Что называется электрокардиограммой. Расшифровка кардиограммы у детей и взрослых: общие принципы, чтение результатов, пример расшифровки

Электрокардиография (ЭКГ) – один из электрофизиологических методов регистрации биопотенциалов сердца. Электрические импульсы сердечной ткани передаются на накожные электроды, расположенные на руках, ногах и грудной клетке. Затем эти данные выводятся либо в графическом виде на бумаге, либо отображаются на дисплее.

В классическом варианте в зависимости от места расположения электрода выделяют, так называемые, стандартные, усиленные и грудные отведения. Каждое из них показывает биоэлектрические импульсы, снятые с сердечной мышцы под определенным углом. Благодаря такому подходу в итоге на электрокардиограмме вырисовывается полная характеристика работы каждого участка сердечной ткани.

Рисунок 1. ЭКГ лента с графическими данными

Что же показывает ЭКГ сердца? При помощи этого распространенного диагностического метода можно определить конкретное место, в котором происходит патологический процесс. Помимо каких-либо нарушений в работе миокарда (сердечной мышце), ЭКГ показывает пространственное расположение сердца в грудной клетке.

Основные задачи электрокардиографии

  1. Своевременное определение нарушений ритмичности и частоты сердечных сокращений (выявление аритмий и экстрасистол).
  2. Определение острых (инфаркт миокарда) либо хронических (ишемия) органических изменений сердечной мышцы.
  3. Выявление нарушений внутрисердечных проведений нервных импульсов (нарушение проводимости электрического импульса по проводящей системе сердца (блокады)).
  4. Определение некоторых острых (ТЭЛА – тромбоэмболия легочной артерии) и хронических (хронический бронхит с дыхательной недостаточностью) легочных заболеваний.
  5. Выявление электролитных (уровень калия, кальция) и иных изменений миокарда (дистрофия, гипертрофия (увеличение толщины сердечной мышцы)).
  6. Косвенная регистрация воспалительных заболеваний сердца (миокардит).

Недостатки метода

Основным недостатком электрокардиографии является кратковременная регистрация показателей. Т.е. на записи отображается работа сердца только в момент снятия ЭКГ в состоянии покоя. Ввиду того, что вышеописанные нарушения могут быть преходящими (появляться и исчезать в любое время), специалисты нередко прибегают к суточному мониторированию и регистрации ЭКГ с нагрузкой (нагрузочные тесты).

Показания к проведению ЭКГ

Электрокардиография проводится в плановом, либо в экстренном порядке. Плановая регистрация ЭКГ осуществляется при ведении беременности, при поступлении пациента в больницу, в процессе подготовки человека к операциям или сложным медицинским процедурам, для оценки сердечной деятельности после определенного лечения либо оперативных медицинских вмешательств.

С профилактической целью ЭКГ назначается:

  • людям с высоким артериальным давлением;
  • при атеросклерозе сосудов;
  • в случае ожирения;
  • при гиперхолистеринемии (повышение уровня холестерина в крови);
  • после некоторых перенесенных инфекционных заболеваний (ангина и др.);
  • при заболеваниях эндокринной и нервной систем;
  • лицам старше 40 лет и людям, подверженным стрессам;
  • при ревматологических заболеваниях;
  • людям с профессиональными рисками и вредностями для оценки профпригодности (пилоты, моряки, спортсмены, водители…).

В экстренном порядке, т.е. «в сию минуту» ЭКГ назначается:

  • при болях или ощущениях дискомфорта за грудиной либо в грудной клетке;
  • в случае появления резкой одышки;
  • при длительных сильных болях в животе (особенно в верхних отделах);
  • в случае стойкого повышения артериального давления;
  • при возникновении необъяснимой слабости;
  • при потере сознания;
  • при травме грудной клетки (с целью исключить повреждения сердца);
  • в момент или после нарушения сердечного ритма;
  • при болях в грудном отделе позвоночника и спине (особенно слева);
  • при сильной боли в области шеи и нижней челюсти.

Противопоказания к ЭКГ

Абсолютных противопоказаний к снятию ЭКГ нет. Относительными противопоказаниями к электрокардиографии могут являться различные нарушения целостности кожных покровов в местах прикрепления электродов. Однако следует помнить, что в случае экстренных показаний ЭКГ следует снимать всегда без исключений.

Подготовка к электрокардиографии

Особенной подготовки к ЭКГ также не существует, но есть некоторые нюансы выполнения процедуры, о которых пациента должен предупредить врач.

  1. Необходимо знать принимает ли пациент сердечные препараты (должна быть сделана пометка на бланке направления).
  2. Во время процедуры нельзя разговаривать и двигаться, необходимо лежать, расслабившись и дышать спокойно.
  3. Слушать и выполнять несложные команды медперсонала, если это необходимо (вдохнуть и не дышать на протяжении нескольких секунд).
  4. Важно знать, что процедура безболезненная и безопасная.

Искажение записи электрокардиограммы возможно при движениях пациента или в случае неправильного заземления аппарата. Причиной неправильной записи также может быть неплотное прилегание электродов к кожным покровам или их неправильное подсоединение. Помехи в записи нередко бывают при мышечной дрожи или при электрической наводке.

Проведение электрокардиографии или как делают ЭКГ


Рисунок 2. Наложение электродов при ЭКГ При записи кардиограммы пациент лежит на спине на горизонтальной поверхности, руки вытянуты вдоль туловища, ноги выпрямлены и не согнуты в коленях, грудь обнажена. К лодыжкам и запястьям крепятся по одному электроду согласно общепринятой схеме:
  • к правой руке – красный электрод;
  • к левой руке – желтый;
  • к левой ноге – зеленый;
  • к правой ноге – черный.

Затем на грудную клетку накладывается еще 6 электродов.

После полного подключения пациента к аппарату ЭКГ производится процедура записи, которая на современных электрокардиографах длится не более одной минуты. В некоторых случаях медработник просит пациента вдохнуть и не дышать на протяжении 10-15 секунд и проводит в это время дополнительную запись.

В конце процедуры на ЭКГ-ленте указывается возраст, Ф.И.О. пациента и скорость, на которой снята кардиограмма. Затем специалистом проводится расшифровка записи.

Расшифровка ЭКГ и интерпретация

Расшифровкой электрокардиограммы занимается либо кардиолог, либо врач функциональной диагностики, либо фельдшер (в условия скорой помощи). Данные сравниваются с эталонной ЭКГ. На кардиограмме обычно различаются пять основных зубцов (P, Q, R, S, T) и малозаметную U-волну.


Рисунок 3. Основные характеристики кардиограммы

Таблица 1. ЭКГ расшифровка у взрослых норма


ЭКГ расшифровка у взрослых, норма в таблице

Различные изменения зубцов (их ширины) и интервалов могут свидетельствовать о замедлении проведения нервного импульса по сердцу. Инверсия зубца T и/или подъем или снижение интервала ST относительно изометрической линии говорит о возможном повреждении клеток миокарда.

Во время расшифровки ЭКГ, кроме изучения форм и интервалов всех зубцов, проводится комплексная оценка всей электрокардиограммы. В этом случае изучается амплитуда и направление всех зубцов в стандартных и усиленных отведениях. К ним относятся I, II, III, avR, avL и avF. (см рис.1) Имея суммарную картину этих элементов ЭКГ можно судить об ЭОС (электрической оси сердца), которая показывает наличие блокад и помогает определить расположение сердца в грудной клетке.

К примеру, у тучных лиц ЭОС может быть отклонена влево и вниз. Таким образом, расшифровка ЭКГ содержит все сведения об источнике сердечного ритма, проводимости, величине сердечных камер (предсердия и желудочки), изменениях миокарда и электролитных нарушениях в сердечной мышце.

Основное и наиболее важное клиническое значение ЭКГ имеет при инфаркте миокарда, нарушениях проводимости сердца. Анализируя электрокардиограмму, можно получить сведения об очаге некроза (локализация инфаркта миокарда) и его давности. Следует помнить, что оценка ЭКГ должна проводиться в комплексе с эхокардиографией, суточным (холтеровским) мониторированием ЭКГ и функциональными нагрузочными пробами. В некоторых случаях ЭКГ может быть практически неинформативна. Такое наблюдается при массивных внутрижелудочковых блокадах. К примеру, ПБЛНПГ (полная блокада левой ножки пучка Гисса). В этом случае необходимо прибегнуть к иным диагностическим методам.

