Подтип позвоночные, или черепные. Позвоночные, или черепные позвоночные Позвоночные высокоорганизованные животные их головной мозг

К позвоночным животным относятся высокоорганизованные подвижные хордовые, характеризующиеся активными способами добывания пищи. Хорда у большинства видов замещается позвоночником, развиваются череп и челюсти, обеспечивающие захват и удержание пищи. Появляются парные конечности и их пояса, позволяющие животным перемещаться, активно разыскивая пищу и спасаясь от преследования врагов. Высокий уровень их активности обеспечивается особенностями морфологической и физической организации основных систем органов.

Так, нервная трубка у позвоночных имеет головной и спинной мозг, защищенный костями черепа и позвоночником. Головной мозг включает пять отделов: передний, промежуточный, средний, мозжечок и продолговатый, — функционирование которых составляет основу приспособительного поведения. Совершенства достигает строение разнообразных органов чувств, позволяющих осуществлять связь между живым организмом и внешней средой.

Повышение уровня обмена веществ у позвоночных осуществляется с помощью дифференцированной пищеварительной системы развитыми мощными пищеварительными железами — печенью и поджелудочной железой, активизирующими процессами пищеварения. Появление второго, легочного круга кровообращения, быстрого кровотока, больших дыхательных поверхностей и замена нефридиальной выделительной системы более совершенно действующими органами — почками, выводящими из организма возросшее количество продуктов распада, — вот те магистральные пути эволюции позвоночных, которые привели их к прогрессивному развитию.

К подтипу черепные или позвоночные относится подавляющее большинство хордовых. Передняя часть нервной трубки у них расширена, образуя головной мозг, который защищен хрящевым или костным черепом . Часть нервной трубки, помещающаяся в туловище и называемая спинным мозгом, заключена вместе с хордой в хрящевой или костный позвоночник, состоящий из отдельных позвонков. У представителей подтипа появляется орган кровообращения — сердце , лежащее на брюшной стороне тела, а также сложно устроенные почки .

Наконец, для позвоночных характерны хорошо развитые парные конечности (кроме круглоротых) и совершенные органы чувств (зрения, слуха, обоняния и др.). Все это обеспечивает позвоночным высокую подвижность, способность ориентироваться в пространстве, легко находить добычу.

Сравнительная характеристика классов позвоночных
Классы Кожный покров Дыхание Сердце Оплодотворение Яйцеклетки
Рыбы Кожа с большим числом одноклеточных желез, покрыта костными чешуйками Жаберное Двухкамерное, содержит венозную кровь Наружное Мелкие, лишены плотных оболочек
Амфибии (земно-водные) Кожа влажная, с большим количеством многоклеточных слизистых желез Легочное и кожное Трех камерное, содержит смешанную кровь Наружное Мелкие, окружены слизистой оболочкой
Рептилии (пресмы-кающиеся) Кожа сухая, тонкая, без желез, покрыта роговыми чешуйками Легочное То же Внутреннее Наружные, покрыты кожистой оболочкой
Птицы Кожа сухая, тонкая, защищена перьями Легочное Четырехмерное. Правая половина содержит венозную кровь, левая — артериальную Внутреннее Очень крупные, с большим количеством желтка, покрыты известковой скорлупой
Млеко-питающие Кожа толстая, с большим количеством разнообразных желез, защищена волосами Легочное, в акте дыхания принимает участие диафрагма То же Внутреннее Очень мелкие, бедные желтком

Круглоротые

К наиболее примитивным животным подтипа позвоночных относится класс круглоротые . Он объединяет животных, с одной стороны значительно превосходящих бесчерепных, по своей морфофизиологической организации, с другой — показывающих пример отчетливо выраженной специализации.

Аппарат нападения круглоротых на живых рыб, иногда превосходящих их размерами, представляет собой присасывательную воронку — видоизмененную и специализированную ротовую полость. С помощью воронки круглоротые присасываются к жертве, обычно около жаберного аппарата, и легко нарушают его покровы. Сначала высасывают кровь и соки из тканей, а затем просверливают стенки тела жертвы. Особенно опасны для рыб миксины. Хотя они слепы, но находят жертву очень точно и мгновенно к ней присасываются. Сбросить таких страшных наездников рыба не может и погибает.

Пищеварительная система круглоротых примитивна по строению и представляет собой трубку без подразделения на отделы, есть печень и зачаток поджелудочной железы. В кровеносной системе действует двухкамерное сердце — основной двигатель крови. Сердце состоит из предсердия и желудочка. Кровь в сердце венозная, по артериям она поступает к жабрам, где обогащается кислородом, затем по артериальным сосудам движется вдоль тела и поступает в капилляры. Отдав клеткам тела кислород и питательные вещества, забрав углекислый газ, она собирается в вены и вновь продвигается к сердцу. Таким образом, кровеносная система круглоротых замкнутая и имеет один круг кровообращения.

Органами выделения служат почки весьма простого строения.

Центральная нервная система представлена, как и у всех позвоночных, головным и спинным мозгом и отходящими от них нервами. Головной мозг состоит из пяти отделов: переднего, промежуточного, среднего, мозжечка и продолговатого мозга, что типично для всех позвоночных.

В отличие от ланцетника, у многих круглоротых есть глаза, органы слуха, непарная обонятельная ямка. Боковая линия — орган, воспринимающий движение водных потоков — представлена у них в виде ряда ямок.

Таким образом, в целом морфофизиологическая организация круглоротых значительно выше, чем у бесчерепных, но в то же время ниже, чем у рыб.

У круглоротых нет парных плавников, челюстей и жаберных крышек, нет чешуи, типичной для большинства рыб. Вместе с тем круглоротые — связующее эволюционное звено между бесчерепными животными и рыбами, которое сохранила природа до наших дней.

1. Центральная нервная система. Строение и функции спинного мозга и отделов головного мозга

Центральная нервная система включает в себя спинной и головной мозг, развивающиеся у всех позвоночных из нервной трубки. Средняя масса спинного мозга составляет около 300 г, головного – около 1,5 кг. Спинной мозг расположен в позвоночном канале и делится в продольном направлении на 31 однотипно организованный сегмент. На поперечном срезе видно, что в центре спинного мозга расположены тела нейронов, образующие серое вещество. Вокруг серого вещества расположены отростки нервных клеток самого спинного мозга, а также приходящие в спинной мозг аксоны нейронов головного мозга и периферических нервных узлов, которые образуют белое вещество.

Головной мозг (продольный разрез):
1 – центральная борозда; 2 – мозговой свод; 3 – большой мозг; 4 – мозолистое тело; 5 – таламус; 6 – лобная доля; 7 – гипоталамус; 8 – перекрест зрительных нервов; 9 – гипофиз; 10 – средний мозг; 11 – варолиев мост; 12 – продолговатый мозг; 13 – спинной мозг; 14 – четвертый желудочек мозга; 15 – мозжечок; 16 – водопровод мозга; 17 – затылочная доля; 18 – шишковидное тело; 19 – теменно-затылочная борозда; 20 – теменная доля

На поперечном срезе серое вещество похоже на бабочку, и в нем различают передние, задние и боковые рога. В передних рогах расположены двигательные нейроны, по аксонам которых возбуждение достигает мышц конечностей и туловища. В задних рогах расположены тела вставочных нейронов, связывающих отростки чувствительных клеток с телами двигательных нейронов, а также воспринимающие сигналы из головного мозга. В боковых рогах расположены тела нейронов вегетативной нервной системы. От каждого из сегментов спинного мозга отходит пара спинномозговых нервов (всего 31 пара), и каждый сегмент спинного мозга отвечает за определенный участок тела человека.

Спинной мозг выполняет две основные функции: проводящую и рефлекторную. Первая из них заключается в том, что по волокнам белого вещества в головной мозг «поднимается» информация от кожных и мышечных рецепторов; в свою очередь, от центров головного мозга в спинной мозг поступают двигательные команды. Рефлекторная функция спинного мозга обеспечивается тем, что его нейроны управляют движениями скелетных мышц. Кроме того, находящиеся здесь вегетативные центры регулируют деятельность сердечно-сосудистой, дыхательной, пищеварительной и других систем, запуская различные вегетативные рефлексы. Примером простейшего рефлекса спинного мозга является описанный в билете № 20,1 коленный рефлекс.

Головной мозг делится на пять отделов: продолговатый мозг, задний мозг (к нему относят мост и мозжечок), средний мозг, промежуточный мозг и большие полушария мозга. Продолговатый мозг служит естественным продолжением спинного мозга и является древнейшим утолщением переднего конца нервной трубки. В связи с этим в нем лежат центры многих важнейших для жизни рефлексов. Так, в продолговатом мозге находятся дыхательный и сосудодвигательный центры. Последний, постоянно генерируя нервные импульсы, поддерживает оптимальный просвет артериальных сосудов (тонус их стенок). Область продолговатого мозга – место входа и выхода большинства черепно-мозговых нервов, выполняющих различные чувствительные, двигательные и вегетативные функции. В центральной части продолговатого мозга начинается ретикулярная формация – зона, содержащая главные центры сна и бодрствования.

