История открытия антибиотиков работы отечественных ученых. История открытия пенициллина - биографии исследователей, массовое производство и последствия для медицины

Александра Флеминга считают изобретателем первого из антибиотиков - пенициллина. При этом ни он сам, ни другие люди, так или иначе участвовавшие в создании антибиотиков, не претендуют на авторство, искренне считая, что открытие, спасающее жизни, не может быть источником дохода.

Мы привыкли ко многим вещам, изобретение которых когда-то потрясло мир и перевернуло быт. Мы не удивляемся стиральным машинам, компьютерам, настольным лампам. Нам даже трудно представить, как жили люди без электричества, освещая дома керосиновыми лампами или лучинами. Предметы окружают нас, и мы привыкли не замечать их ценности.

Наш сегодняшний рассказ посвящен не предметам быта. Это рассказ о средствах, к которым мы тоже привыкли и уже не ценим того, что они спасают самое ценное — жизнь. Нам кажется, что антибиотики существовали всегда, но это не так: еще во время Первой мировой войны солдаты умирали тысячами, потому что мир не знал пенициллина, и врачи не могли сделать спасительные уколы.

Воспаление легких, сепсис, дизентерия, туберкулез, тиф — все эти болезни считались либо неизлечимыми, либо почти неизлечимыми. В 30-ых годах ХХ (двадцатого!) века больные очень часто умирали от послеоперационных осложнений, главными из которых было воспаление ран и дальнейшее заражение крови. И это при том, что мысль об антибиотиках была высказана еще в XIX веке Луи Пастером (1822-1895).

Этот французский микробиолог открыл, что бактерии сибирской язвы погибают под действием некоторых других микробов. Однако его открытие не дало готового ответа или рецепта, скорее, поставило перед учеными множество новых вопросов: какие микробы «воюют», чем один побеждает другого... Конечно, чтобы выяснить это, пришлось бы проделать огромную работу. Видимо, такой пласт работы был неподъемным для ученых того времени. Однако ответ был совсем близко, с самого начала жизни на Земле...

Плесень. Такая знакомая и привычная плесень, тысячи лет живущая рядом с человеком, оказалась его защитником. Этот грибок, витающий в воздухе в виде спор, стал предметом спора между двумя русскими врачами в 1860-ых годах.

Незамеченное открытие

Алексей Полотебнов и Вячеслав Манассеин не сошлись во взглядах на природу плесени. Полотебнов считал, что от плесени пошли все микробы, то есть плесень есть прародитель микроорганизмов. Манассеин возражал ему. С целью доказать свою правоту последний начал исследование зеленой плесени (по-латыни penicillium glaucum). Спустя какое-то время врач имел счастье наблюдать интересный эффект: там, где был плесневой грибок, не было бактерий. Вывод следовал только один: каким-то образом плесень не позволяет развиваться микроорганизмам. Оппонент Манассеина Полотебнов тоже пришел к такому выводу: по его наблюдениям, жидкость, в которой образовывалась плесень, оставалась чистой, прозрачной, что свидетельствовало только об одном — бактерий в ней нет.

К чести проигравшего в научном споре Полотебнова, он продолжил свое исследование уже в новом русле, использовав плесень в качестве бактерицидного средства. Он создал эмульсию с плесневым грибком и спрыскивал ею язвы больных кожными заболеваниями. Результат: обработанные язвы заживали раньше, чем если бы остались без лечения. Конечно, как врач Полотебнов не мог оставить открытие втайне и рекомендовал такой способ лечения в 1872 году в одной из своих статей. К сожалению, его наблюдения наука обошла вниманием, и врачи всего мира продолжали лечить больных средствами времен мракобесия: кровопусканием, порошками из высушенных животных и насекомых и прочей бессмыслицей. Эти «средства» считались лечебными и использовались даже в начале прогрессивного ХХ века, когда братья Райт испытывали свои первые самолеты, а Эйнштейн работал над теорией относительности.

Убрать на столе - похоронить открытие

Статья Полотебнова осталась без внимания, и целых полвека никто из ученых не предпринимал новых попыток изучения плесневого грибка. Исследования Полотебнова и их результаты «воскресли» уже в начале ХХ века благодаря счастливой случайности и микробиологу, который не любил убирать на своем столе…

Шотландец Александр Флеминг, которого считают создателем пенициллина, с самой юности мечтал найти средство, уничтожающее болезнетворные бактерии. Он упорно занимался микробиологией (в частности - изучал стафилококки) в своей лаборатории, которая располагалась в одном из госпиталей Лондона и представляла собой тесную комнатушку. Помимо упорства и самоотверженности в работе, не раз отмеченные его коллегами, Флеминг обладал еще одним качеством: он не любил наводить порядок на своем столе. Склянки с препаратами иногда стояли на столе микробиолога неделями. Благодаря этой своей привычке Флемингу и удалось буквально наткнуться на великое открытие.

Однажды ученый оставил колонию стафилококков без внимания на несколько дней. А когда решил их убрать, то обнаружил, что препараты покрылись плесенью, споры которой, по-видимому, проникли в лабораторию через открытое окно. Флеминг не только не выбросил испортившийся материал, но и изучил его под микроскопом. Ученый был поражен: от болезнетворных бактерий не осталось и следа - только плесень и капли прозрачной жидкости. Флеминг решил проверить, действительно ли плесень способна убивать опасные микроорганизмы.

Микробиолог вырастил грибок в питательной среде, «подселил» к нему другие бактерии и поместил чашку с препаратами в термостат. Результат был поразительным: между плесенью и бактериями образовались пятна, светлые и прозрачные. Плесень «огораживала» себя от «соседей» и не давала им размножаться.

