Оптико физические приборы. Пособие по физике.Фотоаппарат и др.оптические приборы

16.1 Оптиметры

Оптиметром называется рычажно-оптический прибор, предназначенный для точных относительных измерений геометрических величин. Типы, основные параметры и технические требования устанавливаются в ГОСТ 5405-75. Оптиметр состоит из оптического устройства - трубки оптиметра, устройства крепления трубки и столика для базирования измеряемой детали.

Оптическая схема оптиметра основана на использовании оптического рычага и автоколлимационной системы. На рис. 71, а, б показана оптико-механическая схема трубки оптиметра. Свет от источника излучения 7 направляется зеркалом 8 на скошенную грань осветительной призмы 9 и, отразившись от нее, освещает сетку 6, расположенную в фокальной плоскости объектива 4 автоколлиматора. На сетке (рис. 1, б) справа в светлом прямоугольном окне на темном фоне нанесена шкала в ±100 делений и от-счетный индекс-штрих. Шкала перекрыта со стороны окуляра призмой 9 и смещена относительно оси на некотором расстоянии b. Пройдя через шкалу, лучи попадают в прямоугольную призму 5 и отклоняются по выходе из нее на 90° (это сделано для умень-

шения габаритных размеров трубки). Затем лучи вместе с изображением штрихов шкалы проходят объектив 4, а из него параллельным пучком падают на зеркало 3, отражаются от него и в обратном ходе дают автоколлимационное изображение шкалы на сетке 6. Автоколлимационное изображение шкалы симметрично самой шкале вертикальной оси z сетки. Так как левая половина сетки прозрачна, то изображение шкалы наблюдается в виде черных штрихов на светлом фоне. Если зеркало 3 перпендикулярно к оптической оси объектива, то нулевые штрихи шкалы и их автоколлимационное изображение совместятся на горизонтальной оси х сетки с индексом-штрихом.

Рис. 1. Оптическая схема вертикального оптиметра

Перемещение автоколлимационного изображения шкалы относительно индекса-указателя отсчитывается по принципу оптического рычага. Если после установки измеряемого объекта 1 измерительный стержень 2 переместится и наклонит зеркало 3, то изо-

бражение сетки сместится параллельно вертикальной оси сетки (параллельно действительной сетке). Это смещение наблюдается в окуляре 10 трубки оптиметра. К оптиметру прилагается проекционная насадка ПН-16, облегчающая процесс измерения.

Рис. 2. Оптическая схема ультраоптиметра ОВЭ-2

Оптическая схема ультраоптиметра ОВЭ-02, показанная на рис. 2, представляет сочетание схем автоколлиматора и схемы многократного отражения. Лучи света от источника излучения 1

через конденсор 2, теплофильтр 3, линзу 4 падают на осветительную призму 5, освещают окно с прозрачной шкалой, нанесенной на плоскопараллельной стеклянной пластине 15, расположенной в фокальной плоскости объектива 14. В поле зрения экрана прибора видны удлиненные штрихи с цифрами, нанесенными через десять малых делений. Шкала имеет по обе стороны ±100 делений (200 делений).


Лучи света выходят из пластины 15, отражаются от зеркала 16, входят в объектив 14, а из него параллельным потоком вместе с изображением шкалы попадают на неподвижное зеркало 12, отражаются от него на качающееся зеркало 11. Здесь происходит многократное отражение. Далее лучи с автоколлимационным отражением шкалы возвращаются к пластине 15, на которой проецируется изображение шкалы в плоскости штриха-индекса. Совмещенные изображения шкалы и штриха-индекса проецируются через зеркальную систему 8, 9, 10 на экран 13.

Фокусировка и центровка лампы 1 производится по ее нити с наводкой на резкость объективом 6 и проецированием ее резкого изображения на экран 13 посредством зеркальной системы 8, 9,10.

Осевое перемещение измерительного стержня 17 вызывает наклон зеркала на некоторый угол а, вследствие чего автоколлимационное изображение шкалы на экране также будет перемещаться относительно неподвижного штриха-индекса пропорционально углу 2а. На зеркалах 12 и 11, являющихся оптическими умножителями, пучок лучей претерпевает одиннадцать отражений.

По расположению линий измерения оптиметры разделяются на вертикальные и горизонтальные. Вертикальные оптиметры - станковые приборы с базирующим устройством в виде стойки с вертикальной осью расположения. Горизонтальные оптиметры - стан-

ковые приборы с горизонтальной осью расположения трубки оптиметра.

По ГОСТ 5405-75 настольные оптиметры выпускаются следующих типов: вертикальные (модели ИК.В-2, ИК.В-3); горизонтальные (модели ИКГ-2, ИКГ-3); окулярные (модели ИКВ-2, ИКГ-2, ИКГ-3). Диапазон измерений приборов: ИК.В-2 от 0 до 180 мм; ИКВ-3 от 0 до 200-мм (только при наружных измерениях); ИКГ-2 и ИКГ-3 от 0 до 500 мм при наружных и от 0 до 400 мм при внутренних измерениях. Цена деления трубки оптиметра 1 мкм; диапазон измерений по шкале ±0,2 мм; предел допускаемой погрешности ±0,2 мкм на участках шкалы от 0 до ±0,06 мм. Размах показаний не более 1 мкм. Измерительное усилие при наружных измерениях не более 200 сН.

16.2 Измерительные машины

Измерительные машины - оптико-механические контактные приборы, предназначенные для точного измерения деталей больших размеров методом непосредственного измерения или сравнения с мерой.

В конструкциях машины принцип Аббе не соблюден, так как обычно линия измерения и шкала расположены в параллельных плоскостях. При использовании же принципа Аббе длина машины увеличилась бы на две длины измеряемой детали.

Конструкция измерительной машины показана на рис. 3. На массивной чугунной станине 1 по параллельным направляющим перемещается задняя бабка 3 с закрепленным в ее пиноли 6 измерительным наконечником, осевое перемещение которого осуществляется штурвалами 2 микроподачи. Бабка в продольном направлении перемещается кремальерным механизмом. Вместе с бабкой перемещается осветитель 4 и левый коллиматор 15 с преломляющей призмой 14. В передней бабке 10 установлен отсчетный микроскоп 11 и трубка оптиметра 9 с измерительными наконечниками. Бабка в пределах 100 мм перемещается вращением Штурвала 12. При этом предусмотрено стопорение бабки в нужном положении. Одновременно с бабкой перемещается и закрепленный па ней правый коллиматор 15 с преломляющей призмой 14.

Для отсчета размеров в пределах диапазона измерений в станине установлена дециметровая шкала 7, в которой через каждые 100 мм вставлены девять стеклянных пластин 8 с биссекторами. Под передней бабкой установлена стеклянная шкала 13 длиной 100 мм с делениями через 0,1 мм.

Рис. 3. Принципиальная схема измерительной машины

Для установки машины в нулевое положение заднюю бабку помещают над левой (нулевой) пластиной с биссектором, при этом

оптическая ось осветителя располагается над окном биссекторной шкалы. Лучи света от лампы 4 через конденсор 5 освещают биссектор, проходят преломляющую призму 14, и коллиматор 15 собирает их в параллельный пучок. Так как бисеектор находится в фокусе коллиматора, то в параллельном пучке получается бесконечно удаленное изображение биссектора. Далее, это изображение попадает в правый коллиматор 15, проходит через призму 14 и накладывает изображение нулевого биссектора на расположенную в фокусе коллиматора шкалу 13. Перемещая переднюю бабку 10, добиваются совпадения нулевого штриха с серединой биссектора. Затем микровинтом 12 приводят измерительные наконечники в соприкосновение друг с другом и устанавливают шкалу трубки оптиметра на нуль. После этого стопорят винт пиноли.

