Единицы измерения интенсивности звука в системе си. Энергия звуковой волны

По определению, звуком называются упругие колебания, воспринимаемые ухом . Отсюда ясно, что и принципиально, и практически никакие измерения звука невозможны без учёта особенностей органа слуха. Самый простой пример: колебания с частотой 30 кГц могут быть очень громкими для летучей мыши, в то время как для человека их громкость равна нулю. Поэтому, говоря о параметрах звука, приходится различать два ряда величин:

А. Физические характеристики звука, не зависящие от органа слуха

Б. Психофизические (субъективные) характеристики, учитывающие свойства органа слуха.

Набор этих величин и связь между ними удобно представить в виде такой таблицы:

Физические характеристики Психофизические характеристики 1. Частота колебаний [Гц] 1. Высота тона

2. Гармонический спектр 2. Тембр звука

3. Интенсивность звука I [Вт.м -2 ] 3. Громкость звука [сон]

Уровень интенсивности L [дБ] Уровень громкости [фон]

Первые две позиции не нуждаются в особых пояснениях. Надо только заметить, что высота тона связана с частотой тоже логарифмическим соотношением; по-другому можно выразиться так: при росте частоты в геометрической прогрессии высота тона увеличивается в арифметической прогрессии.

Для сложных звуков высота звука определяется, в основном, частотой первой гармоники. В этом случае субъективное ощущение высоты звука может зависеть и от соотношения интенсивностей разных гармоник

По спектру все звуки разделяются на тоны и шумы. Тонами называют звуки, имеющие линейчатый спектр, то есть достаточно строго периодические. Звуки со сплошным спектром, не имеющие определённого периода, называют шумами . К тонам, в частности, относятся гласные звуки речи и звуки музыкальных инструментов; к шумам – согласные и звуки ударных инструментов.

Интенсивности звука в субъективном восприятии соответствует громкость . Однако, непосредственно установить соотношение между интенсивностью и громкостью не удаётся; приходится вводить вспомогательные величины – уровень интенсивности и уровень громкости , как показано в таблице.

Понятие уровня интенсивности учитывает сформулированный выше закон Вебера-Фехнера о логарифмической зависимости между частотой нервной импульсации и интенсивностью звука. Уровнем интенсивности называется величина L, определяемая по формуле

где I – интенсивность данного звука, I о – пороговая интенсивность. На самом деле I 0 у разных людей имеет различное значение, но при вычислениях по этой формуле пользуются так называемым абсолютным или средним порогом I 0 = 10 –12 Вт.м -2 . Единицей уровня интенсивности является децибел [дБ] ; (приставка “деци” напоминает о значении коэффициента, то есть 10).

Например, интенсивность шума на улице с оживлённым движением составляет примерно 10 –5 Вт.м -2 . Этому соответствует уровень интенсивности:

Уровень интенсивности можно выразить и через звуковое давление, учитывая, что интенсивность пропорциональна квадрату давления:

где Δр 0 – пороговое звуковое давление, равное (в среднем) 2.10 – 5 Па. Например, если звуковое давление для какого-то звука равно 1 Па, то

L = 20.lg
= 20·lg (5.10 4)= 20.4,7 = 94 дБ

Это очень громкий звук!

В определении понятия уровня интенсивности в какой-то мере отражены биофизические закономерности. Однако сам по себе уровень интенсивности ещё не соответствует тому субъективному ощущению, которое вызывает тот или иной звук, так как это ощущение в значительной мере зависит и от частоты звука . Например, для большинства людей одинаково громкими будут ощущаться тоны с частотой 30 Гц и интенсивностью 65 дБ и 1000 Гц, 20 дБ, несмотря на то, что уровни интенсивности у них резко различны. Поэтому было введено второе понятие - уровень громкости , единицей которого является фон (фоны иногда называют децибелами громкости ). При определении этого понятия исходят именно из субъективного восприятия звука . При этом измеряемый звук сравнивают со «стандартным» звуком с частотой 1000 Гц (её называют «стандартной частотой»).

Практически это делается таким образом. Надо иметь генератор звука с частотой 1000 Гц; уровень интенсивности этого звука можно менять. Чтобы определить уровень громкости измеряемого звука, сравнивают этот звук со звуком генератора. Изменяя уровень интенсивности «стандартного» звука, добиваются, чтобы оба звука «на слух» ощущались одинаково громкими. Пусть, например, это имеет место при уровне интенсивности «стандартного» звука 55 дБ. Тогда можно сказать, что уровень громкости измеряемого звука равен 55 фон.