Мост – это анатомическое и функциональное продолжение продолговатого мозга. С ним также связаны некоторые черепно-мозговые нервы. Мост играет важную роль в переключении двигательных сигналов, идущих из коры больших полушарий в мозжечок, который расположен позади продолговатого мозга и моста, под затылочными долями больших полушарий. Состоит мозжечок из червя (центральной части) и полушарий и покрыт снаружи серым веществом, имеющим слоистое строение, – корой. В мозжечок поступает информация от вестибулярной системы, системы мышечной чувствительности и различных двигательных центров (в том числе от больших полушарий). Используя ее, мозжечок регулирует как относительно простые двигательные функции (поддержание мышечного тонуса и равновесия; движения, связанные с перемещениями в пространстве, – ходьба, бег и т.п.), так и двигательное обучение, когда движение из произвольного, управляемого большими полушариями, при многократных повторах переходит в разряд «автоматических», выполняемых без участия или почти без участия сознания.

Верхняя часть среднего мозга состоит из четырех небольших бугорков – четверохолмия. Это зрительные и слуховые центры, реагирующие на появление новых сигналов и управляющие движениями глаз и головы так, чтобы наилучшим образом рассмотреть (расслышать) привлекший внимание объект (т.н. ориентировочный рефлекс). Под четверохолмием расположена область, являющаяся главным центром сна нашего мозга. Еще ниже расположены скопления нейронов, выполняющих двигательные функции (сгибание конечностей, регуляция уровня двигательной активности).

Две важнейшие части промежуточного мозга называются таламус и гипоталамус. Находящийся выше таламус содержит нейроны, анализирующие различные виды ощущений (кожные, слуховые, зрительные и т.д.). Цель такого анализа – пропустить в кору больших полушарий только наиболее значимую информацию, касающуюся стимулов, важных для реализации какой-либо текущей деятельности. Гипоталамус является высшим центром вегетативной регуляции; его передние области – зона парасимпатических влияний, а задние – симпатических. Внутренняя часть гипоталамуса – нейроэндокринный орган (см. также билет № 24,1). Наконец, в гипоталамусе расположено большое количество нейронов, реагирующих на изменение состояния внутренней среды организма. Так, при понижении в крови концентрации глюкозы возбуждается находящийся здесь центр голода. В гипоталамусе находятся центры жажды, терморегуляции, а также центры страха, агрессии, полового поведения и др.

Большие полушария – наиболее массивный отдел мозга, занимающий большую часть полости черепа. Снаружи полушария покрыты серым веществом (корой), внутри находится белое вещество, в глубине которого лежат так называемые подкорковые ядра (базальные ганглии). Белое вещество состоит из трех систем волокон: связывающих полушария с остальными отделами мозга; соединяющих различные структуры одного полушария; соединяющих симметричные отделы правого и левого полушарий. Базальные ганглии включают несколько скоплений (ядер) серого вещества, имеющих обширные связи с таламусом, корой больших полушарий, средним мозгом. Их основные функции связаны с управлением движениями, т.е. наряду с мозжечком базальные ганглии являются крупнейшим подкорковым двигательным центром.

Кора больших полушарий – высший отдел центральной нервной системы, она отвечает за восприятие всей поступающей в мозг информации, управление сложными движениями, мыслительную и речевую деятельность. Кора больших полушарий человека и ряда высших млекопитающих имеет складчатый вид. На ее поверхности выделяют многочисленные извилины, разделенные бороздами, что очень увеличивает ее площадь. Самая заметная борозда – боковая (сильвиева). Она отделяет височную долю коры от теменной и лобной. В глубине боковой борозды лежит островковая доля (не видна на поверхности мозга). Лобная доля отделяется от теменной центральной бороздой. Теменная доля отделяется от затылочной теменно-затылочной бороздой. Кроме того, в коре выделяют лимбическую долю, расположенную на внутренней (срединной) поверхности полушарий.

По своему происхождению кора больших полушарий разделяется на древнюю, старую и новую. Древняя кора включает структуры, связанные с анализом обонятельных раздражителей. Основную часть старой коры составляет гиппокамп, находящийся на внутренней поверхности височной доли. Гиппокамп – структура, тесно связанная с процессами научения и памяти. Остальные области – это новая кора. Ее можно разделить на сенсорные, двигательные и ассоциативные зоны.

К сенсорным зонам относятся поля, в которых заканчиваются аксоны нейронов таламуса, несущие сигналы о различных видах чувствительности. Каждому виду чувствительности соответствуют особые области коры. Зрительная зона находится в затылочной доле, слуховая – в височной, вкусовая и обонятельная – на внутренней поверхности височных долей и в островковой доле. Большую площадь занимает зона кожной и мышечной чувствительности – позади центральной борозды в теменной доле. Двигательная зона расположена в задней части лобной доли сразу перед центральной бороздой – здесь начинается главный двигательный путь, через который реализуются наши произвольные движения. Волокна, идущие от правого и левого полушарий, перекрещиваются при входе в спинной мозг и управляют мышцами левой и правой сторон тела соответственно.

К ассоциативной коре отнесены области, которым нельзя приписать каких-либо преимущественно сенсорных или двигательных функций. У человека они занимают большую часть коры. Эти зоны связывают (ассоциируют) друг с другом сенсорные и двигательные области и одновременно служат местом реализации высших психических функций. Основные ассоциативные области – это теменная (задняя половина теменной доли), лобная (лобная доля за вычетом двигательной зоны) и лимбическая. Если же описывать их назначение, то перечисленные области особенно важны соответственно для речи и высших сенсорных функций и построения целостных образов внешнего мира; высших двигательных функций; выбора и запуска оптимальных вариантов поведения; памяти и эмоциональных реакций.

Именно ассоциативная кора (особенно лобная) – является «верховным главнокомандующим» нашей центральной нервной системы. Деятельность остальных частей мозга в значительной мере направлена на то, чтобы предоставить ассоциативной коре необходимую для работы информацию и выполнить поступающие от нее команды.

2. Членистоногие – высокоорганизованные беспозвоночные животные, их родство с кольчатыми червями. Роль в природе

Тип Членистоногие – самый многочисленный и разнообразный тип царства животных. Происходя от кольчатых червей, представители типа сохраняют многие их признаки, однако у них появляется и большое количество собственных приспособлений, обеспечивающих успешную эволюцию и широкое распространение не только в водной, но и в других средах.

С кольчатыми червями членистоногих сближает прежде всего сегментированное строение тела. Первый и последний сегменты тела конечностей не несут. Между ними находится ряд промежуточных сегментов, каждый с парой конечностей и повторяющимся набором обслуживающих их структур – мышечных, нервных, скелетных. При этом не связанные с конечностями органы (пищеварительные, выделительные, половые) не сегментируются. Конечности членистоногих легко видоизменяются и приспосабливаются для выполнения плавательных и ходильных функций, захвата и измельчения пищи и др.

Для наиболее развитых классов членистоногих характерно то, что их тело покрыто плотной хитиновой кутикулой – наружным скелетом. Кутикула образует кольца, с одной стороны, защищающие тело и конечности, с другой – за счет подвижного соединения отдельных колец обеспечивающие их подвижность. При этом единый кожно-мускульный мешок, характерный для червей, распадается на отдельные мышечные волокна, прикрепленные изнутри к наружному скелету. Рост членистоногих сопровождается периодическим сбрасыванием хитинового покрова – линьками.

Пищеварительная система у членистоногих, как и у червей, сквозная. В ее передней части располагается глотка и в некоторых случаях зоб. Далее следуют желудок и кишечник, стенки которого могут образовывать слепые выросты, богатые пищеварительными железами. Анальное отверстие расположено на последнем сегменте тела.

Членистоногие, как и кольчатые черви, имеют кровеносную систему. Однако она незамкнутая – то есть происходит объединение кровеносных сосудов и полостей тела. Кровь, следовательно, течет не по капиллярам, пронизывающим внутренние органы, а омывает их снаружи. Движение крови обеспечивается сердцем, находящимся на спинной стороне тела и представляющим относительно просто устроенный мышечный мешочек. Кровь вытекает из сердца по артериальным сосудам и поступает в полости тела. Затем она проходит через органы дыхания и возвращается обратно в сердце.

Нервная система членистоногих имеет план строения, сходный с возникшим у кольчатых червей. Ее основными частями являются окологлоточные ганглии и брюшная нервная цепочка. Нервная система достигает высокого уровня развития у самых разных групп членистоногих, обеспечивая работу органов чувств, различные типы движений, сложные инстинктивные реакции.

Три наиболее известных класса членистоногих – это Ракообразные, паукообразные и насекомые. Все сказанное выше справедливо для каждого из них. Вместе с тем, эти классы членистоногих отличаются деталями внешнего строения, устройством дыхательной и выделительной систем, особенностями размножения.

Ракообразные характеризуются наличием двух пар усиков, трех пар челюстей и (у десятиногих раков) ногочелюстей, пяти пар ходильных ног (передние из них часто образуют клешни), плавательных ног. Их тело делится на головогрудь и брюшко.

Паукообразные не имеют усиков. У них одна пара челюстей, ногощупальца и четыре пары ходильных ног; тело делится на головогрудь и брюшко (пауки). На конце брюшка часто находятся паутинные железы, также являющиеся преобразованными конечностями.

У насекомых есть одна пара усиков, две пары челюстей и дополнительные ротовые придатки (губы и щупики), три пары ходильных ног. Тело делится на голову, грудь и брюшко; производными покровов верхней части груди являются две пары крыльев, характерные для большинства насекомых.

Ракообразные являются водными членистоногими. Соответственно, органами их дыхания служат жабры, развивающиеся как выросты конечностей. Они обычно расположены в полости, соединенной с внешней средой и прикрытой хитиновыми пластинками. Например, у речного рака такая полость находится под покровами головогруди, а четыре пары расположенных здесь жабр – выросты верхней части ходильных ног.