Видео по теме «ЭКГ норма»

ЭЛЕКТРОКАРДИОГРАММА

ЭЛЕКТРОКАРДИОГРА́ММА -ы; ж. Графическое изображение работы сердца, сделанное электрокардиографом. Сделать электрокардиограмму. / Разг. О состоянии сердца, о работе сердца. Плохая э. Удовлетворительная э. Э. стала лучше.

ЭЛЕКТРОКАРДИОГРАММА

ЭЛЕ́КТРОКАРДИОГРА́ММА (ЭКГ), кривая, отражающая биоэлектрическую активность сердца.
При возбуждении сердца на его поверхности и в его тканях возникает разность потенциалов, закономерно меняющаяся по величине и направлению по мере того, как вовлекаются в возбуждение новые участки сердца. Биоэлектрическая активность разных отделов сердца возникает в строго определенной последовательности, повторяющейся в каждом сердечном цикле возбуждения. Возникающие при этом изменения зарядов поверхности сердца создают в окружающей сердце проводящей среде динамическое электрическое поле, которое может быть зарегистрировано с поверхности тела после соответствующего усиления в виде переменной разности потенциалов. При этом получается характерная кривая, состоящая из нескольких зубцов, разделенных определенными интервалами. Эта кривая получила название электрокардиограммы - ЭКГ. Зубцы ЭКГ обозначаются латинскими буквами P, Q, R, S и T, а соответствующие интервалы, или сегменты, - P-Q, S-T, Q-T. Зубцы и интервалы ЭКГ отражают активацию и процессы восстановления в разных отделах сердца.
История электрокардиографии
Впервые наличие электрических явлений в сокращающемся сердце лягушки предположили немецкие исследователи А. Келликер и Г. Мюллер (1856), которые при наложении на сердце нерва, подходящего к мышце, наблюдали ритмическое сокращение скелетной мышцы в такт с сердцем. В 1862 И. М. Сеченов (см. СЕЧЕНОВ Иван Михайлович) в монографии «О животном электричестве» писал, что при наложении на желудочек сердца кролика нерва «движущего аппарата» лягушки «мышца лягушачьего аппарата при каждой систоле желудочка вздрагивает». Это первое из известных упоминаний о наличии электрических явлении в сердце теплокровных животных. Первая инструментальная запись электрической активности сердца у черепахи и лягушки была осуществлена Мореем в 1876 с помощью капиллярного электрометра Липмана. Первая ЭКГ человека была записана в 1887 английским исследователем А. Уоллером при помощи капиллярного электрометра. Электроды для регистрации потенциалов Уоллер разместил на туловище (грудь и спина) и на конечностях человека. Позже этот же исследователь опубликовал методику регистрации ЭКГ у животных (собака, кошка, лошадь). Он приучил своих домашних животных спокойно стоять в ванночках с водой для обеспечения надежного контакта покровов тела с регистрирующей аппаратурой и у всех животных получил однотипные кривые. Методика отведения ЭКГ от конечностей впоследствии по предложению голландского ученого В. Эйнтховена (см. ЭЙНТХОВЕН Виллем) стала универсальной, стандартной. В своих исследованиях В. Эйнтховен использовал более совершенный струнный гальванометр, который позволял регистрировать ЭКГ в современном ее выражении, он же в самом начале века ввел в практику термин «электрокардиограмма», дал обозначение зубцам и интервалам ЭКГ, ввел стандартные отведения, разработал первую теорию генеза электрокардиограммы. В России внедрение электрокардиографического метода связано с работами А.Ф. Самойлова (см. САМОЙЛОВ Александр Филиппович) , который и ввел в практику термин ЭКГ и создал одну из теорий генеза электрокардиограммы.
Связь возбуждения структур сердца с зубцами и интервалами ЭКГ.
В сердце теплокровных и человека возбуждение возникает в синоаурикулярном узле (в сердце лягушки - синусном). На ЭКГ возбуждение этого узла не регистрируется, оно выявляется только специальными методами. Началу возбуждения предсердий соответствует зубец Р ЭКГ. За ним следует интервал P-Q, за это время происходит передача возбуждения атриовентрикулярному узлу. Комплекс QRS соответствует охвату возбуждением рабочего миокарда желудочков. После комплекса QRS регистрируется изоэлектрический интервал S-T, в течение которого вся поверхность желудочков остaется возбужденной. В норме сегмент S-T отклоняется от изоэлектрического уровня не более чем на 0,1 мВ.
Началу восстановительного процесса в желудочках соответствует появление зубца Т, с окончанием которого восстановление полностью завершается. После зубца Т регистрируется изоэлектрический интервал, соответствующий расслаблению сердца.
Методы отведения ЭКГ
Величина разности потенциалов, улавливаемая электродами, зависит от расстояния от электродов до сердца, степени электропроводности ткани между сердцем и электродами и массы возбужденных элементов сердца, генерирующих электродвижущую силу. Поэтому для того, чтобы можно было сопоставлять и сравнивать между собой ЭКГ разных людей или проследить динамику изменения ЭКГ одного и тог же человека, необходимо было стандартизировать методы отведения. С этой целью отводящие электроды накладываются на строго определенные участки тела - в зависимости от этого говорят о том или ином методе отведения. Основными методами являются отведения от конечностей, или стандартные отведения, и однополюсные отведения от грудной клՑڐخ
В клинике и в физиологических экспериментах используется целый ряд других способов регистрации ЭКГ: униполярные отведения от конечностей и грудной клетки, пищеводные отведения (активный электрод локализуется в пищеводе в области расположения тех или иных отделов сердца), внутриполостные отведения (в качестве активного электрода служит электрод-катетер, который вводится через яремную вену в полость сердца) и др.
Нормативы ЭКГ
Амплитуда и длительность зубцов, а также величина интервалов ЭКГ закономерно меняются при различных физических и физиологических воздействиях на сердце - при физической нагрузке, изменении положения тела и др. Эти изменения могут быть обусловлены, с одной стороны, чисто физическими явлениями, например, изменением положения сердца в грудной клетке при дыхании, при перемене позы, изменением электропроводности тканей между сердцем и отводящими электродами при дыхании. С другой стороны, они могут быть обусловлены и физиологическими причинами: изменением венозного притока, рефлекторными влияниями на работу сердца и на скорость проведения в нем.
Таким образом, при нормальном функционировании сердца форма ЭКГ может варьировать в определенных пределах. В связи с этим непременным условием правильного толкования ЭКГ при различных видах сердечной патологии является умение распознавать нормальную электрокардиографическую кривую во всех ее разновидностях. Нормальные варианты ЭКГ можно найти в различных клинических справочниках и учебниках по электрокардиографии.
При различных патологиях сердца форма ЭКГ существенно отклоняется от указанных выше нормативов. Наиболее яркое отражение на ЭКГ получают патологические процессы, связанные с нарушениями ритмической активности сердца (экстрасистолии (см. ЭКСТРАСИСТОЛИЯ) , фибрилляции и др.), проведением возбуждения (блокада ножек пучка Гиса), возникновением ишемических очагов ЭКГ позволяет диагностировать различные формы инфаркта миокарда и вести наблюдение за процессом восстановления коронарного кровообращения в постинфарктном периоде.