Исходя из описанной процедуры, можно дать такое определение: уровнем громкости некоторого звука (в фонах) называется величина, равная уровню интенсивности такого звука со «стандартной» частотой 1000 Гц, который воспринимается одинаково громким с данным звуком .

Из этого определения видно, что уровень громкости – субъективная величина, то есть одному и тому же звуку разные люди могут приписать разные значения уровня громкости, поскольку нет двух людей с абсолютно одинаковым слухом. Чтобы уменьшить степень субъективности и облегчить расчёты, были определены так называемые кривые равной громкости (изофоны). Для этого большой группе людей предъявляли звуки разной частоты и интенсивности, и полученные значения уровня громкости усреднялись по всем испытуемым. В результате был построен график, пользуясь которым по заданному уровню интенсивности в дБ можно определить уровень громкости звука. Кривые равной громкости приведены на таблице.

Чаще всего для оценки звука пользуются именно понятием уровня громкости. Однако, иногда предпочитают использовать другую величину – громкость, измеренную в единицах, называемых “сон”. Принято, что уровню громкости 40 фон соответствует громкость 1 сон. При изменении уровня громкости на 10 фон громкость изменяется в 2 раза:

Уровень громкости, фон 10 20 30 40 50 60 70 80 90 100

Громкость, сон 1/8 ¼ ½ 1 2 4 8 16 32 64

Приведём для примера значения громкости и уровня громкости некоторых звуков:

Уровень Громкость,

Вид звука громкости, фон сон

Тихий шепот 10 1/8

Обычная речь 40 1

Громкая речь 60 4

Уличный шум 70 – 80 8 – 16

Шум в танке, в моторном

отсеке подлодки 90 – 100 30 – 60

Шум поблизости от ре-

активного самолёта 120 250

Шум при запуске бал-

листической ракеты > 130 > 600

Разумеется, все эти числа имеют грубо ориентировочный характер.

Длительное воздействие шума с уровнем громкости выше 70 фон может вызвать нарушения как в органе слуха, так и во всём организме (в первую очередь – в нервной системе). При уровнях громкости выше 120 фон вредным оказывается даже кратковременное воздействие.

Для диагностики состояния органа слуха используют специальный прибор - аудиометр. С помощью этого прибора фактически определяют кривые равной громкости в соответствии с процедурой, рассмотренной выше. Однако, большинство аудиометров устроены таким образом, что они показывают не саму величину уровня громкости подаваемого звука у данного пациента, а отклонение этой величины от «стандартного» значения (то есть от соответствующего значения по кривым равной громкости для здоровых людей). Поэтому для человека с «абсолютно нормальным» слухом кривая, полученная на аудиометре, (аудиограмма ) будет прямой линией. Практически абсолютно нормального слуха не бывает; у всех людей наблюдаются те или иные отклонения. Если эти отклонения не превышают 10-15 фон (децибел громкости), их обычно считают несущественными. Более значительные отклонения могут указывать на заболевание органа слуха. Важно выявить, на каких частотах наблюдаются эти отклонения. При одних заболеваниях понижается слух (повышается порог слухового восприятия) на всех частотах, при других – преимущественно на низких, при третьих – на высоких. Эти данные имеют большое диагностическое значение.

Основные свойства звука

Источник звука

Звук - распространяющиеся в упругих средах, газах, жидкостях и твердых телах механические колебания, воспринимаемые ухом.

Источник звука - различные колеблющиеся тела, например туго натянутая струна или тонкая стальная пластина, зажатая с одной стороны. Как возникают колебательные движения? Достаточно оттянуть и отпустить струну музыкального инструмента или стальную пластину, зажатую одним концом в тисках, как они будут издавать звук. Колебания струны или металлической пластинки передаются окружающему воздуху. Когда пластинка отклонится, например в правую сторону, она уплотняет (сжимает) слои воздуха, прилегающие к ней справа; при этом слой воздуха, прилегающий к пластине с левой стороны, разредится. При отклонении пластины в левую сторону она сжимает слои воздуха слева и разрежает слои воздуха, прилегающие к ней с правой стороны, и т.д. Сжатие и разрежение прилегающих к пластине слоев воздуха будет передаваться соседним слоям. Этот процесс будет периодически повторяться, постепенно ослабевая, до полного прекращения колебаний (рис. 1.1).