У паукообразных сосуществуют две дыхательные системы – легочные мешки и трахеи. Их появление связано с переходом к сухопутному образу жизни. Легочные мешки располагаются у пауков в передней части брюшка и представляют собой соединенные с внешней средой полости, стенки которых образуют многочисленные листовидные складки. Трахеи – это пучки дыхательных трубочек, проходящих по телу паука и открывающихся наружу дыхательным отверстием.

У насекомых имеются только трахеи. Они густо ветвятся, пронизывают все органы и настолько эффективно доставляют к ним кислород, что кровь насекомых теряет способность к его переносу и осуществляет транспорт только питательных веществ.

Выделительная система ракообразных обычно представлена парой находящихся в голове желез (у речного рака – зеленые железы). Эти железы обладают воронкой, сходной с воронкой метанефридиев кольчатых червей. У паукообразных имеются мальпигиевы сосуды – слепозамкнутые выделительные трубочки, впадающие в кишечник. У насекомых сохраняются только мальпигиевы сосуды, позволяющие выводить отходы обмена веществ в очень концентрированном (даже кристаллическом) виде, а значит, максимально снизить потери воды.

Все членистоногие раздельнополые. Они нередко заботятся о кладке своих яиц и даже родившемся потомстве. Ярким примером такой заботы являются пчелы, муравьи, термиты, образующие сложно организованные семьи. При этом из яйца нередко выводится личиночная форма, мало напоминающая взрослое членистоногое. Особенно это характерно для насекомых с полным превращением. Личинки мухи, жука, пилильщика, бабочки имеют червеобразное тело, а нередко – и дополнительные конечности (ложные ножки).

Роль членистоногих в природе чрезвычайно велика. В море, где обитают в основном ракообразные, они образуют огромные массы планктона. Планктонные организмы, представителями которых являются пресноводные циклопы и дафнии, парят в толще воды, питаются одноклеточными водорослями и мелкими органическими частицами и сами служат пищей для рыб, птиц и т.д. Крупные донные ракообразные поедаются рыбами, млекопитающими, головоногими моллюсками. В целом можно сказать, что ракообразные занимают в морских экологических системах множество ниш и, приспособившись к добыче самой разнообразной пищи, являются обычно первичными консументами либо редуцентами.

В целом можно сказать, что, являясь одной из вершин эволюции беспозвоночных, членистоногие наряду с моллюсками успешно освоили самые различные экологические системы моря и суши, причем последние – гораздо успешнее моллюсков. При этом решающую роль сыграли именно те приспособления, которыми членистоногие отличаются от своих предков – кольчатых червей. Разнообразие конечностей позволило им использовать не только различные способы движений, но и добывать самую разнообразную пищу (пример – грызущие, сосущие, лижущие и прочие видоизменения челюстей насекомых). Возникновение же прочного хитинового покрова защитило тело не только от механических воздействий, но и от высыхания. «Ценой» за развитие наружного скелета стала утрата кожного дыхания, что, в свою очередь, вызвало развитие жабр, легочных мешков, трахей.

орган, координирующий и регулирующий все жизненные функции организма и контролирующий поведение. Все наши мысли, чувства, ощущения, желания и движения связаны с работой мозга, и если он не функционирует, человек переходит в вегетативное состояние: утрачивается способность к каким-либо действиям, ощущениям или реакциям на внешние воздействия. Данная статья посвящена мозгу человека, более сложному и высокоорганизованному, чем мозг животных. Однако существует значительное сходство в устройстве мозга человека и других млекопитающих, как, впрочем, и большинства видов позвоночных. Центральная нервная система (ЦНС) состоит из головного и спинного мозга. Она связана с различными частями тела периферическими нервами - двигательными и чувствительными.
Головной мозг - симметричная структура, как и большинство других частей тела. При рождении его вес составляет примерно 0,3 кг, тогда как у взрослого он - ок. 1,5 кг. При внешнем осмотре мозга внимание прежде всего привлекают два больших полушария, скрывающие под собой более глубинные образования. Поверхность полушарий покрыта бороздами и извилинами, увеличивающими поверхность коры (наружного слоя мозга). Сзади помещается мозжечок, поверхность которого более тонко изрезана. Ниже больших полушарий расположен ствол мозга, переходящий в спинной мозг. От ствола и спинного мозга отходят нервы, по которым к мозгу стекается информация от внутренних и наружных рецепторов, а в обратном направлении идут сигналы к мышцам и железам. От головного мозга отходят 12 пар черепно-мозговых нервов. Внутри мозга различают серое вещество, состоящее преимущественно из тел нервных клеток и образующее кору, и белое вещество - нервные волокна, которые формируют проводящие пути (тракты), связывающие между собой различные отделы мозга, а также образуют нервы, выходящие за пределы ЦНС и идущие к различным органам. Головной и спинной мозг защищены костными футлярами - черепом и позвоночником. Между веществом мозга и костными стенками располагаются три оболочки: наружная - твердая мозговая оболочка, внутренняя - мягкая, а между ними - тонкая паутинная оболочка. Пространство между оболочками заполнено спинномозговой (цереброспинальной) жидкостью, которая по составу сходна с плазмой крови, вырабатывается во внутримозговых полостях (желудочках мозга) и циркулирует в головном и спинном мозгу, снабжая его питательными веществами и другими необходимыми для жизнедеятельности факторами. Кровоснабжение головного мозга обеспечивают в первую очередь сонные артерии; у основания мозга они разделяются на крупные ветви, идущие к различным его отделам. Хотя вес мозга составляет всего 2,5% веса тела, к нему постоянно, днем и ночью, поступает 20% циркулирующей в организме крови и соответственно кислорода. Энергетические запасы самого мозга крайне невелики, так что он чрезвычайно зависим от снабжения кислородом. Существуют защитные механизмы, способные поддержать мозговой кровоток в случае кровотечения или травмы. Особенностью мозгового кровообращения является также наличие т.н. гематоэнцефалического барьера. Он состоит из нескольких мембран, ограничивающих проницаемость сосудистых стенок и поступление многих соединений из крови в вещество мозга; таким образом, этот барьер выполняет защитные функции. Через него не проникают, например, многие лекарственные вещества.
КЛЕТКИ МОЗГА
Клетки ЦНС называются нейронами; их функция - обработка информации. В мозгу человека от 5 до 20 млрд. нейронов. В состав мозга входят также глиальные клетки, их примерно в 10 раз больше, чем нейронов. Глия заполняет пространство между нейронами, образуя несущий каркас нервной ткани, а также выполняет метаболические и другие функции.

