Что минимально поглощает рентгеновские лучи. Линейчатый (характеристический) рентгеновский спектр

Рассеяние и поглощение рентгеновского излучения .

Рентгеновское излучение (Х–лучи , Рентген, 1895) возникает при бомбардировке быстрыми электронами металлической мишени анода (антикатод )(рис. 3.16). В технических рентгеновских трубках ускоряющее напряжение между катодом и анодом около 100 кВ. Из опытов Баркла (1905) по двойному рассеянию рентгеновского излучения следовало, что это излучение поперечно поляризовано. Опыты Брэгга, Лауэ, Фридриха, Книппинга, а также Дебая и Шерера по дифракции рентгеновского излучения в кристаллах показали, что рентгеновское излучение, так же как свет, имеет электромагнитное происхождение. Однако рентгеновское излучение характеризуется гораздо меньшими длинами волн. Рентгеновское излучение занимает спектральную область между гамма и ультрафиолетовым излучением в диапазоне длин волн от до см.

Рис.3.16 Источники рентгеновского излучения - рентгеновские трубки,

некоторые радиоактивные изотопы, ускорители заряженных частиц, лазеры рентгеновского диапазона, Солнце и другие космические объекты.

Два типа рентгеновского излучения: тормозное ихарактеристическое .

Тормозное излучение (рис. 3.17) возникает вследствие замедления электронов в мишени и не зависит от вещества мишени. Спектр тормозного излучения сплошной, потому что переменный ток, связанный с тормозящимся электроном, изменяется монотонно, а не периодически. С увеличением длины волны интенсивность тормозного излучения после максимума монотонно ослабевает. Со стороны коротких длин волн интенсивность резко обрывается коротковолновая граница (квантовый предел )тормозного излучения. По корпускулярным представлениям энергия кванта излучения будет максимальной, если вся энергия тормозящегося в мишени электрона eV тратится на излучение:

. (3.48)

Определение коротковолновой границы в эксперименте позволяет найти по формуле (3.48) очень точное значение комбинации постоянных hc/e .

С увеличением ускоряющего напряжения на фоне сплошного спектра, начиная с некоторого критического значения, возникают резкие максимумы. Их положение зависит от вещества мишени (рис. 3.17б). Эти максимумы связывают с характеристическим рентгеновским излучением. Оно имеет линейчатый, дискретный спектр. В этом оно аналогично оптическому излучению атомов. Характеристическое излучение также группируется в спектральные серии (рис.3.18). Их обозначение: Ксерия, Lсерия, Мсерия и т.д. (Баркла, 1911). Однако свойства характеристического излучения существенно отличаются от свойств оптического излучения:



I. Характеристическое излучение имеет небольшое число линий;

II. Отсутствует периодичность в рентгеновских спектрах при последовательном прохождении периодической системы. Наблюдается монотонное смещение в коротковолновую часть спектра;

III. Характеристическое излучение является чисто атомным свойством вещества. Оно не зависит от того, находится ли

Рис.3.18 вещество в чистом виде или в каком-либо химическом

соединении. Это позволяет проводить анализ состава сложных химических соединений;

IV. Отсутствует обращение спектральных линий. В оптическом диапазоне спектры испускания и спектры поглощения данного атома взаимно обращаемы. Они характеризуются одними и теми же длинами волн. При этом спектры поглощения получаются при пропускании сплошного света сквозь холодные пары атомов. Если пропускать сплошное рентгеновское излучение через вещество, то наблюдаются не линии характеристического излучения, а полосы поглощения.

Механизм возникновения характеристического излучения связан не с периферийными электронами атома, как в случае оптического излучения, а с его внутренними электронами. По интерпретации Косселя (1917) характеристическое излучение происходит в два этапа:

1) бомбардирующий мишень электрон выбивает из атома электрон с какой-то внутренней оболочки. В результате этого атом становится возбужденным, а в оболочке образуется «дырка»;

2) электроны атома с верхних уровней переходят на уровень с «дыркой». Избыток энергии при этом освобождается в виде рентгеновского излучения - возникают K, L, M, N серии (рис.3.19).

Отдельные линии каждой спектральной серии обозначаются в порядке уменьшения длины волны: . Ксерия самая коротковолновая: . Все линии имеют тонкую структуру. Линии Ксерии являются дублеты: .

С увеличением энергии электронов, сталкивающихся с

Рис.3.19 мишенью, появляются линии длинноволновых серий,

и в последнюю очередь возникают линии Ксерии. Наименьшее значение ускоряющей разности потенциалов, при котором в характеристическом спектре появляются линии некоторой серии - критический потенциал возбуждения этой серии для данного элемента. М серия имеет 5 критических потенциалов возбуждения, Lсерия 3, Ксерия 1 (рис. 3.19). Потенциал возбуждения Ксерии - потенциал ионизации атома. Если возбуждается Ксерия, то одновременно возникают все остальные серии данного элемента.

Рентгеновские спектры атомов дают возможность точного определения заряда ядра (порядкового номера элемента в периодической системе Менделеева). Это показал Мозли (1913): частота линий рентгеновского излучения определяется формулой бальмеровского типа. В частности, частота линии равна:

. (3.49)

Z – 1 эффективный заряд ядра, который экранирован одним из электронов Кслоя. Аналогичная приближенная формула получена для линии , при этом эффективный заряд ядра определяется как Z – a , где a – постоянная экранирования. Закон Мозли (рис.3.20):

постоянные.