Рис. 1.1. Распространение звуковых волн от колеблющейся пластинки.

Таким образом колебания струны или пластинки возбуждают колебания окружающего воздуха и, распространяясь, достигают уха человека, заставляя колебаться его барабанную перепонку, вызывая раздражение слухового нерва, воспринимаемое нами как звук.

Колебания воздуха, источником которых является колеблющееся тело, называют звуковыми волнами, а пространство, в котором они распространяются, звуковым полем.

Скорость распространения звуковых колебаний зависит от упругости среды, в которой они распространяются. В воздухе скорость распространения звуковых колебаний в среднем равна 330 м/с, однако она может изменяться в зависимости от его влажности, давления и температуры. В безвоздушном пространстве звук не распространяется.

При распространении звука, вследствие колебаний частиц среды, в каждой точке звукового поля происходит периодическое изменение давления. Среднее квадратичное значение величины этого давления, обозначаемое буквой P, называют звуковым давлением. За единицу звукового давления принята величина, равная силе в один ньютон (Н), действующей на площадь в один квадратный метр (Н/м 2).

Чем больше звуковое давление, тем громче звук. При средней громкости человеческой речи звуковое давление на расстоянии 1м от рта говорящего находится в пределах 0,0064-0,64.

Звуковые колебания

Рис. 1.2. График простого (синусоидального) колебания

Форма звуковых колебаний зависит от свойств источника звука. Наиболее простыми колебаниями являются равномерные или гармонические колебания, которые можно представить в виде синусоиды (рис. 1.2). Такие колебания характеризуются частотой f, периодом Т и амплитудой А.

Частотой колебаний называют количество полных колебаний в секунду. За единицу измерения частоты принят 1 герц (Гц). 1 герц соответствует одному полному (в одну и другую сторону) колебанию, происходящему за одну секунду.

Периодом называют время (с), в течение которого происходит одно полное колебание. Чем больше частота колебаний, тем меньше их период, т.е. f=1/T. Таким образом, частота колебаний тем больше, чем меньше их период, и наоборот.

Рис. 1.3. График звуковых колебаний при произношении звуков а, о и у.

Амплитудой колебаний называют наибольшее отклонение колеблющегося тела от его первоначального (спокойного) положения. Чем больше амплитуда колебания, тем громче звук. Звуки человеческой речи представляют собой сложные звуковые колебания, состоящие из того или иного количества простых колебаний, различных по частоте и амплитуде. В каждом звуке речи имеется только ему свойственное сочетание колебаний различной частоты и амплитуды. Поэтому форма колебаний одного звука речи заметно отличается от формы другого, что видно на рис. 1.3, на котором изображены графики колебаний при произношении звуков а, о и у.

Любые звуки человек характеризует в соответствии со своим восприятием по уровню громкости и высоте.

Громкость тона какой-либо данной высоты определяется амплитудой колебаний. Высота тона определяется частотой колебания. Колебания высокой частоты воспринимаются как звуки высокого тона, низкой частоты - как звуки низкого тона (рис. 1.4).

Рис. 1.4. Два музыкальных тона одной высоты и разной громкости (а) и одинаковой громкости, но разной высоты (б).

Интенсивность звука

Тело, являющееся источником звуковых колебаний, излучает энергию, переносимую звуковыми колебаниями в пространство (среду), окружающее источник звука. Количество звуковой энергии, проходящей в одну секунду через площадь в 1 м 2 , расположенную перпендикулярно направлению распространения звуковых колебаний, называют интенсивностью (силой) звука.

Величину ее можно определить по формуле:

I=P 2 /Cp 0 [Вт/м 2 ] (1.1)

где: Р - звуковое давление, н/м 2 ; С – скорость звука, м/с; р 0 – плотность среды.

Из приведенной формулы видно, что при увеличении звукового давления интенсивность звука возрастает и, следовательно, увеличивается его громкость.

Когда мы ведем обычный разговор с кем-нибудь из друзей, поток энергии в 1 сек равен ~10 мкВт. Звуковой поток от оратора, выступающего перед публикой, лежит в пределах от 200 до 2000 мкВт. Мощность самых громких звуков скрипки может составлять приблизительно 60 мкВт, а мощности звуков органных труб составляют от 140 до 3200 мкВт. Интенсивность самого слабого звука, который еще можно услышать, составляет приблизительно одну миллионную микроватта на 1м 2 , самого громкого – около одного миллиона микроватт.