При измерении переднюю бабку отодвигают от задней, совмещают последнюю с требуемым биссектором миллиметровой шкалы. Измеряемую деталь устанавливают на линии измерения с помощью предметного стола или люнетов, перемещают переднюю бабку до момента, когда измерительные наконечники обеих бабок коснутся измеряемой детали. При этом изображение шкалы оптиметра не должно выходить из поля зрения трубки оптиметра. Далее, перемещая бабку 10, совмещают ближайшие деления шкалы 13 с изображением биссекторного штриха и снимают отсчет. Число дециметров определяют по номеру пластины шкалы 13, снимая с помощью микроскопа 11 отсчет с точностью 0,1 мм, а сотые и тысячные доли миллиметра определяют по шкале трубки оптиметра.

Измерительные машины ИЗМ-1, ИЗМ-2, ИЗМ-4 выпускаются с верхними диапазонами измерений 1, 2 и 4 м. Диапазон измерений ИЗМ-1 от 0 до 1000 мм при наружных и от 1 до 900 мм -при внутренних измерениях; ИЗМ-2 от 0 до 2000 мм при наружных и от 1 До 1900 -при внутренних измерениях; ИЗМ-4 от 0 до 4000 мм при наружных и от 1 до 3900 - при внутренних измерениях. Цена деления 1 мкм. Допускаемая погрешность биссекторной шкалы ± (0,3 + 9-10~ 3 £) мкм, шкалы с отсчетным устройством с= = 0,1 мм ± (0,7+1,5-10 -3 L), где L - номинальный размер, мм.

Составляющие погрешности измерения на измерительных машинах аналогичны погрешностям оптиметра. Однако важной для машин является температурная составляющая. Предельные погрешности измерений методом непосредственной оценки наружных размеров 1-500 мм составляют от ±1 до ±6 мкм, а при измерении методом сравнения -от ±1 до ±2 мкм; внутренних размеров 13-500 мм методом сравнения с концевыми мерами от ± 1,5 до ±9 мкм.

16.3 Длиномеры

Длиномеры - оптико-механические приборы контактного типа, в которых шкала совмещена с линией измерения (полное использование принципа Аббе).

Рис. 4. Оптическая схема вертикального длиномера ИЗВ-2

Принципиальная схема вертикального длиномера ИЗВ-2 показана на рис. 4. Измерительный шток 4 имеет продольное окно, в которое вставлена стеклянная шкала 5, имеющая 100 делений с интервалами через 1 мм. Шкала 5 освещается источником света 1 через светофильтр 2 и конденсор 3. Изображение миллиметровой шкалы объективом 11 проецируется в плоскость сеток 7 и 8окуляра 6 спирального микрометра. Призмы 9 и 10 отклоняют пучок лучей, выходящий из объектива на 45°.

Рис. 5. Оптическая схема вертикального проекционного длиномера ИЗВ-3

Вертикальный проекционный длиномер ИЗВ-3 (рис. 5) отличается от длиномера ИЗВ-2 тем, что здесь вместо окулярного микрометра применено отсчетное проекционное устройство с оптическим микрометром. Свет от лампы / проходит конденсор 2, светофильтр 3, осветительные линзы 4 и падает на отражательное зеркало 5, освещает участок миллиметровой шкалы 6, перемещающейся вместе с измерительным штоком 7. Изображение этого участка шкалы объективом 8 через призменную систему 9, линзы 10 и плоскопараллельную пластину // проецируется на неподвижную сетку 13 (шкала десятых долей миллиметра с индексом). Лимб 12 имеет шкалу тысячных долей миллиметра. Лимб и сетка находятся в фокальной плоскости объектива 16. Изображение миллиметровых штрихов, десятых и тысячных долей миллиметра, а также индекс проецируется коллективной линзой 14, объективом 16 и зеркальной системой 15, 17, 18 на экран 19.

На длиномере проводят абсолютные измерения концевых мер, диаметров гладких предельных калибров, корпусных деталей с разгювысотными плоскостями. При использовании малогабаритных угломерных устройств на них можно измерять профили малогабаритных дисковых кулачков.

ТЗГТ7-Л7 П -------~~«тт л „ п *^тгл VO

Рис. 6. Схема горизонтального длиномера ИК.У-2

Принципиальная схема длиномера ИКУ-2 показана на рис. 6. На направляющих станины / установлена измерительная бабка 6, в которой на линии измерения (с соблюдением принципа Аббе)

установлена измерительная пиноль 23. На правом конце пиноли крепится миллиметровая шкала 9 длиной 100 мм, а на левом конце- трубка оптиметра. При этом ее измерительный стержень 4 может перемещаться относительно пиноли 23 и поворачивать зеркало 5 трубки оптиметра. Грубое перемещение измерительного стержня производится штурвалом 13, а точное - микровинтом 10. В верхней части установлен экран и осветительная система. Свет, идущий от лампы 8, разделяется на два пучка. Первый пучок преломляется призмой 7, освещает участок миллиметровой шкалы и проецирует изображение шкалы объективом 11 в плоскость неподвижной биссекторной шкалы 12 с ценой деления 0,1 мм общей Длиной 1 мм. Совмещенные изображения штрихов шкал 9, 12 объективом 14 проецируются на участок 15 экрана 17. Второй пучок преломляется в призме 7 и направляется на разделительный кубик, где, отразившись от полупрозрачной грани, падает на осветительное зеркало 20. Далее проходит оптиметровую шкалу 21 и ее Изображение объективом 22 проецируется на зеркало 5 трубки оптиметра. Автоколлимационное изображение оптиметровой шкалывозвращается на полупрозрачную грань кубика 19, проходит ее и„ отразившись от зеркала 20, направляется объективом 18 на участок 16 оптиметровой шкалы экрана 17. Деталь устанавливается на предметном столике 24 и ощупывается измерительными наконечниками 2, 3. Таким образом, в измерительной бабке складываются два независимых перемещения - измерительной пиноли 23 вместе с миллиметровой шкалой 9 в пределах 100 мм и измерительного стержня 4 трубки оптиметра в пределах 100 мкм. Эти перемещения фиксируются на экране по шкалам 15, 16.

Измерительная бабка 6 вместе с измерительным наконечником 3 штурвалом 13 подводится к измеряемой детали. Микровинтом 10 перемещают измерительную пиноль 23 вместе со шкалой 9 до совмещения миллиметровой шкалы с ближайшим биссекторньш штрихом неподвижной шкалы десятых долей миллиметра. Отсчет снимают по шкале 15, прибавляя или вычитая из него показание шкалы 16 трубки оптиметра.

Основные типы и технические характеристики вертикальных и горизонтальных длиномеров приведены в ГОСТ 14028-68.

В эксплуатации находятся вертикальные и горизонтальные длиномеры следующих типов: вертикальные ИЗВ-1, ИЗВ-2, экранные ИЗВ-3 с диапазоном показаний 100 мм, диапазоном измерений О-250 мм и отсчетом 0,001 мм; горизонтальные ИКУ-2 с диапазоном показаний 100 мм, диапазоном измерений 500 мм и от 1 до 400 мм соответственно для наружных и внутренних размеров и отсчетом 0,001 мм.