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "ЭЛЕКТРОКАРДИОГРАММА" в других словарях:

    Электрокардиограмма … Орфографический словарь-справочник

    - (ЭКГ), запись электрической активности сердца, выполненная при помощи прибора на движущейся полосе бумаги. Прибор, служащий для этой цели, называют электрокардиографом. ЭКГ используют для диагностирования сердечных заболеваний … Научно-технический энциклопедический словарь

    Сущ., кол во синонимов: 3 кардиограмма (8) нормограмма (1) экг (1) … Словарь синонимов

    электрокардиограмма - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN electrocardiogram … Справочник технического переводчика

    Электрокардиография методика регистрации и исследования электрических полей, образующихся при работе сердца. Электрокардиография представляет собой относительно недорогой, но ценный метод электрофизиологической инструментальной диагностики в… … Википедия

    - (см. электро...) графическая запись электрических явлений, происходящих в сердце во время его работы ср. кардиограмма). Новый словарь иностранных слов. by EdwART, 2009. электрокардиограмма мед. кривая записи деятельности сердца, полученная… … Словарь иностранных слов русского языка

    - (электро + кардиограмма; ЭКГ; син. актинокардиограмма устар.) кривая, отражающая изменения во времени разности потенциалов электрического поля (биопотенциалов) сердца при его сокращениях … Большой медицинский словарь

    - (от Электро..., Кардио... и...грамма записанная на бумаге кривая, отражающая колебания биопотенциалов работающего сердца. См. Электрокардиография … Большая советская энциклопедия

    Ж. Графическая запись работы сердца, сделанная электрокардиографом. Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой

    Электрокардиограмма, электрокардиограммы, электрокардиограммы, электрокардиограмм, электрокардиограмме, электрокардиограммам, электрокардиограмму, электрокардиограммы, электрокардиограммой, электрокардиограммою, электрокардиограммами,… … Формы слов

Книги

  • Электрокардиограмма при искусственном водителе ритма , С. Григоров. В монографии по электрокардиографии представлены данные об электрической стимуляции сердца, используемых методиках и типах электростимуляторов. Рассмотрены ЭКГ при функционировании каждого…

Одной из ведущих причин смертности среди населения во всем мире являются сердечно-сосудистые заболевания. За последние десятилетия этот показатель существенно снизился благодаря появлению более современных методов обследования, лечения, и, конечно, новых лекарственных препаратов.

Электрокардиография (ЭКГ) – метод регистрации электрической активности сердца, один из первых способов исследования, который длительное время оставался практически единственным в этой области медицины. Около века назад в 1924 году Виллем Эйнтховен получил Нобелевскую премию по медицине, он сконструировал аппарат, при помощи которого регистрировалась ЭКГ, дал названия ее зубцам и определил электрокардиографические признаки некоторых заболеваний сердца.

Многие методы исследования с появлением более современных разработок утрачивают свою актуальность, но к электрокардиографии это не относится. Даже с появлением визуализирующих методик ( , КТ, и др.) ЭКГ на протяжении десятилетий продолжает оставаться самым распространенным, очень информативным, а кое-где и единственным доступным методом исследования сердца. Тем более за век своего существования ни сам прибор, ни методика его использования существенно не изменились.

Показания и противопоказания

Человеку может быть назначена ЭКГ с целью профилактического обследования, а также при подозрении на какое-либо заболевание сердца.

Электрокардиография – уникальный метод обследования, который помогает поставить диагноз или становится отправной точкой для составления плана дальнейшего обследования пациента. В любом случае диагностика и лечение любых заболеваний сердца начинается с ЭКГ.

ЭКГ – абсолютно безопасный и безболезненный способ обследования для людей всех возрастов, противопоказаний к проведению обычной электрокардиографии не существует. Исследование занимает всего несколько минут и не требует никакой специальной подготовки.

А вот показаний к проведению электрокардиографии настолько много, что перечислить их все просто невозможно. Основные из них следующие:

  • общее обследование во время диспансеризации или медицинской комиссии;
  • оценка состояния сердца при различных заболеваниях ( , атеросклероз, болезни легких и др.);
  • дифференциальный диагноз при загрудинных болях и ( часто имеют не кардиальную причину);
  • подозрение на , а также контроль течения этого заболевания;
  • диагностика нарушений сердечного ритма (суточное мониторирование ЭКГ по Холтеру);
  • нарушение электролитного обмена (гипер- или гипокалиемия и др.);
  • передозировка лекарственных препаратов (например, сердечными гликозидами или антиаритмическими препаратами);
  • диагностика внекардиальных заболеваний (тромбоэмболия легочной артерии) и др.

Основное преимущество ЭКГ заключается в том, что исследование может быть выполнено вне стационара, электрокардиографами оснащены многие машины скорой помощи. Это дает возможность врачу на дому у пациента выявить инфаркт миокарда в самом его начале, когда повреждение сердечной мышцы только начинается и частично обратимо. Ведь лечение в таких случаях начинается еще во время транспортировки пациента в стационар.

Даже в тех случаях, когда неотложка не укомплектована этим прибором и врач скорой не имеет возможности выполнить исследование на догоспитальном этапе, первым диагностическим методом в приемном покое медицинского учреждения будет ЭКГ.

Расшифровка ЭКГ у взрослых

В большинстве случаев с электрокардиограммами работают кардиологи, терапевты, врачи скорой помощи, но специалистом в данной области является врач функциональной диагностики. Расшифровка ЭКГ – непростая задача, которая не под силу человеку, не имеющему соответствующей квалификации.

Обычно на ЭКГ здорового человека можно выделить пять зубцов, записывающихся в определенной последовательности: P, Q, R, S и T, иногда регистрируется зубец U (его природа на сегодняшний день точно не известна). Каждый из них отражает электрическую активность миокарда разных участков сердца.

При регистрации ЭКГ обычно записывается несколько комплексов, соответствующих сокращениям сердца. У здорового человека все зубцы в этих комплексах расположены на одинаковом расстоянии. Разница в интервалах между комплексами свидетельствует о .

В таком случае для того чтобы точно установить форму аритмии, может понадобиться холтеровское мониторирование ЭКГ. При помощи специального маленького портативного устройства кардиограмма записывается непрерывно в течение 1-7 суток, после чего полученная запись обрабатывается при помощи компьютерной программы.

  • Первый зубец Р отражает процесс деполяризации (охват возбуждением) предсердий. По его ширине, амплитуде и форме врач может заподозрить гипертрофию этих камер сердца, нарушение проведения импульса по ним, предположить наличие у пациента пороков органа и других патологий.
  • Комплекс QRS отражает процесс охвата возбуждением желудочков сердца. Деформация формы комплекса, резкое уменьшение или увеличение его амплитуды, исчезновение одного из зубцов может говорить о множестве заболеваний: инфаркт миокарда (при помощи ЭКГ можно установить его локализацию и давность), рубцы, нарушение проводимости (блокады ножек пучка Гиса), и др.
  • Последний зубец Т определяется реполяризацией желудочков (условно говоря, расслаблением), деформация этого элемента может говорить об электролитных нарушениях, ишемических изменениях и других патологиях сердца.

Участки ЭКГ, связывающие различные зубцы, получили название «сегменты». В норме они лежат на изолинии, либо отклонение их не значительно. Между зубцами располагаются интервалы (например, PQ или QT), которые отражают время прохождения электрического импульса по отделам сердца, у здорового человека они имеют определенную длительность. Удлинение или укорочение этих интервалов – также значимый диагностический признак. Увидеть и оценить все изменения на ЭКГ может только квалифицированный врач.

В расшифровке ЭКГ важен каждый миллиметр, иногда даже полмиллиметра имеют решающее значение в выборе лечебной тактики. Очень часто опытный врач может по электрокардиограмме поставить точный диагноз без использования дополнительных методов исследования, а в некоторых случаях ее информативность превосходит данные других видов исследования. По сути это скрининговый метод обследования в кардиологии, позволяющий выявить или хотя бы заподозрить заболевания сердца на ранних этапах. Вот поэтому электрокардиограмма еще долгие годы будет оставаться одним из самых востребованных диагностических методов в медицине.

К какому врачу обратиться

За направлением на ЭКГ нужно обратиться к терапевту или кардиологу. Анализ кардиограммы и заключение по ней дает врач функциональной диагностики. Само по себе ЭКГ-заключение не является диагнозом и должно рассматриваться врачом-клиницистом в сочетании с другими данными о пациенте.

Основы электрокардиографии в познавательном видео:

Видеокурс «ЭКГ под силу каждому», урок 1:

Видеокурс «ЭКГ под силу каждому», урок 2.