Что же это за жидкость, которая образуется возле плесени? Этот вопрос не давал покоя Флемингу. Ученый приступил к новому эксперименту: вырастил плесень в большой колбе и стал наблюдать за ее развитием. Цвет плесени менялся 3 раза: из белого в зеленый, а затем она стала черной. Питательный бульон тоже менялся - из прозрачного он стал желтым. Вывод напрашивался сам собой: плесень выделяет в окружающую среду какие-то вещества. Осталось проверить, обладают ли они столь же «убийственной» силой.

Эврика!

Жидкость, в которой жила плесень, оказалась еще более мощным средством массового поражения бактерий. Даже разведенная водой в 20 раз, она не оставляла бактериям никакого шанса. Флеминг забросил свои прошлые исследования, посвятив все мысли только этому открытию. Он выяснял, на какой день роста, на какой питательной среде, при какой температуре грибок проявляет наибольшее антибактериальное воздействие. Он выяснил, что жидкость, выделенная грибком, воздействует только на бактерии и безвредна для животных. Он назвал эту жидкость пенициллином.

В 1929 году Флеминг рассказал о найденном лекарстве в Лондонском медицинском научно-исследовательском клубе. Его сообщение осталось без внимания - так же, как когда-то статья Полотебнова. Однако шотландец оказался более упрямым, чем русский врач. На всех конференциях, выступлениях, собраниях врачей Флеминг так или иначе упоминал открытое им средство для борьбы с бактериями. Однако была еще одна проблема - нужно было как-то выделить чистый пенициллин из бульона, при этом не разрушив его.

Труды и награды

Выделить пенициллин - эта задача решалась не один год. Флеминг со товарищи предприняли не один десяток попыток, однако в чужой среде пенициллин разрушался. Врачи-микробиологи не могли решить эту задачу, здесь требовалась помощь химиков.

Информация от новом лекарстве постепенно достигла Америки. Спустя 10 лет после первого заявления Флеминга о пенициллине, этим открытием заинтересовались двое английских ученых, которых судьба и война забросила в Америку. В 1939 году Говард Флери, профессор патологии одного из оксфордских институтов, и Эрнст Чейн, биохимик, бежавший из Германии, искали тему для совместной работы. Их заинтересовал пенициллин, точнее, задача его выделения. Она и стала темой их работы.

В Оксфорде оказался штамм (культура микробов), который когда-то прислал Флеминг, поэтому у ученых был материал для работы. В результате долгих, трудных исследований и опытов Чейну удалось получить кристаллы калийной соли пенициллина, которые он затем превратил в слизистую массу, а потом - в коричневый порошок. Гранулы пенициллина были очень мощными: разведенные в пропорции один на миллион, они убивали бактерии через несколько минут, однако были безвредны для мышей. Опыты проводились на мышах: их заражали убойными дозами стрептококков и стафилококков, а затем спасали жизнь половине из них, вводя пенициллин. Опыты Чейна привлекли еще нескольких ученых. Было установлено, что пенициллин также убивает и возбудителей гангрены.

На человеке пенициллин был опробован в 1942 году и спас жизнь умирающему от менингита. Этот случай произвел большое впечатление на общество и врачей. В Англии наладить производство пенициллина не удалось из-за войны, поэтому в 1943 году производство открылось в Америке. В том же году американское правительство сделало заказ на 120 млн. единиц препарата. В 1945 году Флери и Чейн получили Нобелевскую премию за выдающееся открытие. Сам же Флеминг удостаивался различных званий и наград десятки раз: был удостоен рыцарского звания, 25 почетных степеней, 26 медалей, 18 премий, 13 наград и почетного членства в 89 академиях наук и научных обществах. На могиле ученого - скромная надпись: «Александр Флеминг - изобретатель пенициллина».

Изобретение, принадлежащее человечеству

Поисками средства для борьбы с бактериями ученые всего мира искали с тех самых пор, как узнали об их существовании и смогли разглядеть в микроскоп. С началом Второй мировой войны необходимость в этом средстве назрела как никогда. Неудивительно, что в Советском Союзе тоже работали над этим вопросом.

В 1942 году профессор Зинаида Ермольева получила пенициллин из плесени пенициллиум крустозум, взятой со стены одного из бомбоубежищ Москвы. В 1944 году Ермольева, после долгих наблюдений и исследований, решила испытать свой препарат на раненых. Ее пенициллин стал чудом для полевых врачей и спасительным шансом для многих раненых бойцов. В том же году в СССР было налажено производство пенициллина.

Антибиотики - это большая «семья» средств, а не только пенициллин. Некоторые из его «сородичей» были открыты в военные годы. Так, в 1942 году Гаузе получил грамицидин, а в 1944-ом - американец украинского происхождения Ваксман выделил стрептомицин.

Полотебнов, Флеминг, Чейн, Флери, Ермольева, Гаузе, Ваксман - эти люди своими трудами подарили человечеству эпоху антибиотиков. Эпоху, когда менингит или воспаление легких не становятся приговором. Пенициллин так и остался незапатентованным: никто из его создателей не претендовал на авторство средства, спасающего жизни.

Согласно историческим источникам, еще много тысячелетий назад наши предки, столкнувшись с болезнями, вызываемыми микроорганизмами, боролись с ними доступными средствами. Со временем человечество начало понимать, почему те или иные используемые издревле лекарства способны воздействовать на определенные болезни, и научилось изобретать новые лекарства. Сейчас объем средств, используемых для борьбы с патогенными микроорганизмами, достиг особо крупных масштабов, по сравнению даже с недавним прошлым. Давайте рассмотрим, как на протяжении своей истории человек, порой того не подозревая, использовал антибиотики, и как, по мере накопления знаний, использует их сейчас.

Спецпроект о борьбе человечества с патогенными бактериями, возникновении устойчивости к антибиотикам и новой эре в антимикробной терапии.