Нейрон, как и все другие клетки, окружен полупроницаемой (плазматической) мембраной. От тела клетки отходят два типа отростков - дендриты и аксоны. У большинства нейронов много ветвящихся дендритов, но лишь один аксон. Дендриты обычно очень короткие, тогда как длина аксона колеблется от нескольких сантиметров до нескольких метров. Тело нейрона содержит ядро и другие органеллы, такие же, как и в других клетках тела.
Нервные импульсы. Передача информации в мозгу, как и нервной системе в целом, осуществляется посредством нервных импульсов. Они распространяются в направлении от тела клетки к концевому отделу аксона, который может ветвиться, образуя множество окончаний, контактирующих с другими нейронами через узкую щель - синапс; передача импульсов через синапс опосредована химическими веществами - нейромедиаторами. Нервный импульс обычно зарождается в дендритах - тонких ветвящихся отростках нейрона, специализирующихся на получении информации от других нейронов и передаче ее телу нейрона. На дендритах и, в меньшем числе, на теле клетки имеются тысячи синапсов; именно через синапсы аксон, несущий информацию от тела нейрона, передает ее дендритам других нейронов. В окончании аксона, которое образует пресинаптическую часть синапса, содержатся маленькие пузырьки с нейромедиатором. Когда импульс достигает пресинаптической мембраны, нейромедиатор из пузырька высвобождается в синаптическую щель. Окончание аксона содержит только один тип нейромедиатора, часто в сочетании с одним или несколькими типами нейромодуляторов (см. ниже Нейрохимия мозга). Нейромедиатор, выделившийся из пресинаптической мембраны аксона, связывается с рецепторами на дендритах постсинаптического нейрона. Мозг использует разнообразные нейромедиаторы, каждый из которых связывается со своим особым рецептором. С рецепторами на дендритах соединены каналы в полупроницаемой постсинаптической мембране, которые контролируют движение ионов через мембрану. В покое нейрон обладает электрическим потенциалом в 70 милливольт (потенциал покоя), при этом внутренняя сторона мембраны заряжена отрицательно по отношению к наружной. Хотя существуют различные медиаторы, все они оказывают на постсинаптический нейрон либо возбуждающее, либо тормозное действие. Возбуждающее влияние реализуется через усиление потока определенных ионов, главным образом натрия и калия, через мембрану. В результате отрицательный заряд внутренней поверхности уменьшается - происходит деполяризация. Тормозное влияние осуществляется в основном через изменение потока калия и хлоридов, в результате отрицательный заряд внутренней поверхности становится больше, чем в покое, и происходит гиперполяризация. Функция нейрона состоит в интеграции всех воздействий, воспринимаемых через синапсы на его теле и дендритах. Поскольку эти влияния могут быть возбуждающими или тормозными и не совпадать по времени, нейрон должен исчислять общий эффект синаптической активности как функцию времени. Если возбуждающее действие преобладает над тормозным и деполяризация мембраны превышает пороговую величину, происходит активация определенной части мембраны нейрона - в области основания его аксона (аксонного бугорка). Здесь в результате открытия каналов для ионов натрия и калия возникает потенциал действия (нервный импульс). Этот потенциал распространяется далее по аксону к его окончанию со скоростью от 0,1 м/с до 100 м/с (чем толще аксон, тем выше скорость проведения). Когда потенциал действия достигает окончания аксона, активируется еще один тип ионных каналов, зависящий от разности потенциалов, - кальциевые каналы. По ним кальций входит внутрь аксона, что приводит к мобилизации пузырьков с нейромедиатором, которые приближаются к пресинаптической мембране, сливаются с ней и высвобождают нейромедиатор в синапс.
Миелин и глиальные клетки. Многие аксоны покрыты миелиновой оболочкой, которая образована многократно закрученной мембраной глиальных клеток. Миелин состоит преимущественно из липидов, что и придает характерный вид белому веществу головного и спинного мозга. Благодаря миелиновой оболочке скорость проведения потенциала действия по аксону увеличивается, так как ионы могут перемещаться через мембрану аксона лишь в местах, не покрытых миелином, - т.н. перехватах Ранвье. Между перехватами импульсы проводятся по миелиновой оболочке как по электрическому кабелю. Поскольку открытие канала и прохождение по нему ионов занимает какое-то время, устранение постоянного открывания каналов и ограничение их сферы действия небольшими зонами мембраны, не покрытыми миелином, ускоряет проведение импульсов по аксону примерно в 10 раз. Только часть глиальных клеток участвует в формировании миелиновой оболочки нервов (шванновские клетки) или нервных трактов (олигодендроциты). Гораздо более многочисленные глиальные клетки (астроциты, микроглиоциты) выполняют иные функции: образуют несущий каркас нервной ткани, обеспечивают ее метаболические потребности и восстановление после травм и инфекций.
КАК РАБОТАЕТ МОЗГ
Рассмотрим простой пример. Что происходит, когда мы берем в руку карандаш, лежащий на столе? Свет, отраженный от карандаша, фокусируется в глазу хрусталиком и направляется на сетчатку, где возникает изображение карандаша; оно воспринимается соответствующими клетками, от которых сигнал идет в основные чувствительные передающие ядра головного мозга, расположенные в таламусе (зрительном бугре), преимущественно в той его части, которую называют латеральным коленчатым телом. Там активируются многочисленные нейроны, которые реагируют на распределение света и темноты. Аксоны нейронов латерального коленчатого тела идут к первичной зрительной коре, расположенной в затылочной доле больших полушарий. Импульсы, пришедшие из таламуса в эту часть коры, преобразуются в ней в сложную последовательность разрядов корковых нейронов, одни из которых реагируют на границу между карандашом и столом, другие - на углы в изображении карандаша и т.д. Из первичной зрительной коры информация по аксонам поступает в ассоциативную зрительную кору, где происходит распознавание образов, в данном случае карандаша. Распознавание в этой части коры основано на предварительно накопленных знаниях о внешних очертаниях предметов. Планирование движения (т.е. взятия карандаша) происходит, вероятно, в коре лобных долей больших полушарий. В этой же области коры расположены двигательные нейроны, которые отдают команды мышцам руки и пальцев. Приближение руки к карандашу контролируется зрительной системой и интерорецепторами, воспринимающими положение мышц и суставов, информация от которых поступает в ЦНС. Когда мы берем карандаш в руку, рецепторы в кончиках пальцев, воспринимающие давление, сообщают, хорошо ли пальцы обхватили карандаш и каким должно быть усилие, чтобы его удержать. Если мы захотим написать карандашом свое имя, потребуется активация другой хранящейся в мозге информации, обеспечивающей это более сложное движение, а зрительный контроль будет способствовать повышению его точности. На приведенном примере видно, что выполнение довольно простого действия вовлекает обширные области мозга, простирающиеся от коры до подкорковых отделов. При более сложных формах поведения, связанных с речью или мышлением, активируются другие нейронные цепи, охватывающие еще более обширные области мозга.
ОСНОВНЫЕ ЧАСТИ ГОЛОВНОГО МОЗГА
Головной мозг можно условно разделить на три основные части: передний мозг, ствол мозга и мозжечок. В переднем мозгу выделяют большие полушария, таламус, гипоталамус и гипофиз (одну из важнейших нейроэндокринных желез). Ствол мозга состоит из продолговатого мозга, моста (варолиева моста) и среднего мозга. Большие полушария - самая большая часть мозга, составляющая у взрослых примерно 70% его веса. В норме полушария симметричны. Они соединены между собой массивным пучком аксонов (мозолистым телом), обеспечивающим обмен информацией.


ГОЛОВНОЙ МОЗГ ЧЕЛОВЕКА характеризуется высоким развитием больших полушарий; они составляют более двух третей его массы и обеспечивают такие психические функции, как мышление, научение, память. На этом поперечном срезе показаны и другие крупные структуры мозга: мозжечок, продолговатый мозг, мост и средний мозг.

Каждое полушарие состоит из четырех долей: лобной, теменной, височной и затылочной. В коре лобных долей содержатся центры, регулирующие двигательную активность, а также, вероятно, центры планирования и предвидения. В коре теменных долей, расположенных позади лобных, находятся зоны телесных ощущений, в том числе осязания и суставно-мышечного чувства. Сбоку к теменной доле примыкает височная, в которой расположены первичная слуховая кора, а также центры речи и других высших функций. Задние отделы мозга занимает затылочная доля, расположенная над мозжечком; ее кора содержит зоны зрительных ощущений.

Области коры, непосредственно не связанные с регуляцией движений или анализом сенсорной информации, именуются ассоциативной корой. В этих специализированных зонах образуются ассоциативные связи между различными областями и отделами мозга и интегрируется поступающая от них информация. Ассоциативная кора обеспечивает такие сложные функции, как научение, память, речь и мышление.
Подкорковые структуры. Ниже коры залегает ряд важных мозговых структур, или ядер, представляющих собой скопление нейронов. К их числу относятся таламус, базальные ганглии и гипоталамус. Таламус - это основное сенсорное передающее ядро; он получает информацию от органов чувств и, в свою очередь, переадресует ее соответствующим отделам сенсорной коры. В нем имеются также неспецифические зоны, которые связаны практически со всей корой и, вероятно, обеспечивают процессы ее активации и поддержания бодрствования и внимания. Базальные ганглии - это совокупность ядер (т.н. скорлупа, бледный шар и хвостатое ядро), которые участвуют в регуляции координированных движений (запускают и прекращают их). Гипоталамус - маленькая область в основании мозга, лежащая под таламусом. Богато снабжаемый кровью, гипоталамус - важный центр, контролирующий гомеостатические функции организма. Он вырабатывает вещества, регулирующие синтез и высвобождение гормонов гипофиза . В гипоталамусе расположены многие ядра, выполняющие специфические функции, такие, как регуляция водного обмена, распределения запасаемого жира, температуры тела, полового поведения, сна и бодрствования. Ствол мозга расположен у основания черепа. Он соединяет спинной мозг с передним мозгом и состоит из продолговатого мозга, моста, среднего и промежуточного мозга. Через средний и промежуточный мозг, как и через весь ствол, проходят двигательные пути, идущие к спинному мозгу, а также некоторые чувствительные пути от спинного мозга к вышележащим отделам головного мозга. Ниже среднего мозга расположен мост, связанный нервными волокнами с мозжечком. Самая нижняя часть ствола - продолговатый мозг - непосредственно переходит в спинной. В продолговатом мозгу расположены центры, регулирующие деятельность сердца и дыхание в зависимости от внешних обстоятельств, а также контролирующие кровяное давление, перистальтику желудка и кишечника. На уровне ствола проводящие пути, связывающие каждое из больших полушарий с мозжечком, перекрещиваются. Поэтому каждое из полушарий управляет противоположной стороной тела и связано с противоположным полушарием мозжечка. Мозжечок расположен под затылочными долями больших полушарий. Через проводящие пути моста он связан с вышележащими отделами мозга. Мозжечок осуществляет регуляцию тонких автоматических движений, координируя активность различных мышечных групп при выполнении стереотипных поведенческих актов; он также постоянно контролирует положение головы, туловища и конечностей, т.е. участвует в поддержании равновесия. Согласно последним данным, мозжечок играет весьма существенную роль в формировании двигательных навыков, способствуя запоминанию последовательности движений.
Другие системы. Лимбическая система - широкая сеть связанных между собой областей мозга, которые регулируют эмоциональные состояния, а также обеспечивают научение и память. К ядрам, образующим лимбическую систему, относятся миндалевидные тела и гиппокамп (входящие в состав височной доли), а также гипоталамус и ядра т.н. прозрачной перегородки (расположенные в подкорковых отделах мозга). Ретикулярная формация - сеть нейронов, протянувшаяся через весь ствол к таламусу и далее связанная с обширными областями коры. Она участвует в регуляции сна и бодрствования, поддерживает активное состояние коры и способствует фокусированию внимания на определенных объектах.
ЭЛЕКТРИЧЕСКАЯ АКТИВНОСТЬ МОЗГА
С помощью электродов, размещенных на поверхности головы или введенных в вещество мозга, можно зафиксировать электрическую активность мозга, обусловленную разрядами его клеток. Запись электрической активности мозга с помощью электродов на поверхности головы называется электроэнцефалограммой (ЭЭГ). Она не позволяет записать разряд отдельного нейрона. Только в результате синхронизированной активности тысяч или миллионов нейронов появляются заметные колебания (волны) на записываемой кривой.