Расшифровка ЭКГ – дело знающего врача. При этом методе функциональной диагностики оценивается:

  • сердечный ритм — состояние генераторов электрических импульсов и состояние проводящей эти импульсы системы сердца
  • состояние самой мышцы сердца (миокарда) , наличие или отсутствие ее воспалений, повреждений, утолщений, кислородного голодания, электролитного дисбаланса

Однако, современные пациенты нередко имеют доступ к своим медицинским документам, в частности, к пленкам электрокардиографии, на которых пишутся врачебные заключения. Своим многообразием данные записи могут довести до даже самого уравновешенного, но неосведомленного человека. Ведь зачастую пациенту доподлинно неизвестно, насколько опасно для жизни и здоровья то, что написано на обороте ЭКГ-пленки рукой функционального диагноста, а до приема у терапевта или кардиолога еще несколько дней.

Чтобы снизить накал страстей, сразу предупредим читателей, что ни с одним серьезным диагнозом (инфаркт миокарда, острые нарушения ритма) функциональный диагност пациента из кабинета не выпустит, а, как минимум, отправит его на консультацию к коллеге-специалисту тут же. Об остальных “тайнах Полишинеля” в данной статье. При всех неясных случаях патологических изменений на ЭКГ назначается ЭКГ-контроль, суточное мониторирование (Холтер), ЭХО кардиоскопия (УЗИ сердца) и нагрузочные тесты (тредмил, велоэргометрия).

Цифры и латинские буквы в расшифровке ЭКГ

PQ- (0,12-0,2с) – время атриовентрикулярной проводимости. Чаще всего удлиняется на фоне AV-блокад. Укорачивается при синдромах CLC и WPW.

P – (0,1с) высота 0,25-2,5 мм описывает сокращения предсердий. Может говорить об их гипертрофии.

QRS – (0,06-0,1с) -желудочковый комплекс

QT – (не более 0,45 с) удлиняется при кислородном голодании (ишемии миокарда. инфаркте)и угрозе нарушений ритма.

RR — расстояние между верхушками желудочковых комплексов отражает регулярность сердечных сокращений и дает возможность подсчитать ЧСС.

Расшифровка ЭКГ у детей представлена на рис.3

Варианты описания сердечного ритма

Синусовый ритм

Это самая частая надпись, встречающаяся на ЭКГ. И, если больше ничего не добавлено и указана частота (ЧСС) от 60 до 90 ударов в минуту (например ЧСС 68`) — это самый благополучный вариант, свидетельствующий о том, что сердце работает как часы. Это ритм, задаваемый синусовым узлом (основным водителем ритма, генерирующим элекрические импульсы, заставляющие сердце сокращаться). При этом синусовый ритм предполагает благополучие, как в состоянии этого узла, так и здоровье проводящей системы сердца. Отсутствие же прочих записей отрицает патологические изменения сердечной мышцы и означает, что ЭКГ в норме. Кроме синусового ритма, может быть предсердный, атриовентрикулярный или желудочковый, свидетельствующие о том, что ритм задается клетками именно в этих отделах сердца и считается патологическим.

Синусовая аритмия

Это вариант нормы у молодежи и детей. Это ритм, при котором импульсы выходят из синусового узла, но промежутки между сокращениями сердца разные. Это может быть связано с физиологическими изменениями (дыхательная аритмия, когда сокращения сердца урежаются на выдохе). Примерно 30 % синусовой аритмии требуют наблюдения у кардиолога, так как угрожаемы по развитию более серьезных нарушений ритма. Это аритмии после перенесенной ревматической лихорадки. На фоне миокардита или после него, на фоне инфекционных заболеваний, сердечных пороков и у лиц с отягощенной наследственностью по аритмиям.

Синусовая брадикардия

Это ритмичные сокращения сердца с частотой меньше 50 в минуту. У здоровых брадикардия бывает, например, во сне. Также брадикардии часто проявляется у профессиональных спортсменов. Патологическая брадикардия может свидетельствовать о синдроме слабости синусового узла. При этом брадикардия более выражена (ЧСС от 45 до 35 ударов в минуту в среднем) и наблюдается в любое время суток. Когда брадикардия вызывает паузы в сердечных сокращениях до 3 секунд днем и порядка 5 секунд ночью, приводит к нарушениям снабжения кислородом тканей и проявляется, например, обмороками, показана операция по установлению электростимулятора сердца, который замещает собой синусовый узел, навязывая сердцу нормальный ритм сокращений.

Синусовая тахикардия

ЧСС более 90 в минуту — разделяется на физиологическую и патологическую. У здоровых синусовой тахикардией сопровождается физическая и эмоциональная нагрузка, прием кофе иногда крепкого чая или алкоголя (особенно энергетических напитков). Она кратковременна и после эпизода тахикардии сердечный ритм возвращается к норме за короткий промежуток времени после прекращения нагрузки. При патологической тахикардии сердцебиения беспокоят пациента в покое. Ее причинами становятся подъемы температуры, инфекции, кровопотери, обезвоживание, анемии, . Лечат основное заболевание. Синусовую тахикардию купируют только при инфаркте или остром коронарном синдроме.

Экстарсистолия

Это нарушения ритма, при которых очаги вне синусового ритма дают внеочередные сердечные сокращения, после которых идет удвоенная по длине пауза, называемая компенсаторной. В целом, сердцебиения воспринимаются пациентом как неровные, учащенные или замедленные, иногда хаотичные. Более всего беспокоят провалы в сердечном ритме. Могут возникать в виде толчков, покалываний, чувства страха и пустоты в животе.

Далеко не все экстрасистолы опасны для здоровья. Большинство и них не приводят к существенным расстройствам кровообращения и не угрожают ни жизни, ни здоровью. Они могут быть функциональными (на фоне панических атак, кардионевроза, гормональных сбоев), органическими (при ИБС, сердечных пороках. миокардиодистрофии или кардиопатиях, миокардитах). Также к ним могут приводить интоксикации и операции на сердце. В зависимости от места возникновения, экстрасистолы делятся на предсердные, желудочковые и антриовентрикулярные (возникающие в узле на границе между предсердиями и желудочками).

  • Единичные экстрасистолы чаще всего редкие (меньше 5 за час). Они, как правило, функциональные и не мешают нормальному кровоснабжению.
  • Спаренные экстрасистолы по две сопровождают некоторое количество нормальных сокращений. Такое нарушения ритма чаще говорит о патологии и требует дообследования (холтеровского мониторирования).
  • Аллоритмии — более сложные типы экстрасистолий. Если каждое второе сокращение является экстрасистолой – это бигимения, если каждый третий – тригинемия, каждый четвертый –квадригимения.

Принято желудочковые экстрасистолы делить на пять классов (по Лауну). Они оцениваются при суточном мониторировании ЭКГ, так как показатели обычной ЭКГ за несколько минут может ничего и не показать.

  • 1 класс — одиночные редкие экстрасистолы с частотой до 60 за час, исходящие из одного очага (монотопные)
  • 2 – частые монотопные более 5 в минуту
  • 3 – частые полиморфные (разной формы) политопные (из разных очагов)
  • 4а – парные, 4б – групповые (тригимении), эпизоды пароксизмальной тахикардии
  • 5 – ранние экстрасистолы

Чем выше класс, тем серьезнее нарушения, хотя на сегодня даже 3 и 4 классы не всегда требуют медикаментозного лечения. В целом, если желудочковых экстрасистол меньше 200 за сутки, их стоит отнести к функциональным и не беспокоиться по их поводу. При более частых показаны ЭХО КС, иногда – МРТ сердца. Лечат не экстрасистолию, а заболевание, которое приводит к ней.

Пароксизмальная тахикардия

Вообще пароксизм – это приступ. Приступоообразное учащение ритма может продолжаться от нескольких минут до нескольких дней. При этом промежутки между сердечными сокращениями будут одинаковыми, а ритм увеличится свыше 100 за минуту (в среднем от 120 до 250). Различают наджелудочковую и желудочковую формы тахикардии. В основе этой патологии – ненормальная циркуляция электрического импульса в проводящей системе сердца. Такая патология подлежит лечению. Из домашних способов устранения приступа:

  • задержка дыхания
  • усиленный принудительный кашель
  • погружение лица в холодную воду

WPW- синдром

Синдром Вольфа-Паркинсона-Уайта – разновидность пароксизмальной наджелудочковой тахикардии. Назван по именам авторов, описавших его. В основе появления тахикардии – наличие между предсердиями и желудочками дополнительного нервного пучка, по которому проходит более быстрый импульс, чем от основного водителя ритма.