Основные преимущества этих длиномеров - повышенная точность измерения (в 3 раза), повышенная производительность (в 2 раза), облегчение ручного и полуавтоматического управления процессом измерения, абсолютные измерения с высокой точностью и относительные от аттестованного значения образцовой меры с выводом результата измерения на цифровое табло и цифропечатающее устройство.

Основные технические характеристики вертикального длиномера с цифровым отсчетом ИЗВ-4 следующие: предел измерения О-160 мм; дискретность отсчета 0,2 мкм; основная погрешность прибора ± (0,4 + L/500) 10 3 мм, где L - измеряемая длина в мм.

Горизонтальный длиномер с цифровым отсчетом ИЗГ-4 имеет следующие основные характеристики: пределы измерения наружных размеров 0-500 мм, внутренних - 10-400 мм; дискретность отсчета 0,2 мкм; основная погрешность ± (0,3-М0~ 3 L) мм, где L - измеряемая длина в мм.

Предел допускаемой погрешности длиномера нормируется в зависимости от номинального размера L и типа прибора: для вертикальных ±(1,4 + L/100) мкм (ИЗВ-1); ±(1,4 + 1/140) мкм (ИЗВ-2)"; для горизонтальных ± (1,4 + L/100) мкм (ИКУ-2)-при наружных измерениях и ± (1.9 + L/140) мкм при внутренних изме-

рениях. Размах показаний не более 0,4 мкм, измерительное усилие 200 сН.

Основными составляющими погрешности измерения длиномерами являются: погрешность отсчета по спиральному микроскопу- не более 0,001 мм при двукратных измерениях: погрешность отсчета по оптическому микрометру - не более 0,001 мм; погрешности перепада измерительного усилия вследствие температурных деформаций.

Предельные погрешности измерения длиномерами составляют от 1,5 2,5 мкм в зависимости от условий применения.

Поверка длиномеров регламентирована ГОСТ 8.114-74 и МУ-№ 341. При поверке применяют концевые меры 4-го разряда. Учитывая применение больших концевых мер, существенное внимание должно уделяться выравниванию их температуры. Для этого обычно концевые меры помещают на металлическую плиту блоков концевых мер на 1-2 ч и более при длине мер соответственно до 100 мм и 100-250 мм.

16.4 Катетометры

Катетометры - приборы для бесконтактного дистанционного измерения в труднодоступных местах вертикальных и горизонтальных координат изделий, которые трудно измерить обычными методами.

Катетометр (рис. 7, а) состоит из следующих основных частей: визирного устройства - зрительной трубы 3, перемещаемой по направляющим 1, устройства 4 для установки зрительной трубы в горизонтальное положение (уровень или автоколлиматор), шкалы 5 и отсчетного устройства 2 (микроскоп, нониус, лупа). На рис. 7, б показана оптическая схема катетометра КМ-6, состоящая из зрительной трубы и отсчетного микроскопа с осветительной системой. В зрительную трубу входят объектив 10 с насадочными линзами 8, светофильтр 9, фокусирующая линза 11, сетка 13 и окуляр 15. Отсчетный микроскоп включает микрообъектив 2, куб-призму 3, масштабную сетку 12 и окуляр 14.

Осветительная часть микроскопа, предназначенная для подсветки шкалы 1, состоит из лампы 7, конденсора 6, светофильтра 5 и зеркала 4.

В отсчетном микроскопе лучи света от лампы 7 проходят конденсор 6, светофильтр 5, отражаются от зеркала 4, проходят куб-призму 3 и через микрообъектив 2 попадают на отражающую поверхность миллиметровой шкалы 1; затем отражаются от нее и в обратном направлении проходят микрообъектив 2, куб-призму 3, "И изображение штриха проецируется на масштабную сетку 12. Совмещенное изображение штриха и масштабной сетки наблюдается в окуляр 14. При измерении координат катетометром ориентировочно определяют расстояние от объекта измерения до объектива зрительной трубы. Выставляют ось колонки в вертикальное положение по уровню. Поднимают измерительную каретку на высотувыбранной точки объекта и с помощью механического визира грубо выставляют зрительную трубу. Наводят окуляр зрительной трубы на резкое изображение объекта. Зрительную трубу наводят на выбранную точку а объекта так, .чтобы ее изображение расположилось в правой половине сетки посредине углового биссектора на уровне горизонтального штриха. Снимают первый отсчет по масштабной сетке. После перемещения измерительной каретки в положение второй точки б снимают второй отсчет. Размер измеренного отрезка есть разность между двумя отсчетами.

Рис. 7. Катетометр

В соответствии с ГОСТ 19719-74 катетометры изготовляют двух типов: В - вертикальный для измерения вертикальных координат; У - универсальный с приспособлением для измерения горизонтальных координат.

Однокоординатные вертикальные катетометры КМ-6, КМ-8, КМ-9 имеют пределы измерения 0-200, 0-500 и 0-1000 мм и погрешности отсчетного устройства ±1,5; ±2 и ±2 мкм соответственно.

Двухкоординатный универсальный катетометр КМ-7 имеет предел измерения 300X300 мм; погрешность отсчетного устройства ±2 мкм; трехкоординатный модернизированный катетометр КМ-9 имеет предел измерения 1000 мм; погрешность отсчетного устройства ±2 мкм.

Пределы допускаемой погрешности катетометров при измерении по образцовым шкалам 2-го разряда не должны превышать ±(10 + L/100) мкм при диапазонах измерения по шкалам 40- 320 мм и ±(10 + L/50) мкм - по шкалам 500-1250 мм, где L - расстояние от переднего торца объектива зрительной трубы до объекта измерения.

При измерении координат катетометрами возникают погрешности вследствие нарушения принципа компарирования, неточности изготовления отдельных элементов конструкции, погрешностей установки визирных марок на изделие и температурных погрешностей.

16.5 Сферометры

Сферометры - приборы, предназначенные для измерения радиусов кривизны сферических поверхностей косвенным измерением высоты шарового сегмента. Принципиальная схема сферометра ССО (ИЗС-7) показана на рис. 8, а. В корпус стаканообразной формы 4 в верхней части установлено сменное измерительное кольцо 1, на торце которого под углом 120° запрессовано три шарика 10 для базирования измеряемой детали. Внутри корпуса по точным направляющим может перемещаться измерительный стержень 9 с контактным шариком на верхнем конце. В продольном пазу стержня крепится миллиметровая стеклянная шкала 6, подсвечиваемая отраженным от зеркала 3 световым потоком осветителя 2. Изображение миллиметровой шкалы проецируется микрообъективом 7 в плоскость шкал спирального окулярного микрометра 8. Противовес 5 обеспечивает подъем измерительного стержня до контакта (с определенным усилием) шарика с поверхностью сферы.

При измерении радиусов кривизны выпуклых поверхностей, последняя опирается на внутреннюю поверхность кольца, а вогнутых поверхностей - на наружную поверхность кольца, т. е. по точкам Ki, Кг (рис. 8, б).

Рис. 8. Сферометр ССО (ИЗС-7)

При измерении на кольцо устанавливают образцовую стеклянную пластину и снимают первый отсчет; поместив на кольцо измеряемую деталь, снимают второй отсчет. Разность отсчетов и есть высота шарового сегмента.

Радиусы кривизны сферических поверхностей /? 4 и R z определяются по формулам: для выпуклой сферы Ri - r 2 + h 2 /2h- q; для вогнутой сферы Rz=r 2 + h 2 j2h + Q.