Спонсор спецпроекта - - разработчик новых высокоэффективных бинарных антимикробных препаратов.

Бактерии появились на нашей планете, по разным оценкам, приблизительно 3,5–4 миллиарда лет назад, задолго до эукариот . Бактерии, как и все живые существа, взаимодействовали друг с другом, конкурировали и враждовали. Мы не можем точно сказать, использовали ли они уже тогда антибиотики, чтобы победить других прокариот в схватке за лучшую среду или питательные вещества. Но существуют доказательства наличия генов, кодирующих устойчивость к бета-лактаму , тетрациклину и гликопептидным антибиотикам, в ДНК бактерий, которые находились в древнем пермафросте возрастом 30 000 лет .

С момента, который принято считать официальным открытием антибиотиков, прошло чуть менее ста лет, но проблема создания новых антимикробных препаратов и использования уже известных при условии быстро возникающей резистентности к ним тревожит человечество не последние пятьдесят лет. Неспроста в своей Нобелевской речи первооткрыватель пенициллина Александр Флеминг предупреждал, что к использованию антибиотиков нужно подходить серьезно.

Так же, как и момент открытия антибиотиков человечеством на несколько миллиардов лет отсрочен от изначального их появления у бактерий, так и история использования человеком антибиотиков началась задолго до их официального открытия. И речь идет не о предшественниках Александра Флеминга, живших в 19 веке, а о совсем далеких временах.

Использование антибиотиков в древности

Еще в Древнем Египте плесневелый хлеб использовали для дезинфекции порезов (видео 1). Хлеб с плесневыми грибками в лечебных целях применяли и в других странах и, видимо, вообще во многих древних цивилизациях. Например, в Древней Сербии, Китае и Индии для предотвращения развития инфекций его прикладывали к ранам. Судя по всему, жители этих стран независимо друг от друга пришли к выводу о целебных свойствах плесени и использовали ее для лечения ран и воспалительных процессов на коже. Древние египтяне прикладывали к гнойникам на коже головы корки плесневелого пшеничного хлеба и считали, что использование этих средств поможет умилостивить духов или богов, ответственных за болезни и страдания.

Видео 1. Причины появления плесени, ее вред и польза, а также применение в медицине и перспективы использования в будущем

Жители Древнего Египта для лечения ран использовали не только хлеб с плесенью, но и самостоятельно изготовленные мази. Есть информация о том, что примерно в 1550 г. до н.э. они готовили смесь из свиного сала и меда, которую наносили на раны и перевязывали специальной тканью. Такие мази обладали некоторым антибактериальным эффектом в том числе благодаря содержащейся в меде перекиси водорода, . Египтяне не были первопроходцами в использовании меда - первым упоминанием о его целебных свойствах считают запись на шумерской табличке, датируемую 2100–2000 гг. до н.э., где говорится, что мед можно использовать как лекарство и мазь. И Аристотель также отмечал, что мед хорош для лечения ран .

В процессе исследования костей мумий древних нубийцев, живших на территории современного Судана, ученые обнаружили в них большую концентрацию тетрациклина . Возраст мумий составлял примерно 2500 лет, и, скорее всего, высокие концентрации антибиотика в костях не могли появиться случайно. Даже в останках четырехлетнего ребенка его количество была очень высоко. Ученые предполагают, что эти нубийцы на протяжении длительного времени потребляли тетрациклин. Скорее всего, его источником были бактерии Streptomyces или другие актиномицеты, содержащиеся в зернах растений, из которых древние нубийцы делали пиво.

В борьбе с инфекциями люди по всему миру использовали и растения. Сложно понять, когда именно некоторые из них начинали применять, из-за отсутствия письменных или других материальных свидетельств. Некоторые растения использовали потому, что человек методом проб и ошибок узнавал об их противовоспалительных свойствах. Другие растения использовали в кулинарии, и вместе со вкусовыми свойствами они обладали и антимикробным действием.

Так обстоит дело с луком и чесноком. Эти растения с давних пор использовали в приготовлении пищи и медицине. Об антимикробных свойствах чеснока знали еще в Китае и Индии . А не так давно ученые выяснили, что народная медицина не зря использовала чеснок - его экстракты угнетают Bacillus subtilis , Escherichia coli и Klebsiella pneumonia .

В Корее издревле для лечения желудочно-кишечных инфекций, вызываемых сальмонеллой, используют лимонник китайский Schisandra chinensis . Уже в наши дни, после проверки действия его экстракта на эту бактерию, оказалось, что лимонник действительно обладает антибактериальным действием . Или, к примеру, на присутствие антибактериальных веществ проверили специи, которые широко используются по всему миру. Получилось, что душица, гвоздика, розмарин, сельдерей и шалфей угнетают такие патогенные микроорганизмы, как Staphylococcus aureus , Pseudomonas fluorescens и Listeria innocua . На территории Евразии народы часто заготавливали ягоды и, естественно, использовали их в том числе и в лечении. Научные исследования подтвердили, что некоторые ягоды обладают антимикробной активностью. Фенолы, особенно эллаготанины, содержащиеся в плодах морошки и малины, ингибируют рост кишечных патогенных микроорганизмов.

Бактерии как оружие

Заболевания, вызываемые патогенными микроорганизмами, еще с давних времен использовали для нанесения противнику вреда с минимальными собственными затратами.

Поначалу открытие Флеминга не использовалось для лечения пациентов и продолжало свою жизнь исключительно за дверями лаборатории. К тому же, как сообщали современники Флеминга, он не был хорошим оратором и не мог убедить общественность в полезности и важности пенициллина. Вторым рождением этого антибиотика можно назвать его переоткрытие учеными из Великобритании Эрнстом Чейном и Говардом Флори в 1940–1941 гг.