В результате возникает внеочередное сокращение сердечной мышцы. Синдром требует консервативного или хирургического лечения (при неэффективности или непереносимости антиаритмических таблеток, при эпизодах фибрилляции предсердий, при сопутствующих сердечных пороках).

CLC – синдром (Клерка-Леви-Кристеско)

похож по механизму на WPW и характеризуется более ранним по сравнению с нормой возбуждением желудочков за счет дополнительного пучка, по которому идет нервный импульс. Синдром врожденный проявляется приступами учащенных сердцебиений.

Мерцательная аритмия

Она может быть в виде приступа или постоянной формы. Она проявляется в виде трепетания или мерцания предсердий.

Мерцания предсердий

Фибрилляция предсердий

При мерцании сердце сокращается совершенно нерегулярно (промежутки между сокращениями самой разной продолжительности). Это объясняется тем, что ритм задает не синусовый узел, а другие клетки предсердий.

Получается частота от 350 до 700 ударов за минуту. Полноценного сокращения предсердий просто нет, сокращающиеся мышечные волокна не дают эффективного заполнения кровью желудочков.

В результате ухудшается выброс сердцем крови и от кислородного голодания страдают органы и ткани. Другое название мерцания предсердий – фибрилляция предсердий. Далеко не все предсердные сокращения достигают желудочков сердца, поэтому частота сердечных сокращений (и пульс) будут либо ниже нормы (брадисистолия с частотой меньше 60), либо в норме (нормосистолия от 60 до 90), либо выше нормы (тахисистолия больше 90 ударов в минуту).

Приступ мерцательной аритмии сложно пропустить.

  • Обычно он начинается с сильного толчка сердца.
  • Развивается как череда абсолютно неритмичных сердцебиений с большой или нормальной частотой.
  • Состояние сопровождают слабость, потливость, головокружение.
  • Очень выражен страх смерти.
  • Может быть одышка, общее возбуждение.
  • Иногда наблюдается .
  • Заканчивается приступ нормализацией ритма и позывами на мочеиспускание, при котором отходит большое количество мочи.

Для купирования приступа пользуются рефлекторными способами, препаратами в виде таблеток или инъекций или прибегают к кардиоверсии (стимуляции сердца электрическим дефибриллятором). Если приступ мерцательной аритмии не устранен в течение двух суток, возрастают риски тромботических осложнений (тромбэмболии легочной артерии, инсульта).

При постоянной форме мерцания сердцебиения (когда ритм не восстанавливается ни на фоне препаратов, ни на фоне электростимуляции сердца) становятся более привычным спутником пациентов и ощущаются только при тахисистолии (учащенных неритмичных сердцебиениях). Основная задача при обнаружении на ЭКГ признаков тахисистолии постоянной формы фибрилляции предсердий – это урежение ритма до нормосистолии без попыток сделать его ритмичным.

Примеры записей на ЭКГ-пленках:

  • фибрилляция предсердий, тахисистолический вариант, ЧСС 160 в ‘.
  • Фибрилляция предсердий, нормосистолический вариант, ЧСС 64 в ‘.

Мерцательная аритмия может развиваться в программе ишемической болезни сердца, на фоне тиреотоксикоза, органических пороков сердца, при сахарном диабете, синдроме слабости синусового узла, при интоксикациях (чаще всего алкоголем).

Трепетание предсердий

Это частые (более 200 за минуту) регулярные сокращения предсердий и такие же регулярные, но более редкие сокращения желудочков. В целом трепетание чаще встречается в острой форме и переносится лучше, чем мерцание, так как при этом расстройства кровообращения выражены меньше. Трепетание развивается при:

  • органических заболеваниях сердца (кардиомиопатиях, сердечной недостаточности)
  • после операций на сердце
  • на фоне обструктивных болезней легких
  • у здоровых оно не встречается практически никогда

Клинически трепетание проявляется учащенным ритмичным сердцебиением и пульсом, набуханием шейных вен, одышкой, потливостью и слабостью.

Нарушения проводимости

В норме образовавшись в синусовом узле, электрическое возбуждение идет по проводящей системе, испытывая физиологическую задержку в доли секунды в атриовентрикулярном узле. На своем пути импульс стимулирует к сокращению предсердия и желудочки, которые перекачивают кровь. Если на каком-то из участков проводящей системы импульс задерживается дольше положенного времени, то и возбуждение к нижележащим отделам придет позже, а, значит, нарушится нормальная насосная работа сердечной мышцы. Нарушения проводимости носят название блокад. Они могут возникать, как функциональные нарушения, но чаще являются результатами лекарственных или алкогольных интоксикаций и органических заболеваний сердца. В зависимости от уровня, на котором они возникают, различают несколько их типов.

Синоатриальная блокада

Когда затруднен выход импульса из синусового узла. По сути, это приводит к синдрому слабости синусового узла, урежению сокращений до выраженной брадикардии, нарушениям кровоснабжения периферии, одышке, слабости, головокружениям и потерям сознания. Вторая степень этой блокады носит название синдрома Самойлова-Венкебаха.

Атриовентриуклярная блокада (AV- блокада)

Это задержка возбуждения в атриовентрикулярном узле долее положенных 0,09 секунды. Различают три степени этого типа блокад. Чем выше степень, тем реже сокращаются желудочки, тем тяжелее расстройства кровообращения.

  • При первой задержка позволяет каждому сокращению предсердий сохранять адекватное число сокращений желудочков.
  • Вторая степень оставляет часть сокращений предсердий без сокращений желудочков. Ее описывают в зависимости от удлинения интервала PQ и выпадения желудочковых комплексов, как Мобитц 1, 2 или 3.
  • Третья степень называется еще полной поперечной блокадой. Предсердия и желудочки начинают сокращаться без взаимосвязи.

При этом желудочки не останавливаются, потому что подчиняются водителям ритма из нижележащих отделов сердца. Если первая степень блокады может никак не проявляться и выявляться только при ЭКГ, то вторая уже характеризуется ощущениями периодической остановки сердца, слабостью, утомляемостью. При полных блокадах к проявлениям добавляются мозговые симптомы (головокружения, мушки в глазах). Могут развиваться приступы Морганьи-Эдамса-Стокса (при ускользании желудочков от всех водителей ритма) с потерей сознания и даже судорогами.

Нарушение проводимости внутри желудочков

В желудочках к мышечным клеткам электрический сигнал распространяется по таким элементам проводящей системы, как ствол пучка Гиса, его ножки (левая и правая) и ветви ножек. Блокады могут возникать и на любом из этих уровней, что также отражается на ЭКГ. При этом вместо того, чтобы охватываться возбуждением одновременно, один из желудочков запаздывает, так как сигнал к нему идет в обход заблокированного участка.

Помимо места возникновения различают полную или неполную блокаду, а также постоянную и непостоянную. Причины внутрижелудочковых блокад аналогичны другим нарушениям проводимости (ИБС, мио-и эндокардиты, кардиомиопатии, пороки сердца, артериальная гипертензия, фиброз, опухоли сердца). Также влияют прием антиартимических препаратов, увеличение калия в плазме крови, ацидоз, кислородное голодание.

  • Наиболее частой считается блокада передневерхней ветви левой ножки пучка Гиса (БПВЛНПГ).
  • На втором месте – блокада правой ножки (БПНПГ). Данная блокада обычно не сопровождается заболеваниями сердца.
  • Блокада левой ножки пучка Гиса более характерна для поражений миокарда. При этом полная блокада (ПБПНПГ) хуже, чем неполная (НБЛНПГ). Ее иногда приходится отличать от синдрома WPW.
  • Блокада задненижней ветви левой ножки пучка Гиса может быть у лиц с узкой и вытянутой или деформированной грудной клеткой. Из патологических состояний она более характерна для перегрузок правого желудочка (при ТЭЛА или пороках сердца).