Интенсивность звукового колебания и громкость восприятия находятся в определенной зависимости. Прирост ощущения (громкости) пропорционален логарифму отношения раздражений (интенсивностей), т.е. при восприятии двух звуков с интенсивностями I 1 и I 2 ощущается разница в их громкости, равная логарифму отношения интенсивностей этих звуков. Эта зависимость определяется формулой:

где: S – приращение громкости, Б; К – коэффициент пропорциональности, зависящий от выбора единиц измерения, I 1 и I 2 – начальное и конечное значения интенсивности звука. Бел – единица приращения громкости, соответствующая изменению силы звука в 10 раз.

Если коэффициент К принять равным 1, а отношение I 1 /I 2 =10, то

Слух человека различает приращение громкости на 0,1 Б. Поэтому в практике используют более мелкую единицу измерения – децибел (дБ), равный 0,1 Б. В этом случае формула запишется так:

Таблица 1.1. Интенсивности и уровни различных звуков.

Звук Интенсивность, мкВт/м 2 Уровень звука, Б Уровень звука, дБ
Порог слышимости 0,000001
Спокойное дыхание 0,00001
Шум спокойного сада 0,0001
Перелистывание страниц газеты 0,001
Обычный шум в доме 0,01
Пылесос 0,1
Обычный разговор 1,0
Радио
Оживленное уличное движение 100,0
Поезд на эстакаде 1000,0
Шум в вагоне метро 10000,0
Гром 100000,0
Порог ощущений 1000000,0

Если ухо человека воспринимает одновременно два или несколько звуков различной громкости, то более громкий звук заглушает (поглощает) слабые звуки. Происходит так называемая маскировка звуков, и ухо воспринимает только один, более громкий звук. Сразу после воздействия на ухо громкого звука снижается восприимчивость слуха к слабым звукам. Эта способность называется адаптацией (приспособлением) слуха.

Тембр звука

Негармоническое периодическое воздействие с периодом Т равносильно одновременному действию гармонических сил с различными частотами, а именно с частотами, кратными наиболее низкой частоте n=1/T.

Это заключение является частным случаем общей математической теоремы, которую доказал в 1822 г. Жан Батист Фурье. Теорема Фурье гласит: всякое периодическое колебание периода Т может быть представлено в виде суммы гармонических колебаний с периодами, равными Т, T/2, T/3, T/4 и т.д., т.е. с частотами n=(1/T), 2n, 3n, 4n и т.д. Наиболее низкая частота n называется основной частотой. Колебание с основной частотой n называется первой гармоникой или основным тоном (тоном), а колебания с частотами 2n, 3n, 4n и т.д. называются высшими гармониками или обертонами (первым - 2n, вторым - 3n и т.д.).

Каждый звук, издаваемый различными музыкальными инструментами, голосами различных людей и т.п., имеет свои характерные особенности - своеобразную окраску или оттенок. Эти особенности звука называют тембром. На рис. 1.5 показаны осциллограммы звуковых колебаний, создаваемых роялем и кларнетом для одной и той же ноты. Осциллограммы показывают, что период у обоих колебаний одинаков, но они сильно отличаются друг от друга по своей форме и, следовательно, различаются своим гармоническим составом. Оба звука состоят из одних и тех же тонов, но в каждом из них эти тоны - основной и его обертоны - представлены с разными амплитудами и фазами.

Рис. 1.5. Осциллограммы звуков рояля и кларнета.

Для нашего уха существенны только частоты и амплитуды тонов, входящих в состав звука, т.е. тембр звука определяется его гармоническим спектром. Сдвиги отдельных тонов по времени никак не воспринимаются на слух, хотя и могут очень сильно менять форму результирующего колебания.

На рис. 1.6 изображены спектры тех звуков, осциллограммы которых показаны на рис. 1.5. Так как высоты звуков одинаковы, то и частоты тонов - основного и обертонов - одни и те же. Однако амплитуды отдельных гармоник в каждом спектре сильно различаются.

Рис. 1.6. Спектры звуков рояля и кларнета.


Интенсивность звука

Описание

Интенсивность I звуковой волны (ИЗ) - средняя по времени энергия, переносимая звуковой волной через единичную площадку, перпендикулярную к направлению распространения волны, в единицу времени. Для периодических волн усреднение производится за промежуток времени больший по сравнению с периодом или за целое число периодов.