ГОСТ 11194-76 предусматривает выпуск кольцевых контактных сферометров типов: ССО (ИЗС-7) -стационарный с оптическим отсчетным устройством с установкой детали на приборе; СНО (ИЗС-8)-накладной с оптическим отсчетным устройством с установкой прибора на деталь; СНМ (ИЗС-9)-механическое устройство, измерение сравнением с концевой мерой.

Диапазон измерения радиусов на сферометрах ССО, СНО, СНМ от 10 до 40000 мм: диапазон шкал сферометров ССО, СНО от 0 до 30 мм, а СНМ от 0 до 100 мм; цена деления 1,0 мм; цена деления шкалы отсчетного устройства 0,001 мм.

16.6 Инструментальные и универсальные микроскопы

Инструментальные и универсальные микроскопы - измерительные оптико-механические приборы широкого применения. Их используют в метрологических лабораториях машиностроительных заводов для измерения линейных и угловых геометрических величин.

Рис. 9. Оптическая схема инструментального микроскопа

Инструментальные измерительные микроскопы предназначены для измерения в проходящем и отраженном свете наружных и внутренних геометрических размеров, углов изделий по угломерной головке и столу, резцов, фрез, кулачков, шаблонов и других деталей.

Оптическая схема (большого инструментального микроскопа (БМИ) показана на рис. 9. Свет от лампы 1 проходит парабол-лоидный конденсор 2, линзу 3, светофильтр 4, ирисовую диафрагму 5, отражается от зеркала 6 и с измененным направлением в 90° направляется в линзу 7, а из нее параллельным пучком освещает измеряемый объект, расположенный на предметном столе 8 или в центрах бабки. Объектив 9 проецирует изображение предмета в фокальную плоскость окуляра 14, где установлена сетка 13 угломерной окулярной головки. В задней фокальной плоскости объектива расположена диафрагма 10, сопряженная с ирисовой диафрагмой, в результате чего создается телецентрический ход лучей.

Призма 11 обеспечивает получение прямого изображения и изменяет направление оптической оси в удобном для наблюдателя направлении. Защитное стекло 12 предохраняет от загрязнения оптические детали при смене окулярной головки.

На схеме показана угломерная головка, состоящая из окуляра 14, стеклянного лимба 18 со шкалой от 0 до 360° с ценой деления 1°, сетки 13, которая может вращаться вместе с лимбом; отсчетно-го микроскопа с объективом 17, окуляром 15 с сеткой 16, осветительного устройства 20 и светофильтра 19.

В окулярной головке наблюдают изображение контура объекта и сетку. Симметрично диаметральной штриховой линии справа и слева нанесены по две параллельные штриховые линии на расстоянии 0,3 и 0,9 мм соответственно положению рисок от края измерительных ножей, когда они находятся в контакте с измеряемой поверхностью детали. При наводке совмещаются соответствующие риски ножа и сетки, что значительно повышает точность измерения.


Оптические приборы открыли человеку два полярных по масштабам мира - космический с его огромными протяженностями и микроско-кический, населенный мельчайшими организмами. Телевизионная передача, демонстрация кинофильма, быстрая съемка рельефа местности, точное измерение расстояний и скоростей возможны только благодаря использованию оптических приборов.

Наиболее распространены приборы, формирующие изображения. Это телескоп и бинокль, микроскоп и лупа, фотоаппарат и диапроектор... Проекционный аппарат - один из самых характерных приборов, формирующих изображение (рис. 1). Если проекционный аппарат приспособлен для показа кино, его называют киноаппаратом. Если же он используется для демонстрации диапозитивов, то это диапроектор. В диапроекторе прозрачный снимок - диапозитив Д, освещенный светом конденсора К, помещают вблизи фокальной плоскости объектива так, чтобы на экране получалось четкое изображение. Размер изображения зависит от расстояния проектора от экрана. При изменении этого расстояния необходимо менять и положение объектива относительно диапозитива. Если вместо экрана поставить освещенный предмет, то он изобразится в месте расположения диапозитива. Теперь, если вместо диапозитива поставить пленку и убрать конденсор, получается схема фотоаппарата.

Оптическая схема глаза человека также напоминает схему фотоаппарата. Глаз формирует изображение на своей сетчатке. Размеры изображения предмета на сетчатке глаза зависят оттого, под каким углом мы видим предмет. Так, угловой диаметр Солнца 32. Этим углом и определяется размер изображения Солнца на сетчатке. Когда две крайние точки предмета видны под углом, меньшим 1, они сливаются на сетчатой оболочке и предмет представляется наблюдателю точкой. В этом случае говорят, что разрешающая способность глаза не превышает одной угловой минуты.

Телескоп дает возможность увеличивать угол, под которым виден отдаленный предмет. Первый телескоп создал в начале XVII в. Г. Галилей. Опишем ход лучей от удаленного предмета в современной зрительной трубе. От крайних точек предмета на объектив падают параллельные лучи и очерчивают контур предмета в фокальной плоскости. Через окуляр изображение рассматривается под углом , большим, чем , под которым виден предмет невооруженным глазом. Угловое увеличение телескопа . Оптическая схема, приведенная на рис. 2, - это схема рефрактора - телескопа с линзовым объективом. Телескоп с зеркальным объективом называют рефлектором или отражательным телесколом. Впервые рефлектор был построен И. Ньютоном в 1668 г. (рис. 3).

Телескоп с диаметром объектива D позволяет наблюдать предметы или точки предмета, находящиеся на угловом расстоянии , если считать, что длина световой волны, испускаемой объектом, мкм. Получается, что чем больше диаметр телескопа, тем более мелкие детали объекта различимы с его помощью. У самых больших рефракторов диаметр объектива не превышает . Технически проще изготовить зеркало большого диаметра и построить рефлектор.

Самый большой в мире телескоп с -метровым зеркалом построен в Советском Союзе. Он предназначен для наблюдения переменных галактик, пульсаров, квазаров и других космических объектов.

Чтобы рассмотреть малый предмет под большим углом, его подносят как можно ближе к глазу. Однако глазной хрусталик отчетливо изображает предмет на сетчатке, если он помещен не ближе 10 см от глаза. При меньших расстояниях максимальная кривизна хрусталика оказывается недостаточной для получения четкого изображения на сетчатке. Поэтому очень малые предметы рассматривают через лупу или микроскоп - приборы, увеличивающие угол, под которым виден предмет.

Лупы, изобретенные в XVII в. нидерландским естествоиспытателем А. Левенгуком, первооткрывателем мира микроорганизмов, давали увеличение в 300 раз. Схема микроскопа была усовершенствована в 1650-х гг. английским ученым Р. Гуком. Но до 20-х гг. XIX в. микроскопы не могли конкурировать с очень хорошими лупами. Прогресс был достигнут благодаря разработке сложных объективов из многих линз. Минимальные размеры предмета, различимого в микроскоп, определяются зависимостью: А. Здесь А - постоянная, равная примерно 1. Для зеленого света мкм. Чтобы предмет был виден под углом Г, достаточно увеличение в 1000 раз.