При прохождении слоя вещества толщиной х интенсивность параллельного пучка рентгеновского излучения ослабляется по закону:

k – коэффициент ослабления . Ослабление излучения происходит по двум причинам: из-за рассеяния , в результате которого часть лучей изменяет свое первоначальное направление; из-за поглощения (абсорбции ) , в результате которого часть энергии излучения в конце концов переходит в тепло:

коэффициент истинного поглощения, коэффициент рассеяния рентгеновских лучей.

Часто пользуются массовыми коэффициентами:

, (3.50б)

– плотность вещества.

Используются также атомные коэффициенты:

, (3.50в)

масса атома, А – масса моля вещества, число Авогадро.

Рассеяние излучения вызывается неоднородностями cреды и флуктуациями ее плотности. В рентгеновском диапазоне неоднородности - атомы и электроны в атомах. В случае мягкого рентгеновского излучения , когда его длина волны достаточно велика и превосходит размеры атома, атом рассеивает как целое падающее излучение. Рассеяние когерентно - падающее и рассеянное излучения характеризуются одной и той же частотой (длиной волны). Это томсоновское рассеяние , сечение которого определяется классическим радиусом электрона.

В случае жесткого рентгеновского излучения (энергия более 10 кэВ)рассеяниестановится некогерентным (Комптон, 1923). Схема установки Комптона (рис.3.21). Источник рентгеновского излучения трубка Т с молибденовым антикатодом. С помощью диафрагм и фильтров выделялось излучение с длиной волны 0,71 (линия ), которое падало на

Рис.3.21 образец R (из графита). Анализ рассеянного излучения проводился

с помощью дифракционного спектрометра (кристалл К и фотопластинка Р ). Эксперименты Комптона показали, что наряду со смещенной линией рассеяния наблюдается несмещенная линия (рис.3.22). Ее возникновение связано с когерентным рассеянием излучения атомом как целого. При этом, чем более жестким является рентгеновское излучение, т.е. чем больше энергия рентгеновского кванта по сравнению с энергией связи электрона в атоме, тем более справедливо приближение свободного электрона, и тем меньше роль когерентного рассеяния рентгеновского излучения данным веществом. Однако Комптон–эффект играет преобладающую роль при энергии фотонов до 1 МэВ. При больших энергиях более существенным становится другой процесс - рождение пар. Это процесс превращения фотона в пару электрон–позитрон.

Спектр поглощения рентгеновского излучения составляют полосы. Этим он отличается от оптических спектров поглощения, которые состоят из отдельных линий. Поглощение рентгеновского излучения не зависит от оптических свойств вещества. Например, свинцовое стекло толщиной в несколько миллиметров прозрачно для света, но практически полностью поглощает рентгеновское излучение; алюминиевый листок совершенно не прозрачен для света, но не поглощает рентгеновские лучи. В пределах полосы поглощения коэффициент поглощения рентгеновских фотонов с энергией от до эВ монотонно убывает в соответствии с приближенной формулой (рис.3.23):

Рис.3.22 – эмпирическая постоянная. Резкие скачки - края полос поглощения. Они

соответствуют энергии, достаточной для выбивания электронов с М–, L–, K–слоев (критические потенциалы возбуждения М–, L–, K– серий). «Зазубренность» краев полосы: каждая серия, кроме К–серии, имеет несколько критических потенциалов. По значениям этих краев находят энергию связи электронов в слоях и оболочках атомов.

Поглощение рентгеновского излучения может сопровождаться как ионизацией атомов (и появлением фотоэлектронов), так и испусканием излучения более низкой частоты (флуоресценцией). Согласно (3.53) с увеличением энергии фотонов (уменьшением длины волны) поглощение рентгеновского излучения ослабевает. Поэтому коротковолновое излучение обладает большой проникающей способностью (жесткое излучение).Мягкое рентгеновское излучение очень сильно поглощается почти всеми веществами.

Сильная зависимость коэффициента поглощения от частоты

Рис.3.23 используется для изготовления фильтров, отсекающих мягкую

часть спектра. Поглощение рентгеновского излучения - чисто атомное свойство вещества: молекулярный коэффициент поглощения аддитивно складывается из атомных коэффициентов поглощения элементов, входящих в состав данного вещества.

В 1925 г. Оже изучал процесс возникновения электронов при поглощении жесткого рентгеновского излучения атомами криптона. Фотографируя треки возникающих фотоэлектронов в камере Вильсона, Оже обнаружил, что иногда из одной точки выходят следы двух, а не одного электрона. Это Оже–эффект. Механизм возникновения второго, Оже–электрона: Воздействие кванта жесткого рентгеновского излучения на атом приводит к выбросу из него электрона из К-слоя, в котором образуется «дырка». Атом становится ионизованным и сильно возбужденным. Освобождение его энергии в виде рентгеновского излучения не единственный механизм. Энергия возбуждения атома столь высока, что возможен вылет из него второго электрона с L–слоя, причем без излучения кванта . Энергия Оже–электрона еV определяется законом сохранения энергии:

, (3.54)

– энергия фотона, который мог бы излучиться, –энергия ионизации L–электрона. В атоме происходит внутреннее перераспределение энергии, называемое внутренней конверсией, приводящее к выбросу из него Оже–электрона. Атом становится двукратно ионизованным. Оже–эффект рассматривается как проявление общего процесса автоионизации возбужденного атома, который происходит в результате внутренней конверсии. Особенно сильно этот эффект проявляется в случае запрещенных электромагнитных переходов, например, в 0–0 переходах.