Для плоской синусоидальной бегущей волны ИЗ

I = pv ¤ 2 = p 2 ¤ 2 r c = v 2 r c ¤ 2 , (1)

где p - амплитуда звукового давления;

v - амплитуда колебательной скорости частиц;

r - плотность среды;

c - скорость звука в ней.

В сферической бегущей волне ИЗ обратно пропорциональна квадрату расстояния от источника. В стоячей звуковой волне I = 0 , т.е. потока звуковой энергии в среднем нет.

ИЗ плоской гармонической бегущей волны равна плотности энергии звуковой волны, умноженной на скорость звука. Поток звуковой энергии характеризуют вектором Умова - вектором плотности потока энергии волны, который может быть представлен как произведение ИЗ на вектор волновой нормали, т.е. единичный вектор, перпендикулярный фронту волны.

Если звуковое поле является суперпозицией гармонических волн различных частот, то для вектора средней плотности потока энергии выполняется свойство аддитивности.

В практическом аспекте для излучателей, создающих плоскую волну, под ИЗ понимают интенсивность излучения - удельную мощность излучателя, т.е. мощность звука, отнесенную к единице площади излучаемой поверхности.

ИЗ измеряется в системе единиц СИ в Вт/м2 . В ультразвуковой технике часто используют единицу Вт/см2 . ИЗ также оценивается уровнем интенсивности по шкале децибел: число децибел N = 10lg(I ¤ I 0 ) , где I - интенсивность данного звука, I 0 = 10-12 Вт/м2 .

Временные характеристики

Время инициации (log to от -12 до 1);

Время существования (log tc от -10 до 3);

Время деградации (log td от -12 до 1);

Время оптимального проявления (log tk от -1 до 1).

Диаграмма:

Технические реализации эффекта

Техническая реализация эффекта

Источник упругих волн создает в среде звуковое поле, характеризующееся некоторым распределением звукового давления и связанного с ним значения ИЗ. Для измерения звукового давления применяют приемники различного типа, в основном пьезоэлектрические преобразователи. На частотах, близких к гиперзвуковым, используют пьезополупроводниковые и пленочные преобразователи. В жидкостях при больших интенсивностях звука применяют радиометр, на высоких частотах - термические приемники звука. Один из эталонных методов измерения ИЗ основан на эффекте диска Рэлея (см. описание «Диск Рэлея»), позволяющего определять колебательную скорость, по величине которой вычисляется значение звукового давления и ИЗ.

Применение эффекта

ИЗ определяет эффективность таких ультразвуковых технологий как ультразвуковая очистка, ультразвуковое диспергирование, упрочнение, металлизация и пайка (см. описания). При акустической кавитации (см. описание) и связаных с ней эффектов величина ИЗ оказывает решающее воздействие на процесс возникновения кавитации и динамику кавитационных пузырьков.

Литература

1. Ультразвук / Под ред. И.П. Голяминой.- М.: Советская Энциклопедия, 1979.- 400 с.

Ключевые слова

  • амплитуда
  • волна бегущая
  • волна гармоническая
  • волна плоская
  • волна стоячая
  • волна сферическая
  • давление звуковое
  • децибел
  • интенсивность звука
  • скорость звука
  • мощность звука
  • нормаль
  • плотность среды
  • плотность потока энергии
  • поле звуковое
  • удельная мощность
  • умова вектор
  • ультразвук
  • фронт волны
  • энергия волны

Разделы естественных наук:

Интенсивность звука (абсолютная) - величина, равная отношению потока звуковой энергии dP через поверхность, перпендикулярную направлению распространения звука, к площади dS этой поверхности:

Единица измерения - ватт на квадратный метр (Вт/м 2).

Для плоской волны интенсивность звука может быть выражена через амплитуду звукового давления p 0 и колебательную скорость v :

где Z S - удельное акустическое сопротивление среды.

Тело, являющееся источником звуковых колебаний, излучает энергию, которая переносится звуковыми колебаниями в пространство (среду), окружающее источник звука. Количество звуковой энергии, проходящей в одну секунду через площадь в 1 м 2 , расположенную перпендикулярно направлению распространения звуковых колебаний, называют интенсивностью (а также, силой) звука.

Величину ее можно определить по формуле:

I=P 2 /Cp 0 [Вт/м 2 ] (1.1)

где: Р - звуковое давление, н/м 2 ; С – скорость звука, м/с; р 0 – плотность среды.

