Внешний и внутренний пути свертывания крови. Многие белки крови являются ферментами Ферменты участвующие в свертывании крови

  • Введение

    Современные представления о системе регуляции агрегантного состояния крови позволяют выделить основные механизмы её деятельности:

    • Механизмы гемостаза (их несколько) обеспечивают остановку кровотечения.
    • Механизмы антисвёртывания поддерживают жидкое состояние крови.
    • Механизмы фибринолиза обеспечивают растворение тромба (кровяного сгустка) и восстановление просвета сосуда (реканализацию).

    В обычном состоянии слегка преобладают противосвёртывающие механизмы, однако при необходимости предотвратить кровопотерю физиологический баланс быстро смещается в сторону прокоагулянтов. Если этого не происходит, развивается повышенная кровоточивость (геморрагические диатезы), преобладание прокоагулянтной активности крови чревато развитием тромбозов и эмболий. Выдающийся немецкий патолог Рудольф Вирхов выделил три группы причин, ведущих к развитию тромбоза (классическая триада Вирхова):

    • Повреждение сосудистой стенки.
    • Изменение состава крови.
    • Замедление кровотока (стаз).

    В структуре артериальных тромбозов преобладает первая причина (атеросклероз); замедление кровотока и преобладание прокоагулянтных факторов – основные причины венозных тромбозов.

    Различают два механизма гемостаза:

    • Сосудисто-тромбоцитарный (микроциркуляторный, первичный).
    • Коагуляционный (вторичный, свёртывание крови).

    Сосудисто-тромбоцитарный механизм гемостаза обеспечивает остановку кровотечения в мельчайших сосудах (в сосудах микроциркуляторного русла), где имеются низкое кровяное давление и малый просвет сосудов (до 100 мкм). В них остановка кровотечения может произойти за счёт:

    • Сокращения стенок сосудов.
    • Образования тромбоцитарной пробки.
    • Сочетания того и другого.

    Коагуляционный гемостаз обеспечивает остановку кровотечения в более крупных сосудах (артериях и венах). В них остановка кровотечения осуществляется за счёт свёртывания крови (гемокоагуляции).

    Полноценная гемостатическая функция возможна только при условии тесного взаимодействия сосудисто-тромбоцитарного и гемокоагуляционного механизмов гемостаза. Тромбоцитарные факторы принимают активное участие в коагуляционном гемостазе, обеспечивают конечный этап формирования полноценной гемостатической пробки – ретракцию кровяного сгустка. В то же время плазменные факторы непосредственно влияют на агрегацию тромбоцитов. При ранениях как мелких, так и крупных сосудов происходит образование тромбоцитарной пробки с последующим свёртыванием крови, организацией фибринового сгустка, а затем – восстановление просвета сосудов (реканализация путём фибринолиза).

    Реакция на повреждение сосуда зависит от разнообразных процессов взаимодействия между сосудистой стенкой, циркулирующими тромбоцитами, факторами свёртывания крови, их ингибиторами и фибринолитической системой. Гемостатический процесс модифицируется посредством положительной и отрицательной обратной связи, которая поддерживает стимуляцию констрикции сосудистой стенки и образование комплексов тромбоциты-фибрин, а также растворение фибрина и релаксацию сосудов, что позволяет вернуться к нормальному состоянию.

    Для того чтобы кровоток в обычном состоянии не нарушался, а при необходимости наступало эффективное свёртывание крови, необходимо поддержание равновесия между факторами плазмы, тромбоцитов и тканей, способствующими свёртыванию и тормозящими его. Если это равновесие нарушается, возникает либо кровотечение (геморрагические диатезы), либо повышенное тромбообразование (тромбозы).

  • Сосудисто-тромбоцитарный гемостаз

    У здорового человека кровотечение из мелких сосудов при их ранении останавливается за 1-3 минуты (так называемое время кровотечения). Этот первичный гемостаз почти целиком обусловлен сужением сосудов и их механической закупоркой агрегатами тромбоцитов – «белым тромбом» (рис. 1).

    Рисунок 1. Сосудисто-тромбоцитарный гемостаз. 1 – повреждение эндотелия; 2 – адгезия тромбоцитов; 3 – активация тромбоцитов, выделение биологически активных веществ из их гранул и образование медиаторов – производных арахидоновой кислоты; 4 – изменение формы тромбоцитов; 5 – необратимая агрегация тромбоцитов с последующим формированием тромба. ФВ – фактор Виллебранда, ТФР – тромбоцитарный фактор роста, TXA 2 – тромбоксан А 2 , АДФ – аденозиндифосфат, ФАТ – фактор активации тромбоцитов. Пояснения в тексте .

    Тромбоциты (кровяные пластинки, нормальное содержание в крови 170-400х10 9 /л) представляют собой плоские безъядерные клетки неправильной округлой формы диаметром 1-4 мкм. Кровяные пластинки образуются в красном костном мозге путём отщепления участков цитоплазмы от гигантских клеток – мегакариоцитов; из каждой такой клетки может возникнуть до 1000 тромбоцитов. Тромбоциты циркулируют в крови в течение 5-11 дней и затем разрушаются в селезёнке.

    В крови тромбоциты пребывают в неактивированном состоянии. Их активация наступает в результате контакта с активирующей поверхностью и действия некоторых факторов свёртывания. Активированные тромбоциты выделяют ряд веществ, необходимых для гемостаза.

    • Клиническое значение нарушений в сосудисто-тромбоцитарном звене гемостаза

      При уменьшении количества тромбоцитов (тромбоцитопении) или нарушении их структуры (тромбоцитопатии) возможно развитие геморрагического синдрома с петехиально-пятнистым типом кровоточивости. Тромбоцитоз (увеличение содержания тромбоцитов) предрасполагает к гиперкоагуляции и тромбозам. К методам оценки состояния сосудисто-тромбоцитарного гемостаза относят определение резистентности (ломкости) капилляров (манжеточная проба Румпель-Лееде-Кончаловского, симптомы жгута и щипка), время кровотечения, подсчёт числа тромбоцитов, оценку ретракции сгустка крови, определение ретенции (адгезивности) тромбоцитов, исследование агрегации тромбоцитов.

      К агрегации тромбоцитов даже в отсутствии внешних повреждений могут приводить дефекты эндотелиальной оболочки сосудов. С целью предупреждения тромбозов назначают препараты, подавляющие агрегацию тромбоцитов - антиагреганты. Ацетилсалициловая кислота (аспирин) селективно и необратимо ацетилирует фермент циклооксигеназу (ЦОГ), катализирующую первый этап биосинтеза простаноидов из арахидоновой кислоты. В невысоких дозах препарат влияет преимущественно на изоформу ЦОГ-1. В результате в циркулирующих в крови тромбоцитах прекращается образование тромбоксана A 2 , обладающего проагрегантным и сосудосуживающим действием. Метаболиты производных тиенопиридина (клопидогрел, тиклопидин) необратимо модифицируют рецепторы 2PY 12 на мембране тромбоцитов, в результате блокируется связь АДФ с его рецептором на мембране тромбоцита, что приводит к угнетению агрегации тромбоцитов. Дипиридамол угнетает фермент фосфодиэстеразу в тромбоцитах, что приводит к накоплению в тромбоцитах цАМФ, обладающего антиагрегантным действием. Блокаторы гликопротеинов IIb/IIIa тромбоцитов (абциксимаб, тирофибан и эптифибатид) воздействуют на конечную стадию агрегации, блокируя участок взаимодействия гликопротеинов IIb/IIIa на поверхности тромбоцитов с фибриногеном и другими адгезивными молекулами.

      В настоящее время проходят клинические испытания новых антиагрегантов (тикагрелор, прасугрел).

      В качестве местного кровоостанавливающего средства используется губка гемостатическая коллагеновая, усиливающая адгезию и активацию тромбоцитов, а также запускающая коагуляционный гемостаз по внутреннему пути.

  • Коагуляционный гемостаз
    • Общие положения

      После того как образуется тромбоцитарный сгусток, степень сужения поверхностных сосудов уменьшается, что могло бы привести к вымыванию сгустка и возобновлению кровотечения. Однако к этому времени уже набирают достаточную силу процессы коагуляции фибрина в ходе вторичного гемостаза, обеспечивающего плотную закупорку повреждённых сосудов тромбом («красным тромбом»), содержащим не только тромбоциты, но и другие клетки крови, в частности эритроциты (рис. 9).

      Рисунок 9. Красный тромб – эритроциты в трёхмерной фибриновой сети. (источник – сайт www.britannica.com).

      Постоянная гемостатическая пробка формируется при образовании тромбина посредством активации свёртывания крови. Тромбин играет важную роль в возникновении, росте и локализации гемостатической пробки. Он вызывает необратимую агрегацию тромбоцитов (неразрывная связь коагуляционного и сосудисто-тромбоцитарного звеньев гемостаза) (рис. 8) и отложение фибрина на тромбоцитарных агрегатах, образующихся в месте сосудистой травмы. Фибрино-тромбоцитарная сеточка является структурным барьером, предотвращающим дальнейшее вытекание крови из сосуда, и инициирует процесс репарации ткани.

      Свёртывающая система крови – это фактически несколько взаимосвязанных реакции, протекающих при участии протеолитических ферментов. На каждой стадии данного биологического процесса профермент (неактивная форма фермента, предшественник, зимоген) превращается в соответствующую сериновую протеазу. Сериновые протеазы гидролизуют пептидные связи в активном центре, основу которого составляет аминокислота серин. Тринадцать таких белков (факторы свёртывания крови) составляют систему свёртывания (таблица 1; их принято обозначать римскими цифрами (например, ФVII – фактор VII), активированную форму обозначают прибавлением индекса «а» (ФVIIа – активированный фактор VIII). Из них семь активируются до сериновых протеаз (факторы XII, XI, IX, X, II, VII и прекалликреин), три являются кофакторами этих реакций (факторы V, VIII и высокомолекулярный кининоген ВМК), один – кофактор/рецептор (тканевой фактор, фактор III), ещё один – трасглутаминаза (фактор XIII) и, наконец, фибриноген (фактор I) является субстратом для образования фибрина, конечного продукта реакций свёртывания крови (таблица 1).

      Для пострибосомального карбоксилирования терминальных остатков глутаминовой кислоты факторов свёртывания II, VII, IX, X (витамин К-зависимые факторы), а также двух ингибиторов свёртывания (протеинов C (си) и S) необходим витамин К. В отсутствии витамина К (или на фоне приёма непрямых антикоагулянтов, например, варфарина) печень содержит лишь биологически неактивные белковые предшественники перечисленных факторов свёртывания. Витамин К – необходимый кофактор микросомальной ферментной системы, которая активирует эти предшественники, превращая их множественные N-концевые остатки глутаминовой кислоты в остатки γ -карбоксиглутаминовой кислоты. Появление последних в молекуле белка придёт ему способность связывать ионы кальция и взаимодействовать с мембранными фосфолипидами, что необходимо для активации указанных факторов. Активная форма витамина К – восстановленный гидрохинон, который в присутствии O 2 , CO 2 и микросомальной карбоксилазы превращается в 2,3-эпоксид с одновременным γ-карбоксилированием белков. Для продолжения реакций γ –карбоксилирования и синтеза биологически-активных белков витамин К опять должен восстановиться в гидрохинон. Под действием витамин-К-эпоксидредуктазы (которую ингибируют терапевтические дозы варфарина) из 2,3-эпоксида вновь образуется гидрохиноновая форма витамина К (рис. 13).

      Для осуществления многих реакций коагуляционного гемостаза необходимы ионы кальция (Ca ++ , фактор свёртывания IV, рис. 10). Для предотвращения преждевременного свёртывания крови in vitro при подготовке к выполнению ряда коагуляционных тестов к ней добавляют вещества, связывающие кальций (оксалаты натрия, калия или аммония, цитрат натрия, хелатообразующее соединение этилендиаминтетраацетат (ЭДТА)).

      Таблица 1. Факторы свёртывания крови (а – активная форма) .

      Фактор Название Наиболее важное место образования T ½ (период полусуществования) Средняя концентрация в плазме, мкмоль/мл Свойства и функции Синдром недостаточности
      Название Причины
      I Фибриноген Печень 4-5 дней 8,8 Растворимый белок, предшественник фибриногена Афибриногенемия, недостаточность фибриногена Наследование по аутосомно-рецессивному типу (хромосома 4); коагулопатия потребления, поражение печёночной паренхимы.
      II Протромбин 3 дня 1,4 α 1 -глобулин, профермент тромбина (протеаза) Гипопротромбинемия Наследование по аутосомно-рецессивному типу (хромосома 11); поражения печени, недостаточность витамина К, коагулопатия потребления.
      III Тканевой тромбопластин (тканевой фактор) Клетки тканей Фосфолипропротеин; активен во внешней системе свёртывания
      IV Кальций (Са ++) 2500 Необходим для активации большинства факторов свёртывания
      V Проакцелерин, АК-глобулин Печень 12-15 ч. 0,03 Растворимый b-глобулин, связывается с мембраной тромбоцитов; активируется фактором IIa и Са ++ ; Va служит компонентом активатора протромбина Парагемофилия, гипопроакцелеринемия Наследование по аутосомно-рецессивному типу (хромосома 1); поражения печени.
      VI Изъят из классификации (активный фактор V)
      VII Проконвертин Печень (витамин К-зависимый синтез) 4-7 ч. 0,03 α 1 -глобулин, профермент (протеаза); фактор VIIа вместе с фактором III и Са ++ активирует фактор X во внешней системе Гипопроконвертинемия Наследование по аутосомно-рецессивному типу (хромосома 13); недостаточность витамина К.
      VIII Антигемофильный глобулин Различные ткани, в т.ч. эндотелий синусоид печени 8-10 ч. b 2 -глобулин, образует комплекс с фактором Виллебранда; активируется фактором IIa и Са ++ ; фактор VIIIa служит кофактором в превращении фактора X в фактор Xa Гемофилия А (классическая гемофилия); синдром Виллебранда Наследование по рецессивному типу, сцепление с X-хромосомой (половой); Наследование обычно по аутосомно-доминантному типу.
      IX Фактор Кристмаса 24 часа 0,09 α 1 -глобулин, контакт-чувствительный профермент (протеаза); фактор IXа вместе с фактором пластинок 3, фактором VIIIa и Са ++ активирует фактор X dj внутренней системе Гемофилия B Наследование по рецессивному типу, сцепленное с X-хромосомой (половой).
      X Фактор Стюарта-Прауэра Печень Печень (витамин К-зависимый синтез) 2 дня 0,2 α 1 -глобулин, профермент (протеаза); фактор Xa служит компонентом активатора протромбина Недостаточность фактора X Наследование по аутосомноу-рецессивному типу (хромосома 13)
      XI Плазменный предшественник трмбопластина (ППТ) Печень 2-3 дня 0,03 γ-глобулин, контакт-чувствительный профермент (протеаза); фактор XIa вместе с Са ++ активирует фактор IX Недостаточность ППТ Наследование по аутосомно-рецессивному типу (хромосома 4); коагулопатия потребления.
      XII Фактор Хагемана Печень 1 день 0,45 b-глобулин, контакт-чувствительный профермент (протеаза) (изменяет форму при контакте с поверхностями); активируется калликреином, коллагеном и др.; активирует ПК, ВМК, фактор XI Синдром Хагемана (обычно не проявляется клинически) Наследование обычно по аутосомно-рецессивному типу (хромосома 5).
      XIII Фибрин-стабилизирующий фактор Печень, тромбоциты 8 дней 0,1 b-глобулин, профермент (трансамидаза); фактор XIIIa вызывает переплетение нитей фибрина Недостаточность фактора XIII Наследование по аутосомно-рецессивному типу (хромосомы 6, 1); коагулопатия потребления.
      Прекалликреин (ПК), фактор Флетчера Печень 0,34 b-глобулин, профермента (протеаза); активируется фактором XIIa; калликреин способствует активации факторов XII и XI Наследование (хромосома 4)
      Высокомолекулярный кининоген (ВМК) (фактор Фитцжеральда, фактор Вильямса, фактор Фложека) Печень 0,5 α 1 -глобулин; способствует контактной активации факторов XII и XI Обычно клинически не проявляется Наследование (хромосома 3)

      Основы современной ферментной теории свёртывания крови были заложены в конце XIX – начале XX столетия профессором Тартуского (Дерптского) университета Александром-Адольфом Шмидтом (1877 г.) и уроженцем Санкт-Петербурга Паулом Моравитцем (1904 г.), а также в работе С. Мурашева о специфичности действия фибрин-ферментов (1904 г.). Основные этапы свёртывания крови, приведённые в схеме Моравитца, верны и поныне. Вне организма кровь свёртывается за несколько минут. Под действием «активатора протромбина» (тромбокиназы), белок плазмы протромбин превращается в тромбин. Последний вызывает ращепление растворённого в плазме фибриногена с образованием фибрина, волокна которого образуют основу тромба. В результате этого кровь превращается из жидкости в студенистую массу. С течением времени открывались всё новые и новые факторы свёртывания и в 1964 году двумя независимыми группами учёных (Davie EW, Ratnoff OD; Macfarlane RG) была предложена ставшая классической модель коагуляционного каскада (водопада), представленная во всех современных учебниках и руководствах. Эта теория подробно изложена ниже. Использование подобного рода схемы свёртывания крови оказалось удобным для правильного толкования комплекса лабораторных тестов (таких как АЧТВ, ПВ), применяющихся при диагностике различных геморрагических диатезов коагуляционного генеза (например, гемофилии А и B). Однако модель каскада не лишена недостатков, что послужило поводом для разработки альтернативной теории (Hoffman M, Monroe DM) – клеточной модели свёртывания крови (см. соответствующий раздел).

