние воздухоносных путей (бронхов, альвеол). При различных заболеваниях органов дыхания прослушиваются весьма характерные звуки - различные хрипы, усиление или ослабление дыхательного шума и т.д.

Исследование внешнего дыхания проводят по показателям, характеризующим вентиляцию, газообмен, содержание и парциальное давление кислорода и углекислого газа в артериальной крови и по другим параметрам. Для исследования функции внешнего дыхания пользуются спирометрами, спирографами и специальными аппаратами открытого и закрытого типа. Наиболее удобно спирографическое исследование, при котором на движущейся бумажной ленте записывается кривая - спирограмма (рис. ). По этой кривой, зная масштаб шкалы аппарата и скорость движения бумаги, определяют следующие показатели легочной вентиляции: частоту дыхания (ЧД), дыхательный объем (ДО), минутный объем дыхания (МОД), жизненную емкость легких (ЖЕЛ), максимальную вентиляцию легких (МВЛ), остаточный объем легких (ОО), общую емкость легких (ОЕЛ). Kроме того, исследуется сила дыхательной мускулатуры, бронхиальная проходимость и др.

Спирограмма: 1 - МОД; 2 - ЖЕЛ, 3 - дыхательный объем (ДО); 4 - резервный объем вдоха; 5 - резервный объем выдоха; 6 - проба Тиффно-Вотчала; 7 - МВЛ

Легочная вентиляция связана с функцией дыхательных мышц (рис. ). Движения легких совершаются в результате сокращения дыхательных мышц в сочетании с движениями частей грудной стенки и диафрагмы. Дыхательные мышцы - это те мышцы, сокращение которых изменяет объем грудной клетки.

Потребление кислорода дыхательными мышцами в норме и при патологии (эмфизема легких)

Вдох создается расширением грудной клетки (полости) и всегда является активным процессом. Обычно главную роль во вдохе играет диафрагма. При усиленном вдохе сокращаются дополнительные группы мышц.

Выдох в покое происходит пассивно вследствие постепенного снижения активности мышц, создающих условия для вдоха. Расслабление связанных с дыханием мышц придает грудной клетке положение пассивного выдоха. При усиленном выдохе в дополнение к другим мышечным группам действуют внутренние межреберные мышцы, а также брюшные мышцы.

Объем легких при вдохе не всегда одинаков. Объем воздуха, вдыхаемый при обычном вдохе и выдыхаемый при обычном выдохе, называется дыхательным воздухом (ДВ).

Параметры дыхательной системы

Остаточный воздух (ОВ) - объем воздуха, оставшийся в невозвратившихся в исходное положение легких.

(ЧД) - количество дыханий в 1 мин. Определение ЧД производят по спирограмме или по движению грудной клетки. Средняя частота дыхания у здоровых лиц - 16-18 в минуту, у спортсменов - 8-12. В условиях максимальной нагрузки ЧД возрастает до 40-60 в 1 мин.

Глубина дыхания (ДО) - объем воздуха спокойного вдоха или выдоха при одном дыхательном цикле. Глубина дыхания зависит от роста, веса, пола и функционального состояния спортсмена. У здоровых лиц ДО составляет 300-800 мл.

Минутный объем дыхания (МОД) характеризует функцию внешнего дыхания.

В спокойном состоянии воздух в трахее, бронхах, бронхиолах и в неперфузируемых альвеолах в газообмене не участвуют, так как не приходит в соприкосновение с активным легочным кровотоком - это так называемое «мертвое» пространство.

Часть дыхательного объема, которая участвует в газообмене с легочной кровью, называется альвеолярным объемом. С физиологической точки зрения альвеолярная вентиляция - наиболее существенная часть наружного дыхания, так как она является тем объемом вдыхаемого за 1 мин воздуха, который обменивается газами с кровью легочных капилляров.