При постоянной регистрации на ЭЭГ выявляются циклические изменения, отражающие общий уровень активности индивида. В состоянии активного бодрствования ЭЭГ фиксирует низкоамплитудные неритмичные бета-волны. В состоянии расслабленного бодрствования с закрытыми глазами преобладают альфа-волны частотой 7-12 циклов в секунду. О наступлении сна свидетельствует появление высокоамплитудных медленных волн (дельта-волн). В периоды сна со сновидениями на ЭЭГ вновь появляются бета-волны, и на основании ЭЭГ может создаться ложное впечатление, что человек бодрствует (отсюда термин "парадоксальный сон"). Сновидения часто сопровождаются быстрыми движениями глаз (при закрытых веках). Поэтому сон со сновидениями называют также сном с быстрыми движениями глаз . ЭЭГ позволяет диагностировать некоторые заболевания мозга, в частности эпилепсию
Если регистрировать электрическую активность мозга во время действия определенного стимула (зрительного, слухового или тактильного), то можно выявить т.н. вызванные потенциалы - синхронные разряды определенной группы нейронов, возникающие в ответ на специфический внешний стимул. Исследование вызванных потенциалов позволило уточнить локализацию мозговых функций, в частности связать функцию речи с определенными зонами височной и лобной долей. Это исследование помогает также оценить состояние сенсорных систем у больных с нарушением чувствительности.
НЕЙРОХИМИЯ МОЗГА
К числу самых важных нейромедиаторов мозга относятся ацетилхолин, норадреналин, серотонин, дофамин, глутамат, гамма-аминомасляная кислота (ГАМК), эндорфины и энкефалины. Помимо этих хорошо известных веществ, в мозге, вероятно, функционирует большое количество других, пока не изученных. Некоторые нейромедиаторы действуют только в определенных областях мозга. Так, эндорфины и энкефалины обнаружены лишь в путях, проводящих болевые импульсы. Другие медиаторы, такие, как глутамат или ГАМК, более широко распространены.
Действие нейромедиаторов. Как уже отмечалось, нейромедиаторы, воздействуя на постсинаптическую мембрану, изменяют ее проводимость для ионов. Часто это происходит через активацию в постсинаптическом нейроне системы второго "посредника", например циклического аденозинмонофосфата (цАМФ). Действие нейромедиаторов может видоизменяться под влиянием другого класса нейрохимических веществ - пептидных нейромодуляторов. Высвобождаемые пресинаптической мембраной одновременно с медиатором, они обладают способностью усиливать или иным образом изменять эффект медиаторов на постсинаптическую мембрану. Важное значение имеет недавно открытая эндорфин-энкефалиновая система. Энкефалины и эндорфины - небольшие пептиды, которые тормозят проведение болевых импульсов, связываясь с рецепторами в ЦНС, в том числе в высших зонах коры. Это семейство нейромедиаторов подавляет субъективное восприятие боли. Психоактивные средства - вещества, способные специфически связываться с определенными рецепторами в мозгу и вызывать изменение поведения. Выявлено несколько механизмов их действия. Одни влияют на синтез нейромедиаторов, другие - на их накопление и высвобождение из синаптических пузырьков (например, амфетамин вызывает быстрое высвобождение норадреналина). Третий механизм состоит в связывании с рецепторами и имитации действия естественного нейромедиатора, например эффект ЛСД (диэтиламида лизергиновой кислоты) объясняют его способностью связываться с серотониновыми рецепторами. Четвертый тип действия препаратов - блокада рецепторов, т.е. антагонизм с нейромедиаторами. Такие широко используемые антипсихотические средства, как фенотиазины (например, хлорпромазин, или аминазин), блокируют дофаминовые рецепторы и тем самым снижают эффект дофамина на постсинаптические нейроны. Наконец, последний из распространенных механизмов действия - торможение инактивации нейромедиаторов (многие пестициды препятствуют инактивации ацетилхолина). Давно известно, что морфин (очищенный продукт опийного мака) обладает не только выраженным обезболивающим (анальгетическим) действием, но и свойством вызывать эйфорию. Именно поэтому его и используют как наркотик. Действие морфина связано с его способностью связываться с рецепторами эндорфин-энкефалиновой системы человека (см. также НАРКОТИК). Это лишь один из многих примеров того, что химическое вещество иного биологического происхождения (в данном случае растительного) способно влиять на работу мозга животных и человека, взаимодействуя со специфическими нейромедиаторными системами. Другой хорошо известный пример - кураре, получаемое из тропического растения и способное блокировать ацетилхолиновые рецепторы. Индейцы Южной Америки смазывали кураре наконечники стрел, используя его парализующее действие, связанное с блокадой нервно-мышечной передачи.
ИССЛЕДОВАНИЯ МОЗГА
Исследования мозга затруднены по двум основным причинам. Во-первых, к мозгу, надежно защищенному черепом, невозможен прямой доступ. Во-вторых, нейроны мозга не регенерируют, поэтому любое вмешательство может привести к необратимому повреждению. Несмотря на эти трудности, исследования мозга и некоторые формы его лечения (прежде всего нейрохирургическое вмешательство) известны с древних времен. Археологические находки показывают, что уже в древности человек производил трепанацию черепа, чтобы получить доступ к мозгу. Особенно интенсивные исследования мозга проводились в периоды войн, когда можно было наблюдать разнообразные черепно-мозговые травмы. Повреждение мозга в результате ранения на фронте или травмы, полученной в мирное время, - своеобразный аналог эксперимента, при котором разрушают определенные участки мозга. Поскольку это единственно возможная форма "эксперимента" на мозге человека, другим важным методом исследований стали опыты на лабораторных животных. Наблюдая поведенческие или физиологические последствия повреждения определенной мозговой структуры, можно судить о ее функции. Электрическую активность мозга у экспериментальных животных регистрируют с помощью электродов, размещенных на поверхности головы или мозга либо введенных в вещество мозга. Таким образом удается определить активность небольших групп нейронов или отдельных нейронов, а также выявить изменения ионных потоков через мембрану. С помощью стереотаксического прибора, позволяющего ввести электрод в определенную точку мозга, исследуют его малодоступные глубинные отделы. Другой подход состоит в том, что извлекают небольшие участки живой мозговой ткани, после чего ее существование поддерживают в виде среза, помещенного в питательную среду, или же клетки разобщают и изучают в клеточных культурах. В первом случае можно исследовать взаимодействие нейронов, во втором - жизнедеятельность отдельных клеток. При изучении электрической активности отдельных нейронов или их групп в различных областях мозга вначале обычно регистрируют исходную активность, затем определяют эффект того или иного воздействия на функцию клеток. Согласно другому методу, через имплантированный электрод подается электрический импульс, с тем чтобы искусственно активировать ближайшие нейроны. Так можно изучать воздействие определенных зон мозга на другие его области. Этот метод электрической стимуляции оказался полезен при исследовании стволовых активирующих систем, проходящих через средний мозг; к нему прибегают также и при попытках понять, как протекают процессы научения и памяти на синаптическом уровне. Уже сто лет назад стало ясно, что функции левого и правого полушарий различны. Французский хирург П.Брока, наблюдая за больными с нарушением мозгового кровообращения (инсультом), обнаружил, что расстройством речи страдали только больные с повреждением левого полушария. В дальнейшем исследования специализации полушарий были продолжены с помощью иных методов, например регистрации ЭЭГ и вызванных потенциалов. В последние годы для получения изображения (визуализации) мозга используют сложные технологии. Так, компьютерная томография (КТ) произвела революцию в клинической неврологии, позволив получать прижизненное детальное (послойное) изображение структур мозга. Другой метод визуализации - позитронная эмиссионная томография (ПЭТ) - дает картину метаболической активности мозга. В этом случае человеку вводится короткоживущий радиоизотоп, который накапливается в различных отделах мозга, причем тем больше, чем выше их метаболическая активность. С помощью ПЭТ было также показано, что речевые функции у большинства обследованных связаны с левым полушарием. Поскольку мозг работает с использованием огромного числа параллельных структур, ПЭТ дает такую информацию о функциях мозга, которая не может быть получена с помощью одиночных электродов. Как правило, исследования мозга проводятся с применением комплекса методов. Например, американский нейробиолог Р.Сперри с сотрудниками в качестве лечебной процедуры производил перерезку мозолистого тела (пучка аксонов, связывающих оба полушария) у некоторых больных эпилепсией. В последующем у этих больных с "расщепленным" мозгом исследовалась специализация полушарий. Было выявлено, что за речь и другие логические и аналитические функции ответственно преимущественно доминантное (обычно левое) полушарие, тогда как недоминантное полушарие анализирует пространственно-временные параметры внешней среды. Так, оно активируется, когда мы слушаем музыку. Мозаичная картина активности мозга свидетельствует о том, что внутри коры и подкорковых структур существуют многочисленные специализированные области; одновременная активность этих областей подтверждает концепцию мозга как вычислительного устройства с параллельной обработкой данных. С появлением новых методов исследования представления о функциях мозга, вероятно, будут видоизменяться. Применение аппаратов, позволяющих получать "карту" метаболической активности различных отделов мозга, а также использование молекулярно-генетических подходов должны углубить наши знания о протекающих в мозгу процессах.

Наиболее высокоорганизованная группа позвоночных животных, эволюционное развитие которой привело к появлению человека.