Рентгеновское излучение широко используется в самых различных областях науки и техники: в исследованиях электронной структуры атомов, молекул и твердых тел, в медицине, минералогии, материаловедении и т.п. Разработаны разнообразные методы исследований: рентгеновская микроскопия, рентгеновская спектроскопия, рентгеновская топография, созданы многочисленные приборы, в том числе для исследований космических объектов (рентгеновский телескоп), а для исследования биологических объектов - безлинзовый жесткий рентгеновский микроскоп.

.Лекция 22. Эффект Зеемана. Эффект Пашена–Бака.

При прохождении рентгеновских лучей через вещество их энергия уменьшается из-за поглощения и рассеяния. Ослабление интенсивности параллельного пучка рентгеновских лучей, проходящих через вещество, определяется законом Бугера: I = I0·e -μd , где I 0 - начальная интенсивность рентгеновского излучения; I - интенсивность рентгеновских лучей, прошедших через слой вещества, d – толщина поглощающего слоя, μ - линейный коэффициент ослабления. Он равен сумме двух величин: t - линейного коэффициента поглощения и σ - линейного коэффициента рассеяния: μ = τ+σ

В экспериментах обнаружено, что линейный коэффициент поглощения зависит от атомного номера вещества и длины волны рентгеновских лучей:

τ = kρZ 3 λ 3 , где k - коэффициент прямой пропорциональности, ρ - плотность вещества, Z – атомный номер элемента, λ - длина волны рентгеновских лучей.

Зависимость от Z очень важна с практической точки зрения. Например, коэффициент поглощения костей, которые состоят из фосфата кальция, почти в 150 раз превышает коэффициент поглощения мягких тканей (Z =20 для кальция и Z =15 для фосфора). При прохождении рентгеновских лучей через тело человека, кости четко выделяются на фоне мышц, соединительной ткани и т.п.

Известно, что пищеварительные органы имеют такую же величину коэффициента поглощения, как и другие мягкие ткани. Но тень пищевода, желудка и кишечника можно различить, если пациент примет внутрь контрастное вещество - сернокислый барий (Z= 56 для бария). Сернокислый барий очень непрозрачен для рентгеновских лучей и часто используется для рентгенологического обследования желудочно-кишечного тракта. Определенные непрозрачные смеси вводят в кровяное русло для того, чтобы исследовать состояние кровеносных сосудов, почек и т.п. Как контрастное вещество в этом случае используют йод, атомный номер которого составляет 53.

Зависимость поглощения рентгеновских лучей от Z используют также для защиты от возможного вредного действия рентгеновского излучения. Для этой цели применяют свинец, величина Z для которого равна 82.

Конец работы -

Эта тема принадлежит разделу:

Природа рентгеновских лучей

Дозиметрия излучений поглощенная доза излучения это энергия ионизирующего излучения.. излучение в медицине.. медицинская радиология является разделом медицинской науки в котором используются излучения в диагностике и лечении..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Природа рентгеновских лучей
Рентгеновские лучи были обнаружены случайно в 1895 году знаменитым немецким физиком Вильгельмом Рентгеном. Он изучал катодные лучи в газоразрядной трубке низкого давления при высоком напряжении меж

Получение рентгеновского излучения
Рентгеновские лучи возникают, когда быстрые электроны, или катодные лучи, сталкиваются со стенками или анодом газоразрядной трубки низкого давления. Современная рентгеновская трубка представляет со

Тормозное рентгеновское излучение
Тормозное рентгеновское излучение возникает при торможении электронов, движущихся с большой скоростью, электрическими полями атомов анода. Условия торможения отдельных электронов не одинаковы. В ре

Характеристическое рентгеновское излучение
Характеристическое рентгеновское излучение имеет не сплошной, а линейчатый спектр. Этот тип излучения возникает, когда быстрый электрон, достигая анода, проникает во внутренние орбитали атом

Первичные физические механизмы взаимодействия рентгеновского излучения с веществом
Для первичного взаимодействия между рентгеновским излучением и веществом характерно три механизма: 1. Когерентное рассеяние. Эта форма взаимодействия происходит, когда фотоны рентген

Некоторые эффекты взаимодействия рентгеновского излучения с веществом
Как было упомянуто выше, рентгеновские лучи способны возбуждать атомы и молекулы вещества. Это может вызывать флюоресценцию определенных веществ (например, сульфата цинка). Если параллельный пучок

Применение рентгеновского излучения в медицине
Причиной применения рентгеновского излучения в диагностике послужила их высокая проникающая способность. В первое время после открытия, рентгеновское излучение использовалось по большей части, для

Атомное ядро
Известно, что атомное ядро является небольшим образованием, состоящим из нуклонов, которые включают два типа элементарных частиц: протоны и нейтроны. Протон имеет положительный электрический заряд,

Радиоактивность
Радиоактивность - спонтанный распад (дезинтеграция) атомного ядра с излучением субатомных частиц и электромагнитных лучей. Этот феномен был обнаружен в 1896г французским физиком Беккерелем.