Спектральные оптические приборы предназначены для исследования спектрального состава света. Они играют важную роль в развитии науки и применяются как для изучения процессов, протекающих в микромире, так и для прикладных целей. Например, с помощью современной спектральной аппаратуры можно судить о форме атомного ядра и производить точный элементный анализ вещества. Пример спектрального прибора - спектроскоп (рис. 4), в котором спектр излучения можно наблюдать визуально. Основная часть спектроскопа - призма или дифракционная решетка. Исследуемое излучение линза собирает на щели коллиматора - устройства, формирующего пучок света малой расходимости - «параллельный» пучок. Пройдя сквозь призму, такой пучок превращается в п пучков, идущих под разными углами, если излучение состоит из электромагнитных волн с длинами . Линза на экране даст изображений щели Л, которые и образуют спектр. Когда требуется изучить «почти» монохроматическое излучение, например спектральный состав одной линии, последовательно со спектроскопическим призменным прибором устанавливают прибор большой разрешающей силы. Без предварительного разложения света приборы высокого разрешения применять нельзя, потому что они могут работать только в очень узком диапазоне длин волн.

Создание лазеров открыло новые пути в оптическом приборостроении.

Современные лазерные гироскопы способны работать при высоких механических перегрузках, их можно устанавливать на ракетах, космических кораблях. Построены лазерные магнитометры для измерения слабых магнитных полей, приборы для измерения распределения частиц по скоростям и размерам. Успешно используются для различных целей лазерные оптические локаторы (рис. 5). Высокая яркость лазерного излучения дает возможность передавать его на большие расстояния, а малая длительность лазерного импульса обеспечивает исключительную точность измерения расстояний. Интересно устроен лазерный измеритель скоростей (рис. 6). Отраженный от движущейся частицы, лазерный свет изменит свою частоту колебаний. При обычных скоростях это изменение, обусловленное эффектом Доплера, ничтожно. И все же благодаря высокой стабильности фазы и монохроматичности лазерного света его удается измерить, а по измеренной величине определить скорость частицы, например движущейся в турбулентном потоке жидкости (см. Турбулентность).

Физики и инженеры разрабатывают оптическую вычислительную машину. Проектная мощность ее - более 1 млрд. операций в секунду, т. е. в десятки раз больше, чем у существующих ныне самых «быстрых» ЭВМ. Основой такой машины станут лазерные устройства. И память у нее будет оптической, основанной на голографической записи данных (см. Голог-рафия). На голограмме размером 10 X 10 можно записать более 100 млн. единиц информации: для подобного объема информации потребовалось бы около 1 млн. страниц печатного текста. С помощью голографической оптики выполняются сегодня сложные математические расчеты, дифференцирование функций, интегральные операции, решаются сложнейшие уравнения. Оптические элементы - составная часть конструкции многих приборов. Так, управляемые оптические транспаранты дают возможность изображение, полученное с помощью не воспринимаемого глазом электромагнитного излучения, преобразовать в видимое излучение.

Оптические приборы, основанные на волоконной оптике, позволяют осматривать внутренние органы человека и предотвращать тяжелые заболевания.

Итак, современные оптические приборы совершенно необходимы и широко используются во многих отраслях народного хозяйства, в научных исследованиях.

Оптические приборы.

Все оптические приборы можно разделить на две группы:

1) приборы, при помощи которых получают оптические изображения на экране. К ним относятся , , киноаппараты и др.

2) приборы, которые действуют только совместно с человеческими глазами и не образуют изображений на экране. К ним относится , и различные приборы системы . Такие приборы называются визуальными.

Фотоаппарат .

Современные фотоаппараты имеют сложное и разнообразное строение, мы же рассмотрим из каких основных элементов состоит фотоаппарат и как они работают.

Основной частью любого фотоаппарата является объектив - линза или система линз, помещенная в передней части светонепроницаемого корпуса фотоаппарата (рис. слева). Объектив можно плавно перемещать относительно пленки для получения на ней четкого изображения близких или отдаленных от фотоаппарата предметов.

Во время фотографирования объектив приоткрывают при помощи специального затвора, который пропускает свет к пленке лишь в момент фотографирования. Диафрагма регулирует световой поток, который попадает на пленку. Фотоаппарат дает уменьшенное, обратное, действительное изображение, которое фиксируется на пленке. Под действием света состав пленки изменяется и изображение запечатлевается на ней. Оно остаётся невидимым до тех пор, пока пленку не опустят в специальный раствор - проявитель. Под действием проявителя темнеют те места пленки, на которые падал свет. Чем больше было освещено какое-нибудь место пленки, тем темнее оно будет после проявления. Полученное изображение называется (от лат. negativus - отрицательный), на нем светлые места предмета выходят темными, а темные светлыми.


Чтобы это изображение под действием света не изменялось, проявленную пленку погружают в другой раствор - закрепитель. В нем растворяется и вымывается светочувствительный слой тех участков пленки, на которые не подействовал свет. Затем пленку промывают и сушат.

С негатива получают (от лат. pozitivus - положительный), т. е. изображение, на котором темные места расплолжены так же как и на фотографируемом предмете. Для этого негатив прикладывают с бумаге тоже покрытой светочувствительным слоем (к фотобумаге), и освещают. Затем фотобумагу опускают в проявитель, потом в закрепитель, промывают и сушат.

После проявления пленки при печатании фотографий пользуются фотоувеличителем, который увеличивает изображение негатива на фотобумаге.

Лупа.

Чтобы лучше рассмотреть мелкие предметы, приходится пользоваться лупой.

Лупой называется двояковыпуклая линза с небольшим фокусным расстоянием (от 10 до 1 см). Лупа является простейшим прибором, позволяющим увеличит угол зрения.

Наш глаз видит только те предметы, изображение которых получается на сетчатек. Чем больше изображение предмета, тем больше угол зрения под которым мы его рассматриваем, тем отчетливее мы его различаем. Многие предметы малы и видны с расстояния наилучшего видения под углом зрения, близким к предельному. Лупа увеличивает угол зрения, а также изображение предмета на сетчатке глаза, поэтому видимые размеры предмета
увеличиваются по сравнению с его действительными размерами.

Предмет АВ размещают на расстоянии, немного меньшей фокусного, от лупы (рис. справа). При этом лупа дает прямое, увеличенное, мысленное изображение А1 В1. Лупу обычно размещают так, чтобы изображение предмета находилось на расстоянии наилучшего видения от глаза.

Микроскоп.

Для получения больших угловых увеличений (от 20 до 2000) используют оптические микроскопы. Увеличенное изображение мелких предметов в микроскопе получают с помощью оптической системы, которая состоит из объектива и окуляра.

Простейший микроскоп - это система с двух линз: объектива и окуляра. Предмет АВ размещается перед линзой, которая является объективом, на расстоянии F 1 < d < 2F 1 и рассматривается через окуляр, который используется как лупа. Увеличение Г микроскопа равно произведению увеличения объектива Г1 на увеличение окуляра Г2:

Принцип действия микроскопа сводится к последовательному увеличению угла зрения сначала объективом, а затем - окуляром.

Проекционный аппарат.

Проекционные аппараты используют для получения увеличенных изображений. Диапроекторы применяют для получения неподвижны х изображений, а с помощью кинопроекторов получают кадры, которые быстро заменяют друг друга и воспринимаются глазом человека как подвижные изображения. В проекционном аппарате фотоснимок на прозрачной пленке размещают от объектива на расстоянии d, что удовлетворяет условию: F< d < 2F . Для освещения пленки используют электрическую лампу 1. Для концентрации светового потока применяют конденсор 2, который состоит из системы линз, которые собирают расходящиеся лучи от источника света на кадре пленки 3. С помощью объектива 4 на экране 5 получают увеличенное, прямое, действительное изображение

Телескоп.