В СССР тоже использовали пенициллин, причем если в Великобритании применяли не особенно производительный штамм, то советский микробиолог Зинаида Ермольева в 1942 году обнаружила таковой и даже сумела наладить производство антибиотика в условиях войны . Наиболее активным штаммом был Penicillium crustosum , и поэтому поначалу выделенный антибиотик называли пенициллин-крустозин. Его использовали на одном из фронтов во время Великой Отечественной войны для профилактики послеоперационных осложнений и лечения ран .

Зинаида Ермольева написала небольшую брошюру, в которой рассказала о том, как в СССР был открыт пенициллин-крустозин и как происходил поиск других антибиотиков: «Биологически активные вещества » .

В Европе пенициллин тоже использовали для лечения военных, причем после того, как этот антибиотик начали применять в медицине, он оставался привилегией исключительно военных . Но после пожара 28 ноября 1942 года в ночном клубе Бостона пенициллин стали применять и для лечения гражданских пациентов. У всех пострадавших были ожоги разной степени сложности, и в то время такие пациенты зачастую умирали от бактериальных инфекций, вызываемых, например, стафилококками. Компания Merck & Co. отправила пенициллин в госпитали, где содержались пострадавшие при этом пожаре, и успех лечения поставил пенициллин в центр внимания общественности. К 1946 году он стал широко использоваться в клинической практике.

Доступным для общественности пенициллин оставался вплоть до середины 50-х годов XX века. Естественно, находясь в неконтролируемом доступе, этот антибиотик зачастую использовался неуместно. Есть даже примеры пациентов, которые считали, что пенициллин - чудо-средство от всех человеческих болезней, и применяли его даже для «лечения» того, что ему по природе своей не способно поддаться. Но в 1946 году в одном из американских госпиталей заметили, что 14% взятых от больных пациентов штаммов стафилококка были устойчивы к пенициллину. А в конце 1940-х этот же госпиталь сообщил, что процент резистентных штаммов вырос до 59%. Интересно заметить, что первые сведения о том, что к пенициллину возникает устойчивость, появились в 1940 году - еще до того, как антибиотик стали активно использовать .

До открытия в 1928 году пенициллина, были, конечно, и открытия других антибиотиков. На рубеже XIX–XX веков заметили, что голубой пигмент бактерии Bacillus pyocyaneus способен убивать множество патогенных бактерий, таких как холерный вибрион, стафилококки, стрептококки, пневмококки. Он был назван пиоционазой, но открытие не послужило основой для разработки препарата, потому что вещество было токсично и нестабильно.

Первым коммерчески доступным антибиотиком стал препарат «Пронтосил », который разработал немецкий бактериолог Герхард Домагк в 1930-х годах . Есть документальные свидетельства, что первым вылеченным человеком оказалась его собственная дочь, которая долго страдала от заболевания, вызванного стрептококками. В результате лечения она выздоровела всего за несколько дней. Сульфаниламидные препараты, к которым относится и «Пронтосил», широко использовали во время Второй мировой войны страны антигитлеровской коалиции для предотвращения развития инфекций.

Вскоре после открытия пенициллина, в 1943 году, Альберт Шац, молодой сотрудник в лаборатории Зельмана Ваксмана , выделил из почвенной бактерии Streptomyces griseus вещество, обладающее противомикробной активностью. Этот антибиотик, названный стрептомицином, оказался активным против многих распространенных в то время инфекций, в том числе туберкулеза и чумы.

И все же, примерно до 1970-х годов никто серьезно не задумывался о развитии резистентности к антибиотикам. Затем были замечены два случая заболевания гонореей и бактериальным менингитом, когда бактерия, устойчивая к лечению пенициллином или антибиотиками пенициллинового ряда, вызывала смерть пациента. Эти события ознаменовали момент , когда с десятилетиями удачного лечения заболеваний было покончено.

Надо понимать, что бактерии - это живые системы, поэтому они изменчивы и со временем способны выработать резистентность к любому антибактериальному препарату (рис. 2). Например, к линезолиду бактерии не могли выработать устойчивость на протяжении 50 лет, но все-таки сумели приспособиться и жить в его присутствии . Вероятность развития антибиотикорезистентности в одном поколении бактерий составляет 1:100 млн. К действию антибиотиков они приспосабливаются по-разному. Это может быть усиление клеточной стенки, которую, к примеру, использует Burkholderia multivorans , вызывающая пневмонию у людей с иммунодефицитами . Некоторые бактерии, такие как Campylobacter jejuni , которая вызывает энтероколит, очень эффективно «выкачивают» антибиотики из клеток при помощи специализированных белковых насосов , и поэтому антибиотик не успевает подействовать.

Подробнее о способах и механизмах приспособления микроорганизмов к антибиотикам мы уже писали: «Эволюция наперегонки, или почему антибиотики перестают работать » . А на сайте проекта онлайн-образования Coursera есть полезный курс про антибиотикорезистентность Antimicrobial resistance - theory and methods . В нем достаточно подробно рассказывается об антибиотиках, механизмах устойчивости к ним и путях распространения резистентности.

Первый случай возникновения метициллинустойчивого золотистого стафилококка (MRSA) зафиксировали в Великобритании в 1961 году, а в США - немного позднее, в 1968-м . Про золотистого стафилококка мы чуть подробнее поговорим дальше, но в контексте скорости выработки у него резистентности стоит отметить, что в 1958 году против этой бактерии стали использовать антибиотик ванкомицин . Он был способен работать с тем штаммами, которые не поддавались воздействию метициллина . И до конца 1980-х годов считалось, что к нему резистентность должна вырабатываться дольше или вообще не вырабатываться. Однако в 1979 и 1983 годах, по прошествии всего пары десятков лет, в разных частях мира были зафиксированы случаи устойчивости и к ванкомицину .