Активность. Закон ядерного распада
Существует два вида радиоактивности: естественная и искусственная. Естественная радиоактивность происходит спонтанно без любого внешнего воздействия. Она является результатом нестабил

Ионизирующие излучения
Радиоактивный распад ядер приводит к образованию нескольких типов ионизирующих излучений. Такое излучение, проходя через вещества, ионизирует их атомы и молекулы, то есть превращает их в электричес

Нейтроны
Нейтроны являются незаряженными частицами и производят ионизацию косвенно, взаимодействуя первоначально с атомными ядрами, а не с электронами. Они обладают широким диапазоном длины пробега в вещест

Обнаружение и измерение излучений
Существует много типов приборов, которые используются для обнаружения ионизирующих излучений. Наиболее часто применяют счетчики, которые являются очень чувствительными детекторами α-частиц, но

Дозиметрия излучений
Для определения интенсивности излучений используется дозиметрия, которую производят разными способами. Основными дозами, используемыми в дозиметрии, являются: поглощенная до

Вредное действие излучения
Энергия ионизирующих излучений значительно отличается от тепловой энергии. Смертельная экспозиционная доза гамма-лучей очень незначительно изменяет температуру тела. Излучения, проходя через живые

Хроническое действие небольших доз излучения
Все люди подвержены хроническому действию низких доз ионизирующего излучения, которое возникает от космических лучей и от радионуклидов, содержащихся в окружающей среде. Космические лучи включают п

Радионуклиды в медицинских исследованиях
В настоящее время синтезируется большое число различных биологических смесей, которые содержат радионуклиды водорода, углерода, фосфора, серы и т.п. Их вводят в организм экспериментальных животных

Радионуклиды в диагностике
Радиоактивные следящие устройства поглощаются исследуемым органом. Детектор излучения находится за пределами органа на протяжение какого-то времени и в различных положениях. Для того чтобы минимизи

Терапевтическая радиология
Делящиеся клетки наиболее чувствительны к действию ионизирующего излучения. Клетки злокачественных опухолей делятся более часто, чем клетки нормальных тканей. Быстро делящиеся раковые клетки и клет

Помимо непосредственного возбуждения атомов определяемого элемента первичным рентгеновским излучением, может наблюдаться ряд других эффектов, нарушающих линейную зависимость интенсивности характеристической линии от концентрации элемента. Интенсивность зависит не только от содержания в образце анализируемых атомов, но и от процессов поглощения и рассеяния этого вещества, которые вместе взятые дают так называемое ослабление.

ОСЛАБЛЕНИЕ

Если направленный пучок рентгеновского излучения проходит через слой вещества толщиной D и плотностью с, то его интенсивность уменьшается по экспоненциальному закону:

I = I0e-µD

где µ - коэффициент ослабления, который является параметром материала и зависит, кроме того, от длины волны рентгеновского излучения. Коэффициент µ пропорционален с и быстро возрастает с увеличением порядкового номера элемента и длины волны рентгеновского излучения. Отношение µ/с называется массовым коэффициентом ослабления. См. рис.2

Как говорилось ранее, ослабление складывается из двух физических процессов - поглощение и рассеяние, т.е. коэффициент ослабления равен:

где ф - коэффициент поглощения; у - коэффициент рассеяния.

Главным является то, что доля ф возрастает с увеличением Z и л, и что эта составляющая доминирует над у в области длин волн, типичной для рентгенофлуоресцентного анализа (за исключением самых легких элементов, таких как углерод). Поэтому в практике рентгенофлуоресцентного анализа ослабление идентично поглощению.

ПОГЛОЩЕНИЕ

Поглощение происходит в том случае, когда кванты внешнего излучения, падающие на материал, выбивают электроны из атомной оболочки.

При этом энергия квантов излучения расходуется, с одной стороны, на вырывание (работу выхода) электронов из атомов и, с другой стороны, на сообщение им кинетической энергии.

Введенный ранее коэффициент ф является функцией длины волны излучения. На рис.3 в качестве примера приведена зависимость массового коэффициента поглощения ф от л, или так называемый спектр поглощения.

Ход кривой не плавный. На спектре имеются скачки, называемые краями поглощения, которые возникают из-за квантового характера поглощения, и говорят, что спектр поглощения имеет линейчатую форму.

Краем поглощения называется индивидуальная характеристика атомов, соответствующая значению энергии, при которой происходит скачкообразное изменение коэффициента поглощения. Такая особенность поглощения имеет простое физическое объяснение. При энергиях квантов, превышающих энергию связи электронов на K - оболочке, сечение поглощения для электронов на L - оболочке имеет величину по крайней мере на порядок меньшую, чем для K - оболочки.

По мере уменьшения энергии рентгеновских квантов и приближении ее к энергии отрыва электрона с K - оболочки поглощение растет в соответствии с формулой, где коэффициент C задается для K - оболочки.

фм = CNZ4лn/A

где N - число Авогадро, Z - атомный номер поглощающего элемента, A - его атомный вес, л - длина волны, n - показатель степени, принимающий значения между 2,5 и 3,0, а C - постоянная, скачкообразно уменьшающаяся при переходе через край поглощения.

При уменьшении энергии рентгеновских квантов ниже энергии связи электрона на K - оболочке (~ 20 кэВ), происходит скачкообразное уменьшение поглощения. т. к. рентгеновское излучение с меньшей энергией может взаимодействовать только с электронами на L- и M- оболочках. В процессе дальнейшего уменьшения энергии поглощение вновь возрастает в соответствии с формулой, в которой коэффициент С задается уже для L- оболочки. Этот рост продолжается вплоть до скачков, соответствующих энергиям связи электронов на L- оболочках. Далее этот процесс происходит для электронов на M- оболочках и т.д.