МОД измеряется произведением ЧД на ДО. У здоровых лиц ЧД - 16-18 в минуту, а ДО колеблется в пределах 350-750 мл, у спортсменов ЧД - 8-12 мл, а ДО - 900-1300 мл. Увеличение МОД (гипервентиляция) наблюдается вследствие возбуждения дыхательного центра, затруднения диффузии кислорода и др.

В покое МОД составляет 5-6 л, при напряженной физической нагрузке может возрастать в 20-25 раз и достигать 120-150 л в 1 мин и более. Увеличение МОД находится в прямой зависимости от мощности выполняемой работы, но только до определенного момента, после которого рост нагрузки уже не сопровождается увеличением МОД.

Даже при самой тяжелой нагрузке МОД никогда не превышает 70-80% уровня максимальной вентиляции. Расчет должной величины МОД основан на том, что у здоровых лиц из каждого литра провентилированного воздуха поглощается примерно 40 мл кислорода (это так называемый коэффициент использования кислорода - KИ).

Должный МОД = должное потребление кислорода / 40

а должную величину поглощения кислорода рассчитывают по формуле:

должный основной обмен (в ккал) / 7,07

где должный основной определяют по таблицам Гаррис-Бенедикта; 7,07 - число, полученное при умножении калорийной ценности 1 л кислорода (4,91 ккал) на число минут в сутках (1440 мин) и деленное на 1000.

Таблицы Гаррис-Бенедикта

Таблицы Гаррис-Бенедикта для определения основного обмена человека:

Вентиляционным эквивалентом (ВЭ) называются соотношение между МОД и величиной потребления кислорода. В состоянии покоя 1 л кислорода в легких поглощается из 20-25 л воздуха. При тяжелой физической нагрузке вентиляционный эквивалент увеличивается и достигает 30-35 л. Под влиянием тренировки на выносливость вентиляционный эквивалент при стандартной нагрузке уменьшается. Это свидетельствует о более экономном дыхании у тренированных лиц.

(ЖЕЛ) состоит из дыхательного объема легких, резервного объема вдоха и резервного объема выдоха. ЖЕЛ зависит от пола, возраста, размера тела и тренированности. ЖЕЛ составляет в среднем у женщин 2,5-4 л, а у мужчин - 3,5-5 л. Под влиянием тренировки ЖЕЛ возрастает, у хорошо тренированных спортсменов она достигает 8 л.

Абсолютные значения ЖЕЛ мало показательны из-за индивидуальных колебаний. При оценке состояния обследуемого рекомендуется рассчитывать «должные» величины.

Для расчета ЖЕЛ обычно используют формулу Anthony и Vernath (1961), в основу которой положена величина основного обмена (ккал/24 ч). Ее находят по таблицам Гаррис-Бенедикта соответственно полу, возрасту и массе тела.

ДЖЕЛ = величина основного обмена (ккал) х к ,

где к - коэффициент: 2,3 у женщин, 2,6 - у мужчин. Величину основного обмена (ккал) определяем по таблицам Гаррис-Бенедикта, где находят фактор роста (Б) и фактор веса (А). Сумма А + Б и есть должная величина основного обмена. Должный основной обмен, как и ЖЕЛ, зависит от пола, возраста, роста и веса, легко определяется по специальным таблицам и выражается в килокалориях. Для выражения отношения в процентах фактической ЖЕЛ к должной пользуются формулой:

(фактическая ЖЕЛ / должная ЖЕЛ) х 100

ЖЕЛ считается нормальной, если составляет 100% должной величины. Для оценки ДЖЕЛ можно пользоваться номограммой (рис. ). ЖЕЛ выражается в процентах к ДЖЕЛ.