Для рассматривания отдаленных предметов служат зрительные трубы или телескопы. Назначение телескопа - собрать как можно больше света, от исследуемого объекта и увеличить его видимые угловые размеры.

Основной оптической частью телескопа служит объектив, который собират свет и создаёт изображение источника.

Есть два основных типа телескопов:рефракторы (на основе линз)и рефлекторы (на основе зеркал).

Простейший телескоп - рефрактор, как и микроскоп, имеет объектив и окуляр, но в отличие от микроскопа объектив телескопа имеет большое фокусное расстояние, а окуляр - малую. Поскольку космические тела находятся на очень больших расстояниях от нас, то лучи от них идут параллельным пучком и собираются объективом в фокальной плоскости, где получается обратное, уменьшенное, действительное изображение. Чтобы сделать изображение прямым, используют еще одну линзу.

ОПТИЧЕСКИЕ ПРИБОРЫ
устройства, в которых излучение какой-либо области спектра (ультрафиолетовой, видимой, инфракрасной) преобразуется (пропускается, отражается, преломляется, поляризуется). Отдавая дань исторической традиции, оптическими обычно называют приборы, работающие в видимом свете. При первичной оценке качества прибора рассматриваются лишь основные его характеристики: способность концентрировать излучение - светосила; способность различать соседние детали изображения - разрешающая сила; соотношение размеров предмета и его изображения - увеличение. Для многих приборов определяющей характеристикой оказывается поле зрения - угол, под которым из центра прибора видны крайние точки предмета.
Разрешающая сила. Способность прибора различать две близкие точки или линии обусловлена волновой природой света. Численное значение разрешающей силы, например, линзовой системы, зависит от умения конструктора справиться с аберрациями линз и тщательно отцентрировать эти линзы на одной оптической оси. Теоретический предел разрешения двух соседних изображаемых точек определяется как равенство расстояния между их центрами радиусу первого темного кольца их дифракционной картины.
Увеличение. Если предмет длиной H перпендикулярен оптической оси системы, а длина его изображения H", то увеличение m определяется по формуле m = H"/H. Увеличение зависит от фокусных расстояний и взаимного расположения линз; для выражения этой зависимости существуют соответствующие формулы. Важной характеристикой приборов для визуального наблюдения является видимое увеличение М. Оно определяется из отношения размеров изображений предмета, которые образуются на сетчатке глаза при непосредственном наблюдении предмета и рассматривании его через прибор. Обычно видимое увеличение М выражают отношением M = tgb /tga, где a - угол, под которым наблюдатель видит предмет невооруженным глазом, а b - угол, под которым глаз наблюдателя видит предмет через прибор. При желании создать качественный оптический прибор следует оптимизировать набор его основных характеристик - светосилы, разрешающей способности и увеличения. Нельзя сделать хороший, например, телескоп, добиваясь лишь большого видимого увеличения и оставляя малой светосилу (апертуру). У него будет плохое разрешение, так как оно прямо зависит от апертуры. Конструкции оптических приборов весьма разнообразны, и их особенности диктуются назначением конкретных устройств. Но при воплощении любой спроектированной оптической системы в готовый оптико-механический прибор необходимо расположить все оптические элементы в строгом соответствии с принятой схемой, надежно закрепить их, обеспечить точную регулировку положения подвижных деталей, разместить диафрагмы для устранения нежелательного фона рассеянного излучения. Нередко требуется выдерживать заданные значения температуры и влажности внутри прибора, сводить к минимуму вибрации, нормировать распределение веса, обеспечить отвод тепла от ламп и другого вспомогательного электрооборудования. Значение придается внешнему виду прибора и удобству обращения с ним.
Микроскопы. Если рассматривать через положительную (собирающую) линзу предмет, расположенный за линзой не дальше ее фокальной точки, то видно увеличенное мнимое изображение предмета. Такая линза представляет собой простейший микроскоп и называется лупой или увеличительным стеклом. Из схемы рис. 1 можно определить размер увеличенного изображения. Когда глаз настроен на параллельный пучок света (изображение предмета находится на неопределенно большом расстоянии, а это означает, что предмет расположен в фокальной плоскости линзы), видимое увеличение M можно определить из соотношения (рис. 1): M = tgb /tga = (H/f)/(H/v) = v/f, где f - фокусное расстояние линзы, v - расстояние наилучшего зрения, т.е. наименьшее расстояние, на котором глаз хорошо видит при нормальной аккомодации. M увеличивается на единицу, когда глаз настраивается так, что мнимое изображение предмета оказывается на расстоянии наилучшего зрения. Способности к аккомодации у всех людей разные, с возрастом они ухудшаются; принято считать 25 см расстоянием наилучшего зрения нормального глаза. В поле зрения одиночной положительной линзы при удалении от ее оси резкость изображения быстро ухудшается из-за поперечных аберраций. Хотя и бывают лупы с увеличением в 20 крат, типичная их кратность от 5 до 10. Увеличение сложного микроскопа, именуемого обычно просто микроскопом, доходит до 2000 крат.
См. также МИКРОСКОП ; ЭЛЕКТРОННЫЙ МИКРОСКОП .

Телескопы. Телескоп увеличивает видимые размеры удаленных предметов. В схему простейшего телескопа входят две положительные линзы (рис. 2). Лучи от удаленного предмета, параллельные оси телескопа (лучи a и c на рис. 2), собираются в заднем фокусе первой линзы (объектива). Вторая линза (окуляр) удалена от фокальной плоскости объектива на свое фокусное расстояние, и лучи a и c выходят из нее вновь параллельно оси системы. Некоторый луч b, исходящий не из тех точек предмета, откуда пришли лучи a и c, падает под углом a к оси телескопа, проходит через передний фокус объектива и после него идет параллельно оси системы. Окуляр направляет его в свой задний фокус под углом b. Поскольку расстояние от переднего фокуса объектива до глаза наблюдателя пренебрежимо мало по сравнению с расстоянием до предмета, то из схемы рис. 2 можно получить выражение для видимого увеличения M телескопа: M = -tgb /tga = -F/f" (или F/f). Отрицательный знак показывает, что изображение перевернуто. В астрономических телескопах оно таким и остается; в телескопах для наблюдений за наземными объектами применяют оборачивающую систему, чтобы рассматривать нормальные, а не перевернутые изображения. В оборачивающую систему могут входить дополнительные линзы или, как в биноклях, призмы.



Бинокли. Бинокулярный телескоп, обычно именуемый биноклем, представляет собой компактный прибор для наблюдений обоими глазами одновременно; его увеличение, как правило, от 6 до 10 крат. В биноклях используют пару оборачивающих систем (чаще всего - Порро), в каждую из которых входят две прямоугольные призмы (с основанием под 45°), ориентированные навстречу прямоугольными гранями. Чтобы получить большое увеличение в широком поле зрения, свободном от аберраций объектива, и, следовательно, значительный угол обзора (6-9°), биноклю необходим очень качественный окуляр, более совершенный, чем телескопу с узким углом зрения. В окуляре бинокля предусмотрена фокусировка изображения, причем с коррекцией зрения, - его шкала размечена в диоптриях. Кроме того, в бинокле положение окуляра подстраивается под расстояние между глазами наблюдателя. Обычно бинокли маркируются в соответствии с их увеличением (в кратах) и диаметром объектива (в миллиметрах), например, 8*40 или 7*50.