    • Модель коагуляционного каскада (водопада)

      Механизмы инициации свёртывания крови подразделяют на внешние и внутренние. Такое деление искусственно, поскольку оно не имеет места in vivo, но данный подход облегчает интерпретацию лабораторных тестов in vitro.

      Большинство факторов свёртывания циркулируют в крови в неактивной форме. Появление стимулятора коагуляции (триггера) приводит к запуску каскада реакций, завершающихся образованием фибрина (рис. 10). Триггер может быть эндогенным (внутри сосуда) или экзогенным (поступающим из тканей). Внутренний путь активации свёртывания крови определяется как коагуляция, инициируемая компонентами, полностью находящимися в пределах сосудистой системы. Когда процесс свёртывания начинается под действием фосфолипопротеинов, выделяемых из клеток повреждённых сосудов или соединительной ткани, говорят о внешней системе свёртывания крови. В результате запуска реакций системы гемостаза независимо от источника активации образуется фактор Xa, обеспечивающий превращение протромбина в тромбин, а последний катализирует образование фибрина из фибриногена. Таким образом, и внешний и внутренний пути замыкаются на единый – общий путь свёртывания крови.

      • Внутренний путь активации свёртывания крови

        Компонентами внутреннего пути являются факторы XII, XI, IX, XIII, кофакторы – высокомолекулярный кининоген (ВМК) и прекалликреин (ПК), а также их ингибиторы.

        Внутренний путь (рис. 10 п. 2) запускается при повреждении эндотелия, когда обнажается отрицательно заряженная поверхность (например, коллаген) в пределах сосудистой стенки. Контактируя с такой поверхностью, активируется ФXII (образуется ФXIIa). Фактор XIIa активирует ФXI и превращает прекалликреин (ПК) в калликреин, который активирует фактор XII (петля положительной обратной связи). Механизм взаимной активации ФXII и ПК отличается большей быстротой по сравнению с механизмом самоактивации ФXII, что обеспечивает многократное усиление системы активации. Фактор XI и ПК связываются с активирующей поверхностью посредством высокомолекулярного кининогена (ВМК). Без ВМК активации обоих проферментов не происходит. Связанный ВМК может расщепляться калликреином (К) или связанным с поверхностью ФXIIa и инициировать взаимную активацию систем ПК-ФXII.

        Фактор XIa активирует фактор IX. Фактор IX может также активироваться под действием комплекса ФVIIa/ФIII (перекрёст с каскадом внешнего пути), причём считается, что in vivo это доминирующий механизм. Активированный ФIXa требует наличия кальция и кофактора (ФVIII), для прикрепления к тромбоцитарному фосфолипиду (тромбоцитарному фактору 3 – см. раздел сосудисто-тромбоцитарный гемостаз) и превращения фактора X в фактор Xa (переход с внутреннего на общий путь). Фактор VIII действует в качестве мощного ускорителя завершающей ферментативной реакции.

        Фактор VIII, который также называют антигемофильным фактором, кодируется большим геном, расположенным на конце X-хромосомы. Он активируется под действием тромбина (основной активатор), а также факторов IXa и Xa. ФVIII циркулирует в крови, будучи связанным с фактором фон Виллебранда (ФВ) – большим гликопротеином, продуцируемым эндотелиальными клетками и мегакариоцитами (см. также раздел сосудисто-тромбоцитарный гемостаз). ФВ служит внутрисосудистым белком-носителем для ФVIII. Связывание ФВ с ФVIII стабилизирует молекулу ФVIII, увеличивает её период полусуществования внутри сосуда и способствует её транспорту к месту повреждения. Однако чтобы активированный фактор VIII мог проявить свою кофакторную активность, он должен отсоединиться от ФВ. Воздействие тромбина на комплекс ФVIII/ФВ приводит к отделению ФVIII от несущего протеина и расщеплению на тяжёлую и лёгкую цепи ФVIII, которые важны для коагулянтной активность ФVIII.

      • Общий путь свёртывания крови (образование тромбина и фибрина)

        Внешний и внутренний пути свёртывания крови замыкаются на активации ФX, с образования ФXa начинается общий путь (рис. 10 п. 3). Фактор Xa активирует ФV. Комплекс факторов Xa, Va, IV (Ca 2+) на фосфолипидной матрице (главным образом это тромбоцитарный фактор 3 – см. сосудисто-тромбоцитарный гемостаз) является протромбиназой, которая активирует протромбин (превращение ФII в ФIIa).

        Тромбин (ФIIa) представляет собой пептидазу, особенно эффективно расщепляющую аргиниловые связи. Под действием тромбина наступает частичный протеолиз молекулы фибриногена. Однако функции тромбина не ограничиваются влиянием на фибрин и фибриноген. Он стимулирует агрегацию тромбоцитов, активирует факторы V, VII, XI и XIII (положительная обратная связь), а также разрушает факторы V, VIII и XI (петля отрицательная обратной связи), активирует фибринолитическую систему, стимулирует эндотелиальные клетки и лейкоциты. Он также вызывает миграцию лейкоцитов и регулирует тонус сосудов. Наконец, стимулируя рост клеток, способствует репарации тканей.

        Тромбин вызывает гидролиз фибриногена до фибрина. Фибриноген (фактор I) представляет собой сложный гликопротеин, состоящий из трёх пар неидентичных полипептидных цепей. Тромбин прежде всего расщепляет аргинин-глициновые связи фибриногена с образованием двух пептидов (фибринопептид А и фибринопептид B) и мономеров фибрина. Эти мономеры образуют полимер, соединяясь бок в бок (фибрин I) и удерживаясь рядом водородными связями (растворимые фибрин-мономерные комплексы – РФМК). Последующий гидролиз этих комплексов при действии тромбина приводит к выделению фибринопептида B. Кроме того, тромбин активирует ФXIII, который в присутствии ионов кальция связывает боковые цепи полимеров (лизин с глутаминовыми остатками) изопептидными ковалентными связями. Между мономерами возникают многочисленные перекрёстные связи, создающие сеть взаимодействующих фибриновых волокон (фибрин II), весьма прочных и способных удерживать тромбоцитарную массу на месте травмы.

        Однако на этой стадии трёхмерная сеть волокон фибрина, которая удерживает в больших количествах клетки крови и кровяные пластинки, всё ещё относительно рыхлая. Свою окончательную форму она принимает после ретракции: через несколько часов волокна фибрина сжимаются и из него как бы выдавливается жидкость – сыворотка, т.е. лишённая фибриногена плазма. На месте сгустка остаётся плотный красный тромб, состоящий из сети волокон фибрина с захваченными ею клетками крови. В этом процессе участвуют тромбоциты. В них содержится тромбостенин – белок, сходный с актомиозином, способный сокращаться за счёт энергии АТФ. Благодаря ретракции сгусток становится более плотным и стягивает края раны, что облегчает её закрытие клетками соединительной ткани.

    • Регуляция системы свертывания крови

      Активация свёртывания крови in vivo модулируется рядом регуляторных механизмов, которые ограничивают реакции местом повреждения и предотвращают возникновение массивного внутрисосудистого тромбоза. К регулирующим факторам относят: кровоток и гемодилюцию, клиренс, осуществляемый печенью и ретикулоэндотелиальной системой (РЭС), протеолитическое действие тромбина (механизм отрицательной обратной связи), ингибиторы сериновых протеаз.

      При быстром кровотоке происходит разбавление активных сериновых протеаз и транспорт их в печень для утилизации. Кроме того, диспергируются и отсоединяются периферические тромбоциты от тромбоцитарных агрегатов, что ограничивает размер растущей гемостатической пробки.

      Растворимые активные сериновые протеазы инактивируются и удаляются из кровообращения гепатоцитами и ретикулоэндотелиальными клетками печени (купферовскими клетками) и других органов.

      Тромбин в качестве фактора, ограничивающего свёртывание, разрушает факторы XI, V, VIII, а также инициирует активацию фибринолитической системы посредством белка C, что приводит к растворению фибрина, в том числе за счёт стимуляции лейкоцитов (клеточный фибринолиз – см. раздел « фибринолиз »).

      • Ингибиторы сериновых протеаз

        Процесс свёртывания крови строго контролируется присутствующими в плазме белками (ингибиторами), которые ограничивают выраженность протеолитических реакций и обеспечивают защиту от тромбообразования (рис. 11). Главными ингибиторами факторов свёртывания крови являются антитромбин III (АТ III, гепариновый кофактор I), гепариновый кофактор II (ГК II), протеин «си» (PC) и протеин «эс» (PS), ингибитор пути тканевого фактора (ИПТФ), протеаза нексин-1 (ПН-1), C1-ингибитор, α 1 -антитрипсин (α 1 -АТ) и α 2 -макроглобулин (α 2 -М). Большинство этих ингибиторов, за исключением ИПТФ и α 2 -М, относятся к серпинам (СЕРиновых Протеаз ИНгибиторы).

        Антитромбин III (АТ III) является серпином и основным ингибитором тромбина, ФXa и ФIXa, он также инактивирует ФXIa и ФXIIa (рис. 11). Антитромбин III нейтрализует тромбин и другие сериновые протеазы посредством ковалентного связывания. Скорость нейтрализации сериновых протеаз антитромбином III в отсутствии гепарина (антикоагулянта) невелика и существенно увеличивается в его присутствии (в 1000 – 100000 раз). Гепарин представляет собой смесь полисульфатированных эфиров гликозаминогликанов; он синтезируется тучными клетками и гранулоцитами, его особенно много в печени, лёгких, сердце и мышцах, а также в тучных клетках и базофилах. В терапевтических целях вводят синтетический гепарин (нефракционированный гепарин, низкомолекулярные гепарины). Гепарин образует с АТ III комплекс, называемый антитромбином II (АТ II), повышая тем самым эффективность АТ III и подавляя образование и действие тромбина. Кроме того, гепарин служит активатором фибринолиза и поэтому способствует растворению сгустков крови. Значение АТ III, как основного модулятора гемостаза подтверждается наличием тенденции к тромбообразованию у лиц с врождённым или приобретённым дефицитом АТ III.

        Протеинс си (PC) – витамин К-зависимый белок, синтезируемый гепатоцитами. Циркулирует в крови в неактивной форме. Активируется небольшим количеством тромбина. Эта реакция значительно ускоряется тромбомодулином (ТМ) – поверхностным белком эндотелиальных клеток, который связывается с тромбином. Тромбин в комплексе с тромбомодулином становится антикоагулянтным белком, способным активировать сериновую протеазу – PC (петля отрицательной обратной связи). Активированный PC в присутствии своего кофактора – протеина S (PS) расщепляет и инактивирует ФVa и ФVIIIa (рис. 11). PC и PS являются важными модуляторами активации свёртывания крови и их врождённый дефицит связан со склонностью к тяжёлым тромботическим нарушениям. Клиническое значение PC доказывает повышенное тромбообразование (тромбофилия) у лиц с врождённой патологией ФV (Лейденская мутация – замена гуанина 1691 аденином, что приводит к замещению аргинина глутамином в позиции 506 аминокислотной последовательности белка). Такая патология ФV устраняет сайт, по которому происходит расщепление активированным протеином C, что мешает инактивации фактора V и способствует возникновению тромбоза.

        Активированный PC посредством механизма обратной связи подавляет продукцию эндотелиальными клетками ингибитора активатора плазминогена-1 (ИАП-1), оставляя без контроля тканевой активатор плазминогена (ТАП – см. разле фибринолиз). Это косвенно стимулирует фибринолитическую систему и усиливает антикоагулянтную активность активированного PC.

        α 1 -антитрипсин (α 1 -АТ) нейтрализует ФXIa и активированный PC.

        С1-ингибитор (С1-И) также является серпином и главным ингибитором сериновых ферментов контактной системы. Он нейтрализует 95% ФXIIa и более 50% всего калликреина, образующегося в крови. При дефиците С1-И возникает ангионевротический отёк. ФXIa инактивируется в основном α1-антитрипсином и АТ III.

        Гепариновый кофактор II (ГК II) – серпин, ингибирующий только тромбин в присутствии гепарина или дерматан-сульфата. ГК II находится преимущественно во внесосудистом пространстве, где локализуется дерматан-сульфат, и именно здесь может играть решающую роль в ингибировании тромбина. Тромбин способен стимулировать пролиферацию фибробластов и других клеток, хемотаксис моноцитов, облегчать адгезию нейтрофилов к эндотелиальным клеткам, ограничивать повреждение нервных клеток. Способность ГК II блокировать эту деятельность тромбина играет определённую роль в регулировании процессов заживления ран, воспаления или развития нервной ткани.

        Протеаза нексин-1 (ПН-1) – серпин, ещё один вторичный ингибитор тромбина, предотвращающий его связывание с клеточной поверхностью.

        Ингибитор пути тканевого фактора (ИПТФ) представляет собой куниновый ингибитор свёртывания (кунины гомологичны ингибитору панкреатического трипсина – апротинину). Синтезируется главным образом эндотелиальными клетками и в меньшей степени – мононуклеарами и гепатоцитами. ИПТФ связывается с ФXa, инактивируя его, а затем комплекс ИПТФ-ФXa инактивирует комплекс ТФ-ФVIIa (рис. 11). Нефракционированный гепарин, низкомолекулярные гепарины стимулируют выделение ИПТФ и усиливают его антикоагулянтную активность.

        Рисунок 11. Действие ингибиторов коагуляции. ФЛ – фосфолипиды. Пояснения в тексте .

    • Фибринолиз

      Конечная стадия в репаративном процессе после повреждения кровеносного сосуда происходит за счёт активации фибринолитической системы (фибринолиза), что приводит к растворению фибриновой пробки и началу восстановления сосудистой стенки.

      Растворение кровяного сгустка – такой же сложный процесс, как и его образование. В настоящее время считается, что даже в отсутствие повреждения сосудов постоянно происходит превращение небольшого количества фибриногена в фибрин. Это превращение уравновешивается непрерывно протекающим фибринолизом. Лишь в том случае, когда свёртывающая система дополнительно стимулируется в результате повреждения ткани, выработка фибрина в области повреждения начинает преобладать и наступает местное свёртывание.

      Существуют два главных компонента фибринолиза: фибринолитическая активность плазмы и клеточный фибринолиз.

      • Фибринолитическая система плазмы

        Фибринолитическая система плазмы (рис. 12) состоит из плазминогена (профермент), плазмина (фермент), активаторов плазминогена и соответствующих ингибиторов. Активация фибринолитической системы приводит к образованию плазмина – мощного протеолитического фермента, обладающего разнообразным действием in vivo.