Клиника собственно блокад на уровнях пучка Гиса не выражена. На первое место выходит картина основной кардиальной патологии.

  • Синдром Бейли – двухпучковая блокада (правой ножки и задней ветви левой ножки пучка Гиса).

Гипертрофия миокарда

При хронических перегрузках (давлением, объемом) сердечная мышца в отдельных участках начинает утолщаться, а камеры сердца растягиваться. На ЭКГ подобные изменения обычно описываются, как гипертрофия.

  • (ГЛЖ) – типична для артериальной гипертензии, кардиомиопатии, ряда сердечных пороков. Но и в норме у спортсменов, тучных пациентов и лиц, занятых тяжелым физическим трудом, могут встречаться признаки ГЛЖ.
  • Гипертрофия правого желудочка – несомненный признак повышения давления в системе легочного кровотока. Хроническое легочное сердце, обструктивные болезни легких, кардиальные пороки (стеноз легочного ствола, тетрада Фалло, дефект межжелудочковой перегородки) ведут к ГПЖ.
  • Гипертрофия левого предсердия (ГЛП ) – при митральном и аортальном стенозе или недостаточности, гипертонической болезни, кардиомиопатии, после .
  • Гипертрофия правого предсердия (ГПП) – при легочном сердце, пороках трикуспидального клапана, деформациях грудной клетки, легочные патологии и ТЭЛА.
  • Косвенные признаки гипертрофий желудочков - это отклонение электрической оси сердца (ЭOC) вправо или влево. Левый тип ЭОС – это отклонение ее влево, то есть ГЛЖ, правый – ГПЖ.
  • Систолическая перегрузка – это также свидетельство гипертрофии отделов сердца. Реже это свидетельство ишемии (при наличии стенокардитических болей).

Изменения сократительной способности миокарда и его питания

Синдром ранней реполяризации желудочков

Чаще всего- вариант нормы, особенно для спортсменов и лиц с врожденно высокой массой тела. Иногда связан с гипертрофией миокарда. Относится к особенностям прохождения электролитов (калия) через мембраны кардиоцитов и особенностей белков, из которых строятся мембраны. Считается фактором риска по внезапной остановке сердца, но клиники не дает и чаще всего остается без последствий.

Умеренные или выраженные диффузные изменения в миокарде

Это свидетельство нарушения питания миокарда в результате дистрофии, воспаления () или . Также обратимые диффузные изменения сопровождают нарушения водно-электролитного баланса (при рвоте или поносе), приме лекарств (мочегонных), тяжелые физические нагрузки.

Неспецифические изменения ST

Это признак ухудшения питания миокарда без выраженного кислородного голодания, например, при нарушении и баланса электролитов или на фоне дисгормональных состояний.

Острая ишемия, ишемические изменения, изменения по зубцу T, депрессия ST, низкие T

Так описываются обратимые изменения связанные с кислородным голоданием миокарда (ишемией). Это может быть как стабильная стенокардия, так и нестабильная, острый коронарный синдром. Помимо наличия самих изменений описывают и их расположение (например, субэндокардиальная ишемия). Отличительная особенность подобных изменений – их обратимость. В любом случае такие изменения требуют сравнения данной ЭКГ со старыми пленками, а при подозрении на инфаркт проведения тропониновых экспресс-тестов на повреждение миокарда или коронарографии. В зависимости от варианта ишемической болезни сердца выбирается противоишемическое лечение.

Развившийся инфаркт

Его, как правило, описывается:

  • по стадиям : острейшая (до 3 суток), острая (до 3 недель), подострая (до 3 месяцев), рубцовая (всю жизнь после инфаркта)
  • по объемам : трансмуральный (крупноочаговый), субэндокардиальный (мелкоочаговый)
  • по расположению инфаркты : бывают передними и переднее-перегородочными, базальными, боковыми, нижними (заднедиафрагмальными), циркулярными верхушечными, заднебазальными и правожелудочковыми.

В любом случае инфаркт – это повод для незамедлительной госпитализации.

Все многообразие синдромов и специфических изменений на ЭКГ, разность показателей для взрослых и детей, обилие причин, приводящих к однотипным изменениям ЭКГ, не позволяют неспециалисту трактовать даже готовое заключение функционального диагноста. Гораздо разумнее, имея на руках результат ЭКГ, своевременно посетить кардиолога и получить грамотные рекомендации по дальнейшей диагностике или лечению своей проблемы, существенно снизив риски неотложных кардиологических состояний.

Электрокардиография - это метод графической регистрации разности потенциалов электрического поля сердца, возникающего при его деятельности. Регистрация производится при помощи аппарата - электрокардиографа. Он состоит из усилителя, позволяющего улавливать токи очень малого напряжения; гальванометра, измеряющего величину напряжения; системы питания; записывающего устройства; электродов и проводов, соединяющих пациента с аппаратом. Записываемая кривая называется электрокардиограммой (ЭКГ). Регистрация разности потенциалов электрического поля сердца с двух точек поверхности тела называют отведением. Как правило, ЭКГ записывают в двенадцати отведениях: трех - двухполюсных (три стандартных отведения) и девяти - однополюсных (три однополюсных усиленных отведения от конечностей и 6 однополюсных грудных отведений). При двухполюсных отведениях к электрокардиографу подключают по два электрода, при однополюсных отведениях один электрод (индифферентный) является объединенным, а второй (дифферентный, активный) помещается в выбранную точку тела. Если активный электрод помещают на конечность, отведение называют однополюсным, усиленным от конечности; если этот электрод помещен на грудь - однополюсным грудным отведением.

Для регистрации ЭКГ в стандартных отведениях (I, II и III) на конечности накладывают матерчатые салфетки, смоченные физиологическим раствором, на которые кладут металлические пластинки электродов. Один электрод с красным проводом и одним рельефным кольцом помещают на правое , второй - с желтым проводом и двумя рельефными кольцами - на левое предплечье и третий - с зеленым проводом и тремя рельефными кольцами - на левую голень. Для регистрации отведений к электрокардиографу по очереди подключают по два электрода. Для записи I отведения подключают электроды правой и левой рук, II отведения - электроды правой руки и левой ноги, III отведения - электроды левой руки и левой ноги. Переключение отведений производится поворотом ручки. Кроме стандартных, от конечностей снимают однополюсные усиленные отведения. Если активный электрод расположен на правой руке, отведение обозначают как aVR или уП, если на левой руке - aVL или уЛ, и если на левой ноге - aVF или уН.


Рис. 1. Расположение электродов при регистрации передних грудных отведений (указано цифрами соответствующими их порядковым 1 номерам). Вертикальные полосы, пересекающие цифры, соответствуют анатомическим линиям: 1 - правой грудинной; 2 - левой грудинной; 3 - левой окологрудинной; 4-левой среднеключичной; 5-левой передней подмышечной; 6 - левой средней подмышечной.

При регистрации однополюсных грудных отведений активный электрод помещают на грудной клетке. ЭКГ регистрируют в следующих шести позициях электрода: 1) у правого края грудины в IV межреберье; 2) у левого края грудины в IV межреберье; 3) по левой окологрудинной линии между IV и V межреберьями; 4) по среднеключичной линии в V межреберье; 5) по передней подмышечной линии в V межреберье и 6) по средней подмышечной линии в V межреберье (рис. 1). Однополюсные грудные отведения обозначают латинской буквой V или русскими - ГО. Реже регистрируют двухполюсные грудные отведения, при которых один электрод располагался на грудной клетке, а другой на правой руке или левой ноге. Если второй электрод располагался на правой руке, грудные отведения обозначали латинскими буквами CR или русскими - ГП; при расположении второго электрода на левой ноге грудные отведения обозначали латинскими буквами CF или русскими - ГН.