Оптические прицелы. В качестве оптического прицела можно применить любой телескоп для наземных наблюдений, если в какой-либо плоскости его пространства изображений нанести четкие метки (сетки, марки), отвечающие заданному назначению. Типичное устройство многих военных оптических установок таково, что объектив телескопа открыто смотрит на цель, а окуляр находится в укрытии. Такая схема требует излома оптической оси прицела и применения призм для ее смещения; эти же призмы преобразуют перевернутое изображение в прямое. Системы со смещением оптической оси называются перископическими. Обычно оптический прицел рассчитывается так, что зрачок его выхода удален от последней поверхности окуляра на достаточное расстояние для предохранения глаза наводчика от ударов о край телескопа при отдаче оружия.
Дальномеры. Оптические дальномеры, с помощью которых измеряют расстояния до объектов, бывают двух типов: монокулярные и стереоскопические. Хотя они различаются конструктивными деталями, основная часть оптической схемы у них одинакова и принцип действия один: по известной стороне (базе) и двум известным углам треугольника определяется неизвестная его сторона. Два параллельно ориентированных телескопа, разнесенных на расстояние b (база), строят изображения одного и того же удаленного объекта так, что он кажется наблюдаемым из них в разных направлениях (базой может служить и размер цели). Если с помощью какого-нибудь приемлемого оптического устройства совместить поля изображений обоих телескопов так, чтобы их можно было рассматривать одновременно, окажется, что соответствующие изображения предмета пространственно разнесены. Существуют дальномеры не только с полным наложением полей, но и с половинным: верхняя половина пространства изображений одного телескопа объединяется с нижней половиной пространства изображений другого. В таких приборах с помощью подходящего оптического элемента проводится совмещение пространственно разнесенных изображений и по относительному сдвигу изображений определяется измеряемая величина. Часто в качестве сдвигающего элемента служит призма или комбинация призм. В схеме монокулярного дальномера, показанной на рис. 3, эту функцию исполняет призма P3; она связана со шкалой, проградуированной в измеряемых расстояниях до объекта. Пентапризмы B используются как отражатели света под прямым углом, поскольку такие призмы всегда отклоняют падающий световой пучок на 90°, независимо от точности их установки в горизонтальной плоскости прибора. Изображения, создаваемые двумя телескопами, в стереоскопическом дальномере наблюдатель видит сразу обоими глазами. База такого дальномера позволяет наблюдателю воспринимать положение объекта объемно, на некоторой глубине в пространстве. В каждом телескопе имеется сетка с марками, соответствующими значениям дальности. Наблюдатель видит шкалу расстояний, уходящую в глубь изображаемого пространства, и по ней определяет удаленность объекта.



Осветительные и проекционные приборы. Прожекторы. В оптической схеме прожектора источник света, например кратер дугового электрического разряда, находится в фокусе параболического отражателя. Лучи, исходящие из всех точек дуги, отражаются параболическим зеркалом почти параллельно друг другу. Пучок лучей немного расходится потому, что источником служит не светящаяся точка, а объем конечного размера.
Диаскоп. В оптическую схему этого прибора, предназначенного для просмотра диапозитивов и прозрачных цветных кадров, входят две линзовые системы: конденсор и проекционный объектив. Конденсор равномерно освещает прозрачный оригинал, направляя лучи в проекционный объектив, который строит изображение оригинала на экране (рис. 4). В проекционном объективе предусматриваются фокусировка и замена его линз, что позволяет менять расстояние до экрана и размеры изображения на нем. Оптическая схема кинопроектора такая же.



Спектральные приборы. Основным элементом спектрального прибора может быть дисперсионная призма либо дифракционная решетка. В таком приборе свет сначала коллимируется, т.е. формируется в пучок параллельных лучей, затем разлагается в спектр, и, наконец, изображение входной щели прибора фокусируется на его выходную щель по каждой длине волны спектра.
Спектрометр. В этом более или менее универсальном лабораторном приборе коллимирующая и фокусирующая системы могут поворачиваться относительно центра столика, на котором расположен элемент, разлагающий свет в спектр. На приборе имеются шкалы для отсчетов углов поворота, например дисперсионной призмы, и углов отклонения после нее разных цветовых составляющих спектра. По результатам таких отсчетов измеряются, например, показатели преломления прозрачных твердых тел.
Спектрограф. Так называется прибор, в котором полученный спектр или его часть снимается на фотоматериал. Можно получить спектр от призмы из кварца (диапазон 210-800 нм), стекла (360-2500 нм) или каменной соли (2500-16000 нм). В тех диапазонах спектра, где призмы слабо поглощают свет, изображения спектральных линий в спектрографе получаются яркими. В спектрографах с дифракционными решетками последние выполняют две функции: разлагают излучение в спектр и фокусируют цветовые составляющие на фотоматериал; такие приборы применяют и в ультрафиолетовой области.
См. также АСТРОНОМИЯ И АСТРОФИЗИКА ; ОПТИКА .
ЛИТЕРАТУРА
Борн М., Вольф Э. Основы оптики. М., 1970 Ефремов А.А. и др. Сборка оптических приборов. М., 1978 Справочник конструктора оптико-механических приборов. Л., 1980 Кулагин С.В. Основы конструирования оптических приборов. Л., 1982 Погарев Г.В. Юстировка оптических приборов. Л., 1982

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "ОПТИЧЕСКИЕ ПРИБОРЫ" в других словарях:

    Это устройства, в которых излучение какой либо области спектра (ультрафиолетовой, видимой, инфракрасной) преобразуется (пропускается, отражается, преломляется, поляризуется). Они могут увеличивать, уменьшать, улучшать (в редких случаях ухудшать)… … Википедия

    ОПТИЧЕСКИЕ ПРИБОРЫ - различные совокупности оптических (см.), устройство которых основано на законах распространения света или на использовании свойств света. Обязательными частями оптических и оптико электронных приборов являются линзы, призмы, зеркала, пластинки и… … Большая политехническая энциклопедия

    I. Из отдельных чечевиц, ахроматизированных и неахроматизированных, комбинируются различнейшие О. системы, из которых вообще рассматриваются лишь центрированные, т. е. такие, у которых О. оси отдельных составляющих чечевиц совпадают. В науке,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Оптические приборы - технические устройства, действия которых основано на волновых свойствах света, позволяющих получать изображения объектов с помощью оптических систем (линз, призм, зеркал и т.п.). О.п. подразделяются: на приборы наблюдения; приборы измерения… … Пограничный словарь

    Оптические приборы - технические устройства, действие которых основано на волновых свойствах света, позволяющих получать изображения объектов с помощью оптических систем из линз, призм, зеркал и т. п. Осион ные части О. п. объектив и окуляр. По назначению О. п.… … Словарь военных терминов

    - (от слова оптика). Инструменты, основанные на свойствах света и употребляемые для различных целей. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ОПТИЧЕСКИЕ ИНСТРУМЕНТЫ от слова оптика. Инструменты, основанные на… … Словарь иностранных слов русского языка

    Устройства, позволяющие получать изображение объектов с помощью оптических систем (линз, призм, зеркал и т.п.). Основными частями П.о. являются объектив и окуляр. Характеристики П.о.: увеличение, поле зрения, входной и выходной зрачки, удаление… … Словарь черезвычайных ситуаций

    Оптические (лазерные) расходомеры расходомеры, работа которых основывается на использовании зависимости оптических эффектов от скорости движения жидкости или газа. Содержание 1 Виды оптических расходомеров … Википедия