        Предшественник плазмина (фибринолизина) – плазминоген (профибринолизин) представляет собой гликопротеин, продуцируемый печенью, эозинофилами и почками. Активация плазмина обеспечивается механизмами, аналогичными внешней и внутренней свёртывающим системам. Плазмин представляет собой сериновую протеазу. Тромболитическое действие плазмина обусловлено его сродством к фибрину. Плазмин отщепляет от фибрина путём гидролиза растворимые пептиды, которые тормозят действие тромбина (рис. 11) и, таким образом, препятствуют дополнительному образованию фибрина. Плазмин расщепляет также другие факторы свёртывания: фибриноген, факторы V, VII, VIII, IX, X, XI и XII, фактор Виллебранда и тромбоцитарые гликопротеины. Благодаря этому он не только обладает тромболитическим эффектом, но и снижает свёртываемость крови. Он также активирует компоненты каскада комплемента (C1, C3a, C3d, C5).

        Превращение плазминогена в плазмин катализируется активаторами плазминогена и строго регулируется различными ингибиторами. Последние инактивируют как плазмин, так и активаторы плазминогена.

        Активаторы плазминогена образуются или сосудистой стенкой (внутренняя активация), или тканями (внешняя активация). Внутренний путь активации включает активацию белков контактной фазы: ФXII, XI, ПК, ВМК и калликреина. Это важный путь активации плазминогена, но основной – через ткани (внешняя активация); он происходит в результате действия тканевого активатора плазминогена (ТАП), выделяемого эндотелиальными клетками. ТАП также продуцируется другими клетками: моноцитами, мегакариоцитами и мезотелиальными клетками.

        ТАП представляет собой сериновую протеазу, которая циркулирует в крови, образуя комплекс со своим ингибитором, и имеет высокое сродство к фибрину. Зависимость ТАП от фибрина ограничивает образование плазмина зоной аккумуляции фибрина. Как только небольшое количество ТАП и плазминогена соединилось с фибрином, каталическое действие ТАП на плазминоген многократно усиливается. Затем образовавшийся плазмин разлагает фибрин, обнажая новые лизиновые остатки, с которыми связывается другой активатор плазминогена (одноцепочечная урокиназа). Плазмин превращает эту урокиназу в иную форму – активную двуцепочечную, вызывая дальнейшую трансформацию плазминогена в плазмин и растворение фибрина.

        Одноцепочечная урокиназа выявляется в большом количестве в моче. Как и ТАП, она относится к сериновым протеазам. Основная функция этого фермента проявляется в тканях и заключается в разрушении внеклеточного матрикса, что способствует миграции клеток. Урокиназа продуцируется фибробластами, моноцитами/макрофагами и эндотелиальными клетками. В отличие от ТАП циркулирует в не связанной с ИАП форме. Она потенцирует действие ТАП, будучи введённой после (но не до) ТАП.

        Как ТАП, так и урокиназа синтезируются в настоящее время методами рекомбинантной ДНК и пспользуются в качестве лекарственны средств (рекомбинантный тканевой активатор плазминогена, урокиназа). Другими активаторами плазминогена (нефизиологическими) являются стрептокиназа (продуцируемая гемолитическим стрептококком), антистрептлаза (комплекс человеческого плазминогена и бактериальной стрептокиназы) и стафилокиназа (продуцируемая золотистым стафилококком) (рис. 12). Эти вещества используются в качестве фармакологических тромболитических средств, применяются для лечения острого тромбоза (например, при остром коронарном синдроме, ТЭЛА).

        Расщепление плазмином пептидных связей в фибрине и фибриногене приводит к образованию различных дериватов с меньшей молекулярной массой, а именно продуктов деградации фибрина (фибриногена) – ПДФ. Самый крупный дериват называется фрагментом X (икс), который ещё сохраняет аргинин-глициновые связи для дальнейшего действия, осуществляемого тромбином. Фрагмент Y (антитромбин) меньше, чем X, он задерживает полимеризацию фибрина, действуя как конкурентный ингибитор тромбина (рис. 11). Два других, меньших по размеру фрагмента, D и E, ингибируют агрегацию тромбоцитов.

        Плазмин в кровотоке (в жидкой фазе) быстро инактивируется естественно образующимися ингибиторами, но плазмини в фибриновом сгустке (гелевая фаза) защищён от действия ингибиторов и лизирует фибрин локально. Таким образом, в физиологических условиях фибринолиз ограничен зоной фибринообрвазония (гелевая фаза), то есть гемостатической пробкой. Однако при патологических состояниях фибринолиз может стать генерализованным, охватывая обе фазы плазминообразования (жидкую и гелевую), что приводит к литическому состоянию (фибринолитическое состояние, активный фибринолиз). Оно характеризуется образованием избыточного количества ПДФ в крови, а также проявляющимся клинически кровотечением.

      • Клиническое значение нарушений в коагуляционном звене гемостаза и фибринолитической системе

        Врождённое (см. табл. 1) или приобретённое уменьшение содержания или активности плазменных факторов свёртывания может сопровождаться повышенной кровоточивостью (геморрагические диатезы с гематомным типом кровоточивости, например гемофилия А, гемофилия B, афибриногенемия, гипокоагуляционная стадия синдрома диссеминированного внутрисосудистого свёртывания – ДВС, печёночно-клеточная недостаточность и др.; дефицит фактора Виллебранда приводит к развитию геморрагического синдрома со смешанным типом кровоточивости, т.к. ФВ участвует и в сосудисто-тромбоцитарном и в коагуляционном гемостазе). Избыточная активация коагуляционного гемостаза (например, в гиперкоагуляционную фазу ДВС), резистентность факторов свёртывания к соответствующим ингибиторам (например, Лейденская мутация фактора V) или дефицит ингибиторов (например, дефицит АТ III, дефицит PС) приводят к развитию тромбозов (наследственные и приобретённые тромбофилии).

        Избыточная активация фибринолитической системы (например, при наследственном дефиците α 2 -антиплазмина) сопровождается повышенной кровоточивостью, её недостаточность (например, при повышенном уровне ИАП-1) – тромбозами.

        В качестве антикоагулянтов в клинической практике применяются следующие лекарственные препараты: гепарины (нефракционированный гепарин – НФГ и низкомолекулярные гепарины – НМГ), фондапаринукс (взаимодействует с АТ III и селективно ингибирует ФXa), варфарин . Управлением по контролю за качеством пищевых продуктов и лекарственных средств (FDA) США разрешены к применению (по специальным показаниям (например, для лечения гепарининдуцированной тромбоцитопенической пурпуры) внутривенные препараты – прямые ингибиторы тромбина: липерудин, аргатробан, бивалирудин. Клинические испытания проходят пероральные ингибиторы фактора IIa (дабигатран) и фактора Xa (ривароксабан, апиксабан).

        Коллагеновая кровоостанавливающая губка способствует местному гемостазу за счёт активации тромбоцитов и факторов свёртывания контактной фазы (внутренний путь активации гемостаза).

        В клинике используются следующие основные методы исследования системы коагуляционного гемостаза и мониторинга терапии антикоагулянтами: тромбоэластография, определение времени свёртывания крови , времени рекальцификации плазмы, активированного частичного (парциального) тромбопластинового времени (АЧТВ или АПТВ) , протромбинового времени (ПВ), протромбинового индекса, международного нормализованного отношения (МНО) , тромбинового времени , анти-фактор Xa активности плазмы, . транексамовая кислота (циклокапрон). Апротинин (гордокс, контрикал, трасилол) – природный ингибитор протеаз, получаемый из бычьих лёгких. Он подавляет действие многих веществ, участвующих в воспалении, фибринолизе, образовании тромбина. К числу этих веществ относятся калликреин и плазмин.

    • Список литературы
      1. Agamemnon Despopoulos, Stefan Silbernagl. Color Atlas of Physiology 5th edition, completely revised and expanded. Thieme. Stuttgart - New York. 2003.
      2. Физиология человека: в 3-х томах. Т. 2. Пер. с англ./Под ред. Р. Шмидта и Г. Тевса. – 3-е изд. – М.: Мир, 2005. – 314 с., ил.
      3. Шиффман Ф. Дж. Патофизиология крови. Пер. с англ. – М. – Спб.: «Издательство БИНОМ» - «Невский диалект», 2000. – 448 с., ил.
      4. Физиология человека: Учебник/ Под. ред. В. М. Смирнова. – М.: Медицина, 2002. – 608 с.: ил.
      5. Физиология человека: Учебник/ В двух томах. Т. I./ В. М. Покровский, Г. Ф. Коротько, В. И. Кобрин и др.; Под. ред. В. М. Покровского, Г. Ф. Коротько. – М.: Медицина, 1997. – 448 с.: ил.
      6. Ройтберг Г. Е., Струтынский А. В. Лабораторная и инструментальная диагностика заболеваний внутренних органов – М.: ЗАО «Издательство БИНОМ», 1999 г. – 622 с.: ил.
      7. Руководство по кардиологии: Учебное пособие в 3 т. /Под ред. Г. И. Сторожакова, А. А. Горбанченкова. – М.: Гэотар-Медиа, 2008. – Т. 3.
      8. T Wajima1, GK Isbister, SB Duffull. A Comprehensive Model for the Humoral Coagulation Network in Humans. Clinical pharmacology & Therapeutic s, VOLUME 86, NUMBER 3, SEPTEMBER 2009., p. 290-298.
      9. Gregory Romney and Michael Glick. An Updated Concept of Coagulation With Clinical Implications. J Am Dent Assoc 2009;140;567-574.
      10. D. Green. Coagulation cascade. Hemodialysis International 2006; 10:S2–S4.
      11. Клиническая фармакология по Гудману и Гилману. Под общей ред. А. Г. Гилмана. Пер. с англ. под общей ред. к. м. н. Н. Н. Алипова. М., "Практика", 2006.
      12. Bauer KA. New Anticoagulants. Hematology Am Soc Hematol Educ Program. 2006:450-6
      13. Karthikeyan G, Eikelboom JW, Hirsh J. New oral anticoagulants: not quite there yet. Pol Arch Med Wewn. 2009 Jan-Feb;119(1-2):53-8.
      14. Руководство по гематологии в 3 т. Т. 3. Под ред. А. И. Воробьёва. 3-е изд. Перераб. и дополн. М.: Ньюдиамед: 2005. 416 с. С ил.
      15. Andrew K. Vine. Recent advances in hemostasis and thrombosis. RETINA, THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2009, VOLUME 29, NUMBER 1.
      16. Папаян Л. П. Современная модель гемостаза и механизм действия препарата Ново-Севен // Проблемы гематологии и переливания крови. Москва, 2004, №1. – с. 11-17.

Противосвертывающая система и ингибиторы ферментов свертывания крови.

Противосвертывающая система крови

Физиологические ингибиторы свёртывания крови играют важную роль в поддержании гемостаза, так как они сохраняют кровь в жидком состоянии и препятствуют распространению тромба за пределы повреждённого участка сосуда. Тромбин, образующийся в результате реакций прокоагулянтного и контактного путей свёртывания крови, вымывается током крови из тромба. Он может инактивироваться при взаимодействии с ингибиторами ферментов свёртывания крови или активировать антикоагулянтную фазу, тормозящую образование тромба.

Антикоагулянтная фаза. Свёртывание крови должно быть ограничено не только в пространстве, но и во времени. Антикоагулянтная фаза ограничивает время существования активных факторов в крови и инициируется самим тромбином. Следовательно, тромбин, с одной стороны, ускоряет свёртывание крови, являясь последним ферментом каскада реакций коагуляции, а с другой - тормозит его, вызывая образование ферментных комплексов антикоагулянтной фазы на неповреждённом эндотелии сосудов. Этот этап представляет собой короткий каскад реакций, в котором кроме тромбина участвуют белок-активатор тромбомодулин (Тм), витамин К-зависимая сериновая протеаза протеин С, белок-активатор S и факторы Va и VIIIa (рис. 14-16). В каскаде реакций антикоагулянтной фазы последовательно образуются 2 мембранных комплекса IIа-Тм-Са 2+ и Ca-S-Са 2+ .

Тромбомодулин

Протеин С - профермент, содержащий остатки γ-карбоксиглутамата. Тромбин в мембранном комплексе IIа-Тм-Са 2+ активирует частичным протеолизом протеин С. Активированный протеин С (Са) образует с белком-активатором S мембраносвязанный комплекс Ca-S-Са 2+ . Са в составе этого комплекса гидролизует в факторах Va и VIIIa по две пептидные связи и инактивирует эти факторы. Под действием комплекса Ca-S-Са 2+ в течение 3 мин. теряется 80% активности факторов VIIIa и Va. Таким образом, тромбин по принципу положительной обратной связи не только ускоряет своё образование, но и, активируя протеин С, тормозит процесс свёртывания крови. Наследственный дефицит протеина С и S ведёт к снижению скорости инактивации факторов VIIIa и Va и сопровождается тромботической болезнью. Мутация гена фактора V, при которой синтезируется фактор V, резистентный к протеину С, также приводит к тромбогенезу. Антикоагулянтная фаза вызывает торможение каскада реакций свёртывания крови, а ингибиторы ферментов свёртывания инактивируют активные ферменты в кровяном русле.

антитромбин III - наиболее сильный ингибитор свёртывания крови; на его долю приходится около 80-90% антикоагулянтной активности крови. Он инактивирует ряд сериновых протеаз крови: тромбин, факторы IХа, Ха, ХIIа, калликреин, плазмин и урокиназу. Антитромбин III не ингибирует фактор VIIIa и не влияет на факторы в составе мембранных комплексов, а устраняет ферменты, находящиеся в плазме крови, препятствуя распространению тромбо-образования в кровотоке. Взаимодействие антитромбина с ферментами свёртывания крови ускоряется в присутствии гепарина. Гепарин - гетерополисахарид, который синтезируется в тучных клетках. В результате взаимодействия с гепарином антитромбин III приобретает конформацию, при которой повышается его сродство к сериновым протеазам крови. После образования комплекса антитромбин III-гепарин-фермент гепарин освобождается из него и может присоединяться к другим молекулам антитромбина. При наследственном дефиците антитромбина III в молодом возрасте наблюдают тромбозы и эмболии сосудов, опасные для жизни.

α 2 -Макроглобулин образует комплекс с сериновыми протеазами крови. В таком комплексе их активный центр полностью не блокируется, они могут взаимодействовать с субстратами небольшого размера. Однако высокомолекулярные субстраты, например фибриноген, становятся недоступными для действия протеаз в комплексе α 2 -макроглобулинтромбин.

α 1 -Антитрипсин ингибирует тромбин, фактор ХIа, калликреин, однако он не рассматривается как важный ингибитор факторов свёртывания крови, α 1 -Антитрипсин в основном на тканевом уровне ингибирует панкреатические и лейкоцитарные протеазы, коллагеназу, ренин, урокиназу. Пептиды, образующиеся в результате протеолитической активации проферментов и профакторов, тоже обладают выраженными антикоагулянтными свойствами, но механизм их действия в настоящее время не выяснен.

108 вопрос

Роль простогландинов и сосудистой стенки в гемостазе

Ведущая роль в осуществлении первичного гемостаза в микрососудах принадлежит тромбоцитам. Они прилипают к поврежденному участку сосудистой стенки, что является начальным этапом формирования тромбоцитарной пробки. В процессе адгезии (прилипания) происходит взаимодействие тромбоцитарных гликопротеинов с коллагеном и микрофибриллами эндотелия в присутствии фактора Виллебранда. Фактор Виллебранда секретируется клетками эндотелия сосудов и способствует адгезии тромбоцитов к сосудистой стенке. Поврежденные клетки эндотелия высвобождают также АТФ, АДФ и сосудосуживающие вещества - серотонин и катехоламины. В результате действия сосудосуживающих веществ просвет поврежденных сосудов уменьшается и перекрывается тромбоцитами, прилипшими к коллагеновым волокнам.

Выделившийся АДФ вызывает агрегацию - склеивание тромбоцитов между собой с образованием агрегатов.

Агрегация протекает в две стадии. Первая - обратимая, при которой агрегаты могут распадаться (дезагрегация). Вторая стадия - необратимая, обусловлена освобождением простагландинов, в частности мощного агрегирующего агента тромбоксанаАа.