ЭКГ здоровых людей отличается вариабельностью. Она зависит от возраста, телосложения и др. Однако в норме на ней всегда можно различить определенные зубцы и интервалы, отражающие последовательность возбуждения сердечной мышцы (рис. 2). По имеющейся отметке времени (на фотобумаге расстояние между двумя вертикальными полосами равно 0,05 сек., на миллиметровой бумаге при скорости протяжки 50 мм/сек 1 мм равен 0,02 сек., при скорости 25 мм/сек - 0,04 сек.) можно рассчитать продолжительность зубцов и интервалов (сегментов) ЭКГ. Высоту зубцов сравнивают со стандартной отметкой (при подаче на прибор импульса напряжением 1 мв регистрируемая линия должна отклоняться от исходного положения на 1 см). Возбуждение миокарда начинается с предсердий, и на ЭКГ появляется предсердный зубец Р. В норме он небольшой: высотой - 1-2 мм и продолжительностью 0,08-0,1 сек. Расстояние от начала зубца Р до зубца Q (интервал Р-Q) соответствует времени распространения возбуждения от предсердий к желудочкам и равно 0,12-0,2 сек. Во время возбуждения желудочков записывается комплекс QRS, причем величина его зубцов в разных отведениях выражена различно: продолжительность комплекса QRS - 0,06- 0,1 сек. Расстояние от зубца S до начала зубца Т - сегмент S-T, в норме располагается на одном уровне с интервалом Р- Q и смещения его не должны превышать 1 мм. При угасании возбуждения в желудочках записывается зубец Т. Интервал от начала зубца Q до конца зубца Т отражает процесс возбуждения желудочков (электрическую систолу). Его продолжительность зависит от частоты сердечного ритма: при учащении ритма он укорачивается, при замедлении - удлиняется (в среднем он равен 0,24-0,55 сек.). Частоту сердечного ритма легко подсчитать по ЭКГ, зная сколько времени продолжается один сердечный цикл (расстояние между двумя зубцами R) и сколько таких циклов содержится в минуте. Интервал Т- Р соответствует диастоле сердца, аппарат в это время записывает прямую (так называемую изоэлектрическую) линию. Иногда после зубца Т регистрируется зубец U, происхождение которого не вполне ясно.


Рис. 2. Электрокардиограмма здорового человека.

В патологии величина зубцов, их продолжительность и направление, так же как и продолжительность и расположение интервалов (сегментов) ЭКГ, может значительно изменяться, что дает основание использовать электрокардиографию в диагностике многих заболеваний сердца. С помощью электрокардиографии диагностируются различные нарушения сердечного ритма (см. ), на ЭКГ находят отражение воспалительные и дистрофические поражения миокарда. Особенно важную роль играет электрокардиография в диагностике коронарной недостаточности и инфаркта миокарда.

По ЭКГ можно определить не только наличие инфаркта, но и выяснить, какая стенка сердца поражена. В последние годы для изучения разности потенциалов электрического поля сердца используется метод телеэлектрокардиографии (радиоэлектрокардиографии), основанный на принципе беспроволочной передачи электрического поля сердца при помощи радиопередатчика. Этот метод позволяет зарегистрировать ЭКГ во время физической нагрузки, в движении (у спортсменов, летчиков, космонавтов).

Электрокардиография (греч. kardia - сердце, grapho - пишу, записываю) - метод регистрации электрических явлений, возникающих в сердце во время его сокращения.

История электрофизиологии, а следовательно, и электрокардиография начинается с опыта Гальвани (L. Galvani), обнаружившего в 1791 г. электрические явления в мышцах животных. Маттеуччи (С. Matteucci, 1843) установил наличие электрических явлений в вырезанном сердце. Дюбуа-Реймон (Е. Dubois-Reymond, 1848) доказал, что и нервах и мышцах возбужденная часть электроотрицательна по отношению к находящейся в покое. Келликер и Мюллер (A. Kolliker, Н. Muller, 1855), накладывая на сокращающееся сердце нервно-мышечный препарат лягушки, состоящий из седалищного нерва, соединенного с икроножной мышцей, получали при сокращении сердца двойное сокращение: одно в начале систолы и другое (непостоянное) в начале диастолы. Таким образом, была впервые зарегистрирована электродвижущая сила (ЭДС) обнаженного сердца. Зарегистрировать ЭДС сердца с поверхности человеческого тела впервые удалось Уоллеру (A. D. Waller, 1887) посредством капиллярного электрометра. Уоллер считал,что человеческое тело является проводником, окружающим источник ЭДС - сердце; различные точки человеческого тела имеют потенциалы различной величины (рис. 1). Однако полученная капиллярным электрометром запись ЭДС сердца неточно воспроизводила ее колебания.


Рис. 1. Схема распределения изопотенциальных линий на поверхности человеческого тела, обусловленных электродвижущей силой сердца. Цифрами обозначены величины потенциалов.

Точная запись ЭДС сердца с поверхности человеческого тела - электрокардиограмма (ЭКГ) - была произведена Эйнтховеном (W. Einthoven, 1903) посредством струнного гальванометра, построенного по принципу аппаратов для приема трансатлантических телеграмм.

Согласно современным представлениям клетки возбудимых тканей, в частности клетки миокарда, покрыты полупроницаемой оболочкой (мембраной), проницаемой для ионов калия и непроницаемой для анионов. Заряженные положительно ионы калия, находящиеся в избытке в клетках по сравнению с окружающей их средой, удерживаются на наружной поверхности мембраны отрицательно заряженными анионами, расположенными на внутренней ее поверхности, непроницаемой для них.

Таким образом, на оболочке живой клетки возникает двойной электрический слой - оболочка поляризована, причем наружная поверхность ее заряжена положительно по отношению к внутреннему содержимому, заряженному отрицательно.

Эта поперечная разность потенциалов является потенциалом покоя. Если к наружной и внутренней сторонам поляризованной мембраны приложить микроэлектроды, то в наружной цепи возникает ток. Запись получившейся разности потенциалов дает монофазную кривую. При возникновении возбуждения мембрана возбужденного участка утрачивает полунепроницаемость, деполяризуется и поверхность ее становится электроотрицательной. Регистрация двумя микроэлектродами потенциалов наружной и внутренней оболочки деполяризованной мембраны также дает монофазную кривую.

Вследствие разности потенциалов между поверхностью возбужденного деполяризованного участка и поверхностью поляризованного, находящегося в покое, возникает ток действия - потенциал действия. Когда возбуждение охватывает все мышечное волокно, поверхность его становится электроотрицательной. Прекращение возбуждения вызывает волну реполяризации, и восстанавливается потенциал покоя мышечного волокна (рис. 2).


Рис. 2. Схематическое изображение поляризации, деполяризации и реполяризации клетки.

Если клетка находится в состоянии покоя (1), то с обеих сторон клеточной мембраны отмечается электростатическое равновесие, состоящее в том, что поверхность клетки является электроположительной (+) по отношению к ее внутренней стороне (-).

Волна возбуждения (2) моментально нарушает это равновесие, и поверхность клетки становится электроотрицательной по отношению к ее внутренней стороне; такое явление называют деполяризацией или же, правильнее, инверсионной поляризацией. После того как возбуждение прошло по всему мышечному волокну, оно становится полностью деполяризированным (3); вся его поверхность обладает одинаковым отрицательным потенциалом. Такое новое равновесие не продолжается долго, так как после волны возбуждения следует волна реполяризации (4), которая восстанавливает поляризацию состояния покоя (5).

Процесс возбуждения в нормальном человеческом сердце - деполяризация - идет следующим образом. Возникающая в синусовом узле, расположенном в правом предсердии, волна возбуждения распространяется со скоростью 800-1000 мм в 1 сек. лучеобразно по мышечным пучкам сначала правого, а затем левого предсердия. Длительность охвата возбуждением обоих предсердий 0,08-0,11 сек.

Первые 0,02 - 0,03 сек. возбуждено только правое предсердие, затем 0,04 - 0,06 сек.- оба предсердия и последние 0,02 - 0,03 сек.- только левое предсердие.