Из приведенной формулы видно, что при увеличении звукового давления интенсивность звука возрастает и, следовательно, увеличивается его громкость.

9. Какие виды частотных спектров звука вы знаете?

Частотный спектр звука - график зависимости относительной энергии звуковых колебаний от частоты. Существуют два основных типа таких спектров: дискретный и непрерывный . Дискретный спектр состоит из отдельных линий для частот, разделенных пустыми промежутками. В непрерывном спектре в пределах его полосы присутствуют все частоты.

На практике звуковые волны одной-единственной частоты встречаются редко. Но сложные звуковыеволны можно разлагать на гармоники. Такой метод называется фурье-анализом по имени французского математика Ж.Фурье (1768-1830), который первым применил его (в теории теплоты).

ДВА ТИПА ПЕРИОДИЧЕСКИХ ВОЛН: а - прямоугольные колебания; б - пилообразные колебания. Амплитуда обеих волн равна А, а период колебаний Т - величина, обратная частоте f.

10. Какая полоса частот называется октавой?

Октава - полоса частот, в которой верхняя граничная частота в два раза больше нижней

Октава - единица частотного интервала, равна интервалу между двумя частотами (f2 и f1), логарифм отношения которых (при основании 2) log2(f2/f1)=1, что соответствует f2/f1=2;

11. Что понимают вод порогом слышимости?

Порог слышимости - минимальная величина звукового давления, при которой звук данной частоты может быть ещё воспринят ухом человека. Величину порога слышимости принято выражать в децибелах, принимая за нулевой уровень звукового давления 2·10 −5 Н/м 2 или 20·10 −6 Н/м 2 при частоте 1 кГц (для плоской звуковой волны). Порог слышимости зависит от частоты звука. При действии шумов и других звуковых раздражителей порог слышимости для данного звука повышается, причём повышенное значение порога слышимости сохраняется некоторое время после прекращения действия мешающего фактора, а затем постепенно возвращается к исходному уровню. У разных людей и у одних и тех же лиц в разное время порог слышимости может различаться. Он зависит от возраста, физиологического состояния, тренированности. Измерения порога слышимости обычно производят методами аудиометрии.

12. В каких единицах измеряется уровень звукового давления?

Звуково́е давле́ние - переменное избыточное давление, возникающее в упругой среде при прохождении через неё звуковой волны. Единица измерения - паскаль (Па).

Мгновенное значение звукового давления в точке среды изменяется как со временем, так и при переходе к другим точкам среды, поэтому практический интерес представляет среднеквадратичное значение данной величины, связанное с интенсивностью звука:

где - интенсивность звука, - звуковое давление, - удельное акустическое сопротивление среды, - усреднение по времени.

При рассмотрении периодических колебаний иногда используют амплитуду звукового давления; так, для синусоидальной волны

где - амплитуда звукового давления.

Силой, или интенсивностью, звука в проходящей (т. е. нестоячей) волне называется количество энергии, ежесекундно протекающей через площадки, перпендикулярной к направлению распространения волны.

Интенсивность (силу) звука измеряют в или же в единицах, в 10 раз больших, а именно в (микроватт - миллионная доля ватта).

Вычисления показывают, что интенсивность звука равна отношению квадрата амплитуды избыточного давления к удвоенному акустическому сопротивлению среды:

Это справедливо как для плоских, так и для сферических волн. В случае плоских волн, если пренебречь потерями, связанными с внутренним трением, сила звука не должна изменяться с расстоянием. В случае сферических волн амплитуды смещения, скорости частиц и избыточного давления убывают как величины, обратные первой степени расстояния от источника звука. Следовательно, в случае сферических волн сила звука убывает обратно пропорционально квадрату расстояния от источника звука.

Для измерения силы звука обычно применяют микрофоны (их устройство описано во втором томе курса, в главе об электрических колебаниях). Для измерения силы звука применяют также диск Рэлея - это тонкий небольшой диск (изготовленный из пластинки слюды толщиной в 2-3 сотых миллиметра) диаметром в подвешенный на тончайшей нити. В поле звуковых волн на диск

действует вращающая пара, момент которой пропорционален силе звука и не зависит от частоты звука. Эта вращающая пара стремится повернуть диск так, чтобы плоскость его была перпендикулярна к направлению распространения звуковых волн. Обычно диск Рэлея подвешивают в звуковом поле под углом в 45° к направлению распространения волн и измеряют силу звука, определяя угол поворота диска.