Номограмма для оценки жизненной емкости легких (VС, мл). Соединяя прямой линией (1) соответствующие пункты на шкалах «Возраст» и «Относительная масса», на линии А отмечают точку пересечения. От этой точки проводят прямую линию (2) на шкалу «Рост». Точка пересечения со шкалой VC и будет должной величиной жизненной емкости легких (ДЖЕЛ). Пределы нормы: х(2) = 1200 мл (Amrein et al., 1969)

Номограмма для определения должной жизненной емкости легких в зависимости от роста и возраста

Общая емкость легких (ОЕЛ) представляет собой сумму ЖЕЛ и остаточного объема легких, то есть того воздуха, который остается в легких после максимального выдоха и может быть определен только косвенно. У молодых здоровых лиц - 75-80%. ОЕЛ занимает ЖЕЛ, а остальное приходится на остаточный объем. У спортсменов доля ЖЕЛ в структуре ОЕЛ увеличивается, что благоприятно отражается на эффективности вентиляции.

Максимальная вентиляция легких (МВЛ) - это предельно возможное количество воздуха, которое может быть провентилировано через легкие в единицу времени. Обычно форсированное дыхание проводится в течение 15 с и умножается на 4. Это и будет величина МВЛ. Большие колебания МВЛ снижают диагностическую ценность определения абсолютного значения этих величин. Поэтому полученную величину МВЛ приводят к должной. Для определения должной МВЛ пользуются формулой:

должная МВЛ = 1/2ЖЕЛ х 35 ,

или с использованием основного обмена по таблице А. Теличинаса (19б8); или по номограмме (рис. ).

Номограмма для оценки максимальной минутной вентиляции легких (MMV). Соединяя прямой линией (1) соответствующие пункты на шкалах «масса» и «рост», находят точку пересечения со шкалой «Поверхность тела». Затем эту точку соединяют прямой (2) с соответствующим пунктом на шкале «Возраст» и на месте пересечения этой линии со шкалой MMV находят должную величину максимальной вентиляции (Amrein et al., 1969)

Снижение МВЛ происходит вследствие уменьшения объема вентилируемой легочной ткани и снижения бронхиальной проходимости, гиподинамии. У мужчин в возрасте 20-30 лет МВЛ колеблется от 100 до 180 (в среднем 140 л/мин), у женщин - от 70 до 120 л/мин. У высокорослых спортсменов с хорошо развитой дыхательной мускулатурой МВЛ иногда достигает 350 л/мин, у спортсменок - 250 л/мин (W. Hollmann, 1972).

Таким образом МВЛ наиболее точно и полно характеризует функцию внешнего дыхания в сравнении с другими спирографическими показателями.

Оценки и пробы функций дыхания

Для оценки бронхиальной проходимости используют тест ФЖЕЛ (форсированная жизненная емкость легких). Обследуемому предлагают максимально глубоко вдохнуть и быстро выдохнуть. ФЖЕЛ у здоровых лиц ниже ЖЕЛ на 200-300 мл. Тиффно предложил измерять ФЖЕЛ за первую секунду. В норме ФЖЕЛ за секунду составляет не менее 70% ЖЕЛ.

Пневмотахометрия проводится пневмотахометром Б.Е. Вотчала. Методом пневмотахометрии определяют скорость воздушной струи при максимально быстром вдохе и выдохе. У здоровых лиц этот показатель колеблется у мужчин от 5 до 8 л/с, у женщин - от 4 до 6 л/с. Отмечена зависимость пневмотахометрического показателя от ЖЕЛ и возраста. Обнаружено, что чем больше ЖЕЛ, тем выше максимальная скорость выдоха. Пневмотахометрический показатель зависит от бронхиальной проходимости, силы дыхательной мускулатуры спортсмена, его возраста, пола и функционального состояния.

Величину максимальной скорости выдоха сравнивают с должными величинами, рассчитанными по формуле:

должная величина выдоха = ЖЕЛ х 1,2

Разница фактической и должной величин у здоровых людей не должна быть более 15% от должного уровня. У здоровых лиц показатель выдоха больше вдоха. С повышением тренированности отмечается преобладание максимальной скорости вдоха над выдохом. Увеличение скорости вдоха у спортсменов объясняется повышением резервных возможностей легких.