РАССЕЯНИЕ

Явление, когда рентгеновский луч при взаимодействии с веществом изменяет направление, называется рассеянием. Если рассеянное излучение имеет ту же длину волны, что и первичное, то процесс называется упругим или рэлеевским рассеянием. Упругое рассеяние происходит на связанных электронах, его используют для установления кристаллической структуры вещества с помощью методов рентгеновской дифракции. Если длина волны рассеянного излучения больше длины волны первичного излучения, то процесс называют неупругим или комптоновским рассеянием. Неупругое рассеяние является результатом взаимодействия рентгеновского излучения со слабо связанными внешними электронами.

Хотя рассеяние мало по сравнению с поглощением, оно происходит во всех случаях, в том числе и при рентгенофлуоресцентном анализе. Вместе с возникающим при флуоресцентном возбуждении характеристическим рентгеновским излучением рассеянное излучение образует поле вторичного излучения, которые и фиксирует спектрометр. Однако при рентгенофлуоресцентном анализе используется главным образом характеристическое флуоресцентное излучение, рассеянное чаще всего является помехой, образующей фон, блики в спектре. Рассеянное излучение желательно иметь на возможно более низком уровне.

При рентгеноструктурном анализе целесообразно использовать монохроматическое излучение. Для удаления нежелательных компонент характеристического излучения используют различные методы. Одним из этих методов является использование селективно-поглощающих фильтров. Использование фильтра позволяет снизить интенсивность нежелательной компоненты до уровня фона.

Прежде всего, необходимо понять, как же рентгеновское излучение взаимодействует с веществом. Рентгеновский луч, проходя через вещество, теряет свою интенсивность за счет двух факторов. Во-первых, за счет прямого поглощения, т.е. превращения энергии рентгеновских лучей в кинетическую энергию атомов и выбитых с их оболочек электронов. Во-вторых, за счет рассеяния лучистой энергии при возникновении хаотично испускаемых квантов вторичного рентгеновского излучения.

Закон поглощения рентгеновских лучей веществом описывается следующим уравнением:

где x – толщина слоя вещества;

r - плотность вещества;

m - линейный коэффициент поглощения.

Величину m/r называют массовым коэффициентом поглощения. Эта величина не зависит от агрегатного состояния поглощающего вещества, в то время как m зависит.

Итак, падение интенсивности рентгеновского излучения при прохождении через вещество связано с двумя различными по физической природе процессами: истинным поглощением и рассеянием рентгеновских лучей. Параметр m/r учитывает суммарный результат действия этих процессов. Для того чтобы разделить в случае необходимости эти процессы используют коэффициент истинного поглощения t/r и коэффициент рассеяния s/r. Для тяжелых элементов с атомным номером большим чем у железа (MFe = 26), вклад рассеяния в общую величину поглощения излучения невелик, поэтому можно считать, что коэффициент массового поглощения m/r равен коэффициенту истинного поглощения t/r.

Коэффициент истинного поглощения t/r сильно зависит от длины волны рентгеновского излучения и атомного номера материала мишени, поскольку он определяется способностью излучения выбивать из атомов мишени фотоэлектроны. В области монотонной зависимости массового коэффициента поглощения от длины волны рентгеновского излучения коэффициент истинного поглощения t/r пропорционально зависит от третьей степени длины волны и четвертой степени атомного номера материала мишени:

t/r = сZ4l3 (9)

Однако, на кривой зависимости t/r от длины волны l наблюдаются скачки (Рис. 36) обусловленные резким изменением константы с. Скачкообразное изменение коэффициента поглощения свидетельствует о способности рентгеновского излучения с данной длиной волны выбивать электроны с определенных оболочек атома мишени. Так К-скачок на кривой соответствует длине волны излучения lК, выбивающей К-электроны из атома мишени.

Для большинства элементов Периодической системы величина m/r отличается по обе стороны от скачка примерно в 5 раз. Это означает, что тонкая пластинка некоего вещества, установленная на пути пучка излучения, может служить фильтром излучения. Она будет почти прозрачна для излучения с длиной волны большей чем lК, в то время как излучение с длиной волны меньшей чем lК будет ей почти полностью поглощаться (Рис. 37).

Фильтрование рентгеновского спектра в структурном анализе производится с целью ослабления нежелательных компонент излучения и некоторой части белого излучения. Как уже было сказано, в рентгеноструктурном анализе используется К-серия излучения состоящая из трех линий a1, a2 и b (компоненты b имеют очень близкие длины волн поэтому ими можно пренебречь). a1 и a2-компоненты также имеют очень близкие длины волн и проявляются на рентгенограммах в виде так называемого a1-a2-дублета. Обычно в практике рентгеноструктурного анализа используют b-фильтры, непрозрачные для Кb-излучения.

Правильный подбор материала фильтра (атомного номера материала) позволяет выделить линию Кa практически в чистом виде, т.е. получить практически монохроматическое излучение. Данные по коэффициентам поглощения различных материалов приведены во многих справочниках. Таким образом, для подбора b-фильтра достаточно выбрать материал К-скачок которого занимает промежуточное положение между линиями Кa и Кb фильтруемого излучения. В качестве b-фильтров наиболее часто используют фольгу металлов. В таблице (Рис. 38) приведены материалы используемые для изготовления b-фильтров. Существует эмпирическое правило:

Zф = ZА – 1 (10)

К недостаткам b-фильтров относится то, что ни один из них не способен полностью поглотить Кb-излучение и белое излучение, т.е. получаемое после фильтрации излучение не является монохроматическим. Кроме того, b-фильтры значительно снижают интенсивность основного Кa-излучения, что по сути снижает разрешающую способность метода. Более близкое к монохроматическому излучение можно получить используя систему из нескольких b-фильтров, либо кристаллы-монохроматоры.