Под влиянием циклооксигеназы образуются простагландины, из них в тромбоцитах под влиянием тромбоксан-синтетазы образуется чрезвычайно мощный агрегирующий агент – тромбоксан-А 2 . Тромбоксан угнетает аденилатциклазу и снижает содержание в тромбоцитах цАМФ, что повышает агрегацию тромбоцитов и вызывает выраженную вазоконстрикцию.

Продолжительность жизни тромбоксана, простациклина и других простагландинов несколько минут, но их значение в регуляции и патологии гемостаза весьма велико. Этот механизм является триггерным в реализации адгезивно-агрегационной функции тромбоцитов. Для осуществления этой функции кровяных пластинок необходим ряд плазменных кофакторов агрегации – ионы кальция и магния, фибриноген, альбумин и два белковых кофактора, обозначаемых как агрексоны A и B, фосфолипидный кофактор и др.

Наряду с тромбоксаном к числу стимуляторов агрегации тромбоцитов относится также коллаген сосудистой стенки, тромбин, АДФ, серотонин, простагландин Е2. Прямо противоположную роль играет простациклин (ПГ12). Он препятствует агрегации тромбоцитов и вызывает вазодилатацию. Механизм действия простациклина заключается в том, что он стимулирует аденилатциклазу и повышает содержание цАМФ в тромбоцитах и стенке сосудов. От взаимодействия простациклина и тромбоксана зависит, произойдут адгезия тромбоцитов к стенке сосудов и их агрегация или нет.

109 вопрос

Тромботические и антитромботические свойства тромбина

Тромбин (фактор Па) - гликопротеин с молекулярной массой 39 кД. Он образуется в крови из неактивного предшественника протромбина. Протромбин синтезируется в печени, имеет молекулярную массу 70 кД и содержит остатки γ-карбоксиглутаминовой кислоты. Концентрация этого белка в крови в норме составляет 0,1 г/л. Он фиксируется на мембранном ферментном комплексе Xa-Va-Са 2+ , взаимодействуя, с одной стороны, остатками у-карбоксиглутамата с Са 2+ , а с другой - непосредственно с белком-активатором Va. Таким образом, создаются наилучшие стерические условия для протекания ферментативной реакции. Фактор Ха гидролизует две пептидные связи в молекуле протромбина. В результате этого образуется молекула тромбина, состоящая из двух цепей - лёгкой и тяжёлой, связанных между собой одной дисульфидной связью (рис. 14-12). Молекула тромбина не содержит остатков γ-карбоксиглутамата и освобождается из протромбиназного комплекса. Тромбин частичным протеолизом превращает фибриноген в фибрин и активирует факторы VII, VIII, V, XIII. Тромбин выполняет ряд важных физиологических функций: является ферментом прокоагулянтного и контактного путей свёртывания крови, инициирует реакции антикоагулянтной фазы, вызывает агрегацию тромбоцитов и оказывает митогенное действие, участвуя в пролиферации и репарации клеток. Частичным протеолизом активируются также факторы V и VIII, превращаясь, соответственно, в факторы Va и VIIIa. В результате активации этих факторов изменяется их конформация и повышается сродство к фосфолипидам мембран и ферментам, которые они активируют. Взаимодействие белков-активаторов с протеолитическими ферментами. Тканевый фактор, фактор Va и фактор VIIIa имеют центры связывания с фосфолипидами мембран и ферментами VIIa, IXa и Ха, соответственно. При связывании с белками-активаторами в результате конформационных изменений активность этих ферментов повышается. Тромбин, образующийся в результате реакций прокоагулянтного и контактного путей свёртывания крови, вымывается током крови из тромба. Он может инактивироваться при взаимодействии с ингибиторами ферментов свёртывания крови или активировать антикоагулянтную фазу, тормозящую образование тромба. Антикоагулянтная фаза. Свёртывание крови должно быть ограничено не только в пространстве, но и во времени. Антикоагулянтная фаза ограничивает время существования активных факторов в крови и инициируется самим тромбином. Следовательно, тромбин, с одной стороны, ускоряет свёртывание крови, являясь последним ферментом каскада реакций коагуляции, а с другой - тормозит его, вызывая образование ферментных комплексов антикоагулянтной фазы на неповреждённом эндотелии сосудов. Этот этап представляет собой короткий каскад реакций, в котором кроме тромбина участвуют белок-активатор тромбомодулин (Тм), витамин К-зависимая сериновая протеаза протеин С, белок-активатор S и факторы Va и VIIIa (рис. 14-16).

В каскаде реакций антикоагулянтной фазы последовательно образуются 2 мембранных комплекса IIа-Тм-Са 2+ и Ca-S-Са 2+ .

Тромбомодулин - интегральный белок мембран эндотелиальных клеток. Он не требует протеолитической активации и служит белком-активатором тромбина. Тромбин приобретает способность активировать протеин С только после взаимодействия с тромбомодулином, причём связанный с тромбомодулином тромбин не может превращать фибриноген в фибрин, не активирует фактор V и тромбоциты.

Протеин С - профермент, содержащий остатки γ-карбоксиглутамата. Тромбин в мембранном комплексе IIа-Тм-Са 2+ активирует частичным протеолизом протеин С. Активированный протеин С (Са) образует с белком-активатором S мембраносвязанный

комплекс Ca-S-Са 2+ . Са в составе этого комплекса гидролизует в факторах Va и VIIIa по две пептидные связи и инактивирует эти факторы. Под действием комплекса Ca-S-Са 2+ в течение 3 мин. теряется 80% активности факторов VIIIa и Va. Таким образом, тромбин по принципу положительной обратной связи не только ускоряет своё образование, но и, активируя протеин С, тормозит процесс свёртывания крови.

Наследственный дефицит протеина С и S ведёт к снижению скорости инактивации факторов VIIIa и Va и сопровождается тромботической болезнью. Мутация гена фактора V, при которой синтезируется фактор V, резистентный к протеину С, также приводит к тромбогенезу.

Антикоагулянтная фаза вызывает торможение каскада реакций свёртывания крови, а ингибиторы ферментов свёртывания инактивируют активные ферменты в кровяном русле.

Ингибиторы ферментов свёртывания крови. Физиологические ингибиторы ферментов свёртывания крови ограничивают распространение тромба местом повреждения сосуда. Белок плазмы крови антитромбин III - наиболее сильный ингибитор свёртывания крови; на его долю приходится около 80-90% антикоагулянтной активности крови. Он инактивирует ряд сериновых протеаз крови: тромбин, факторы IХа, Ха, ХIIа, калликреин, плазмин и урокиназу. Антитромбин III не ингибирует фактор VIIIa и не влияет на факторы в составе мембранных комплексов, а устраняет ферменты, находящиеся в плазме крови, препятствуя распространению тромбо-образования в кровотоке.

Взаимодействие антитромбина с ферментами свёртывания крови ускоряется в присутствии гепарина. Гепарин - гетерополисахарид, который синтезируется в тучных клетках. В результате взаимодействия с гепарином антитромбин III приобретает конформацию, при которой повышается его сродство к сериновым протеазам крови. После образования комплекса антитромбин III-гепарин-фермент гепарин освобождается из него и может присоединяться к другим молекулам антитромбина.

При наследственном дефиците антитромбина III в молодом возрасте наблюдают тромбозы и эмболии сосудов, опасные для жизни.

α 2 -Макроглобулин образует комплекс с сериновыми протеазами крови. В таком комплексе их активный центр полностью не блокируется,

и они могут взаимодействовать с субстратами небольшого размера. Однако высокомолекулярные субстраты, например фибриноген, становятся недоступными для действия протеаз в комплексе α 2 -макроглобулинтромбин.

Антиконвер гин (тканевый ингибитор внешнего пути свёртывания) синтезируется в эндотелии сосудов. Он специфически соединяется с ферментным комплексом Тф-VIIа-Са 2+ , после чего улавливается печенью и разрушается в ней.

α 1 -Антитрипсин ингибирует тромбин, фактор ХIа, калликреин, однако он не рассматривается как важный ингибитор факторов свёртывания крови, α 1 -Антитрипсин в основном на тканевом уровне ингибирует панкреатические и лейкоцитарные протеазы, коллагеназу, ренин, урокиназу.

Пептиды, образующиеся в результате протеолитической активации проферментов и профакторов, тоже обладают выраженными антикоагулянтными свойствами, но механизм их действия в настоящее время не выяснен.

Тромбин взаимодействует со специфическим рецептором - интегральным белком, имеющим 7 трансмембранных доменов. Тромбин активирует рецептор частичным протеолизом, отщепляя от него N-концевой пептид, находящийся на внешней плазматической поверхности тромбоцита. Следовательно, тромбин, в отличие от других активаторов, действует каталитически, и одна молекула тромбина может активировать несколько рецепторов. Передача сигнала осуществляется через инозитолфосфатную систему, в результате чего в тромбоците повышается концентрация Са 2+ и активируется протеинкиназа С. Образующийся комплекс кальмодулин- 4Са 2+ -миозинкиназа фосфорилирует миозин, взаимодействие которого с актином приводит к изменению формы тромбоцитов, к их адгезии и агрегации. Протеинкиназа С, кроме того, фосфорилирует белок тромбоцитов плекстрин. Фос-форилированный плекстрин вызывает "реакцию освобождения" содержащихся в гранулах тромбоцитов вторичных индукторов активации и агрегации тромбоцитов. К этим веществам относят содержащиеся в плотных гранулах тромбоцитов АДФ, Са 2+ , ГДФ, серотонин, гистамин и присутствующие в осгранулах белок β-тромбоглобулин, фактор фон Виллебранда, белок фибронектин, тромбосподин и ВМК. Тромбос-подин участвует во взаимодействии тромбоцитов друг с другом. р-Тромбоглобулин снижает секрецию простациклина и связывает гепарин. Фибронектин имеет центры связывания для коллагена, гепарина и тромбоцитов.

110 вопрос

Общая характеристика хромопротеидов. Структура и биологическая роль миоглобина, цитохромов, каталазы, пероксидазы.

Хромопротеиды- слож белки которые окрашиваются. Классификация: 1.Fe содержащие (красные) 2. Mg содержащ (зеленые) 3. Флавопротеиды (желтые) Среди ХП различают дыхательные белки и дыхательные ферменты, которые образуют подгруппу гемопротеидов. К дыхательным белкам относятся гемоглобин (Нb) – красный пигмент крови и миоглобин (Мgb) – красный пигмент мышц.

Гем – производное порфирина, состоит из 4-х пиррольных колец, связанных в циклическую структуру метиновыми мостиками. Порфин с заместителями у бета-углерода называется порфирином.

Миоглобин - хромопротеин, присутствующий в мышечной ткани и обладающий большим сродством к кислороду. Молекулярная масса этого белка около 16000 Да, Молекула миоглобина имеет третичную структуру и представляет собой одну полипептидную цепь, соединённую с гемом. Миоглобин не обладает аллостерическими свойствами. Функция миоглобина заключается в создании в мышцах кислородного резерва, который расходуется по мере необходимости, восполняя временную нехватку кислорода.

ЦИТОХРОМЫ , сложные белки (гемопротеиды), содержащие в качестве простетич. группы гем. Служат переносчиками электронов в процессах внутриклеточного дыхания, окислит. фосфорилирования, фотосинтеза, ферментативного гидроксилирования и в др. биол. окислит.-восстановит. р-циях. В зависимости от природы гема цитохромы делят на 4 группы, обозначаемые буквами а, b, с и d. У цитохрома а гем имеет строение протопорфирина (см. Порфирины) и содержит формильный заместитель; цитохром b содержит протогем (ферропротопорфирин), нековалентно связанный с полипептидной цепью; у цитохрома с боковые заместители протопорфирина ковалентно связаны с полипептидной цепью; у цитохрома d гем представлен дигидропорфирином (хлорином). Атом Fe, входящий в состав гемовцитохромов и подвергающийся окислению и восстановлению, координирован 4 связями с атомами N порфириновых колец и 2 - с лигандами, принадлежащими полипептидным цепям (остатки гистидина, цистеина). Нек-рые цитохромы содержат неск. одинаковых или разных гемов. Цитохромы реагируют с лигандами, конкурирующими с естественным координац. окружением атома Fe гемов (СО,анионы азида, цианида и др.). Связывание этих лигандов приводит к изменению спектральных св-в и инактивации цитохромов.

КATАЛA3А (от греч. katalysis - разрушение) (перекись водорода: перекись водорода оксидоредуктаза), ферменткласса оксидоредуктаз, катализирующий разложение Н 2 О 2 на Н 2 О и О 2 . При низких концентрациях Н 2 О 2 каталаза проявляет также пероксидазную активность, окисляя низшие спирты, полифенолы и др. Каталаза содержится у всех животных и растений, в т. ч. в печени (в спец. внутриклеточных органеллах - пероксисомах), в эритроцитахмлекопитающих (до 2% от сухого веса) и почти у всех аэробных микроорганизмов. Молекула каталазы из печенибыка (мол. м. 250 тыс.) состоит из четырех идентичных субъединиц, к-рые не обладают ферментативнойактивностью. Каждая субъединица содержит гем с Fe 2+ (см. Гемоглобин). Активность каталазы - одна из наибольших среди известных ферментов (одна молекула каталазы способна разложить за 1с 44 тыс. молекул Н 2 О 2). Оптим. каталитич. активность проявляется при рН 7,6; рI 5,6. Ингибиторы каталазы - мн. соли (напр., сульфиды, цианиды,азиды, фториды). Биол. ф-ция каталазы - защита клеточных мембран от Н 2 О 2 , а вместе с супероксиддисмутазой - и от супероксидного радикала. Активность каталазы оценивают по объему выделившегося в каталитич. р-ции О 2 или по изменению концентрации Н 2 О 2 . Определение активности фермента в эритроцитах человека используют в медицине для диагностики нек-рых заболеваний крови.

ПЕРОКСИДАЗЫ (донор: пероксид водорода оксидоредук-тазы), ферменты класса оксидоредуктаз, катализирующиеокисление с помощью H 2 O 2 разл. неорг. и орг. в-в по схеме:

E, E 1 и E 2 - соотв. исходная пероксидаза и ее окисленные формы; ДН 2 , ДН и Д-соотв. исходный, полуокисленный и окисленный субстраты; k-константа скорости р-ции.

Р-ция 1 практически необратима (k 1 /k_ 1 > 10 8). Наиб. медленная стадия - р-ция 3. Пероксидазы высокоспецифичны к H 2 O 2 и обычно обладают широкой специфичностью к субстрату (известны пероксидазы, проявляющие высокуюспецифичность).

111 вопрос

Порфирины как структурные компоненты хромопротеидов. Порфирии и порфиринурии.

Порфирины. Основу стр-ры простетической группы большинства гемосодержащих белков составляет порфиновое кольцо, являющееся производным порфина, котоый состоит из 4 замещенных пирролов, соединенных мужду собой метиновыми мостиками.

Нарушения биосинтеза гема. Порфирии

Наследственные и приобретённые нарушения синтеза гема, сопровождающиеся повышением содержания порфириногенов, а также. Белковые факторы инициации трансляции не могут присоединиться к мРНК, и трансляция прекращается.продуктов их окисления в тканях и крови и появлением их в моче, называют порфириями ("порфирин" в переводе с греч. означает пурпурный). Наследственные порфирии обусловлены генетическими дефектами ферментов, участвующих в синтезе гема, за исключением аминолевулинатсинтазы. При этих заболеваниях отмечают снижение образования гема. Поскольку гем - аллостерический ингибитор аминолевулинатсинтазы, то активность этого фермента повышается, и это приводит к накоплению промежуточных продуктов синтеза гема - аминолевулиновой кислоты и порфириногенов. В зависимости от основной локализации патологического процесса различают печёночные и эритропоэтические наследственные порфирии. Эритропоэтические порфирии сопровождаются накоплением порфиринов в нормобластах и эритроцитах, а печёночные - в гепатоцитах. При тяжёлых формах порфирии наблюдают нейропсихические расстройства, нарушения функций РЭС, повреждения кожи. Порфириногены не окрашены и не флуоресцируют, но на свету они легко превращаются в порфирины. Последние проявляют интенсивную красную флуоресценцию в ультрафиолетовых лучах. В коже на солнце в результате взаимодействия с порфиринами кислород переходит в синглетное состояние. Синглетный кислород вызывает ускорение ПОЛ клеточных мембран и разрушение клеток, поэтому порфирии часто сопровождаются фотосенсибилизацией и изъязвлением открытых участков кожи. Нейропсихические расстройства при порфириях связаны с тем, что аминолевулинат и порфириногены являются нейротоксинами. Иногда при лёгких формах наследственных порфирии заболевание может протекать бессимптомно, но приём лекарств, являющихся индукторами синтеза аминолевулинатсинтазы, может вызвать обострение болезни. Индукторами синтеза аминолевулинатсинтазы являются такие известные лекарства, как сульфаниламиды, барбитураты, диклофенак, вольтарен, стероиды, гестагены. В некоторых случаях симптомы болезни не проявляются до периода полового созревания, когда повышение образования β-стероидов вызывает индукцию синтеза аминолевулинатсинтазы. Порфирии наблюдают и при отравлениях солями свинца, так как свинец нгибирует аминолевулинатдегидратазу и феррохелатазу. Некоторые галогенсодержащие гербициды и инсектициды являются индукторами синтеза аминолевулинатсинтазы, поэтому попадание их в организм сопровождается симптомами порфирии.