    Оптические свойства горной породы - – свойства, характеризующие поглощение, пропускание и отражение электромагнитных волн оптического диапазона в горной породе. [ГОСТ Р 50544 93] Рубрика термина: Свойства горной породы Рубрики энциклопедии: Абразивное оборудование, Абразивы,… … Энциклопедия терминов, определений и пояснений строительных материалов

    Содержание 1 Определение 2 Строение оптических датчиков … Википедия

Содержание статьи

ОПТИЧЕСКИЕ ПРИБОРЫ, устройства, в которых излучение какой-либо области спектра (ультрафиолетовой, видимой, инфракрасной) преобразуется (пропускается, отражается, преломляется, поляризуется). Отдавая дань исторической традиции, оптическими обычно называют приборы, работающие в видимом свете. При первичной оценке качества прибора рассматриваются лишь основные его характеристики: способность концентрировать излучение – светосила; способность различать соседние детали изображения – разрешающая сила; соотношение размеров предмета и его изображения – увеличение. Для многих приборов определяющей характеристикой оказывается поле зрения – угол, под которым из центра прибора видны крайние точки предмета.

Разрешающая сила.

Способность прибора различать две близкие точки или линии обусловлена волновой природой света. Численное значение разрешающей силы, например, линзовой системы, зависит от умения конструктора справиться с аберрациями линз и тщательно отцентрировать эти линзы на одной оптической оси. Теоретический предел разрешения двух соседних изображаемых точек определяется как равенство расстояния между их центрами радиусу первого темного кольца их дифракционной картины.

Увеличение.

Если предмет длиной H перпендикулярен оптической оси системы, а длина его изображения H ΄, то увеличение m определяется по формуле m = H ΄/H . Увеличение зависит от фокусных расстояний и взаимного расположения линз; для выражения этой зависимости существуют соответствующие формулы. Важной характеристикой приборов для визуального наблюдения является видимое увеличение М . Оно определяется из отношения размеров изображений предмета, которые образуются на сетчатке глаза при непосредственном наблюдении предмета и рассматривании его через прибор. Обычно видимое увеличение М выражают отношением M = tgb /tga , где a – угол, под которым наблюдатель видит предмет невооруженным глазом, а b – угол, под которым глаз наблюдателя видит предмет через прибор.

При желании создать качественный оптический прибор следует оптимизировать набор его основных характеристик – светосилы, разрешающей способности и увеличения. Нельзя сделать хороший, например, телескоп, добиваясь лишь большого видимого увеличения и оставляя малой светосилу (апертуру). У него будет плохое разрешение, так как оно прямо зависит от апертуры.

Конструкции оптических приборов весьма разнообразны, и их особенности диктуются назначением конкретных устройств. Но при воплощении любой спроектированной оптической системы в готовый оптико-механический прибор необходимо расположить все оптические элементы в строгом соответствии с принятой схемой, надежно закрепить их, обеспечить точную регулировку положения подвижных деталей, разместить диафрагмы для устранения нежелательного фона рассеянного излучения. Нередко требуется выдерживать заданные значения температуры и влажности внутри прибора, сводить к минимуму вибрации, нормировать распределение веса, обеспечить отвод тепла от ламп и другого вспомогательного электрооборудования. Значение придается внешнему виду прибора и удобству обращения с ним.

Микроскопы.

Если рассматривать через положительную (собирающую) линзу предмет, расположенный за линзой не дальше ее фокальной точки, то видно увеличенное мнимое изображение предмета. Такая линза представляет собой простейший микроскоп и называется лупой или увеличительным стеклом. Из схемы рис. 1 можно определить размер увеличенного изображения. Когда глаз настроен на параллельный пучок света (изображение предмета находится на неопределенно большом расстоянии, а это означает, что предмет расположен в фокальной плоскости линзы), видимое увеличение M можно определить из соотношения (рис. 1):

M = tgb /tga = (H /f )/(H /v ) = v /f ,

Телескопы.

Телескоп увеличивает видимые размеры удаленных предметов. В схему простейшего телескопа входят две положительные линзы (рис. 2). Лучи от удаленного предмета, параллельные оси телескопа (лучи a и c на рис. 2), собираются в заднем фокусе первой линзы (объектива). Вторая линза (окуляр) удалена от фокальной плоскости объектива на свое фокусное расстояние, и лучи a и c выходят из нее вновь параллельно оси системы. Некоторый луч b , исходящий не из тех точек предмета, откуда пришли лучи a и c , падает под углом a к оси телескопа, проходит через передний фокус объектива и после него идет параллельно оси системы. Окуляр направляет его в свой задний фокус под углом b . Поскольку расстояние от переднего фокуса объектива до глаза наблюдателя пренебрежимо мало по сравнению с расстоянием до предмета, то из схемы рис. 2 можно получить выражение для видимого увеличения M телескопа:

M = –tgb /tga = –F /f ΄ (или F /f ).

Отрицательный знак показывает, что изображение перевернуто. В астрономических телескопах оно таким и остается; в телескопах для наблюдений за наземными объектами применяют оборачивающую систему, чтобы рассматривать нормальные, а не перевернутые изображения. В оборачивающую систему могут входить дополнительные линзы или, как в биноклях, призмы.

Осветительные и проекционные приборы.

Прожекторы.

В оптической схеме прожектора источник света, например кратер дугового электрического разряда, находится в фокусе параболического отражателя. Лучи, исходящие из всех точек дуги, отражаются параболическим зеркалом почти параллельно друг другу. Пучок лучей немного расходится потому, что источником служит не светящаяся точка, а объем конечного размера.

Диаскоп.

В оптическую схему этого прибора, предназначенного для просмотра диапозитивов и прозрачных цветных кадров, входят две линзовые системы: конденсор и проекционный объектив. Конденсор равномерно освещает прозрачный оригинал, направляя лучи в проекционный объектив, который строит изображение оригинала на экране (рис. 4). В проекционном объективе предусматриваются фокусировка и замена его линз, что позволяет менять расстояние до экрана и размеры изображения на нем. Оптическая схема кинопроектора такая же.

Спектральные приборы.

Основным элементом спектрального прибора может быть дисперсионная призма либо дифракционная решетка. В таком приборе свет сначала коллимируется, т.е. формируется в пучок параллельных лучей, затем разлагается в спектр, и, наконец, изображение входной щели прибора фокусируется на его выходную щель по каждой длине волны спектра.

Спектрометр.

В этом более или менее универсальном лабораторном приборе коллимирующая и фокусирующая системы могут поворачиваться относительно центра столика, на котором расположен элемент, разлагающий свет в спектр. На приборе имеются шкалы для отсчетов углов поворота, например дисперсионной призмы, и углов отклонения после нее разных цветовых составляющих спектра. По результатам таких отсчетов измеряются, например, показатели преломления прозрачных твердых тел.

Спектрограф.

Так называется прибор, в котором полученный спектр или его часть снимается на фотоматериал. Можно получить спектр от призмы из кварца (диапазон 210–800 нм), стекла (360–2500 нм) или каменной соли (2500–16000 нм). В тех диапазонах спектра, где призмы слабо поглощают свет, изображения спектральных линий в спектрографе получаются яркими. В спектрографах с дифракционными решетками последние выполняют две функции: разлагают излучение в спектр и фокусируют цветовые составляющие на фотоматериал; такие приборы применяют и в ультрафиолетовой области.



gastroguru © 2017