Объем воздуха, остающегося в легких после максимального выдоха (ОО) наиболее полно и точно характеризует газообмен в легких.

Одним из основных показателей внешнего дыхания является газообмен (анализ респираторных газов - углекислоты и кислорода в альвеолярном воздухе), то есть поглощение кислорода и выведение углекислоты. Газообмен характеризует внешнее дыхание на этапе «альвеолярный воздух - кровь легочных капилляров». Он исследуется методом газовой хроматографии.

Функциональная проба Розенталя позволяет судить о функциональных возможностях дыхательной мускулатуры. Проба проводится на спирометре, где у обследуемого 4-5 раз подряд с интервалом в 10-15 с определяют ЖЕЛ. В норме получают одинаковые показатели. Снижение ЖЕЛ на протяжении исследования указывает на утомляемость дыхательных мышц.

Пневмотонометрический показатель (ПТП, мм рт. ст.) дает возможность оценить силу дыхательной мускулатуры, которая является основой процесса вентиляции. ПТП снижается при гиподинамии, при длительных перерывах в тренировках, при переутомлении и др. Исследование проводится пневмотонометром В.И. Дубровского и И.И. Дерябина (1972). Исследуемый производит выдох (или вдох) в мундштук аппарата. В норме у здоровых лиц ПТП в среднем составляет у мужчин на выдохе 328 ± 17,4 мм рт. ст., на вдохе - 227 ± 4,1 мм рт. ст., у женщин, соответственно, - 246 ± 1,8 и 200 ± 7,0 мм рт. ст. При заболеваниях легких, гиподинамии, переутомлении эти показатели снижаются.

При физических нагрузках, особенно в циклических видах спорта (лыжные гонки, марафонский бег, гребля академическая и др.), дыхательная мускулатура является лимитирующим фактором.

На рис. показана функция легких в состоянии покоя и мышечной нагрузки. Общая емкость легких во время нагрузки может несколько уменьшаться из-за увеличения внутриторакального объема крови. В состоянии покоя дыхательный объем (ДО) составляет 10-15% ЖЕЛ (450-600 мл), при физической нагрузке может достигать 50% ЖЕЛ. Таким образом, у людей с большой ЖЕЛ дыхательный объем в условиях интенсивной физической работы может составлять 3-4 л. Kак видно на рис. , ДО увеличивается главным образом за счет резервного объема вдоха. Резервный объем выдоха даже при тяжелой физической нагрузке изменяется незначительно. Поскольку во время физической работы остаточный объем увеличивается, а функциональная остаточная емкость практически не изменяется, ЖЕЛ несколько уменьшается.

Функция легких в состоянии покоя (А) и при максимальной физической нагрузке (Б).
Частота дыхания (fR) 10-15 и 40-50 мин-1 соответственно 1 - дыхательный объем; 2 - резервный объем выдоха; 3 - резервный объем вдоха; 4 - остаточный объем; 5 - внутриторакальный объем крови.
МГВд - максимально глубокий вдох; НВд - нормальный вдох; НВы - нормальный выдох; МГВы - максимально глубокий выдох; а - жизненная емкость легких; б - функциональный остаточный объем, в - общий объем легких

Пробы Штанге и Генчи дают некоторое представление о способности организма противостоять недостатку кислорода.

Проба Штанге . Измеряется максимальное время задержки дыхания после глубокого вдоха. При этом рот должен быть закрыт и нос зажат пальцами. Здоровые люди задерживают дыхание в среднем на 40-50 с; спортсмены высокой квалификации - до 5 мин, а спортсменки - от 1,5 до 2,5 мин.

С улучшением физической подготовленности в результате адаптации к двигательной гипоксии время задержки нарастает. Следовательно, увеличение этого показателя при повторном обследовании расценивается (с учетом других показателей), как улучшение подготовленности (тренированности) спортсмена.