По достижении атрио-вентрикулярного узла распространение возбуждения замедляется. Затем с большой и постепенно увеличивающейся скоростью (от 1400 до 4000 мм в 1 сек.) оно направляется по пучку Гиса, его ножкам, их ветвям и разветвлениям и достигает конечных окончаний проводниковой системы. Достигнув сократительного миокарда, возбуждение со значительно уменьшенной скоростью (300-400 мм в 1 сек.) распространяется по обоим желудочкам. Так как периферические разветвления проводниковой системы рассеяны преимущественно под эндокардом, раньше всего приходит в возбуждение внутренняя поверхность сердечной мышцы. Дальнейший ход возбуждения желудочков не связан с анатомическим расположением мышечных волокон, а направлен от внутренней поверхности сердца к наружной. Время возникновения возбуждения в мышечных пучках, расположенных на поверхности сердца (субэпикардиальные), определяется двумя факторами: временем возбуждения наиболее близко расположенных к этим пучкам разветвлений проводниковой системы и толщиной мышечного слоя, отделяющего субэпикардиальные мышечные пучки от периферических разветвлений проводниковой системы.

Раньше всего возбуждаются межжелудочковая перегородка и правая сосочковая мышца. В правом желудочке возбуждение сначала охватывает поверхность его центральной части, так как мышечная стенка в этом месте тонка и ее мышечные слои тесно соприкасаются с периферическими разветвлениями правой ножки проводниковой системы. В левом желудочке раньше всего приходит в возбуждение верхушка, так как стенка, отделяющая ее от периферических разветвлений левой ножки, тонка. Для различных точек поверхности правого и левого желудочков нормального сердца период возбуждения наступает в строго определенное время, причем раньше всего приходит в возбуждение большинство волокон на поверхности тонкостенного правого желудочка и лишь небольшое количество волокон на поверхности левого желудочка благодаря их близости к периферическим разветвлениям проводниковой системы (рис. 3).


Рис. 3. Схематическое изображение нормального возбуждения межжелудочковой перегородки и внешних стенок желудочков (по Соди-Пальяресу с сотр.). Возбуждение желудочков начинается на левой стороне перегородки в средней ее части (0,00- 0,01 сек.) и затем может достигнуть основания правой сосочковой мышцы (0,02 сек.). После этого возбуждаются субэндокардиальные мышечные слои наружной стенки левого (0,03 сек.) и правого (0,04 сек.) желудочков. Последними возбуждаются базальные части внешних стенок желудочков (0,05-0,09 сек.).

Процесс прекращения возбуждения мышечных волокон сердца - реполяризацию - нельзя считать полностью изученным. Процесс реполяризации предсердий совпадает большей частью с процессом деполяризации желудочков и отчасти с процессом их реполяризации.

Процесс реполяризации желудочков идет значительно медленнее и в несколько иной последовательности, чем процесс деполяризации. Объясняется это тем, что длительность возбуждения мышечных пучков поверхностных слоев миокарда меньше длительности возбуждения субэндокардиальных волокон и сосочковых мышц. Запись процесса деполяризации и реполяризации предсердий и желудочков с поверхности человеческого тела и дает характерную кривую - ЭКГ, отражающую электрическую систолу сердца.

Запись ЭДС сердца производится в настоящее время несколько иными методами, чем регистрировалась Эйнтховеном. Эйнтховен регистрировал ток, получающийся при соединении двух точек поверхности человеческого тела. Современные аппараты - электрокардиографы - регистрируют непосредственно напряжение, обусловленное электродвижущей силой сердца.

Напряжение, обусловленное сердцем, равное 1-2 мВ, усиливается радиолампами, полупроводниками или электроннолучевой трубкой до 3-6 В, в зависимости от усилителя и регистрирующего аппарата.

Чувствительность измерительной системы устанавливают таким образом, чтобы разность потенциалов в 1 мВ давала отклонение в 1 см. Запись производится на фотобумаге или фотопленке либо непосредственно на бумаге (чернильнопишущие, с тепловой записью, со струйной записью). Наиболее точные результаты дают запись на фотобумаге или фотопленке и струйная запись.

Для объяснения своеобразной формы ЭКГ были предложены различные теории ее генеза.

А. Ф. Самойлов рассматривал ЭКГ как результат взаимодействия двух монофазных кривых.

Учитывая, что при регистрации двумя микроэлектродами наружной и внутренней поверхности мембраны в состояниях покоя, возбуждения и повреждения получается монофазная кривая, М. Т. Удельнов считает, что монофазная кривая отражает основную форму биоэлектрической активности миокарда. Алгебраическая сумма двух монофазных кривых дает ЭКГ.

Патологические изменения ЭКГ обусловлены сдвигами монофазных кривых. Эта теория генеза ЭКГ носит название дифференциальной.

Наружную поверхность мембраны клетки в периоде возбуждения можно представить схематически как состоящую из двух полюсов: отрицательного и положительного.

Непосредственно перед волной возбуждения в любом месте ее распространения поверхность клетки является электроположительной (состояние поляризации в состоянии покоя), а непосредственно за волной возбуждения поверхность клетки является электроотрицательной (состояние деполяризации; рис. 4). Данные электрические заряды противоположных знаков, группирующиеся в пары с одной и другой стороны каждого места, охваченного волной возбуждения, образуют электрические диполи (а). Реполяризация также создает неисчислимое количество диполей, но, в отличие от вышеуказанных диполей, отрицательный полюс находится спереди, а положительный полюс - сзади по отношению к направлению распространения волны (б). Если деполяризация или реполяризация закончена, поверхность всех клеток обладает одинаковым потенциалом (отрицательным или положительным); диполи полностью отсутствуют (см. рис. 2, 3 и 5).


Рис. 4. Схематическое изображение электрических диполей при деполяризации (а) и реполяризации (б), возникающих с обеих сторон волны возбуждения и волны реполяризации в результате изменения электрического потенциала на поверхности волокон миокарда.


Рис. 5. Схема равностороннего треугольника по Эйнтховену, Фару и Варту.

Мышечное волокно является маленьким двухполюсным генератором, продуцирующим маленькую (элементарную) ЭДС - элементарный диполь.

В каждый момент систолы сердца происходит деполяризация и реполяризация огромного числа волокон миокарда, расположенных в различных частях сердца. Сумма образовавшихся элементарных диполей создает соответствующую величину ЭДС сердца в каждый момент систолы. Таким образом, сердце представляет как бы один суммарный диполь, изменяющий в течение сердечного цикла свою величину и направление, но не меняющий места расположения своего центра. Потенциал в различных точках поверхности человеческого тела имеет различную величину в зависимости от расположения суммарного диполя. Знак потенциала зависит от того, по какую сторону от линии, перпендикулярной к оси диполя и проведенной через его центр, расположена данная точка: на стороне положительного полюса потенциал имеет знак +, а на противоположной стороне - знак -.

Большую часть времени возбуждения сердца поверхность правой половины туловища, правой руки, головы и шеи имеет отрицательный потенциал, а поверхность левой половины туловища, обеих ног и левой руки - положительный (рис. 1). Таково схематическое объяснение генеза ЭКГ согласно теории диполя.

ЭДС сердца в течение электрической систолы меняет не только свою величину, но и направление; следовательно, она является векторной величиной. Вектор изображается отрезком прямой линии определенной длины, размер которой при определенных данных регистрирующего аппарата указывает на абсолютную величину вектора.

Стрелка на конце вектора указывает направление ЭДС сердца.

Возникшие одновременно векторы ЭДС отдельных волокон сердца суммируются по правилу сложения векторов.

Суммарный (интегральный) вектор двух векторов, расположенных параллельно и направленных в одну сторону, равняется по абсолютной величине сумме составляющих его векторов и направлен в ту же сторону.

Суммарный вектор двух векторов одинаковой величины, расположенных параллельно и направленных в противоположные стороны, равен 0. Суммарный вектор двух векторов, направленных друг к другу под углом, равняется диагонали параллелограмма, построенного из составляющих его векторов. Если оба вектора образуют острый угол, то их суммарный вектор направлен в сторону составляющих его векторов и больше любого из них. Если оба вектора образуют тупой угол и, следовательно, направлены в противоположные стороны, то их суммарный вектор направлен в сторону наибольшего вектора и короче его. Векторный анализ ЭКГ заключается в определении по зубцам ЭКГ пространственного направления и величины суммарной ЭДС сердца в любой момент его возбуждения.



gastroguru © 2017