Порфиринурия (синоним гематопорфиринурия) - увеличение содержания в моче порфиринов (см.). Наблюдается при порфириновой болезни (см.) как одно из проявлений нарушенного пигментного обмена или как вторичный симптом при некоторых заболеваниях печени, анемиях, отравлениях. Моча при порфиринурии красная.

Порфиринурия (от греч. porphyreos - багровый и uron - моча) - увеличенное выделение с мочой пигмента порфирина, образующегося в избыточном количестве при нарушении обменных процессов в организме. Порфирин образуется из гликокола и из близких к уксусной кислоте дериватов, имеющих пиролловое ядро, вследствие нарушения биосинтеза гемоглобина, миоглобина, каталазы, пероксидазы, цитохромов и является межуточным или побочным продуктом этих гемо- или геминпротеидов. В человеческом организме множество разнообразных порфириновых соединений (см. Порфирины) участвует в пигментном обмене. В норме порфирин в незначительных количествах содержится в кале и моче. Специальные методы исследования обнаруживают также небольшие количества протопорфирина и порфобилиногена, следы уропорфирина. Суточное количество порфиринов в моче зависит от попадающих в организм извне (экзогенных) и образующихся в организме (эндогенных) порфиринов. Прием магнезии, жиров или алкоголя, кислых продуктов, а также физические напряжения, солнечный загар, рентгеновское облучение, менструации могут значительно увеличить количество порфиринов в моче. К порфиринурии приводят также инфекции, некоторые заболевания кожи, крови (пернициозная анемия, гемолитическая анемия и др.), печени (желтуха, цирроз печени и др.), введение в организм сыворотки, прививки, авитаминозы (особенно недостаточность рибофлавина), некоторые снотворные (сульфонал, трионал, барбитал, паральдегид и др.) и отравления арсеновыми соединениями, фосфором и тяжелыми металлами, особенно свинцом. При нарушении порфиринового обмена возникает так называемая истинная порфирия, в частности, порфириновая болезнь.

В активации ферментов каскада выделяют три основных механизма:

1. частичный протеолиз

2. взаимодействие с белками-активаторами

3. взаимодействие с модифицированными клеточными мембранами.

Прокоагулянтный путь занимает центральное место в свёртывании крови (рис. 4).

В циркулирующей крови содержатся проферменты протеолитических ферментов: факторы II, VII, IX, X. Находящиеся в крови факторы Va (акцелерин) и VIIIa (АГ фактор), а также мембранный белок - тканевый фактор (ТФ, ф.III) являются белками-активаторами этих ферментов.

При повреждении сосуда "включается" каскадный механизм активации ферментов с последовательным образованием трёх связанных с фосфолипидами клеточной мембраны ферментных комплексов. Каждый комплекс состоит из протеолитического фермента, белка-активатора и ионов Са 2+ : VIIa-TO-Ca 2+ , IXa-VIIIa-Са 2+ (теназа), Xa-Va-Са 2+ (протромбиназа) . Комплекс Xa-Va-Са 2+ (протромбиназный комплекс) активирует протромбин (ф. II). Каскад ферментативных реакций завершается образованием мономеров фибрина и последующим формированием тромба.

В активации ферментов каскада выделяют три основных механизма: частичный протеолиз, взаимодействие с белками-активаторами и взаимодействие с модифицированными клеточными мембранами.

Активация частичным протеолизом. Все ферменты прокоагулянтного пути являются сериновыми протеазами, синтезируются в печени в виде неактивных проферментов и в такой форме циркулируют в крови. В процессе реализации тромбогенного сигнала проферменты (факторы VII, IX, X и II) частичным протеолизом превращаются в активные ферменты.

Тромбин (фактор Па) - гликопротеин с молекулярной массой 39 кД. Он образуется в крови из неактивного предшественника протромбина. Протромбин синтезируется в печени, имеет молекулярную массу 70 кДа и содержит остатки

Рис. 4. Прокоагулянтный путь свёртывания крови. → активация факторов свертывания крови; ·····> активация факторов свертывания крови по принципу положительной обратной связи; ▅ мембранный фосфолипидный компонент ферментных комплексов. В рамку обведены белки-активаторы. 1,2 - фактор VIIa мембранного комплекса VIIa-TФ-СА 2+ активирует факторы IX и X; 3 - фактор IXa мембранного комплекса IXa-VIIIa-Са 2+ активирует фактор X; 4, 5 - фактор Ха мембранного комплекса Xa-Va-Са 2+ превращает протромбин (фактор II) в тромбин (фактор IIа) и активирует фактор VII; 6-10 - тромбин (фактор IIа) превращает нерастворимый фибриноген в растворимый фибрин, активирует факторы VII, VIII, V и XIII.

γ-карбоксиглутаминовой кислоты (0,1 г/л). Он фиксируется на мембранном ферментном комплексе Xa-Va-Са 2+ , взаимодействуя, с одной стороны, остатками γ -карбоксиглутамата с Са 2+ , а с другой - непосредственно с белком-активатором Va. Фактор Ха гидролизует две пептидные связи в молекуле протромбина и образуется молекула тромбина, состоящая из двух цепей - лёгкой и тяжёлой, связанных между собой одной дисульфидной связью (рис. 5). Молекула тромбина не содержит остатков γ-карбоксиглутамата и освобождается из протромбиназного комплекса. Тромбин частичным протеолизом превращает фибриноген в фибрин и активирует факторы VII, VIII, V, XIII.



Тромбин выполняет ряд важных физиологических функций: является ферментом прокоагулянтного и контактного путей свёртывания крови, инициирует реакции антикоагулянтной фазы, вызывает агрегацию тромбоцитов и оказывает митогенное действие, участвуя в пролиферации и репарации клеток.

Частичным протеолизом активируются также факторы V и VIII, превращаясь, соответственно, в факторы Va и VIIIa. В результате активации этих факторов изменяется их конформация и повышается сродство к фосфолипидам мембран и ферментам, которые они активируют.

Функции тромбина:

Ø частичным протеолизом превращает фибриноген в фибрин

Ø активирует факторы VII, VIII, V, XIII

Ø активирует тромбоциты,вызывая их агрегацию

Ø оказывает митогенное действие, участвуя в пролиферации и репарации клеток.

Взаимодействие белков-активаторов с протеолитическими ферментами. Тканевый фактор, фактор Va и фактор VIIIa имеют центры связывания с фосфолипидами мембран и ферментами VIIa, IXa и Ха, соответственно. При связывании с белками-активаторами в результате конформационных изменений активность этих ферментов повышается.

Тканевый фактор (фактор III) представляет собой комплекс, состоящий из белка и фосфатидилсерина. Белковая часть тканевого фактора (апопротеин III) экспонирована на поверхности многих клеток (мозга, лёгких, печени, селезёнки и др.) и связана с фосфатидилсерином плазматических мембран. Однако появление апопротеина III на поверхности клеток, соприкасающихся с кровью (эвдотелиальных и моноцитов), происходит только при определённых условиях: при повреждении сосуда и/или нарушении нормальной асимметрии их плазматических мембран. Тканевый фактор в протеолитической активации не нуждается.

Фактор V и фактор VIII - доменные белки, циркулирующие в крови. Фактор V синтезируется в печени, а фактор VIII - эндотелиальными клетками. Оба фактора активируются частичным протеолизом под действием тромбина. Фактор VIII в плазме крови находится в комплексе с белком - фактором тромбоцитов фон Виллебранда. Фактор фон Виллебранда в этом комплексе стабилизирует фактор VIII, препятствуя его разрушению прогеолитическим ферментом антикоагулянтной фазы фактором Са.

Взаимодействие ферментных комплексов с клеточными мембранами происходит с участием ионов Са 2+ . Все проферменты прокоагулянтного пути (II, VII, IX, X) содержат остатки у-кар-боксиглутаминовой кислоты, образующиеся в результате посттрансляционой модификации этих белков в ЭР гепатоцитов.

Остатки γ-карбоксиглутаминовой кислоты в факторах VIIa, IXa и Ха обеспечивают взаимодействие этих ферментов посредством Са 2+ с отрицательно заряженными фосфолипидами клеточных мембран. В отсутствие ионов Са 2+ кровь не свёртывается.

Роль витамина К в карбоксилировании остатков глутаминовой кислоты в проферментах прокоагулянтного пути свёртывания крови. Карбоксилирование остатков глутаминовой кислоты в проферментах прокоагулянтного пути катализирует карбоксилаза, коферментом которой служит восстановленная форма витамина К (нафтохинона) - дигидрохинон витамина К.

Поступивший в организм витамин К (нафто-хинон) восстанавливается в печени NADPH-зависимой витамин К редуктазой с образованием дигидрохинона витамина К. В ходе реакции кар-боксилирования остатков глутаминовой кислоты в проферментах прокоагулянтного пути дигидрохинон окисляется и эпоксидируется с образованием 2,3-эпоксида витамина К. Регенерация эпоксида в дигидрохинон витамина К происходит следующим образом: сначала 2,3-эпоксид витамина К восстанавливается в витамин К тиолзависимой эпоксидредуктазой, коферментом которой является белок, подобный тиоредоксину. Затем образующийся в этой реакции витамин К восстанавливается ферментом витамин К тиолзависимой редуктазой в дигидрохинон витамина К. Донором водорода в этой реакции, так же, как и в предыдущей, служит тиоредоксинподобный белок (рис. 6). Недостаточность витамина К приводит к нарушению карбоксилирования проферментов прокоагулянтного пути и сопровождается кровоточивостью, подкожными и внутренними кровоизлияниями.

Структурные аналоги витамина К дикумарол и варфарин ингибируют тиолзависимые ферменты витамин К 2,3-эпоксидредуктазу и витамин К редуктазу, вызывая торможение свёртывания крови (рис. 7). Эти препараты применяют в клинической практике для предупреждения тромбозов.

Инициация каскада реакций прокоагулянтного пути. Ферментные мембранные комплексы прокоагулянтного пути образуются только при наличии на внешней поверхности плазматической мембраны клеток тканевого фактора и отрицательно заряженных фосфолипидов. Поперечная асимметрия плазматических мембран, в частности, определяется преобладанием в наружном слое нейтральных фосфолипидов (фосфатидил-холина и сфингомиелина), а во внутреннем - отрицательно заряженных (фосфатидилинозитол-бисфосфата и фосфатидилсерина). Специальная ферментная сисгема обеспечивает трансмембранный перенос и такое распределение фосфолипидов в клеточных мембранах, при котором в норме внешняя поверхность плазматических мембран клеток не заряжена.

При нарушении поперечной асимметрии мембран тромбоцитов и эндотелиальных клеток на их поверхности формируются отрицательно заряженные (тромбогенные) участки и экспонируется апопротеин III тканевого фактора. Такие нарушения могут возникнуть при физической травме. В этом случае тканевый фактор и внутренняя поверхность клеточной мембраны становятся доступными для плазменных факторов прокоагулянтного пути. Кроме того, взаимодействие сигнальных молекул, вызывающих тромбогенез, с рецепторами эндотелиальных клеток и тромбоцитов активирует Са 2+ -зависимые регуляторные системы. В конечном итоге это приводит к повышению содержания в цитоплазме Са 2+ , который ингибирует АТФ-зависимую аминофосфолипидтранслоказу. Этот фермент играет важную роль в сохранении поперечной асимметрии мембран, так как переносит фосфатидилсерин из внешнего липидного слоя во внутренний. Снижение активности аминофосфолипидтранслоказы приводит к увеличению содержания во внешнем слое клеточной мембраны фосфатидилсерина и образованию отрицательно заряженных участков, необходимых для формирования мембранных ферментных комплексов. Кроме того, в результате такого нарушения структуры плазматической мембраны на её внешней поверхности экспонируется тканевый фактор и формируется первый ферментный комплекс прокоагулянтного пути свёртывания крови VII-ТФ-Са 2+ .

Рис. 6. Роль витамина К в посттрансляционном карбоксилировании глутаминовой кислоты. 1 - восстановление экзогенного витамина К NADPH-зависимой редуктазои; 2 - γ-карбоксилирование остатков глутаминовой кислоты в факторах II, VII, IX, X, протеине С витамин К зависимой карбоксилазой сопровождается окислением дигидрохинона с образованием 2,3-эпоксида витамина К; 3 - восстановление 2,3-эпоксида тиолзависимои витамин К редуктазои; 4 - восстановление витамина К тиолзависимои витамин К редуктазои; а) и б) - восстановленная и окисленная формы тиоредоксинподобного белка.
Рис. 7. Структурные аналоги витамина К дикумарол и варфарин.

Активация ферментов каждого комплекса - результат взаимодействия всех его компонентов. Если факторы IX, X и II требуют активации, то фактор VII обладает невысокой протеолитической активностью. Фактор VII мембранного комплекса VII-ТФ-Са 2+ частичным протеолизом активирует факторы IX и X. Активные факторы IХа и Ха включаются в образование мембранных комплексов IXa-VIIIa-Са 2+ и Ха-Va-Са 2+ . При этом фактор Ха протеолитически активирует фактор V, а протромбиназный комплекс не только превращает протромбин в тромбин, но и активирует фактор VII, протеолитическая активность которого в комплексе VIIa-Тф-Са 2+ в 10 000 раз выше, чем в комплексе VII-Тф-Са 2+ .

Образовавшийся в результате каскада реакций тромбин катализирует реакции частичного протеолиза фибриногена, фактора XIII и по принципу положительной обратной связи протеолитически активирует факторы V, VII и VIII.

В процессе свёртывания действуют 2 механизма усиления сигнала: каскад реакций, в котором каждое ферментативное звено обеспечивает усиление сигнала, и положительные обратные связи.

Контактный путь свертывания крови

Контактный путь свёртывания крови начинается с взаимодействия профермента фактора XII с повреждённой эндотелиальной поверхностью сосудистой стенки.

Такое взаимодействие приводит к активации фактора XII и инициирует образование мембранных ферментных комплексов контактной фазы свёртывания. Они содержат ферменты калликреин, факторы XIa (плазменный предшественник тромбопластина) и ХIIа (фактор Хагемана), а также белок-активатор - высокомолекулярный кининоген (ВМК) (рис. 8).

Фактор XII - профермент, циркулирующий в крови. Он последовательно активируется двумя способами: сначала в результате изменения конформации при взаимодействии с отрицательно заряженной поверхностью повреждённого эндотелия, затем частичным протеолизом мембранным комплексом калликреин-ВМК.

Высокомолекулярный кининоген - белок-активатор в ферментных мембранных комплексах ХIIа-ВМК, Xla-BMK и калликреин-ВМК. ВМК - гликопротеин плазмы крови, который синтезируется в печени и имеет молекулярную массу 120 кД. Он опосредует взаимодействие протеолитических ферментов контактной фазы свёртывания крови с коллагеном субэндотелия и, кроме того, является компонентом каллик-реин-кининовой системы.