Похожий тренд соблюдался и для других бактерий, а некоторые оказались способными выработать резистентность вообще за год. Но кто-то приспосабливался немного медленнее, например, в 1980-х годах только 3–5% S. pneumonia были устойчивы к пенициллину, а в 1998 году - уже 34%.

XXI век - «кризис инноваций»

За последние 20 лет многие большие фармкомпании - например, Pfizer, Eli Lilly and Company и Bristol-Myers Squibb - сократили число разработок или вообще закрыли проекты по созданию новых антибиотиков. Это можно объяснить не только тем, что стало сложнее искать новые вещества (потому что все, которые было легко найти, уже нашли), но и потому что есть другие востребованные и более прибыльные области, например, создание лекарств для лечения онкологических заболеваний или депрессии.

Тем не менее, время от времени то один, то другой коллектив ученых или компания сообщает, что они открыли новый антибиотик, и заявляет, что «вот он уж точно победит все бактерии/некоторые бактерии/определенный штамм и спасет мир». После этого зачастую ничего не происходит, и такие высказывания вызывают у общественности только скепсис. Ведь помимо тестирования антибиотика на бактериях в чашке Петри, нужно провести испытания предполагаемого вещества на животных, а затем и на людях. Это занимает много времени, таит в себе немало подводных камней, и обычно на одной из этих фаз открытие «чудесного антибиотика» сменяется закрытием.

Для того чтобы найти новые антибиотики, применяют различные методы: как классической микробиологии, так и более новые - сравнительной геномики, молекулярной генетики, комбинаторной химии, структурной биологии. Некоторые предлагают отойти от этих «привычных» методов и обратиться к знаниям, накопленным на протяжении истории человечества. Например, в одной из книг Британской библиотеки ученые заметили рецепт бальзама от глазных инфекций, и им стало интересно, на что он способен сейчас. Рецепт датировался X веком, поэтому вопрос - будет работать или нет? - был действительно интригующим. Ученые взяли именно те ингредиенты, которые были указаны, смешали в нужных пропорциях и проверили на метициллинрезистентном золотистом стафилококке (MRSA). К удивлению исследователей, более 90% бактерий были убиты этим бальзамом. Но важно заметить, что такой эффект наблюдался только при совместном использовании всех ингредиентов , .

Действительно, порой антибиотики природного происхождения работают не хуже современных, но их состав настолько сложен и зависит от многих факторов, что быть точно уверенным в каком-то определенном результате затруднительно. Также, невозможно сказать, замедляется ли скорость выработки устойчивости к ним или нет. Поэтому их не рекомендуют использовать как замену основной терапии, а как дополнение под строгим контролем врачей .

Проблемы резистентности - примеры болезней

Невозможно дать полную картину резистентности микроорганизмов к антибиотикам, потому как эта тема многогранна и, несмотря на несколько поутихший интерес со стороны фармкомпаний, достаточно активно исследуется. Соответственно, очень быстро появляется информация о все новых и новых случаях устойчивости к антибиотикам. Поэтому мы ограничимся лишь несколькими примерами для того, чтобы хотя бы поверхностно показать картину происходящего (рис. 3).

Туберкулез: риск в современном мире

Туберкулез особенно распространен в Центральной Азии, Восточной Европе и России, и то, что у туберкулезных микробов (Mycobacterium tuberculosis ) возникает устойчивость не только к определенным антибиотикам, но и к их комбинациям, должно вызывать тревогу.

У пациентов с ВИЧ из-за пониженного иммунитета нередко возникают оппортунистические инфекции, вызываемые микроорганизмами, которые в норме могут без вреда присутствовать в организме человека. Одной из них является туберкулез, который к тому же отмечен как основная причина смерти ВИЧ-положительных пациентов по всему миру. О распространенности туберкулеза по регионам мира можно судить из статистики - у пациентов с ВИЧ, заболевших туберкулезом, если они проживают в Восточной Европе, риск умереть в 4 раза выше, чем если бы они жили в Западной Европе или даже Латинской Америке. Конечно, стоит отметить, что на эту цифру влияет то, насколько в медицинской практике региона принято проводить тесты на восприимчивость пациентов к лекарствам. Это позволяет применять антибиотики только при необходимости.

За ситуацией с туберкулезом наблюдает и ВОЗ. В 2017 году она выпустила доклад о выживаемости при туберкулезе и его мониторинге в Европе. Существует стратегия ВОЗ по ликвидации туберкулеза , и поэтому пристальное внимание обращается на регионы с высоким риском заражения этим заболеванием.

Туберкулез унес жизни таких мыслителей прошлого, как немецкий писатель Франц Кафка и норвежский математик Н.Х. Абель. Однако это заболевание вызывает тревогу и сегодня, и при попытке взглянуть в будущее. Поэтому и на общественном, и на государственном уровнях стоит прислушиваться к стратегии ВОЗ и стараться снизить риски заражения туберкулезом.

В докладе ВОЗ подчеркнуто, что с 2000 года фиксируется меньше случаев заражения туберкулезом: в период с 2006 по 2015 годы число случаев уменьшалось на 5,4% в год, а в 2015 уменьшилось на 3,3%. Тем не менее, несмотря на такой тренд, ВОЗ призывает с вниманием относиться к проблеме антибиотикорезистентности Mycobacterium tuberculosis, и, используя методы гигиены и постоянный мониторинг населения, уменьшать число случаев инфицирования.