Для млекопитающих особенно характерны:

  1. высокая степень совершенства центральной нервной системы и высшей нервной деятельности;
  2. сложная система терморегуляции, поддерживающая температуру тела на уровне 37-38° C;
  3. приспособления к живорождению и выкармливанию детенышей молоком матери, что создает благоприятные условия для выживания молодняка.

Размеры млекопитающих колеблются от 2 см (землеройка-крошка) до 30 м и более (синий кит). Кожный покров млекопитающих более толстый и плотный, чем у птиц. У большинства поверхность тела покрыта волосами, играющими огромную роль в терморегуляции. У некоторых волосяной покров отсутствует; его исчезновение связано с приспособлением животных к особым условиям жизни (например, к водной среде). Волосяной покров слагается из огромного числа волос. Отдельный волос представляет собой нитевидное роговое образование, развивающееся из клеток наружных слоев(эпидермиса) кожи. Обычно волосы млекопитающего разделяются на две категории:

  • грубые, толстые, длинные — остевые;
  • нежные, тонкие, более короткие — пуховые.

Пуховые задерживают теплый воздух, окружающий тело животного, и обусловливают теплозащитные свойства меха. Остевые волосы защищают пуховые волосы и кожу от разных механических повреждений. В коже расположены сальные и потовые железы . Салистые выделения первых смазывают поверхность кожи и волосы, что способствует их большей эластичности и несмачиваемости. Выделение пота из потовых желез охлаждает тело при высоких температурах внешней среды.

Млечные железы, выделяющие молоко , которым самки выкармливают своих детенышей, — характерный признак млекопитающих.

Строение скелета млекопитающих

Мускулатура млекопитающих в связи со сложностью совершаемых движений слагается из большого числа мышц различного назначения.

Головной мозг млекопитающих

Для млекопитающих характерно разделение полости тела мускулистой перегородкой — диафрагмой — на грудную и брюшную части. Диафрагма имеет вид купола, вершиной прилегающего к легким. Она участвует в дыхании.

Пищеварительный тракт млекопитающих

Органы дыхания млекопитающих имеют ряд особенностей. Строение легких альвеолярное; бронхи, подводящие воздух к легким, разветвляются в них, образуя сложную сеть все утон­чающихся веточек — бронхиол. Последние заканчиваются ле­гочными пузырьками — альвеолами. Стенки их очень тонки, и через них легко происходит газообмен.Кровеносная система млекопитающих образует большой и малый круги кровообращения . Сердце четырехкамерное (два предсердия и два желудочка). Сердце пульсирует не столь часто, как у птиц. Температура тела постоянная (37-38° С).

Органами выделения млекопитающих служат парные бобовидные почки, ле­жащие в брюшной полости у позвоночника. От них тянутся трубочки — мочеточники, открывающиеся в мочевой пузырь. Накапливающаяся в нем моча периодически выделяется наружу.

Жизнь и разнообразие млекопитающих

Класс млекопитающих подразделяется на три подкласса:

  • яйцекладущие;
  • сумчатые;
  • плацентарные.

Содержание статьи

орган, координирующий и регулирующий все жизненные функции организма и контролирующий поведение. Все наши мысли, чувства, ощущения, желания и движения связаны с работой мозга, и если он не функционирует, человек переходит в вегетативное состояние: утрачивается способность к каким-либо действиям, ощущениям или реакциям на внешние воздействия. Данная статья посвящена мозгу человека, более сложному и высокоорганизованному, чем мозг животных. Однако существует значительное сходство в устройстве мозга человека и других млекопитающих, как, впрочем, и большинства видов позвоночных.

Головной мозг – симметричная структура, как и большинство других частей тела. При рождении его вес составляет примерно 0,3 кг, тогда как у взрослого он – ок. 1,5 кг. При внешнем осмотре мозга внимание прежде всего привлекают два больших полушария, скрывающие под собой более глубинные образования. Поверхность полушарий покрыта бороздами и извилинами, увеличивающими поверхность коры (наружного слоя мозга). Сзади помещается мозжечок, поверхность которого более тонко изрезана. Ниже больших полушарий расположен ствол мозга, переходящий в спинной мозг. От ствола и спинного мозга отходят нервы, по которым к мозгу стекается информация от внутренних и наружных рецепторов, а в обратном направлении идут сигналы к мышцам и железам. От головного мозга отходят 12 пар черепно-мозговых нервов.

Внутри мозга различают серое вещество, состоящее преимущественно из тел нервных клеток и образующее кору, и белое вещество – нервные волокна, которые формируют проводящие пути (тракты), связывающие между собой различные отделы мозга, а также образуют нервы, выходящие за пределы ЦНС и идущие к различным органам.

Головной и спинной мозг защищены костными футлярами – черепом и позвоночником. Между веществом мозга и костными стенками располагаются три оболочки: наружная – твердая мозговая оболочка, внутренняя – мягкая, а между ними – тонкая паутинная оболочка. Пространство между оболочками заполнено спинномозговой (цереброспинальной) жидкостью, которая по составу сходна с плазмой крови, вырабатывается во внутримозговых полостях (желудочках мозга) и циркулирует в головном и спинном мозгу, снабжая его питательными веществами и другими необходимыми для жизнедеятельности факторами.

Кровоснабжение головного мозга обеспечивают в первую очередь сонные артерии; у основания мозга они разделяются на крупные ветви, идущие к различным его отделам. Хотя вес мозга составляет всего 2,5% веса тела, к нему постоянно, днем и ночью, поступает 20% циркулирующей в организме крови и соответственно кислорода. Энергетические запасы самого мозга крайне невелики, так что он чрезвычайно зависим от снабжения кислородом. Существуют защитные механизмы, способные поддержать мозговой кровоток в случае кровотечения или травмы. Особенностью мозгового кровообращения является также наличие т.н. гематоэнцефалического барьера. Он состоит из нескольких мембран, ограничивающих проницаемость сосудистых стенок и поступление многих соединений из крови в вещество мозга; таким образом, этот барьер выполняет защитные функции. Через него не проникают, например, многие лекарственные вещества.

КЛЕТКИ МОЗГА

Клетки ЦНС называются нейронами; их функция – обработка информации. В мозгу человека от 5 до 20 млрд. нейронов. В состав мозга входят также глиальные клетки, их примерно в 10 раз больше, чем нейронов. Глия заполняет пространство между нейронами, образуя несущий каркас нервной ткани, а также выполняет метаболические и другие функции.

Нейрон, как и все другие клетки, окружен полупроницаемой (плазматической) мембраной. От тела клетки отходят два типа отростков – дендриты и аксоны. У большинства нейронов много ветвящихся дендритов, но лишь один аксон. Дендриты обычно очень короткие, тогда как длина аксона колеблется от нескольких сантиметров до нескольких метров. Тело нейрона содержит ядро и другие органеллы, такие же, как и в других клетках тела (см. также КЛЕТКА).

Нервные импульсы.

Передача информации в мозгу, как и нервной системе в целом, осуществляется посредством нервных импульсов. Они распространяются в направлении от тела клетки к концевому отделу аксона, который может ветвиться, образуя множество окончаний, контактирующих с другими нейронами через узкую щель – синапс; передача импульсов через синапс опосредована химическими веществами – нейромедиаторами.

Нервный импульс обычно зарождается в дендритах – тонких ветвящихся отростках нейрона, специализирующихся на получении информации от других нейронов и передаче ее телу нейрона. На дендритах и, в меньшем числе, на теле клетки имеются тысячи синапсов; именно через синапсы аксон, несущий информацию от тела нейрона, передает ее дендритам других нейронов.

В окончании аксона, которое образует пресинаптическую часть синапса, содержатся маленькие пузырьки с нейромедиатором. Когда импульс достигает пресинаптической мембраны, нейромедиатор из пузырька высвобождается в синаптическую щель. Окончание аксона содержит только один тип нейромедиатора, часто в сочетании с одним или несколькими типами нейромодуляторов (см. ниже Нейрохимия мозга).

Нейромедиатор, выделившийся из пресинаптической мембраны аксона, связывается с рецепторами на дендритах постсинаптического нейрона. Мозг использует разнообразные нейромедиаторы, каждый из которых связывается со своим особым рецептором.

С рецепторами на дендритах соединены каналы в полупроницаемой постсинаптической мембране, которые контролируют движение ионов через мембрану. В покое нейрон обладает электрическим потенциалом в 70 милливольт (потенциал покоя), при этом внутренняя сторона мембраны заряжена отрицательно по отношению к наружной. Хотя существуют различные медиаторы, все они оказывают на постсинаптический нейрон либо возбуждающее, либо тормозное действие. Возбуждающее влияние реализуется через усиление потока определенных ионов, главным образом натрия и калия, через мембрану. В результате отрицательный заряд внутренней поверхности уменьшается – происходит деполяризация. Тормозное влияние осуществляется в основном через изменение потока калия и хлоридов, в результате отрицательный заряд внутренней поверхности становится больше, чем в покое, и происходит гиперполяризация.

Функция нейрона состоит в интеграции всех воздействий, воспринимаемых через синапсы на его теле и дендритах. Поскольку эти влияния могут быть возбуждающими или тормозными и не совпадать по времени, нейрон должен исчислять общий эффект синаптической активности как функцию времени. Если возбуждающее действие преобладает над тормозным и деполяризация мембраны превышает пороговую величину, происходит активация определенной части мембраны нейрона – в области основания его аксона (аксонного бугорка). Здесь в результате открытия каналов для ионов натрия и калия возникает потенциал действия (нервный импульс).