Использование кристаллов-монохроматоров для получения монохромного пучка основано на способности рентгеновского излучения определенной длины отражаться от граней монокристалла. Различают два вида монохроматоров: с плоским кристаллом и с изогнутым кристаллом. Монохроматоры с плоским кристаллом дают очень слабый отраженный пучок (интенсивность излучения уменьшается при отражении в 10…100 раз) и могут использоваться, когда интенсивность исходного излучения достаточно велика. Например, при рентгеноструктурном анализе с использованием магнитотормозного (синхротронного) излучения, обладающего большой интенсивностью, часто в качестве монохроматора используют монокристаллы кремния (отражающая плоскость 111). Монохроматоры с изогнутым кристаллом требуют особой схемы съемок, но позволяют получить сфокусированный монохроматический пучок рентгеновского излучения (монохроматор дополнительно играет роль своеобразной собирающей линзы).

1. Источники рентгеновского излучения.

2. Тормозное рентгеновское излучение.

3. Характеристическое рентгеновское излучение. Закон Мозли.

4. Взаимодействие рентгеновского излучения с веществом. Закон ослабления.

5. Физические основы использования рентгеновского излучения в медицине.

6. Основные понятия и формулы.

7. Задачи.

Рентгеновское излучение - электромагнитные волны с длиной волны от 100 до 10 -3 нм. На шкале электромагнитных волн рентгеновское излучение занимает область между УФ-излучением и γ -излучением. Рентгеновское излучение (Х-лучи) открыты в 1895 г. К. Рентгеном, который в 1901 г. стал первым Нобелевским лауреатом по физике.

32.1. Источники рентгеновского излучения

Естественными источниками рентгеновского излучения являются некоторые радиоактивные изотопы (например, 55 Fe). Искусственными источниками мощного рентгеновского излучения являются рентгеновские трубки (рис. 32.1).

Рис. 32.1. Устройство рентгеновской трубки

Рентгеновская трубка представляет собой вакуумированную стеклянную колбу с двумя электродами: анодом А и катодом К, между которыми создается высокое напряжение U (1-500 кВ). Катод представляет собой спираль, нагреваемую электрическим током. Электроны, испущенные нагретым катодом (термоэлектронная эмиссия), разгоняются электрическим полем до больших скоростей (для этого и нужно высокое напряжение) и попадают на анод трубки. При взаимодействии этих электронов с веществом анода возникают два вида рентгеновского излучения: тормозное и характеристическое.

Рабочая поверхность анода расположена под некоторым углом к направлению электронного пучка, для того чтобы создать требуемое направление рентгеновских лучей.

В рентгеновское излучение превращается примерно 1 % кинетической энергии электронов. Остальная часть энергии выделяется в виде тепла. Поэтому рабочая поверхность анода выполняется из тугоплавкого материала.

32.2. Тормозное рентгеновское излучение

Электрон, движущийся в некоторой среде, теряет свою скорость. При этом возникает отрицательное ускорение. Согласно теории Максвелла, любое ускоренное движение заряженной частицы сопровождается электромагнитным излучением. Излучение, возникающее при торможении электрона в веществе анода, называют тормозным рентгеновским излучением.

Свойства тормозного излучения определяются следующими факторами.

1. Излучение испускается отдельными квантами, энергии которых связаны с частотой формулой (26.10)

где ν - частота, λ - длина волны.

2. Все электроны, достигающие анода, имеют одинаковую кинетическую энергию, равную работе электрического поля между анодом и катодом:

где е - заряд электрона, U - ускоряющее напряжение.

3. Кинетическая энергия электрона частично передается веществу и идет на его нагревание (Q), а частично расходуется на создание рентгеновского кванта:

4. Соотношение между Q и hv случайно.

В силу последнего свойства (4) кванты, порожденные различными электронами, имеют различные частоты и длины волн. Поэтому спектр тормозного рентгеновского излучения является сплошным. Типичный вид спектральной плотности потока рентгеновского излучения (Φ λ = άΦ/άλ) показан на рис. 32.2.

Рис. 32.2. Спектр тормозного рентгеновского излучения

Со стороны длинных волн спектр ограничен длиной волны 100 нм, которая является границей рентгеновского излучения. Со стороны коротких волн спектр ограничен длиной волны λ min . Согласно формуле (32.2) минимальной длине волны соответствует случай Q = 0 (кинетическая энергия электрона полностью переходит в энергию кванта):

Расчеты показывают, что поток (Φ) тормозного рентгеновского излучения прямо пропорционален квадрату напряжения U между

анодом и катодом, силе тока I в трубке и атомному номеру Z вещества анода:

Спектры тормозного рентгеновского излучения при различных напряжениях, различных температурах катода и различных веществах анода показаны на рис. 32.3.

Рис. 32.3. Спектр тормозного рентгеновского излучения (Φ λ):

а - при различном напряжении U в трубке; б - при различной температуре T

катода; в - при различных веществах анода отличающихся параметром Z

При увеличении анодного напряжения значение λ min смещается в сторону коротких длин волн. Одновременно возрастает и высота спектральной кривой (рис. 32.3, а).