Рис. 8. Схема прокоагулянтного (внешнего) и контактного (внутреннего) путей свёртывания крови. Обозначения: ВМК - высокомолекулярный кининоген; ТФ - тканевый фактор; → - активация факторов свёртывания крови; ····> активация факторов свёртывания по принципу положительной обратной связи; - мембранный фосфолипидный компонент ферментных комплексов. Все ферменты мембранных комплексов свертывающей системы крови являются протеазами и активируются частичным протеолизом. 1 - активированный в результате контакта с субэндотелием фактор XII превращает прекалликреин в калликреин; 2 - калликреин мембранного комплекса калликреин-ВМК активирует фактор XII; 3 - фактор ХIIа активирует фактор XI; 4 - активированный частичным протеолизом фактор ХIIа превращает прекалликреин в калликреин по принципу положительной обратной связи; 5 - фактор XIa мембранного комплекса XIa-BMK активирует фактор IX; 6 - фактор (Ха мембранного комплекса IXa-VIIIa-Са 2+ активирует фактор X; 7, 8 - фактор VIIa мембранного комплекса VIIa-Тф-Са 2+ активирует факторы IX и X; 9 - фактор Ха протромбиназного комплекса активирует фактор II; 10, 11 - тромбин (фактор II) превращает фибриноген в фибрин и активирует фактор XIII; 12 - фактор XIIIa катализирует образование амидных связей в геле фибрина.

Калликреин - сериновая протеаза, субстратами которой являются, кроме фактора XII, белки плазмы крови плазминоген (профермент, участвующий в растворении фибрина) и кининогены с низкой (69 кД) и высокой (120 кД) молекулярной массой. При частичном протеолизе кининогенов образуются регуляторные пептиды кинины. В частности, мощный вазодилятатор брадикинин повышает проницаемость сосудов и вызывает разрушение клеточных мембран эндотелия.

В результате контакта фактора XII с субэндотелием сосудов он активируется. Активный фактор ХIIа в комплексе с ВМК протеолитически превращает прекалликреин, связанный с мембраной посредством ВМК, в калликреин. Мембранный комплекс калликреин-ВМК по принципу положительной обратной связи частичным протеолизом активирует фактор XII. При этом фактор XII приобретает максимальную ферментативную активность и по принципу положительной обратной связи активирует связанный с ВМК прекалликреин. Кроме того, образовавшийся в результате частичного протеолиза фактор ХIIа протеолитически активирует фактор XI, а фактор ХIа в составе ферментного комплекса XIa-ВМК активирует фактор IX. Фактор IХа мембранного комплекса 1Ха-VIIIa-Са 2+ активирует фактор X, который в составе протромбиназного комплекса активирует протромбин.

Каскад реакций, ведущий к образованию тромбина, может реализоваться двумя путями - прокоагулянтным (внешним) и контактным (внутренним) (рис. 8). Для инициации реакций внешнего пути необходимо появление тканевого фактора на внешней поверхности плазматической мембраны клеток, соприкасающихся с кровью. Внутренний путь начинается с активации фактора XII при его контакте с повреждённой поверхностью эндотелия сосудов и взаимной активации ферментов прекалликреина и фактора XII.

Таким образом, в прокоагулянтном и контактном путях свёртывания крови последовательное образование мембранных ферментных комплексов приводит к активации фактора X и образованию протромбиназы. Этапы, одинаковые для обоих путей свёртывания крови, называют общим путём свёртывания крови. В настоящее время понятие о внутреннем и внешнем путях свёртывания считают достаточно условным, так как стало ясно, что комплекс УПа-ТФ-Са 2+ более эффективно активирует фактор IX, чем фактор X, а фактор VII активируется фактором 1Ха, хотя и значительно медленнее по сравнению с активацией фактором Ха. Следовательно, можно полагать, что каскад реакций свёртывания крови идёт преимущественно в линейной последовательности, а не по двум относительно независимым путям. Контактный путь, очевидно, не является абсолютно необходимым для инициации свёртывания; по-видимому, он служит для сопряжения системы свёртывания крови с различными регуляторными сисгемами организма, например калликреин-кининовой и системой ферментов фиб-ринолиза, растворяющей тромб.

Кровь здорового человека in vitro свёртывается за 5-10 мин. При этом образование протромбиназного комплекса занимает 5 - 8 мин, активация протромбина - 2-5 с и превращение фибриногена в фибрин - 2-5 с.

Снижение свёртываемости крови. При снижении свёртываемости крови наблюдают заболевания, сопровождающиеся повторяющимися кровотечениями. Гемофилии - наследственные болезни, характеризующиеся повышенной кровоточивостью. Причиной этих кровотечений (спонтанных или вызванных травмой) является наследственная недостаточность белков свёртывающей системы крови.

Гемофилия А (классическая гемофилия) обусловлена мутацией гена фактора VIII, локализованного в X хромосоме. Классическая гемофилия составляет 80% всех случаев заболевания гемофилией. Гемофилия В встречается реже и обусловлена генетическим дефектом фактора IX.

Дефект гена фактора VIII проявляется как рецессивный признак, поэтому этой формой гемофилии болеют только мужчины. Это заболевание сопровождается подкожными, внутримышечными и внутрисуставными кровоизлияниями, иногда опасными для жизни. Дефект фактора VIII встречается примерно у одного из 10 000 новорождённых. Больных лечат препаратами, содержащими фактор VIII, получаемыми из донорской крови или методами генной инженерии.

Противосвертывающая система крови

1. ингибиторы ферментов свёртывания крови - инактивируют активные ферменты в кровяном русле

2. антикоагулянтная фаза - вызывает торможение каскада реакций свёртывания крови

1. Физиологические ингибиторы свёртывания крови играют важную роль в поддержании гемостаза, так как они сохраняют кровь в жидком состоянии и препятствуют распространению тромба за пределы повреждённого участка сосуда.

Тромбин , образующийся в результате реакций прокоагулянтного и контактного путей свёртывания крови, вымывается током крови из тромба. Он может инактивироваться при взаимодействии с ингибиторами ферментов свёртывания крови или активировать антикоагулянтную фазу, тормозящую образование тромба.

Белок плазмы крови антитромбин III - наиболее сильный ингибитор свёртывания крови; на его долю приходится около 80-90% антикоагулянтной активности крови. Он инактивирует ряд сериновых протеаз крови: тромбин, факторы IХа, Ха, ХIIа, калликреин, плазмин и урокиназу. Не ингибирует фактор VIIIa и не влияет на факторы в составе мембранных комплексов, а устраняет ферменты, находящиеся в плазме крови, препятствуя распространению тромбообразования в кровотоке.

Взаимодействие антитромбина с ферментами свёртывания крови ускоряется в присутствии гепарина. Гепарин - гетерополисахарид, который синтезируется в тучных клетках. В результате взаимодействия с гепарином антитромбин III приобретает конформацию, при которой повышается его сродство к сериновым протеазам крови. После образования комплекса антитромбин III-гепарин-фермент гепарин освобождается из него и может присоединяться к другим молекулам антитромбина.

При наследственном дефиците антитромбина III в молодом возрасте наблюдают тромбозы и эмболии сосудов, опасные для жизни.

α 2 -Макроглобулин образует комплекс с сериновыми протеазами крови. В таком комплексе их активный центр полностью не блокируется, и они могут взаимодействовать с субстратами небольшого размера. Однако высокомолекулярные субстраты, например фибриноген, становятся недоступными для действия протеаз в комплексе α 2 -макроглобулинтромбин.

Антиконвергин (тканевый ингибитор внешнего пути свёртывания) синтезируется в эндотелии сосудов. Он специфически соединяется с ферментным комплексом Тф-VIIа-Са 2+ , после чего улавливается печенью и разрушается в ней.

α 1 -Антитрипсин ингибирует тромбин, фактор ХIа, калликреин, однако он не рассматривается как важный ингибитор факторов свёртывания крови, α 1 -Антитрипсин в основном на тканевом уровне ингибирует панкреатические и лейкоцитарные протеазы, коллагеназу, ренин, урокиназу.

Пептиды, образующиеся в результате протеолитической активации проферментов и профакторов, тоже обладают выраженными антикоагулянтными свойствами, но механизм их действия в настоящее время не выяснен.

2. Антикоагулянтная фаза - ограничивает время существования активных факторов в крови и инициируется самим тромбином. Тромбин: ускоряет свёртывание крови, являясь последним ферментом каскада реакций коагуляции, и тормозит его, вызывая образование ферментных комплексов антикоагулянтной фазы на неповреждённом эндотелии сосудов. Этот этап представляет собой короткий каскад реакций, в котором кроме тромбина участвуют белок-активатор тромбомодулин (Тм), витамин К-зависимая сериновая протеаза протеин С , белок-активатор S и факторы Va и VIIIa (рис. 9). В каскаде реакций антикоагулянтной фазы последовательно образуются 2 мембранных комплекса IIа-Тм-Са 2+ и Ca-S-Са 2+ .

Тромбомодулин - интегральный белок мембран эндотелиальных клеток. Он не требует протеолитической активации и служит белком-активатором тромбина. Тромбин приобретает способность активировать протеин С только после взаимодействия с тромбомодулином, причём связанный с тромбомодулином тромбин не может превращать фибриноген в фибрин, не активирует фактор V и тромбоциты.

Протеин С - профермент, содержащий остатки γ-карбоксиглутамата. Тромбин в мембранном комплексе IIа-Тм-Са 2+ активирует частичным протеолизом протеин С. Активированный протеин С (Са) образует с белком-активатором S мембраносвязанный комплекс Ca-S-Са 2+ .

Са в составе этого комплекса гидролизует в факторах Va и VIIIa по две пептидные связи и инактивирует эти факторы. Под действием комплекса Ca-S-Са 2+ в течение 3 мин. теряется 80% активности факторов VIIIa и Va. Таким образом, тромбин по принципу положительной обратной связи не только ускоряет своё образование, но и, активируя протеин С, тормозит процесс свёртывания крови.

Наследственный дефицит протеина С и S ведёт к снижению скорости инактивации факторов VIIIa и Va и сопровождается тромботической болезнью. Мутация гена фактора V, при которой синтезируется фактор V, резистентный к протеину С, также приводит к тромбогенезу.

Роль тромбоцитов в гемостазе

Способность Tr прилипать к повреждённой поверхности стенки сосуда (адгезия) и друг к другу (агрегация), связываться с фибрином, образуя тромбоцитарный тромб, и секретировать в месте повреждения сосуда гемостатические факторы определяет их роль в гемостазе.

Циркулирующие в крови Tr имеют дисковидную форму и не прилипают к неповреждённому эндотелию сосудов. Адгезию и агрегацию предотвращают взаимное отталкивание Tr и интактного эндотелия, а также простациклин (PG 12). Механизм действия некоторых индукторов и репрессора агрегации тромбоцитов рассмотрен на рис.10.

Простациклин образуется из арахидоновой кислоты в эндотелиии сосудов и поступает в кровь. Синтез и секрецию простациклина эндотелиальными клетками стимулируют тромбин, гистамин, ангиотензин II и калликреин. Он действует через аденилатциклазную систему передачи сигнала. Взаимодействие простациклина с рецептором вызывает активацию протеинкиназы А (ПКА). Активная ПКА фосфорилирует и таким образом активирует Са 2+ -АТФ-азу и Са 2+ -транслоказу. Это приводит к снижению уровня содержания Са 2+ в цитоплазме Tr, сохранению ими дисковидной формы и снижению способности к агрегации.

Активация Tr сопровождается появлением на поверхности плазматической мембраны «-» заряженных участков, образованных фосфатидилсерином. Основные индукторы активации и агрегации тромбоцитов - фактор фон Виллебранда, коллаген, тромбин, АДФ.

Фактор фон Виллебранда - гликопротеин, присутствующий в плазме крови, эндотелии сосудов и а-гранулах тромбоцитов. При повреждении стенки сосудов коллаген, базальная мембрана и миоциты субэндотелия взаимодействуют с Tr посредством фактора фон Виллебранда. Плазматическая мембрана Tr содержит несколько типов рецепторов этого фактора. Фактор фон Виллебранда, взаимодействуя с рецепторами, действует на Tr через инозитолфосфатную систему (ИФ-система) передачи сигнала. В конечном итоге это приводит к повышению содержания Са 2+ в цитоплазме Tr и образованию комплекса кальмодулин-4Са 2+ - миозинкиназа . Фермент миозинкиназа в составе этого комплекса фосфорилирует сократительный белок миозин , который взаимодействует с актином с образованием актомиозина (тромбостенина). В результате этого Tr приобретают шиповидносферическую форму, облегчающую их взаимодействие друг с другом и с поверхностью повреждённого эндотелия.

Снижение концентрации фактора фон Виллебранда, уменьшение количества или изменение структуры его рецепторов ведут к нарушениям адгезии и агрегации Tr, что сопровождается кровоточивостью. Это наблюдают при синдроме Бернара - Сулье, обусловленном недостатком рецептора фактора фон Виллебранда гликопротеина Iа в Tr, и при болезни фон Виллебранда вследствие дефицита фактора фон Виллебранда.

Наиболее важные первичные индукторы активации Tr - тромбин и коллаген. Взаимодействие этих белков со специфическими рецепторами плазматической мембраны Tr приводит к мобилизации Са 2+ из плотной тубулярной системы в цитоплазму, что в конечном итоге вызывает их адгезию и агрегацию.

Коллаген вызывает в Tr активацию фосфолипазы A 2 , которая освобождает арахидоновую кислоту из фосфолипидов их мембраны. Арахидоновая кислота служит субстратом для фермента циклооксигеназы (ЦОГ). В результате реакции, катализируемой циклооксигеназой, образуются циклические эндоперекиси простагландин G 2 (PG G 2) и простагландин Н 2 (PG Н 2). Эти простагландины под действием тромбоксансинтетазы превращаются в тромбоксан А 2 . Тромбоксан А 2 снижает уровень цАМФ и, активируя фосфолипазу С, ускоряет освобождение Са 2+ из плотной тубулярной системы (рис. 10).

Тромбин взаимодействует со специфическим рецептором - интегральным белком, имеющим 7 трансмембранных доменов. Тромбин активирует рецептор частичным протеолизом, отщепляя от него N-концевой пептид, находящийся на внешней плазматической поверхности тромбоцита. Следовательно, тромбин, в отличие от других активаторов, действует каталитически, и одна молекула тромбина может активировать несколько рецепторов. Передача сигнала осуществляется через ИФ_систему, в результате чего в тромбоците повышается концентрация Са 2+ и активируется ПК С.

Рис. 10. Механизм действия простациклина, тромбоксана.

Образующийся комплекс кальмодулин-4Са 2+ -миозинкиназа фосфорилирует миозин, взаимодействие которого с актином приводит к изменению формы Tr, к их адгезии и агрегации. ПК С, кроме того, фосфорилирует белок Tr плекстрин. Фосфорилированный плекстрин вызывает "реакцию освобождения" содержащихся в гранулах Tr вторичных индукторов активации и агрегации Tr. К этим веществам относят содержащиеся в плотных гранулах Tr АДФ, Са 2+ , ГДФ, серотонин, гистамин и присутствующие в осгранулах белок β-тромбоглобулин, фактор фон Виллебранда, белок фибронектин, тромбосподин и ВМК. Тромбосподин участвует во взаимодействии тромбоцитов друг с другом. β-Тромбоглобулин снижает секрецию простациклина и связывает гепарин. Фибронектин имеет центры связывания для коллагена, гепарина и тромбоцитов.

AДФ содержится в Tr, а также попадает в кровь при разрушении эритроцитов. АДФ взаимодействует со специфическими рецепторами и подавляет активность аденилатциклазы. Это вызывает увеличение мобилизации внутриклеточного Са 2+ и в конечном итоге приводит к агрегации Tr.

Активация Tr, таким образом, сопровождается изменением их метаболизма и освобождением биологически активных веществ. Эти вещества вызывают морфологические изменения, адгезию, агрегацию Tr и участвуют в образовании тромба.

Нарушение функциональной активности рецепторов и системы вторичных посредников Tr приводит к изменению их функции и может явиться причиной ряда заболеваний, сопровождающихся тромбозами или кровотечениями.