Устойчивая гонорея

Масштабы резистентности других бактерий

Примерно 50 лет назад начали появляться штаммы золотистого стафилококка, устойчивые к антибиотику метициллину (MRSA). Инфекции, вызванные метициллинрезистентным золотистым стафилококком, ассоциированы с бóльшим количеством смертей, чем инфекции, вызванные метициллинчувствительным стафилококком (MSSA). Большинство из MRSA также устойчиво и к другим антибиотикам. В настоящее время они распространены и в Европе, и в Азии, и в обеих Америках, и в Тихоокеанском регионе . Эти бактерии чаще других становятся устойчивыми к антибиотикам и в США убивают 12 тысяч людей за год . Есть даже факт, что в США MRSA в год уносит больше жизней, чем ВИЧ/СПИД, болезнь Паркинсона, эмфизема легких и убийства вместе взятые , .

В период с 2005 по 2011 год стали фиксировать меньше случаев заражения MRSA как госпитальной инфекцией. Это связано с тем, что в медицинских учреждениях взяли под строгий контроль соблюдение гигиенических и санитарных норм. Но в общей популяции такой тренд, к сожалению, не сохраняется.

Энтерококки, устойчивые к действию антибиотика ванкомицина - большая беда. Они не так широко распространены на планете, по сравнению с MRSA, но в США каждый год фиксируется около 66 тысяч случаев заражения Enterococcus faecium и, реже, E. faecalis . Они являются причиной большого спектра заболеваний и особенно среди пациентов медицинских учреждений, то есть они - причина госпитальных инфекций. При заражении энтерококком около трети случаев приходится на штаммы, устойчивые к ванкомицину.

Пневмококк Streptococcus pneumoniae является причиной бактериальной пневмонии и менингита. Чаще заболевания развиваются у людей старше 65 лет. Возникновение резистентности усложняет лечение и в итоге приводит к 1,2 миллионам случаев заболевания и 7 тысячам смертей ежегодно . Пневмококк резистентен к амоксициллину и азитромицину. К менее распространенным антибиотикам он тоже выработал устойчивость, и в 30% случаев резистентен к одному или нескольким применяемым в лечении препаратам. Надо заметить, что даже если присутствует небольшой уровень устойчивости к антибиотику, это не снижает эффективность от лечения им. Использование препарата становится бесполезным в случае, если количество резистентных бактерий превышает определенный порог. Для внебольничных пневмококковых инфекций этот порог составляет 20–30% . В последнее время стало происходить меньше случаев заражения пневмококком, потому что в 2010 году создали новую версию вакцины PCV13 , которая действует против 13 штаммов S. pneumoniae .

Пути распространения резистентности

Примерная схема показана на рисунке 4.

Пристальное внимание должно оказываться не только бактериям, которые уже развивают или развили резистентность, но и тем, которые пока не приобрели устойчивость. Потому что со временем и они могут измениться и начать вызывать более сложные формы заболеваний.

Внимание к нерезистентным бактериям можно объяснить и тем, что, даже легко поддаваясь лечению, эти бактерии играют роль в развитии инфекций у пациентов с ослабленным иммунитетом - ВИЧ-положительных, проходящих химиотерапию, недоношенных и переношенных новорожденных, у людей после операции и трансплантации . И так как этих случаев происходит достаточное количество -

  • во всем мире в 2014 году было проведено около 120 тысяч трансплантаций ;
  • только в США ежегодно проходят химиотерапию 650 тысяч человек , однако не у всех есть возможность использовать препараты для борьбы с инфекциями;
  • в США 1,1 миллиона человек - ВИЧ-положительные , в России - чуть меньше, официально 1 млн ;

То есть шанс, что со временем устойчивость появится и у тех штаммов, которые пока не вызывают опасений.

Госпитальные, или внутрибольничные, инфекции все чаще встречаются в наше время. Это те инфекции, которыми люди заражаются в больницах и других медицинских учреждениях при госпитализации и просто при посещении.

В США в 2011 году было зафиксировано более 700 тысяч заболеваний, вызываемых бактериями рода Klebsiella . Это, в основном, внутрибольничные инфекции, которые приводят к довольно обширному спектру заболеваний, таких как пневмония, сепсис, раневые инфекции. Как и в случаях со многими другими бактериями, еще с 2001 года началось массовое появление антибиотикорезистентных клебсиелл.

В одной из научных работ ученые задались целью узнать, как гены устойчивости к антибиотикам распространены среди штаммов рода Klebsiella . Они обнаружили, что 15 довольно далеких штаммов экспрессировали металло-бета-лактамазу 1 (NDM-1), которая способна разрушать почти все бета-лактамные антибиотики . Бóльшую силу эти факты обретают, если уточнить, что данные для этих бактерий (1777 геномов) получены в период с 2011 по 2015 годы от пациентов, которые находились в разных больницах с разными инфекциями, вызванными клебсиеллами.

Развитие резистентности к антибиотикам может произойти, если:

  • пациент принимает антибиотики без назначения врача;
  • пациент не следует назначенному врачом курсу приема лекарств ;
  • врач не обладает должной квалификацией;
  • пациент пренебрегает дополнительными мерами профилактики (мытье рук, продуктов питания);
  • пациент часто посещает медицинские учреждения, в которых повышена вероятность заразиться патогенными микроорганизмами;
  • пациент проходит плановые и внеплановые процедуры или операции, после которых зачастую нужно принимать антибиотики во избежание развития инфекций;
  • пациент потребляет мясную продукцию из регионов, не соблюдающих нормы по остаточному содержанию антибиотиков (например, из России или Китая);
  • у пациента снижен иммунитет из-за болезней (ВИЧ, химиотерапия при онкологических заболеваниях);
  • пациент проходит длительный курс лечения антибиотиками, например, при туберкулезе.

О том, как пациенты самостоятельно уменьшают дозу антибиотика, можно прочитать в статье «Приверженность к приему лекарственных средств и пути ее повышения при бактериальных инфекциях » . Недавно британские ученые высказали достаточно спорное мнение о том, что не обязательно проходить весь курс лечения антибиотиками . Американские врачи, однако, на это мнение отреагировали с большим скепсисом .