При увеличении температуры катода возрастает эмиссия электронов. Соответственно увеличивается и ток I в трубке. Высота спектральной кривой увеличивается, но спектральный состав излучения не изменяется (рис. 32.3, б).

При изменении материала анода высота спектральной кривой изменяется пропорционально атомному номеру Z (рис. 32.3, в).

32.3. Характеристическое рентгеновское излучение. Закон Мозли

При взаимодействии катодных электронов с атомами анода наряду с тормозным рентгеновским излучением возникает рентгеновское излучение, спектр которого состоит из отдельных линий. Это излучение

имеет следующее происхождение. Некоторые катодные электроны проникают в глубь атома и выбивают электроны с его внутренних оболочек. Образовавшиеся при этом вакантные места заполняются электронами с верхних оболочек, в результате чего высвечиваются кванты излучения. Это излучение содержит дискретный набор частот, определяемый материалом анода, и называется характеристическим излучением. Полный спектр рентгеновской трубки представляет собой наложение характеристического спектра на спектр тормозного излучения (рис. 32.4).

Рис. 32. 4. Спектр излучения рентгеновской трубки

Существование характеристических спектров рентгеновского излучения было обнаружено с помощью рентгеновских трубок. Позже было установлено, что такие спектры возникают при любой ионизации внутренних орбит химических элементов. Исследовав характеристические спектры различных химических элементов, Г. Мозли (1913 г.) установил следующий закон, носящий его имя.

Корень квадратный из частоты характеристического излучения есть линейная функция порядкового номера элемента:

где ν - частота спектральной линии, Z - атомный номер испускающего элемента, А, В - константы.

Закон Мозли позволяет определить атомный номер химического элемента по наблюдаемому спектру характеристического излучения. Это сыграло большую роль при размещении элементов в периодической системе.

32.4. Взаимодействие рентгеновского излучения с веществом. Закон ослабления

Существуют два основных типа взаимодействия рентгеновского излучения с веществом: рассеяние и фотоэффект. При рассеянии направление движения фотона изменяется. При фотоэффекте фотон поглощается.

1. Когерентное (упругое) рассеяние происходит тогда, когда энергия рентгеновского фотона недостаточна для внутренней ионизации атома (выбивания электрона с одной из внутренних оболочек). При этом изменяется направление движения фотона, а его энергия и длина волны не изменяются (поэтому это рассеяние и называется упругим).

2. Некогерентное (комптоновское) рассеяние происходит тогда, когда энергия фотона намного больше энергии внутренней ионизации А и: hv >> А и.

При этом электрон отрывается от атома и приобретает некоторую кинетическую энергию Е к. Направление движения фотона при комптоновском рассеянии изменяется, а его энергия уменьшается:

Комптоновское рассеяние связано с ионизацией атомов вещества.

3. Фотоэффект имеет место тогда, когда энергия фотона hv достаточна для ионизации атома: hv > А и. При этом рентгеновский квант поглощается, а его энергия расходуется на ионизацию атома и сообщение кинетической энергии выбитому электрону Е к = hv - А И.

Комптоновское рассеяние и фотоэффект сопровождаются характеристическим рентгеновским излучением, так как после выбивания внутренних электронов происходит заполнение вакантных мест электронами внешних оболочек.

Рентгенолюминесценция. В некоторых веществах электроны и кванты комптоновского рассеяния, а также электроны фотоэффекта вызывают возбуждение молекул, которое сопровождается излучательными переходами в основное состояние. При этом возникает свечение, называемое рентгенолюминесценцией. Люминесценция платиносинеродистого бария позволила Рентгену открыть Х-лучи.

Закон ослабления

Рассеяние рентгеновских лучей и фотоэффект приводят к тому, что по мере проникновения рентгеновского излучения вглубь первичный пучок излучения ослабляется (рис. 32.5). Ослабление носит экспоненциальный характер:

Величина μ зависит от поглощающего материала и спектра излучения. Для практических расчетов в качестве характеристики ослабле-

Рис. 32.5. Ослабление рентгеновского потока в направлении падающих лучей

где λ - длина волны; Z - атомный номер элемента; k - некоторая константа.

32.5. Физические основы использования

рентгеновского излучения в медицине

В медицине рентгеновское излучение применяется в диагностических и терапевтических целях.

Рентгенодиагностика - методы получения изображений внутренних органов с использованием рентгеновских лучей.

Физической основой этих методов является закон ослабления рентгеновского излучения в веществе (32.10). Однородный по сечению поток рентгеновского излучения после прохождения неоднородной ткани станет неоднородным. Эта неоднородность может быть зафиксирована на фотопленке, флуоресцирующем экране или с помощью матричного фотоприемника. Например, массовые коэффициенты ослабления костной ткани - Са 3 (РО 4) 2 - и мягких тканей - в основном Н 2 О - различаются в 68 раз (μ m кости /μ m воды = 68). Плотность кости также выше плотности мягких тканей. Поэтому на рентгеновском снимке получается светлое изображение кости на более темном фоне мягких тканей.

Если исследуемый орган и окружающие его ткани имеют близкие коэффициенты ослабления, то применяют специальные контрастные вещества. Так, например, при рентгеноскопии желудка обследуемый принимает кашеобразную массу сульфата бария (ВаSО 4), у которого массовый коэффициент ослабления в 354 раза больше, чем у мягких тканей.