Проба Генчи . После неглубокого вдоха сделать выдох и задержать дыхание. У здоровых людей время задержки дыхания составляет 25-30 с. Спортсмены способны задержать дыхание на 60-90 с. При хроническом утомлении время задержки дыхания резко уменьшается.

Значение проб Штанге и Генчи увеличивается, если вести наблюдения постоянно, в динамике.

Английский
дыхание – breath
грудная полость – thoracic cavity
система внешнего дыхания – respiratory system
параметры дыхательной системы – parameters of the respiratory system
таблицы Гаррис-Бенедикта – Table Harris-Benedict
оценки и пробы функций дыхания – evaluation and tests of respiratory function


Дыхательный объем и жизненная емкость легких - это статические характеристики, измеряемые за один дыхательный цикл. Но потребление кислорода и образование углекислого газа происходят в организме непрерывно.

Поэтому постоянство газового состава артериальной крови зависит не от характеристик одного дыхательного цикла, а от скорости поступления кислорода и удаления углекислого газа за продолжительный период времени. Мерой этой скорости в какой-то степени можно считать минутный объем дыхания (МОД), или легочную вентиляцию, т.е. объем воздуха, проходящего через легкие за 1 минуту. Минутный объем дыхания при равномерном автоматическом (без участия сознания) дыхании равен произведению дыхательного объема на количество дыхательных циклов за 1 минуту. В покое у мужчины он равен в среднем 8000 мл или 8 л в 1 минут)" (500мл х 16 дыханий в 1 минуту). Считается, что минутный объем дыхания дает информацию о вентиляции легких, но ни в коей мере не определяет эффективность дыхания. При дыхательном объеме 500 мл в альвеолы во время вдоха сначала поступает 150 мл воздуха, находящегося в дыхательных путях, т.е. в анатомическом мертвом пространстве, и поступившего в них в конце предшествующего выдоха. Это уже использованный воздух, поступивший в анатомическое мертвое пространство из альвеол. Таким образом, при вдохе из атмосферы 500 мл «свежего» воздуха в альвеолы из них поступает 350 мл. Последние 150 мл вдыхаемого «свежего» воздуха заполняют анатомическое мертвое пространство и в газообмене с кровью не участвуют. В результате за 1 минут)" при дыхательном объеме 500 мл и при 16 дыханиях в I минуту через альвеолы пройдет атмосферного воздуха не 8 л, а 5,6 л (350 х 16 = 5600), так называемая, альвеолярная вентиляция. При уменьшении дыхательного объема до 400 мл для сохранения прежней величины минутного объема дыхания, частота дыханий должна увеличиться до 20 дыханий в 1 минуту (8000: 400). При этом альвеолярная вентиляция составит 5000 мл (250 х 20) вместо 5600 мл, которые необходимы для сохранения постоянства газового состава артериальной крови. Чтобы сохранить газовый гомеостазис артериальной крови, необходимо увеличить частоту дыханий до 22-23 дыханий в 1 минуту (5600: 250-22,4). Это предполагает увеличение минутного объема дыхания до 8960 мл (400 х 22,4). При величине дыхательного объема 300 мл для сохранения альвеолярной вентиляции и, соответственно, газового гомеостазиса крови частота дыханий должна увеличиться до 37 дыханий в 1 минуту (5600: 150 = 37,3). При этом минутный объем дыхания составит 11100 мл (300 х 37 = 11100), т.е. возрастет почти в 1,5 раза. Таким образом, сама по себе величина минутного объема дыхания еще не определяет эффективность дыхания.
Человек может взять управление дыханием на себя и по своему желанию дышать животом или грудью, менять частот)" и глубину дыхания, продолжительность вдоха и выдоха и т.п. Однако, как бы он не менял свое дыхание, в состоянии физического покоя количество атмосферного воздуха, попадающего в альвеолы за 1 минут)", должно оставаться примерно одним и тем же, а именно, 5600 мл, чтобы обеспечить нормальный газовый состав крови,
потребности клеток и тканей в кислороде и в удалении избытка углекислого газа. При отклонении от этой величины в любую сторону газовый состав артериальной крови меняется. Сразу же срабатывают гомеостатические механизмы его поддержания. Они вступают в противоречие с сознательно формируемой завышенной или заниженной величиной альвеолярной вентиляции. При этом исчезает ощущение комфортности дыхания, возникает либо ощущение недостатка воздуха, либо чувство мышечного напряжения. Таким образом, сохранить нормальный газовый состав крови при углублении дыхания, т.е. при увеличении дыхательного объема, можно только уменьшая частоту" дыхательных циклов, и, наоборот, при увеличении частоты дыхания сохранение газового гомеостазиса возможно только при одновременном уменьшении дыхательного объема.
Кроме минутного объема дыхания, существует еще понятие максимальная вентиляция легких (МВЛ) - объем воздуха, который может пройти через легкие за 1 минуту при максимальной вентиляции. У нетренированного взрослого мужчины максимальная вентиляция легких при физической нагрузке может превышать минутный объем дыхания в состоянии покоя в 5 раз. У тренированных людей максимальная вентиляция легких может достигать 120 л, т.е. минутный объем дыхания может увеличиться в 15 раз. При максимальной вентиляции легких также существенное значение имеет соотношение дыхательного объема и частоты дыханий. При одной и той же величине максимальной вентиляции легких альвеолярная вентиляция будет выше при меньшей частоте дыхания и, соответственно, при большем дыхательном объеме В результате, в артериальную кровь может поступить за то же время больше кислорода и из нее выйти больше углекислого газа.