Для определения силы звука можно также измерять давление которое звуковые волны оказывают на твердую стенку. Это давление пропорционально силе звука:

здесь есть отношение теплоемкости среды при постоянном давлении к теплоемкости при постоянном объеме, с - скорость звука.

Сопоставляя приведенную формулу с формулой (6), мы видим, что давление, оказываемое звуковыми волнами на твердую стенку, пропорционально квадрату амплитуды избыточного давления и обратно пропорционально плотности среды.

Определение интенсивности звука, данное в начале настоящего параграфа, утрачивает смысл для стоячей волны. Действительно, если амплитуды давления в прямой и отраженной волнах равны между собой, то через площадку, поставленную перпендикулярно к оси волны, протекают в противоположных направлениях равные количества энергии. Поэтому результирующий поток энергии через площадку равен нулю. В этом случае интенсивность звука характеризуют плотностью звуковой энергии, т. е. энергией, содержащейся в звукового поля.

Для вычисления плотности звуковой энергии в поле плоской проходящей волны представим себе цилиндрический объем сечением в и длиной, численно равной скорости звука ось цилиндра пусть совпадает с направлением распространения волны. Ясно, что общее количество энергии, содержащейся внутри цилиндра, численно равно интенсивности звука С другой стороны, при сечении в объем цилиндра численно равен таким образом, плотность звуковой энергии оказывается равной

Представление о движении энергии и важнейшие в настоящее время понятия о плотности энергии в точке среды и о скорости движения энергии были введены в науку в 1874 г. Н. А. Умовым в его докторской диссертации, где, в частности, дано строгое обоснование уравнения (7). Десятью годами позже идеи Умова были развиты английским физиком Пойнтингом в применении к электромагнитным волнам.

Поясним, как вычисляется интенсивность звука в отраженной звуковой волне и в преломленной волне.

Законы отражения и преломления звуковых волн подобны законам отражения и преломления света. При отражении звуковой волны угол, образуемый направлением врлны с нормалью к отражающей поверхности (угол падения), равен углу, образуемому направлением отраженной волны с той же нормалью (углу отражения).

При переходе звуковой волны из одной среды в другую угол падения и угол преломления связаны между собой соотношением

где - скорости звука в первой и во второй средах.

Если интенсивность звука в первой среде, то при нормальном падении волн на поверхность раздела интенсивность звука во второй среде будет:

где, как было доказано Рэлеем, коэффициент проникновения звука определяется формулой

Очевидно, что коэффициент отражения равен

Из формулы Рэлея мы видим, что чем больше различаются акустические сопротивления сред тем меньшая доля звуковой энергии проникает через поверхность раздела сред. Нетрудно сообразить, что когда акустическое сопротивление второй среды весьма велико в сравнении с акустическим сопротивлением первой среды, то

Такой случай имеет место при переходе звука из воздуха в массу воды или в толщу бетона, дерева; акустическое сопротивление этих сред в несколько тысяч раз больше акустического сопротивления воздуха. Стало быть, при нормальном падении звука из воздуха на массивы воды, бетона, дерева в эти среды проникает не более тысячной доли интенсивности звука. Тем не менее бетонная или деревянная стена может оказаться весьма звукопроводной, если она тонка; в этом случае стена воспринимает и передает упругие колебания, как большая мембрана. Приведенная выше формула для такого случая неприменима.

Отдельные слои атмосферного воздуха вследствие неодинакового температурного состояния могут обладать различным акустическим сопротивлением; от поверхности раздела таких слоев воздуха происходит отражение звука. Этим объясняется, что дальность слышимости звуков в атмосфере подвержена значительным колебаниям. Дальность слышимости в зависимости от степени однородности воздуха может изменяться в 10 и более раз. Погода (дождь, снег, туман) не влияет на звукопроводность воздуха. В ясный день и во время густого тумана слышимость может быть одинаковой. И, напротив, в дни, когда погода видимым образом одинакова, звукопроводность воздуха может оказаться весьма различной, если степень однородности слоев воздуха неодинакова.

Одной из важных задач акустики является выяснение условий, влияющих на интенсивность звука акустических излучателей. Когда колеблющееся тело-излучатель отдает звуковую энергию во внешнюю среду, это тело совершает работу против реакции звукового поля т. е. против сил, обусловленных избыточным давлением в излучаемой волне и тормозящих колебательное движение излучателя.