Для диагностики используют рентгеновское излучение с энергией фотонов 60-120 кэВ. В медицинской практике используют следующие методы рентгенодиагностики.

1. Рентгеноскопия. Изображение формируется на флуоресцирующем экране. Яркость изображения невелика, и его можно рассматривать только в затемненном помещении. Врач должен быть защищен от облучения.

Достоинством рентгеноскопии является то, что она проводится в реальном режиме времени. Недостаток - большая лучевая нагрузка на больного и врача (по сравнению с другими методами).

Современный вариант рентгеноскопии - рентгенотелевидение - использует усилители рентгеновского изображения. Усилитель воспринимает слабое свечение рентгеновского экрана, усиливает его и передает на экран телевизора. В результате резко уменьшилась лучевая нагрузка на врача, повысилась яркость изображения и появилась возможность видеозаписи результатов обследования.

2. Рентгенография. Изображение формируется на специальной пленке, чувствительной к рентгеновскому излучению. Снимки производятся в двух взаимно перпендикулярных проекциях (прямая и боковая). Изображение становится видимым после фотообработки. Готовый высушенный снимок рассматривают в проходящем свете.

При этом удовлетворительно видны детали, контрастности которых отличаются на 1-2 %.

В некоторых случаях перед обследованием пациенту вводится специальное контрастное вещество. Например, йодсодержащий раствор (внутривенно) при исследовании почек и мочевыводящих путей.

Достоинствами рентгенографии являются высокое разрешение, малое время облучения и практически полная безопасность для врача. К недостаткам относится статичность изображения (объект нельзя проследить в динамике).

3. Флюорография. При этом обследовании изображение, полученное на экране, фотографируется на чувствительную малоформатную пленку. Флюорография широко используется при массовом обследовании населения. Если на флюорограмме находят патологические изменения, то пациенту назначают более детальное обследование.

4. Электрорентгенография. Этот вид обследования отличается от обычной рентгенографии способом фиксации изображения. Вместо пленки используют селеновую пластину, которая электризуется под действием рентгеновских лучей. В результате возникает скрытое изображение из электрических зарядов, которое можно сделать видимым и перенести на бумагу.

5. Ангиография. Этот метод применяется при обследовании кровеносных сосудов. Через катетер в вену вводится контрастное вещество, после чего мощный рентгеновский аппарат выполняет серию снимков, следующих друг за другом через доли секунды. На рисунке 32.6 показана ангиограмма в районе сонной артерии.

6. Рентгеновская компьютерная томография. Этот вид рентгеновского обследования позволяет получить изображение плоского сечения тела толщиной несколько мм. При этом заданное сечение многократно просвечивается под разными углами с фиксацией каждого отдельного изображения в памяти компьютера. Затем

Рис. 32.6. Ангиограмма, на которой видно сужение в канале сонной артерии

Рис. 32.7. Сканирующая схема томографии (а); томограмма головы в сечении на уровне глаз (б).

осуществляется компьютерная реконструкция, результатом которой является изображение сканируемого слоя (рис. 32.7).

Компьютерная томография позволяет различать элементы с перепадом плотности между ними до 1 %. Обычная рентгенография позволяет уловить минимальную разницу по плотности между соседними участками в 10-20 %.

Рентгенотерапия - использование рентгеновского излучения для уничтожения злокачественных образований.

Биологическое действие излучения заключается в нарушении жизнедеятельности особенно быстро размножающихся клеток. Очень жесткое рентгеновское излучение (с энергией фотонов примерно 10 МэВ) используется для разрушения раковых клеток, находящихся глубоко внутри тела. Для уменьшения повреждений здоровых окружающих тканей пучок вращается вокруг пациента таким образом, чтобы под его воздействием все время оставалась только поврежденная область.

32.6. Основные понятия и формулы

Продолжение таблицы

Окончание таблицы

32.7. Задачи

1. Почему в медицинских рентгеновских трубках пучок электронов ударяет в одну точку антикатода, а не падает на него широким пучком?

Ответ: чтобы получить точечный источник рентгеновских лучей, дающий на экране резкие очертания просвечиваемых предметов.

2. Найти границу тормозного рентгеновского излучения (частоту и длину волны) для напряжений U 1 = 2 кВ и U 2 = 20 кВ.

4. Для защиты от рентгеновского излучения используются свинцовые экраны. Линейный показатель поглощения рентгеновского излучения в свинце равен 52 см -1 . Какова должна быть толщина экранирующего слоя свинца, чтобы он уменьшил интенсивность рентгеновского излучения в 30 раз?

5. Найти поток излучения рентгеновской трубки при U = 50 кВ, I = 1мА. Анод изготовлен из вольфрама (Z = 74). Найти КПД трубки.

6. Для рентгенодиагностики мягких тканей применяют контрастные вещества. Например, желудок и кишечник заполняют массой сульфата бария (ВаSО 4). Сравнить массовые коэффициенты ослабления сульфата бария и мягких тканей (воды).

7. Что даст более густую тень на экране рентгеновской установки: алюминий (Z = 13, ρ = 2,7 г/см 3) или такой же слой меди (Z = 29, ρ = 8,9 г/см 3)?

8. Во сколько раз толщина слоя алюминия больше толщины слоя меди, если слои ослабляют рентгеновское излучение одинаково?



gastroguru © 2017