Еще по теме МИНУТНЫЙ ОБЪЕМ ДЫХАНИЯ.:

  1. ЛЕГКИЕ НЕ ИМЕЮТ СОБСТВЕННЫХ СОКРАТИТЕЛЬНЫХ ЭЛЕМЕНТОВ. ИЗМЕНЕНИЕ ИХ ОБЪЕМА - РЕЗУЛЬТАТ ИЗМЕНЕНИЙ ОБЪЕМА ГРУДНОЙ ПОЛОСТИ.
  2. ХАРАКТЕР ДЫХАНИЯ - ВАЖНЫЙ ФАКТОР ФОРМИРОВАНИЯ МОРФО-ФУНКЦИОНАЛЫІЫХ ХАРАКТЕРИСТИК ВНУТРЕННИХ ОРГАНОВ ГЛУБОКОЕ ДЫХАНИЕ СОХРАНЯЕТ УПРУГО - ЭЛАСТИЧЕСКИЕ СВОЙСТВА АОРТЫ И АРТЕРИЙ, ПРОТИВОДЕЙСТВУЯ РАЗВИТИЮ АТЕРОСКЛЕРОЗА И АРТЕРИАЛЬНОЙ ГИПЕРТЕНЗИИ.

4. Изменение объема легких во время вдоха и выдоха. Функция внутриплеврального давления. Плевральное пространство. Пневмоторакс.
5. Фазы дыхания. Объем легкого (легких). Частота дыхания. Глубина дыхания. Легочные объемы воздуха. Дыхательный объем. Резервный, остаточный объем. Емкость легких.
6. Факторы, влияющие на легочный объем в фазу вдоха. Растяжимость легких (легочной ткани). Гистерезис.
7. Альвеолы. Сурфактант. Поверхностное натяжение слоя жидкости в альвеолах. Закон Лапласа.
8. Сопротивление дыхательных путей. Сопротивление легких. Воздушный поток. Ламинарный поток. Турбулентный поток.
9. Зависимость «поток-объем» в легких. Давление в дыхательных путях при выдохе.
10. Работа дыхательных мышц в течение дыхательного цикла. Работа дыхательных мышц при глубоком дыхании.

Фазы дыхания. Объем легкого (легких). Частота дыхания. Глубина дыхания. Легочные объемы воздуха. Дыхательный объем. Резервный, остаточный объем. Емкость легких.