Настоящее (влияние на экономику) и будущее

Проблема резистентности бактерий к антибиотикам охватывает сразу несколько сфер человеческой жизни . В первую очередь, это, конечно, экономика. По разным подсчетам, сумма, которую тратит государство на лечение одного пациента с устойчивой к антибиотикам инфекцией, колеблется от $18 500 до $29 000. Эта цифра подсчитана для США, но, пожалуй, ее можно использовать и как средний ориентир по другим странам, чтобы понимать масштаб явления. Такая сумма уходит на одного пациента, но если подсчитать по всем, то оказывается, что суммарно к общему счету, который государство тратит за год на здравоохранение, нужно добавлять $20 000 000 000 . И это помимо $35 000 000 000 социальных расходов. В 2006 году из-за двух наиболее распространенных госпитальных инфекций, в результате которых у людей развивался сепсис и пневмония, умерли 50 тысяч людей. Это обошлось системе здравоохранения США в сумму, превышающую $8 000 000 000.

Ранее мы уже писали про сегодняшнюю ситуацию с антибиотикорезистентностью и о стратегиях по ее предотвращению: «Противостояние с резистентными бактериями: наши поражения, победы и планы на будущее » .

Если антибиотики первой и второй линий не работают, то приходится либо увеличивать дозы в надежде на то, что они сработают, либо использовать антибиотики следующей линии. И в том, и в другом случае высока вероятность повышенной токсичности препарата и побочных действий. К тому же, большая доза или новый препарат будут, скорее всего, стоить дороже предыдущего лечения. Это влияет на сумму, которую затрачивают на лечение государство и сам пациент. А также на срок нахождения пациента в больнице или на больничном, число посещений врача и экономические потери от того, что работник не трудится. Большее количество дней на больничном - это не пустые слова. Действительно, пациента с заболеванием, вызванным резистентным микроорганизмом, в среднем приходится лечить 12,7 дней, по сравнению с 6,4 для обычной болезни .

Кроме причин, которые непосредственно влияют на экономику - траты на лекарства, на оплату больничных и время нахождения в больнице, - есть еще и немного завуалированные. Это те причины, которые влияют на качество жизни людей, у которых обнаружены антибиотикорезистентные инфекции. Некоторые пациенты - школьники или студенты - не могут в полной мере посещать уроки, и поэтому у них возможны отставание в учебном процессе и психологическая деморализация. У пациентов, которые проходят курсы сильных антибиотиков, из-за побочных эффектов могут развиваться хронические заболевания. Помимо самих пациентов, заболевание морально угнетает их родственников и окружение, а некоторые инфекции настолько опасны, что заболевших приходится содержать в отдельной палате, где они зачастую не могут пообщаться с близкими. Также существование госпитальных инфекций и риск ими заразиться не позволяют расслабиться при прохождении курса лечения. Согласно статистике, около 2 миллионов американцев ежегодно заражаются госпитальными инфекциями, которые в итоге уносят 99 тысяч жизней. Чаще всего это происходит из-за заражения микроорганизмами, устойчивыми к антибиотикам . Важно подчеркнуть, что кроме перечисленных выше и, несомненно, важных экономических потерь, качество жизни у людей тоже сильно страдает.

Прогнозы на будущее разнятся (видео 2). Одни пессимистически указывают на то, что к 2030–2040 годам кумулятивные финансовые потери составят 100 триллионов долларов , что равняется среднегодовому убытку в 3 триллиона долларов. Для сравнения - весь годовой бюджет США лишь на 0,7 триллиона превышает эту цифру . Количество смертей от заболеваний, вызванных резистентными микроорганизмами, по оценке ВОЗ, к 2030–2040 годам приблизится к 11–14 миллионам и превысит смертность от рака.

Видео 2. Лекция Мэрин Маккены на TED-2015 - What do we do when antibiotics don’t work any more?

Неутешительны и перспективы использования антибиотиков в кормах сельскохозяйственных животных (видео 3). В исследовании, опубликованном в журнале PNAS , подсчитали, что в 2010 году во всем мире в кормá было добавлено более 63 000 тонн антибиотиков . И это - только по скромным оценкам. Ожидается, что к 2030 году указанная цифра возрастет на 67%, но, что должно особенно встревожить, она удвоится в Бразилии, Индии, Китае, Южной Африке и России. Понятно, что, раз объемы добавляемых антибиотиков увеличатся, то и расход средств на них тоже увеличится. Существует мнение , что цель добавления их в корм - совсем не улучшение здоровья животных, а ускорение роста. Это позволяет быстро выращивать животных, получать прибыль от продаж и снова выращивать новых. Но при возрастающей антибиотикорезистентности, придется добавлять либо бóльшие объемы антибиотика, либо создавать комбинации из них. В любом из указанных случаев, затраты фермеров и государства, которое нередко их субсидирует, на эти препараты возрастут. При этом продажи сельскохозяйственной продукции могут даже снизиться из-за смертности животных, вызванной отсутствием действенного антибиотика или побочными эффектами нового. А также из-за страха со стороны населения, которое не хочет потреблять продукцию с этим «усиленным» препаратом. Снижение продаж или повышение цены на продукцию может ставить фермеров в бóльшую зависимость от субсидий со стороны государства, заинтересованного в обеспечении населения продуктами первой необходимости, которые как раз и предоставляет фермер. Также, многие сельхозпроизводители из-за вышеуказанных причин могут оказаться на грани банкротства, а, следовательно, это приведет к тому, что на рынке останутся лишь крупные сельскохозяйственные компании. И, как следствие, возникнет монополия крупных компаний-гигантов. Такие процессы негативно отразятся на социально-экономическом положении любого государства.