Этот потенциал распространяется далее по аксону к его окончанию со скоростью от 0,1 м/с до 100 м/с (чем толще аксон, тем выше скорость проведения). Когда потенциал действия достигает окончания аксона, активируется еще один тип ионных каналов, зависящий от разности потенциалов, – кальциевые каналы. По ним кальций входит внутрь аксона, что приводит к мобилизации пузырьков с нейромедиатором, которые приближаются к пресинаптической мембране, сливаются с ней и высвобождают нейромедиатор в синапс.

Миелин и глиальные клетки.

Многие аксоны покрыты миелиновой оболочкой, которая образована многократно закрученной мембраной глиальных клеток. Миелин состоит преимущественно из липидов, что и придает характерный вид белому веществу головного и спинного мозга. Благодаря миелиновой оболочке скорость проведения потенциала действия по аксону увеличивается, так как ионы могут перемещаться через мембрану аксона лишь в местах, не покрытых миелином, – т.н. перехватах Ранвье. Между перехватами импульсы проводятся по миелиновой оболочке как по электрическому кабелю. Поскольку открытие канала и прохождение по нему ионов занимает какое-то время, устранение постоянного открывания каналов и ограничение их сферы действия небольшими зонами мембраны, не покрытыми миелином, ускоряет проведение импульсов по аксону примерно в 10 раз.

Только часть глиальных клеток участвует в формировании миелиновой оболочки нервов (шванновские клетки) или нервных трактов (олигодендроциты). Гораздо более многочисленные глиальные клетки (астроциты, микроглиоциты) выполняют иные функции: образуют несущий каркас нервной ткани, обеспечивают ее метаболические потребности и восстановление после травм и инфекций.

КАК РАБОТАЕТ МОЗГ

Рассмотрим простой пример. Что происходит, когда мы берем в руку карандаш, лежащий на столе? Свет, отраженный от карандаша, фокусируется в глазу хрусталиком и направляется на сетчатку, где возникает изображение карандаша; оно воспринимается соответствующими клетками, от которых сигнал идет в основные чувствительные передающие ядра головного мозга, расположенные в таламусе (зрительном бугре), преимущественно в той его части, которую называют латеральным коленчатым телом. Там активируются многочисленные нейроны, которые реагируют на распределение света и темноты. Аксоны нейронов латерального коленчатого тела идут к первичной зрительной коре, расположенной в затылочной доле больших полушарий. Импульсы, пришедшие из таламуса в эту часть коры, преобразуются в ней в сложную последовательность разрядов корковых нейронов, одни из которых реагируют на границу между карандашом и столом, другие – на углы в изображении карандаша и т.д. Из первичной зрительной коры информация по аксонам поступает в ассоциативную зрительную кору, где происходит распознавание образов, в данном случае карандаша. Распознавание в этой части коры основано на предварительно накопленных знаниях о внешних очертаниях предметов.

Планирование движения (т.е. взятия карандаша) происходит, вероятно, в коре лобных долей больших полушарий. В этой же области коры расположены двигательные нейроны, которые отдают команды мышцам руки и пальцев. Приближение руки к карандашу контролируется зрительной системой и интерорецепторами, воспринимающими положение мышц и суставов, информация от которых поступает в ЦНС. Когда мы берем карандаш в руку, рецепторы в кончиках пальцев, воспринимающие давление, сообщают, хорошо ли пальцы обхватили карандаш и каким должно быть усилие, чтобы его удержать. Если мы захотим написать карандашом свое имя, потребуется активация другой хранящейся в мозге информации, обеспечивающей это более сложное движение, а зрительный контроль будет способствовать повышению его точности.

На приведенном примере видно, что выполнение довольно простого действия вовлекает обширные области мозга, простирающиеся от коры до подкорковых отделов. При более сложных формах поведения, связанных с речью или мышлением, активируются другие нейронные цепи, охватывающие еще более обширные области мозга.

ОСНОВНЫЕ ЧАСТИ ГОЛОВНОГО МОЗГА

Головной мозг можно условно разделить на три основные части: передний мозг, ствол мозга и мозжечок. В переднем мозгу выделяют большие полушария, таламус, гипоталамус и гипофиз (одну из важнейших нейроэндокринных желез). Ствол мозга состоит из продолговатого мозга, моста (варолиева моста) и среднего мозга.

Большие полушария

– самая большая часть мозга, составляющая у взрослых примерно 70% его веса. В норме полушария симметричны. Они соединены между собой массивным пучком аксонов (мозолистым телом), обеспечивающим обмен информацией.

Каждое полушарие состоит из четырех долей: лобной, теменной, височной и затылочной. В коре лобных долей содержатся центры, регулирующие двигательную активность, а также, вероятно, центры планирования и предвидения. В коре теменных долей, расположенных позади лобных, находятся зоны телесных ощущений, в том числе осязания и суставно-мышечного чувства. Сбоку к теменной доле примыкает височная, в которой расположены первичная слуховая кора, а также центры речи и других высших функций. Задние отделы мозга занимает затылочная доля, расположенная над мозжечком; ее кора содержит зоны зрительных ощущений.

Области коры, непосредственно не связанные с регуляцией движений или анализом сенсорной информации, именуются ассоциативной корой. В этих специализированных зонах образуются ассоциативные связи между различными областями и отделами мозга и интегрируется поступающая от них информация. Ассоциативная кора обеспечивает такие сложные функции, как научение, память, речь и мышление.

Подкорковые структуры.

Ниже коры залегает ряд важных мозговых структур, или ядер, представляющих собой скопление нейронов. К их числу относятся таламус, базальные ганглии и гипоталамус. Таламус – это основное сенсорное передающее ядро; он получает информацию от органов чувств и, в свою очередь, переадресует ее соответствующим отделам сенсорной коры. В нем имеются также неспецифические зоны, которые связаны практически со всей корой и, вероятно, обеспечивают процессы ее активации и поддержания бодрствования и внимания. Базальные ганглии – это совокупность ядер (т.н. скорлупа, бледный шар и хвостатое ядро), которые участвуют в регуляции координированных движений (запускают и прекращают их).

Гипоталамус – маленькая область в основании мозга, лежащая под таламусом. Богато снабжаемый кровью, гипоталамус – важный центр, контролирующий гомеостатические функции организма. Он вырабатывает вещества, регулирующие синтез и высвобождение гормонов гипофиза . В гипоталамусе расположены многие ядра, выполняющие специфические функции, такие, как регуляция водного обмена, распределения запасаемого жира, температуры тела, полового поведения, сна и бодрствования.

Ствол мозга

расположен у основания черепа. Он соединяет спинной мозг с передним мозгом и состоит из продолговатого мозга, моста, среднего и промежуточного мозга.

Через средний и промежуточный мозг, как и через весь ствол, проходят двигательные пути, идущие к спинному мозгу, а также некоторые чувствительные пути от спинного мозга к вышележащим отделам головного мозга. Ниже среднего мозга расположен мост, связанный нервными волокнами с мозжечком. Самая нижняя часть ствола – продолговатый мозг – непосредственно переходит в спинной. В продолговатом мозгу расположены центры, регулирующие деятельность сердца и дыхание в зависимости от внешних обстоятельств, а также контролирующие кровяное давление, перистальтику желудка и кишечника.

На уровне ствола проводящие пути, связывающие каждое из больших полушарий с мозжечком, перекрещиваются. Поэтому каждое из полушарий управляет противоположной стороной тела и связано с противоположным полушарием мозжечка.

Мозжечок

расположен под затылочными долями больших полушарий. Через проводящие пути моста он связан с вышележащими отделами мозга. Мозжечок осуществляет регуляцию тонких автоматических движений, координируя активность различных мышечных групп при выполнении стереотипных поведенческих актов; он также постоянно контролирует положение головы, туловища и конечностей, т.е. участвует в поддержании равновесия. Согласно последним данным, мозжечок играет весьма существенную роль в формировании двигательных навыков, способствуя запоминанию последовательности движений.

Другие системы.

Лимбическая система – широкая сеть связанных между собой областей мозга, которые регулируют эмоциональные состояния, а также обеспечивают научение и память. К ядрам, образующим лимбическую систему, относятся миндалевидные тела и гиппокамп (входящие в состав височной доли), а также гипоталамус и ядра т.н. прозрачной перегородки (расположенные в подкорковых отделах мозга).

Ретикулярная формация – сеть нейронов, протянувшаяся через весь ствол к таламусу и далее связанная с обширными областями коры. Она участвует в регуляции сна и бодрствования, поддерживает активное состояние коры и способствует фокусированию внимания на определенных объектах.

ЭЛЕКТРИЧЕСКАЯ АКТИВНОСТЬ МОЗГА

С помощью электродов, размещенных на поверхности головы или введенных в вещество мозга, можно зафиксировать электрическую активность мозга, обусловленную разрядами его клеток. Запись электрической активности мозга с помощью электродов на поверхности головы называется электроэнцефалограммой (ЭЭГ). Она не позволяет записать разряд отдельного нейрона. Только в результате синхронизированной активности тысяч или миллионов нейронов появляются заметные колебания (волны) на записываемой кривой.