Процесс внешнего дыхания обусловлен изменением объема воздуха в легких в течение фаз вдоха и выдоха дыхательного цикла. При спокойном дыхании соотношение длительности вдоха к выдоху в дыхательном цикле равняется в среднем 1:1,3. Внешнее дыхание человека характеризуется частотой и глубиной дыхательных движений. Частота дыхания человека измеряется количеством дыхательных циклов в течение 1 мин и ее величина в покое у взрослого человека варьирует от 12 до 20 в 1 мин. Этот показатель внешнего дыхания возрастает при физической работе, повышении температуры окружающей среды, а также изменяется с возрастом. Например, у новорожденных частота дыхания равна 60-70 в 1 мин, а у людей в возрасте 25-30 лет - в среднем 16 в 1 мин. Глубина дыхания определяется по объему вдыхаемого и выдыхаемого воздуха в течение одного дыхательного цикла. Произведение частоты дыхательных движений на их глубину характеризует основную величину внешнего дыхания - вентиляцию легких . Количественной мерой вентиляции легких является минутный объем дыхания - это объем воздуха, который человек вдыхает и выдыхает за 1 мин. Величина минутного объема дыхания человека в покое варьирует в пределах 6-8 л. При физической работе у человека минутный объем дыхания может возрастать в 7-10 раз.

Рис. 10.5. Объемы и емкости воздуха в легких человека и кривая (спирограмма) изменения объема воздуха в легких при спокойном дыхании, глубоком вдохе и выдохе . ФОЕ - функциональная остаточная емкость.

Легочные объемы воздуха . В физиологии дыхания принята единая номенклатура легочных объемов у человека, которые заполняют легкие при спокойном и глубоком дыхании в фазу вдоха и выдоха дыхательного цикла (рис. 10.5). Легочный объем, который вдыхается или выдыхается человеком при спокойном дыхании, называется дыхательным объемом . Его величина при спокойном дыхании составляет в среднем 500 мл. Максимальное количество воздуха, которое может вдохнуть человек сверх дыхательного объема, называется резервным объемом вдоха (в среднем 3000 мл). Максимальное количество воздуха, которое может выдохнуть человек после спокойного выдоха, называется резервным объемом выдоха (в среднем 1100 мл). Наконец, количество воздуха, которое остается в легких после максимального выдоха, называется остаточным объемом, его величина равна примерно 1200 мл.

Сумма величин двух легочных объемов и более называется легочной емкостью . Объем воздуха в легких человека характеризуется инспираторной емкостью легких, жизненной емкостью легких и функциональной остаточной емкостью легких. Инспираторная емкость легких (3500 мл) представляет собой сумму дыхательного объема и резервного объема вдоха. Жизненная емкость легких (4600 мл) включает в себя дыхательный объем и резервные объемы вдоха и выдоха. Функциональная остаточная емкость легких (1600 мл) представляет собой сумму резервного объема выдоха и остаточного объема легких. Сумма жизненной емкости легких и остаточного объема называется общей емкостью легких, величина которой у человека в среднем равна 5700 мл.

При вдохе легкие человека за счет сокращения диафрагмы и наружных межреберных мышц начинают увеличивать свой объем с уровня , и его величина при спокойном дыхании составляет дыхательный объем , а при глубоком дыхании - достигает различных величин резервного объема вдоха. При выдохе объем легких вновь возвращается к исходному уровню функциональной остаточной емкости пассивно, за счет эластической тяги легких. Если в объем выдыхаемого воздуха начинает входит воздух функциональной остаточной емкости , что имеет место при глубоком дыхании, а также при кашле или чиханье, то выдох осуществляться за счет сокращения мышц брюшной стенки. В этом случае величина внутриплеврального давления, как правило, становится выше атмосферного давления, что обусловливает наибольшую скорость потока воздуха в дыхательных путях.



gastroguru © 2017