Лекарственные препараты, нарушающие агрегацию тромбоцитов, используют для предупреждения возникновения тромбозов. Аспирин (ингибитор циклооксигеназы), никотиновая кислота (ингибитор тромбоксансинтетазы) и Са 2+ -блокаторы угнетают агрегацию тромбоцитов, влияя на разные этапы реализации тромбогенного сигнала.

Тромб растворяется в течение нескольких дней после образования.

Фибринолиз - ферментативное расщепление волокон фибрина с образованием растворимых пептидов, которые удаляются из сосудистого русла. Разрушение фибрина в составе тромба происходит под действием сериновой протеазы плазмина.

Плазмин образуется из плазминогена под действием активаторов. Неактивный профермент плазмина плазминоген синтезируется в печени, почках и костном мозге.

Тканевый активатор плазминогена (ТАП) - протеолитический фермент, содержащийся в эндотелии сосудов всех тканей, кроме печени. Поступление этого активатора в кровь увеличивается при эмоциональном напряжении, боли, венозной тромбоэмболии, умеренной физической работе. ТАП частичным протеолизом превращает неактивный плазминоген в активный плазмин. Активаторами плазминогена также служат фактор ХIIа и калликреин.

Растворение фибринового сгустка происходит при взаимодействии фибрина, плазминогена и ТАП (рис. 11).

Формирование сети фибриновых волокон при образовании тромба сопровождается сорбцией на ней плазминогена и его активаторов. В молекуле плазмина и плазминогена есть участки, комплементарные доменам фибрина, причём одна молекула плазмина может связывать несколько молекул фибрина. Молекулы ТАП тоже имеют центры связывания с фибрином. Образующийся из плазминогена под действием ТАП плазмин гидролизует фибрин с образованием пептидов X и Y, активирующих фибринолиз, и пептидов D и E, его тормозящих. Растворимые пептиды X, Y, D, E поступают в кровоток и там фагоцитируются. Разрушение тромба приводит к освобождению из него плазмина и ТАП. В кровяном русле последние быстро инактивируются специфическими ингибиторами и улавливаются печенью.

ТАП ингибируется ингибиторами тканевого активатора плазмина первого (и-ТАП-1) и второго (и-ТАП-2) типов, а плазмин - α 2 -антиплазмином или другими ингибиторами сериновых протеаз.

В почках синтезируется протеолитический активатор плазминогена урокиназа, которая, превращая плазминоген в плазмин, способствует освобождению почечных клубочков от фибриновых волокон. Из β-гемолитического стрептококка выделили белок стрептокиназу, образующий комплекс с плазминогеном, в котором плазминоген аутокаталитически превращается в плазмин.

Урокиназу, стрептокиназу и ТАП используют при тромболитической терапии инфаркта миокарда, тромбозах вен и артерий, гемодиализе.

Такие ингибиторы ферментов свёртывания крови, как α 2 -макроглобулин, α 1 -антитрипсин и комплекс антитромбин III-гепарин также обладают небольшой фибринолитической активностью.

Снижение фибринолитической активности крови сопровождается тромбозами. Нарушение разрушения фибринового сгустка может быть вызвано наследственным дефицитом плазмино-гена или генетическим дефектом его структуры, снижением поступления в кровь активаторов плазминогена, повышением содержания в крови ингибиторов фибринолиза (и-ТАП-1, и-ТАП-2, α 2 -антиплазмина).

Название заболевания Фактор, образование которого нарушено — Афибриногенемия или гипофибриногенемия Фактор I, фибриноген — Дисфибриногенемия — Гипопротромбинемия Фактор II, протромбин — Гипопроакцелеринемия Фактор V, проакцелерин — Гипопроконвертинемия Фактор VII, проконвертин — Гемофилии A, B, C Фактор VIII, прокоагулянтный компонент комплекса фактора VIII; антигемофильный глобулин А,В — Болезнь Виллебранда Компонент, определяющий антигенную активность комплекса Фактор IX; фактор Виллебранда — Болезнь Стюарта-Прауэра Фактор Х; фактор Стюарта-Прауэра — Болезнь Хагемана Фактор XII, фактор Хагемана — Недостаточность фактора XIII Фактор XIII, фибринстабилизирующий фактор — Болезнь Флетчера Прекалликреин, фактор Флетчера — Недостаточность фактора Высокомолекулярный кининоген, Фитцджеральда-Фложака фактор Фитцджеральда-Фложака

Наследственные и приобретённые нарушения гемостаза могут привести как к геморрагическим заболеваниям, характеризующимся кровоточивостью, так и к тромботической болезни. Однако следует отметить, что повышенная склонность к тромбообразованию и внутрисосудистому свёртыванию (тромбофилии) встречается гораздо чаще, чем гемофилии. Например, частота разных форм гемофилии колеблется в разных странах от 6 до 18 на 100 000 мужчин, в то время как тромбофилии, вызванные дефицитом антитромбина III, встречаются у 1-2 больных на 5000, а при недостатке протеина С - у одного на 15 000 человек.

Основные ингибиторы факторов свертывания представлены в табл. 1.3.

Таблица 1.3. Наиболее важные ингибиторы факторов свертывания

Ингибиторы Специфичность (преобладающее ингибирование) Стимуляция гепарином Молекуляр-ная масса (кДа) Концентра-ция в плазме (мг/л) Период полураспада (час)
Антитромбин III (АТ III) ф.IIa, ф.Xa, ф.IXa + 0,2 18-30
а 2 -макроглобулин неспецифичный - 24-36
Ингибитор тканевого фактора ф.Xa, комплекс ф.VIIa/ТФ + 1 нг/л ?
Кофактор гепарина II ф.IIа, химотрипсин-подобные ферменты + 0,02
a 2 - ингибитор протеазы эластаза, ф.XIa - 24-48
Протеин С ф.VIIIa, Va - 0,004 мкг/л 8-10
Протеин S протеин С (его кофактор) - 0,02 мкг/л
С 1 -ингибитор ф.XIIa, калликреин, ф.XIa, система комплемента - 0,2 50-70

Антитромбин III (АТ III). Антитромбин III - самый важный плазматический ингибитор активированных факторов свертывания. Это гликопротеид, состоящий из 432 аминокислот. Его основная мишень - тромбин, а также ф.Xa и ф.IXa. Эффективность ингибирования потенцируется гепарином и присутствием отрицательно заряженного гликозамингликана на поверхности эндотелиоцитов.

Продукт взаимодействия тромбина и АТ III – неактивный комплекс тромбин/антитромбин III (ТАТ), который в течение нескольких минут выводится печенью из циркуляции.

Дефицит АТ III - фактор риска развития тромбоэмболической болезни. Наследственный дефицит (качественный или количественный) встречается редко (1:10000). Приобретенный дефицит наблюдается часто - это прямой эффект терапии низкомолекулярными или нефракционированным гепарином. Для коррекции дефицита АТ III возможна заместительная терапия препаратом очищенного рекомбинантного антитромбина или с помощью свежезамороженной плазмы.

Кофактор II гепарина. В присутствии высоких доз гепарина (>1 ед/мл) кофактор II гепаринаингибирует тромбин, а также химотрипсин и катепсин H (физиологическая значимость этой реакции не изучена). Не ингибирует ф.Xa и ф.IXa. Около 1% пациентов с тромбозом имеют дефицит кофактора II гепарина. Его активность увеличивается при лечении оральными антикоагулянтами.

Ингибитор тканевого фактора (ИТФ). ИТФ - основной ингибитор активации свертывания по внешнему пути. Ингибирует ф.Xa и комплекс ТФ/ф.VIIa (не способен ингибировать свободный ф.VIIa). Выпуск ИТФ - побочный эффект гепаринотерапии, который вносит вклад в ее клиническую эффективность. Образование тромбина также вызывает выделение в кровоток ИТФ - по принципу отрицательной обратной связи тромбин останавливает свое собственное производство.

Система протеина С. В состав системы протеина С входят: протеин С, протеин S, тромбомодулин, рецептор протеина С на эндотелиальных клетках, С4-связывающий протеин.

Протеин С - витамин-K-зависимый плазменный белок, который синтезируется в печени. Активируется тромбином, соединенным с тромбомодулином. Активированный протеин C инактивирует ф.Va и ф.VIIIa в присутствии кальция на поверхности тромбоцита. Протеин S и ф.V (в неактивированной форме) - кофакторы в этой реакции.

Рецептор протеина С на эндотелиальных клетках - трансмембранный протеин, связанный с эндотелиоцитами. Взаимодействует с интактным протеином C в присутствии Ca 2+ , тромбина и тромбомодулина. Блокирует инактивацию ф.Va, не влияя на инактивацию активированного протеина C. Обнаружена также растворимая форма рецептора в плазме – она взаимодействует с нейтрофилами и играет роль в адгезии лейкоцитов и модуляции воспаления.

Протеин S - витамин-K-зависимый протеин, который синтезируется в печени. Циркулирует в плазме в свободной форме и частично связан с C4b –связывающим протеином. Только свободная форма протеина S эффективна как кофактор для активированного протеина C. Последний в сочетании со свободным протеином S инактивирует ф.VIIIa и ф.Va, реакция зависит от кальция и тромбоцитов.

C4b-связывающий протеин - мультимерный плазменный белок, содержащий семь субъединиц, отходящих от центрального ядра. При его присоединении к протеину S ингибируется кофакторная активность последнего. C4b-связывающий протеин – белок острой фазы (повышается при воспалении, при стероидной терапии), поэтому увеличение уровня C4b-связывающего протеина ведет к дефициту протеина S (снижается концентрация его свободной формы).

Тромбомодулин – специфический трансмембранный белок, который содержится в значительном количестве на поверхности интактного эндотелия. Он в 1000 раз ускоряет активацию протеина C по сравнению с одним тромбином, формируя с ним комплекс (1:1). Помимо этого, при присоединении к тромбину активируется свертывающая функция тромбомодулина (включая активацию ф.V, ф.VIII и ф.XIII). Комплекс тромбин-тромбомодулин активирует также тромбин-активированный ингибитор фибринолиза. В норме тромбомодулин связан с мембраной эндотелиоцитов и практически отсутствует в кровотоке. Появление тромбомодулина в крови, даже в незначительной концентрации, свидетельствует о повреждении эндотелиальных клеток.

Иногда наблюдается резистентность к активированному протеину С. Она может быть наследственной или приобретенной. Наследственная встречается при мутации ф.V Лейдена, мутации протромбина 20210 G-A; приобретенная – при воспалении или беременности (частично вызвано увеличением уровня C4b-связывающего протеина, что ведет к функциональному дефициту протеина S), антифосфолипидном синдроме.

Также различают качественный (тип I) или количественный (тип II) дефицит протеина C и протеина S. Гетерозиготный дефицит протеина C связан с семикратным, а дефицит протеина S – с пятикратным увеличением риска венозного тромбоза.

ФИБРИНОЛИЗ

Сформированный тромб - естественная герметизация повреждения, предотвращающая кровотечение. Но при длительном сроке существования тромба возникает риск снижения кровотока в поврежденных областях и некроза окружающих тканей. Для избежания этого в процессе ферментативных реакций происходит активизация фибринолитической системы, в результате чего образуется мощный фермент плазмин, который растворяет сгусток. Образовавшиеся в результате деградации фибрина продукты, являясь ингибиторами полимеризации фибрина и агрегации тромбоцитов, предотвращают дальнейшее свертывание крови. Помимо своей основной функции - лизиса сгустка – фибринолиз принимает участие в деградации коллагена, ангиогенезе, метастазировании опухолей, апоптозе и т.д.

Система фибринолиза включает факторы, ингибиторы и проферменты (табл. 1.4). Центральный фермент – плазминоген – является предшественником сериновой протеазы плазмина. Важнейшие активаторы плазминогена: тканевой активатор плазминогена (t-РА) и урокиназа.

Активация фибринолиза тканевым активатором плазминогена (t-PA). Эндотелиоциты синтезируют и выпускают в кровоток t-РА; остановка кровотока или формирование фибрина повышают секрецию и синтез t-РА. Активатор имеет высокое сродство к фибрину, он же, особенно частично деградированный, служит кофактором для активации плазминогена посредством t-РА. Таким образом, плазминоген, связанный с фибрином, становится чувствительным к аутопротеолитическому воздействию плазмина (реакция положительной обратной связи).

Плазмин раскалывает фибрин, при этом, образуются продукты деградации фибрина (ПДФ) различных молекулярных размеров. Диагностическую значимость имеет наименьший из ПДФ - D-димер, повышенная концентрация которого указывает на формирование фибрина и последующий его лизис. Плазмин может также расщеплять фибриноген. Продукты деградации нарушают агрегацию тромбоцитов, полимеризацию фибрина и действуют как антикоагулянты. При гиперфибринолизе кровотечение, скорее всего, обусловлено присутствием ПДФ, а не пониженным уровнем фибриногена.

Активация плазминогена урокиназой. Урокиназа активируется при запуске внутреннего пути коагуляции (ф.Xlla, калликреин), а также плазмином (положительная обратная связь). Значимость зависимого от урокиназы пути фибринолиза полностью не понятна, однако при дефиците прекалликреина, ф.XII или высокомолекулярного кининогена наблюдаются тромбозы.

Таблица 1.4. Наиболее важные компоненты фибринолитической системы

Протеин Основная функция в гемостазе Концентрация в плазме (мг/л) Масса (кДа) Дефицит (ß), повышение (Ý) связаны с:
Плазминоген Лизис сгустков фибрина ß - тромбоз (?) Ý - кровотечение
Тканевой активатор плазминогена Активатор плазминогена 0,005 ß - тромбоз Ý -кровотечение
Урокиназа 0,008 ß - тромбоз? Ý - кровотечение?
а 2 -антиплазмин Ингибитор плазмина, t-PA, PAI-1 ß - кровотечение Ý - тромбоз (?)
Ингибитор активатора плазминогена 1 типа (PAI-1) Ингибирование t-PA и урокиназы 0,05 ß - кровотечение Ý - тромбоз
Ингибитор активатора плазминогена 2 типа < 0,005 (Ý при бере-менности) ß - ? Ý - ?
Тромбин-активируемый ингибитор фибринолиза Ингибирование присоединения плазминогена к фибрину ß - ? Ý - тромбоз (?)

Ингибиторы фибринолиза. Основными ингибиторами фибринолиза являются: α 2 -антиплазмин, ингибитор активатора плазминогена 1 типа и тромбин-активируемый ингибитор фибринолиза.

α 2 -антиплазмин в физиологических условиях является быстрым инактиватором плазмина. α 2 -антиплазмин имеет сродство к фибрину и поперечно связан с ним и ф.XIIIa в формирующемся сгустке. На поверхности фибрина плазмин гораздо менее доступен для взаимодействия с α 2 -антиплазмином - ингибирование происходит в 50 раз медленнее, чем в плазме. Дефицит α 2 -антиплазмина связан с геморрагическими осложнениями. Приобретенный дефицит встречается намного чаще, чем наследственный.

Ингибитор активатора плазминогена 1 типа (PAI-1) является ингибитором t-РА и урокиназы. Синтезируется эндотелиоцитами; обнаружен в плазме и тромбоцитах. В плазме стабилизируется, связываясь с витронектином. Синтез PAI-1 стимулируется липополисахаридами эндотоксинов, провоспалительными цитокинами (интерлейкин -1 или фактор некроза опухоли) и тромбином. PAI-1является острофазным белком и может значительно повышаться при воспалении и тромбозах. Наследственный дефицит PAI-1 встречается редко и проявляется кровотечениями.

Тромбин-активируемый ингибитор фибринолиза (TAFI) - один из наиболее мощных ингибиторов. Активируется высокой концентрацией тромбина (большей, чем требуется для формирования фибрина). Активация TAFI тромбином значительно ускоряется в присутствии тромбомодулина. Протеин S, наоборот, ингибирует эту активацию. Активированный TAFI защищает фибриновый сгусток от лизиса, что значительно удлиняет время этого процесса. TAFI играет важную роль в контроле воспалительного ответа, поэтому повышение его уровня при воспалении может усиливать протромботическое состояние, способствуя развитию ДВС.