При постоянной регистрации на ЭЭГ выявляются циклические изменения, отражающие общий уровень активности индивида. В состоянии активного бодрствования ЭЭГ фиксирует низкоамплитудные неритмичные бета-волны. В состоянии расслабленного бодрствования с закрытыми глазами преобладают альфа-волны частотой 7–12 циклов в секунду. О наступлении сна свидетельствует появление высокоамплитудных медленных волн (дельта-волн). В периоды сна со сновидениями на ЭЭГ вновь появляются бета-волны, и на основании ЭЭГ может создаться ложное впечатление, что человек бодрствует (отсюда термин «парадоксальный сон»). Сновидения часто сопровождаются быстрыми движениями глаз (при закрытых веках). Поэтому сон со сновидениями называют также сном с быстрыми движениями глаз (см. также СОН). ЭЭГ позволяет диагностировать некоторые заболевания мозга, в частности эпилепсию (см. ЭПИЛЕПСИЯ).

Если регистрировать электрическую активность мозга во время действия определенного стимула (зрительного, слухового или тактильного), то можно выявить т.н. вызванные потенциалы – синхронные разряды определенной группы нейронов, возникающие в ответ на специфический внешний стимул. Исследование вызванных потенциалов позволило уточнить локализацию мозговых функций, в частности связать функцию речи с определенными зонами височной и лобной долей. Это исследование помогает также оценить состояние сенсорных систем у больных с нарушением чувствительности.

НЕЙРОХИМИЯ МОЗГА

К числу самых важных нейромедиаторов мозга относятся ацетилхолин, норадреналин, серотонин, дофамин, глутамат, гамма-аминомасляная кислота (ГАМК), эндорфины и энкефалины. Помимо этих хорошо известных веществ, в мозге, вероятно, функционирует большое количество других, пока не изученных. Некоторые нейромедиаторы действуют только в определенных областях мозга. Так, эндорфины и энкефалины обнаружены лишь в путях, проводящих болевые импульсы. Другие медиаторы, такие, как глутамат или ГАМК, более широко распространены.

Действие нейромедиаторов.

Как уже отмечалось, нейромедиаторы, воздействуя на постсинаптическую мембрану, изменяют ее проводимость для ионов. Часто это происходит через активацию в постсинаптическом нейроне системы второго «посредника», например циклического аденозинмонофосфата (цАМФ). Действие нейромедиаторов может видоизменяться под влиянием другого класса нейрохимических веществ – пептидных нейромодуляторов. Высвобождаемые пресинаптической мембраной одновременно с медиатором, они обладают способностью усиливать или иным образом изменять эффект медиаторов на постсинаптическую мембрану.

Важное значение имеет недавно открытая эндорфин-энкефалиновая система. Энкефалины и эндорфины – небольшие пептиды, которые тормозят проведение болевых импульсов, связываясь с рецепторами в ЦНС, в том числе в высших зонах коры. Это семейство нейромедиаторов подавляет субъективное восприятие боли.

Психоактивные средства

– вещества, способные специфически связываться с определенными рецепторами в мозгу и вызывать изменение поведения. Выявлено несколько механизмов их действия. Одни влияют на синтез нейромедиаторов, другие – на их накопление и высвобождение из синаптических пузырьков (например, амфетамин вызывает быстрое высвобождение норадреналина). Третий механизм состоит в связывании с рецепторами и имитации действия естественного нейромедиатора, например эффект ЛСД (диэтиламида лизергиновой кислоты) объясняют его способностью связываться с серотониновыми рецепторами. Четвертый тип действия препаратов – блокада рецепторов, т.е. антагонизм с нейромедиаторами. Такие широко используемые антипсихотические средства, как фенотиазины (например, хлорпромазин, или аминазин), блокируют дофаминовые рецепторы и тем самым снижают эффект дофамина на постсинаптические нейроны. Наконец, последний из распространенных механизмов действия – торможение инактивации нейромедиаторов (многие пестициды препятствуют инактивации ацетилхолина).

Давно известно, что морфин (очищенный продукт опийного мака) обладает не только выраженным обезболивающим (анальгетическим) действием, но и свойством вызывать эйфорию. Именно поэтому его и используют как наркотик. Действие морфина связано с его способностью связываться с рецепторами эндорфин-энкефалиновой системы человека (см. также НАРКОТИК). Это лишь один из многих примеров того, что химическое вещество иного биологического происхождения (в данном случае растительного) способно влиять на работу мозга животных и человека, взаимодействуя со специфическими нейромедиаторными системами. Другой хорошо известный пример – кураре, получаемое из тропического растения и способное блокировать ацетилхолиновые рецепторы. Индейцы Южной Америки смазывали кураре наконечники стрел, используя его парализующее действие, связанное с блокадой нервно-мышечной передачи.

ИССЛЕДОВАНИЯ МОЗГА

Исследования мозга затруднены по двум основным причинам. Во-первых, к мозгу, надежно защищенному черепом, невозможен прямой доступ. Во-вторых, нейроны мозга не регенерируют, поэтому любое вмешательство может привести к необратимому повреждению.

Несмотря на эти трудности, исследования мозга и некоторые формы его лечения (прежде всего нейрохирургическое вмешательство) известны с древних времен. Археологические находки показывают, что уже в древности человек производил трепанацию черепа, чтобы получить доступ к мозгу. Особенно интенсивные исследования мозга проводились в периоды войн, когда можно было наблюдать разнообразные черепно-мозговые травмы.

Повреждение мозга в результате ранения на фронте или травмы, полученной в мирное время, – своеобразный аналог эксперимента, при котором разрушают определенные участки мозга. Поскольку это единственно возможная форма «эксперимента» на мозге человека, другим важным методом исследований стали опыты на лабораторных животных. Наблюдая поведенческие или физиологические последствия повреждения определенной мозговой структуры, можно судить о ее функции.

Электрическую активность мозга у экспериментальных животных регистрируют с помощью электродов, размещенных на поверхности головы или мозга либо введенных в вещество мозга. Таким образом удается определить активность небольших групп нейронов или отдельных нейронов, а также выявить изменения ионных потоков через мембрану. С помощью стереотаксического прибора, позволяющего ввести электрод в определенную точку мозга, исследуют его малодоступные глубинные отделы.

Другой подход состоит в том, что извлекают небольшие участки живой мозговой ткани, после чего ее существование поддерживают в виде среза, помещенного в питательную среду, или же клетки разобщают и изучают в клеточных культурах. В первом случае можно исследовать взаимодействие нейронов, во втором – жизнедеятельность отдельных клеток.

При изучении электрической активности отдельных нейронов или их групп в различных областях мозга вначале обычно регистрируют исходную активность, затем определяют эффект того или иного воздействия на функцию клеток. Согласно другому методу, через имплантированный электрод подается электрический импульс, с тем чтобы искусственно активировать ближайшие нейроны. Так можно изучать воздействие определенных зон мозга на другие его области. Этот метод электрической стимуляции оказался полезен при исследовании стволовых активирующих систем, проходящих через средний мозг; к нему прибегают также и при попытках понять, как протекают процессы научения и памяти на синаптическом уровне.

Уже сто лет назад стало ясно, что функции левого и правого полушарий различны. Французский хирург П.Брока, наблюдая за больными с нарушением мозгового кровообращения (инсультом), обнаружил, что расстройством речи страдали только больные с повреждением левого полушария. В дальнейшем исследования специализации полушарий были продолжены с помощью иных методов, например регистрации ЭЭГ и вызванных потенциалов.

В последние годы для получения изображения (визуализации) мозга используют сложные технологии. Так, компьютерная томография (КТ) произвела революцию в клинической неврологии, позволив получать прижизненное детальное (послойное) изображение структур мозга. Другой метод визуализации – позитронная эмиссионная томография (ПЭТ) – дает картину метаболической активности мозга. В этом случае человеку вводится короткоживущий радиоизотоп, который накапливается в различных отделах мозга, причем тем больше, чем выше их метаболическая активность. С помощью ПЭТ было также показано, что речевые функции у большинства обследованных связаны с левым полушарием. Поскольку мозг работает с использованием огромного числа параллельных структур, ПЭТ дает такую информацию о функциях мозга, которая не может быть получена с помощью одиночных электродов.

Как правило, исследования мозга проводятся с применением комплекса методов. Например, американский нейробиолог Р.Сперри с сотрудниками в качестве лечебной процедуры производил перерезку мозолистого тела (пучка аксонов, связывающих оба полушария) у некоторых больных эпилепсией. В последующем у этих больных с «расщепленным» мозгом исследовалась специализация полушарий. Было выявлено, что за речь и другие логические и аналитические функции ответственно преимущественно доминантное (обычно левое) полушарие, тогда как недоминантное полушарие анализирует пространственно-временные параметры внешней среды. Так, оно активируется, когда мы слушаем музыку. Мозаичная картина активности мозга свидетельствует о том, что внутри коры и подкорковых структур существуют многочисленные специализированные области; одновременная активность этих областей подтверждает концепцию мозга как вычислительного устройства с параллельной обработкой данных.

СРАВНИТЕЛЬНАЯ АНАТОМИЯ

У различных видов позвоночных устройство мозга удивительно схоже. Если проводить сопоставление на уровне нейронов, то обнаруживается отчетливое сходство таких характеристик, как используемые нейромедиаторы, колебания концентраций ионов, типы клеток и физиологические функции. Фундаментальные различия выявляются лишь при сравнении с беспозвоночными. Нейроны беспозвоночных значительно крупнее; часто они связаны друг с другом не химическими, а электрическими синапсами, редко встречающимися в мозгу человека. В нервной системе беспозвоночных выявляются некоторые нейромедиаторы, не свойственные позвоночным.



gastroguru © 2017