Вычисление показывает, что когда излучатель имеет размеры, большие сравнительно с длиной волны, он излучает плоскую волну, причем мощность звукового излучения равна половине произведения амплитуды скорости колебательного движения излучателя на площадь излучателя 5 и на акустическое сопротивление среды:

Если же излучатель мал сравнительно с длиной волны, то он излучает сферическую волну, причем мощность излучения в этом случае определяется формулой

Для какого-либо излучателя заданных размеров (например, для колеблющегося диска площадью первая из двух приведенных формул для мощности определяет мощность излучения высоких частот (коротких волн), вторая - мощность излучения низких частот (длинных волн).

Часто требуется чтобы в области высоких, средних и низких частот излучатель имел одинаковую мощность (этим качеством должны обладать мембраны патефонов, диффузоры громкоговорителей). Но при заданной амплитуде колебательного движения излучатели малого размера при удовлетворительной мощности излучения высоких звуков имеют весьма малую мощность излучения низких звуков. Это делает их в музыкальном отношении неполноценными.

Из сказанного ясны недостатки излучателей малого размера. Излучатели большого размера обладают тем существенным неудобством, что их масса значительна и, стало быть, для сообщения им колебательного движения с требуемой амплитудой необходимо прилагать очень большие силы. Поэтому с технической точки зрения желательно поставить излучатель малого размера в условия наиболее выгодного акустического режима.

Эта задача может быть решена с помощью специального устройства, соединяющего излучатель с открытым пространством, а именно с помощью рупора. Рупор представляет собой постепенно расширяющуюся трубу, в узком конце которой (в горле) колеблется излучатель. Жесткие стенки рупора не дают звуковой волне «расползаться» в стороны. Таким образом, фронт волны сохраняет более или менее плоскую форму, что делает первую из приведенных выше формул

для мощности излучения применимой не только в области высоких, но также и в области низких частот.

Обычно изучение интенсивности звука приходится проводить для замкнутых помещений. Исследование звука в замкнутых помещениях важно для проектирования аудиторий, театров, концертных залов и т. п. и для исправления акустических дефектов помещений, построенных без предварительного акустического расчета. Отрасль техники, занимающаяся этими вопросами, носит название архитектурной акустики.

Основной особенностью акустических процессов в замкнутых помещениях является наличие многократных отражений звука от ограничивающих поверхностей (стен, потолка). В помещении средних размеров звуковая волна претерпевает несколько сот отражений, прежде чем энергия ее уменьшится до порога слышимости В больших помещениях звук достаточной силы может быть слышен после выключения источника в течение нескольких десятков секунд за счет существования отраженных волн, движущихся во всевозможных направлениях. Совершенно очевидно, что такое постепенное замирание звука, с одной стороны, выгодно, так как звук усиливается за счет энергии отраженных волн; однако, с другой стороны, чрезмерно медленное замирание может существенно ухудшить восприятие связного звучания (речи, музыки) вследствие того, что каждая новая часть связного контекста (например, каждый новый слог речи) перекрывается еще не отзвучавшими предыдущими. Уже из этих беглых рассуждений понятно, что для создания хорошей слышимости время отзвука в аудитории должно иметь некоторую оптимальную величину.

При каждом отражении часть энергии теряется вследствие поглощения. Отношение поглощенной энергии звука к падающей называют коэффициентом поглощения звука. Приводим его значения для ряда случаев:

Очевидно, что чем больше коэффициент поглощения звука, характерный для стен какого-либо помещения, и чем меньше размеры этого помещения, тем короче время отзвука.

Рис. 162. Оптимальная реверберация для помещений различного объема.

Время отзвука, в течение которого интенсивность звука убывает до порога слышимости, зависит не только от свойств помещения, но и от начальной силы звука. Чтобы внести определенность в расчет акустических свойств аудиторий, принято (совершенно условно) рассчитывать время, в течение которого плотность звуковой энергии уменьшается до одной миллионной доли начального значения. Это время называют временем стандартной реверберации, или просто реверберацией.

Оптимальное значение реверберации, при котором слышимость может считаться наилучшей, многократно определялось экспериментально. В малых

помещениях (объемом не свыше оптимальной является реверберация 1,06 сек. При дальнейшем увеличении объема оптимальная реверберация растет пропорционально как это представлено на рис. 162. В помещениях с плохими акустическими свойствами (слишком «гулких») реверберация вместо оптимального значения в 1-2 сек. составляет 3-5 сек.



gastroguru © 2017