Гиперфибринолиз. Чрезмерное образование плазмина - гиперфибринолиз - опасная клиническая ситуация, которая связана с высоким риском развития кровотечения (табл. 1.5). Типичные скрининговые исследования не чувствительны в распознавании гиперфибринолиза. Немедленно обнаружить продолжающийся гиперфибринолиз возможно лишь с помощью тромбоэластографии (или электрокоагулографии).

Таблица 1.5. Гиперфибринолиз и его последствия


Причинами гиперфибринолиза могут быть политравма, сепсис, ДВС-синдром и другие состояния. Врожденный или приобретенный дефицит одного из ингибиторов фибринолиза также может индуцировать гиперфибринолиз. Препараты выбора для коррекции данного состояния – апротинин, транексаминовая и e-аминокапроновая кислоты.

Суммируя все вышесказанное, на рис. 1.1 представлена интегральная схема свертывания крови.

Список литературы

1. Андреенко Г.В. Фибринолиз (биохимия, физиология, патология). М: Изд. МГУ; 1979.

2. Балуда В. П., Балуда М. В., Деянов И. И., Тлепшуков И. К. Физиология системы гемостаза. М: Медицина; 1995.

3. Баркаган З.С. Геморрагические заболевания и синдромы. М: Медицина; 1988.

4. Гаврилов О.К. Теория системной регуляции агрегатного состояния крови. Терапевтический архив 1982; 8:133-136.

5. Заболотских И.Б., Синьков С.В. Основы гемостазиологии (справочник). Краснодар: изд-во КГМА; 2002.

6. Зубаиров Д.М. Биохимия свертывания крови. М: Медицина; 1978.

7. Кудряшов Б.А. Биологические проблемы регуляции жидкого состояния крови и ее свертывания. М: Медицина; 1975.

8. Кузник Б.И., Скипетров В.П. Форменные элементы крови, сосудистая стенка, гемостаз и тромбоз. М: Медицина; 1974.

9. Ляпина Л.А. Физиологические функции гепарина. Успехи современной биологии 1987; 1:66-80.

10. Маркосян А.А. Физиология свертывания крови. М: Медицина; 1966.

11. Раби К. Локализованная и рассеянная внутрисосудистая коагуляция. Пер. с франц. М: Медицина; 1974.

12. Скипетров В.П. Тканевое звено физиологической системы регуляции агрегатного состояния крови и клеточных структур. Успехи физиологических наук 1986; 3:65-79.

13. Фермилен Ш., Ферстрате М. Гемостаз. Пер. с франц. М: Медицина; 1984.

14. Чиркова Л.Д. Клиническое значение структурно-функциональной взаимосвязи гемостаза и кининогенеза. Анестезиология и реаниматология 1986; 3:64-69.

15. Шитикова А.С. Тромбоцитарный гемостаз. СПб: ГМУ; 2000.

16. Bertina R. Molecular risk factors for thrombosis. Thromb Haemost 1999; 82:601-609.

17. Born G.V.R. Ideas on the mechanism of platelet aggregation. Ann. N. Y. Acad. Sci. 1972; 201:4-8.

18. Collen D. The plasminogen (fibrinolysis system). Thromb Haemost 1999; 82:259-270.

19. Colman R. Biological functions of high molecular kininogen. Thromb Haemost 1999; 82:1568-1577.

20. Coppola F. Comparison of two immunoassays for the complement protein C4b-binding protein in health and disease. Int J Clin Lab Res 1995; 25:88-92.

21. De Visser M.C.H., Rosendahl F.R., Bertina R.M. A re­duced sensitivity for activated protein С in the absence of factor V Leiden increases the risk of venous thrombosis. Blood 1999; 93:1271-1276.

22. Engelmann B., Luther T., Muller I. Intravascular tissue factor pathway - a model for rapid initiation of coagulation within the blood vessel. Thromb Haemost 2003; 89(l):3-8.

23. Ginsburg D. Molecular Genetics of von Willebrand factor. Thromb Haemost 1999; 82:585-591.

24. Goerge J.N., Shattil S. The clinical importance of ac­quired abnormalities of platelet function. N Engl J Med 1991; 324:27-39.

25. Kolde H.J. Haemostasis. Physiology, pathology, diagnostics. Basel: Pentapharm Ltd; 2004.

26. Mallelt S.V., Cox D.J.A. Thrombelastography. Br J An­esthesia 1992; 69:307-313.

27. Muzbeck L., Yee V.C., Hevessy Z. Blood coagulation factor XIII: Structure and function. Thromb Res 1999; 94:271-305.

28. Ruggeri Z.V. Structure and function of von Willebrand factor. Thromb Haemost 1999; 82:576-584.

29. Seegers W.H. Heparin: structure, function and clinical implications. New York–London: Plenum Press.; 1975. 195-215.

30. Tollefsen D.M. Insight into the mechanism of action of hcparin cofactor II. Thromb Haemost 1995; 74:1209-1214.

31. Tripodi A., Manucci M. Markers of activated coagu­lation and their usefulness in the clinical labora­tory. Clin Chem 1996; 42:684-689.

32. Vorweg M., Hartmann B., Knuttgen D. et al. Management of fulminant fibrinolysis during abdominal aortic surgery. J Cardiothorac Vase Anesth 2001; 15(6):764-767.

Во внешнем пути свертывания крови участвуют тромбопластин (тканевой фактор, фактор III), проконвертин (фактор VII), фактор Стюарта (фактор X), проакцелерин (фактор V), а также Са 2+ и фосфолипиды мембранных поверхностей, на которых образуется тромб (рис. 32). Гомогенаты многих тканей ускоряют свёртывание крови: это действие называют тромбопластиновой активностью. Вероятно, она связана с наличием в тканях какого-то специального белка. Факторы VII и X - проферменты. Они активируются путём частичного протеолиза, превращаясь в протеолитические ферменты - факторы VIIа и Xа соответственно. Фактор V – это белок, который при действии тромбина превращается в фактор V", который не является ферментом, но активирует фермент Xа по аллостерическому механизму; активация усиливается в присутствии фосфолипидов и Са 2+ .

Рис. 32. Схема свертывания крови

В плазме крови постоянно содержатся следовые количества фактора VIIа. При повреждении тканей и стенок сосуда освобождается фактор III – мощный активатор фактора VIIа; активность последнего увеличивается более чем в 15000 раз. Фактор VIIа отщепляет часть пептидной цепи фактора X, превращая его в фермент - фактор Xа. Сходным образом Xа активирует протромбин; образовавшийся тромбин катализирует превращение фибриногена в фибрин, а также превращение предшественника трансглутаминазы в активный фермент (фактор XIIIа). Под влиянием тромбина от фибриногена отщепляются 2 пептида А и 2 пептида В. Фибриноген превращается в хорошо растворимый фибрин-мономер, который быстро полимеризуется в нерастворимый фибрин-полимер при участии фибринстабилизирующего фактора XIII (трансглутаминаза) в присутствии ионов Са 2+ (рис. 33). Этот каскад реакций имеет положительные обратные связи, усиливающие конечный результат. Фактор Xа и тромбин катализируют превращение неактивного фактора VII в фермент VIIа; тромбин превращает фактор V в фактор V", который вместе с фосфолипидами и Са 2+ в 10 4 –10 5 раз повышает активность фактора Xа. Благодаря положительным обратным связям скорость образования самого тромбина и, следовательно, превращения фибриногена в фибрин нарастают лавинообразно, и в течение 10-12 с кровь свертывается.

Фибриновый тромб прикрепляется к матриксу в области повреждения сосуда при участии белка фибронектина. Вслед за образованием нитей фибрина происходит их сокращение, для чего необходима энергия АТФ и фактор 8 тромбоцитов (тромбостенин).

Свертывание крови по внутреннему механизму происходит значительно медленнее и требует 10-15 мин. Этот механизм называют внутренним, потому что для него не требуется тромбопластин (тканевой фактор) и все необходимые факторы содержатся в крови (рис. 32). Внутренний механизм свёртывания также представляет собой каскад последовательных активаций проферментов. Начиная со стадии превращения фактора X в Xа, внешний и внутренний пути одинаковы. Как и внешний путь, внутренний путь свертывания имеет положительные обратные связи: тромбин катализирует превращение предшественников V и VIII в активаторы V" и VIII", которые в конечном итоге увеличивают скорость образования самого тромбина.

Внешний и внутренний механизмы свертывания крови взаимодействуют между собой. Фактор VII, специфичный для внешнего пути свёртывания, может быть активирован фактором XIIа, который участвует во внутреннем пути свертывания. Это превращает оба пути в единую систему свёртывания крови.

Кровотечение из капилляров и мелких сосудов останавливается уже при образовании тромбоцитной пробки. Для остановки кровотечения из более крупных сосудов необходимо быстрое образование прочного тромба, чтобы свести к минимуму потерю крови. Это достигается каскадом ферментных реакций с механизмами усиления на многих ступенях.

Различают три механизма активации ферментов каскада:

1. Частичный протеолиз.

2. Взаимодействие с белками-активаторами.

3. Взаимодействие с клеточными мембранами.

Ферменты прокоагулянтного пути (факторы II, VII, IX и X) содержат
γ-карбоксиглутаминовую кислоту. Эта аминокислота образуется из глутаминовой кислоты в результате посттрансляционной модификации указанных белков. Превращение глутамильного остатка в остаток
γ-карбоксиглутаминовой кислоты катализируется ферментом, коферментом которого служит витамин К.

Реакции, в которых участвуют факторы II, VII, IX и X, активируются ионами Са 2+ и фосфолипидами: радикалы γ-карбоксиглутаминовой кислоты образуют центры связывания Са 2+ на этих белках. Перечисленные факторы, а также факторы V" и VIII" прикрепляютя к бислойным фосфолипидным мембранам и друг к другу при участии ионов Са 2+ , и в таких комплексах происходит активация факторов II, VII, IX и X. Ион Са 2+ активирует также и некоторые другие реакции свёртывания: декальцинированная кровь не свертывается.

В отсутствие витамина К образуются факторы II, VII, IX, и X, не содержащие γ-карбоксиглутаминовых остатков. Такие проферменты не могут превращаться в активные ферменты. Недостаточность витамина К проявляется повышенной кровоточивостью, подкожными и внутренними кровоизлияниями.

У людей с наследственными дефектами трансглутаминазы кровь свертывается так же, как у здоровых, однако тромб получается хрупкий, поэтому легко возникают вторичные кровотечения.

При повышенной свертываемости крови могут образоваться внутрисосудистые тромбы, закупоривающие неповрежденные сосуды (тромботические состояния, тромбофилии).

Наследственные дефекты белков, участвующих в свёртывании крови, проявляются повышением кровоточивости .

Гемофилии – заболевания из группы наследственных коагулопатий, обусловленные дефицитом факторов свертывания плазмы крови и характеризующиеся повышенной склонностью к геморрагиям.

Гемофилия А вызвана отсутствием фактора VIII. Она составляет подавляющее большинство (около 85%) случаев синдрома. Ген фактора VIII локализован в X- хромосоме; повреждение этого гена проявляется как рецессивный признак, поэтому заболевание наследуется по рецессивному признаку по женской линии. У мужчин, имеющих одну X-хромосому, наследование дефектного гена приводит к гемофилии. Признаки болезни обычно обнаруживаются в раннем возрасте: малейшие повреждения приводят к кровотечениям. Наблюдаются также спонтанные носовые кровотечения, внутрисуставные кровоизлияния. Ввиду постоянных и длительных кровотечений у детей с гемофилией наблюдается анемия различной степени выраженности.

Гемофилия В. Гемофилия В обусловлена мутациями гена фактора IX, который, как и ген фактора VIII, локализован в половой хромосоме. Мутации рецессивны, следовательно, гемофилией В болеют в основном мужчины. Данный вид гемофилии составляет около 13% случаев заболевания.

Основной метод лечения - заместительная терапия. Для остановки кровотечения при гемофилии А вводят свежую донорскую кровь, содержащую фактор VIII, или препараты фактора VIII, при гемофилии В - препараты фактора IX.

Фибринолиз. В течение нескольких дней после образования тромба происходит его рассасывание. В этом процессе принимает участие ферментная система, расщепляющая фибриновый сгусток на мелкие растворимые фрагменты. Основным компонентом этой системы является протеолитический фермент плазмин. Плазмин гидролизирует в фибрине пептидные связи, образованные остатками аргинина и триптофана, в результате чего образуются растворимые пептиды. В циркулирующей крови плазмин находится в виде предщественника – плазминогена. Пламиноген может активироваться комплексом фактора XIIа с калликреином, имеющимся в тромбе, а также белковым активатором тканевого типа, синтезируемым в эндотелии сосудов, и ферментом урокиназой, образующейся в юкстогломерулярном комплексе почек. Плазмин может активироваться и в циркулирующей крови без повреждения сосудов. Там плазмин быстро инактивируется белковым ингибитором α 2 - антиплазмином, в то время как внутри тромба он защищён от действия ингибитора.

Урокиназа находит применение для растворения тромбов или предупреждения их образования при тромбофлебитах, тромбоэмболии легочных сосудов, инфаркте миокарда, хирургических вмешательствах. Известны две молекулярные формы этого активатора.

Противосвертывающая система представлена набором белков плазмы, ингибирующих протеолитические ферменты. Ее основная функция - сохранять кровь в жидком состоянии в неповреждённых сосудах и ограничивать процесс тромбообразования.

Белок плазмы антитромбин III создает 75% всей антикоагулянтной активности плазмы крови. Он ингибирует все протеиназы, участвующие в свёртывании крови, кроме фактора VIIа. Антитромбин III не действует на факторы, находящиеся в составе комплексов с фосфолипидами, а только на те, которые находятся в плазме в растворенном состоянии. Таким образом, он устраняет ферменты, попадающие в кровоток из места образования тромба, и предотвращает распространение свертывания крови на неповрежденные участки кровеносного русла.

Известен генетический дефект, при котором концентрация антитромбина III в крови вдвое меньше, чем в норме; у таких людей часто наблюдаются тромбозы.

Гепарин – сульфатированный полисахарид, усиливающий ингибирующее действие антитромбина III: он индуцирует конформационные измененияв молекуле антитромбина III, которые повышают сродство ингибитора к тромбину и другим факторам. После соединения этого комплекса с тромбином гепарин освобождается и может присоединяться к другим молекулам антитромбина III. Таким образом, действие гепарина сходно с действием катализаторов.

Гепарин применяют как антикоагулянт при лечении тромботических состояний.

В плазме крови есть и другие белки – ингибиторы протеиназ, которые также могут уменьшать вероятность внутрисосудистого свёртывания крови. Таким белком является α 2 - макроглобулин, который ингибирует многие протеиназы, и не только те, которые участвуют в свертывании крови.
α 2 -Макроглобулин содержит участки пептидной цепи, которые являются субстратами многих протеиназ; протеиназы присоединяются к этим участкам, гидролизируют в них некоторые пептидные связи, в результате чего изменяется конформация α 2 -макроглобулина, и он захватывает фермент, подобно капкану. Фермент при этом не повреждается: в комплексе с ингибитором он способен гидролизировать низкомолекулярные пептиды, но для крупных молекул активный центр фермента не доступен. Комплекс α 2 -макроглобулина с ферментом быстро удаляется из крови: время его полужизни в крови около 10 мин. При массивном поступлении в кровоток активированных факторов свертывания крови мощность противосвертывающей системы может оказаться недостаточной, и появляется опасность тромбозов.

Контрольные вопросы

1. Перечислите функции белков плазмы крови.

2. Как может измениться уровень альбуминов плазмы при поражении печени? Почему?

3. По какому принципу классифицируют ферменты плазмы крови? Какие из них имеют важное диагностическое значение?

4. Рассмотрите механизм транспорта кислорода и углекислого газа кровью.

5. Назовите важнейшие буферные системы крови.

6. Какие заболевания приводят к развитию метаболического ацидоза?

7. Изложите современные представления о свертывании крови.

8. Какое значение имеет витамин К в синтезе факторов свертывания крови?

9. Какие механизмы приводят к активации ферментов каскада свертывания крови?

10. Что такое антикоагулянтный путь?

11. Охарактеризуйте функционирование противосвертывающей системы крови.

12. Каковы причины развития гемофилий А и В? В чем их отличия?



gastroguru © 2017