Видео 3. BBC рассказывает о том, насколько может быть опасным развитие антибиотикорезистентности у сельскохозяйственных животных

По всему миру активно развиваются направления науки, связанные с определением причин генетических заболеваний и их лечения, мы с интересом наблюдаем за тем, что происходит с методами, которые помогут человечеству «избавиться от вредных мутаций и стать здоровыми», как любят упоминать поклонники методов пренатального скрининга, CRISPR-Cas9 и только начинающего развиваться метода генетической модификации эмбрионов . Но все это может быть понапрасну, если мы окажемся неспособны противостоять заболеваниям, вызываемым резистентными микроорганизмами. Необходимы разработки, которые позволят преодолеть проблему резистентности, иначе всему миру несдобровать.

Возможные изменения в обычной жизни людей в ближайшие годы:

  • продажа антибиотиков только по рецепту (исключительно для лечения болезней, угрожающих жизни, а не для профилактики банальных «простуд»);
  • экспресс-тесты на степень устойчивости микроорганизма к антибиотикам;
  • рекомендации по лечению, подтвержденные вторым мнением или искусственным интеллектом;
  • дистанционное диагностирование и лечение без посещения мест скопления больных людей (в том числе мест продажи лекарств);
  • проверка на наличие антибиотикорезистентных бактерий до проведения операций;
  • запрет проведения косметических процедур без надлежащей проверки;
  • сокращение потребления мяса и повышение его цены из-за удорожания ведения хозяйства без привычных антибиотиков;
  • увеличение смертности людей в группе риска;
  • увеличение смертности от туберкулеза в странах из группы риска (Россия, Индия, Китай);
  • ограниченное распространение антибиотиков последнего поколения по миру для замедления развития устойчивости к ним;
  • дискриминация в доступе к таким антибиотикам по финансовому статусу и по месту проживания.

Заключение

Меньше века прошло с начала масштабного использования антибиотиков. Вместе с тем, меньше века заняло у нас, чтобы результат этого достиг грандиозных масштабов . Угроза антибиотикорезистентности вышла на глобальный уровень, и было бы глупо отрицать, что именно мы своими же усилиями создали себе такого врага. Сегодня каждый из нас ощущает на себе последствия уже возникшей устойчивости и находящуюся в процессе развития устойчивость, когда получаем от врача выписанные антибиотики, принадлежащие не к первой линии, а второй или даже последней. Сейчас существуют варианты решения этой проблемы, но самих проблем - не меньше. Предпринимаемые нами действия по борьбе с быстро развивающими устойчивость бактериями напоминают гонку. Что будет дальше - покажет время.

Об этой проблеме рассказывает в лекции «Кризис медицины и биологические угрозы » Николай Дурманов, экс-глава «РУСАДА ».

И время, действительно, расставляет все по своим местам. Начинают появляться средства, позволяющие улучшить работу уже существующих антибиотиков, научные группы ученых (пока что ученых, но вдруг эта тенденция вновь вернется и к фармкомпаниям) без устали трудятся над созданием и проверкой новых антибиотиков. Обо всем этом можно прочитать и воспрянуть духом во второй статье цикла.

«Супербаг Солюшенс» - спонсор спецпроекта по антибиотикорезистентности

Компания Superbug Solutions UK Ltd. («Супербаг Солюшенс» , Великобритания) - одна из ведущих компаний, занимающихся уникальными исследованиями и разработками решений в области создания высокоэффективных бинарных антимикробных препаратов нового поколения. В июне 2017 года «Супербаг Солюшенс» получила сертификат от крупнейшей в истории Европейского Союза программы по исследованиям и инновациям «Горизонт 2020», удостоверяющий, что технологии и разработки компании являются прорывными в истории развития исследований по расширению возможностей применения антибиотиков.


Много веков назад было замечено, что зеленая плесень помогает в лечении тяжелых гнойных ран. Но в те далекие времена не знали ни о микробах, ни об антибиотиках. Первое научное описание лечебного действия зеленой плесени сделали в 70-х годах 19 века русские ученые В.А.Манассеин и А.Г. Полотебнов. После этого на несколько десятилетий о зеленой плесени забыли, и только в 1929 году она стала настоящей сенсацией, перевернувшей научный мир. Феноменальные качества этого неприятного живого организма изучил профессор микробиологии Лондонского университета Александр Флеминг.

Опыты Флеминга показали, что зеленая плесень вырабатывает особое вещество, обладающее антибактериальными свойствами и подавляющее рост многих болезнетворных микроорганизмов. Это вещество ученый назвал пенициллином, по научному названию вырабатывающих его плесневых грибов. В ходе дальнейших исследований Флеминг выяснил, что пенициллин губительно действует на микробы, но вместе с тем не оказывает отрицательного действия на лейкоциты, принимающие активное участие в борьбе с инфекцией, и другие клетки организма. Но Флемингу не удалось выделить чистую культуру пенициллина для производства лекарственных препаратов.

Учение об антибиотиках - молодая синтетическая ветвь современного естествознания. Впервые в 1940 году был получен в кристаллическом виде химиотерапевтический препарат микробного происхождения – пенициллин - антибиотик, открывший летоисчисление эры антибиотиков.

Многие учёные мечтали о создании таких препаратов, которые можно было бы использовать при лечении различных заболеваний человека, о препаратах, способных убивать патогенных бактерий, не оказывая вредного действия на организм больного.

Пауль Эрлих (1854-1915) в результате многочисленных опытов синтезировал в 1912 году мышьяковистый препарат - сальварсан, убивающий in vitro возбудителя сифилиса. В 30-х годах прошлого столетия в результате химического синтеза были получены новые органические соединения – сульфамиды, среди которых красный стрептоцид (пронтозил) был первым эффективным препаратом, оказавшим терапевтическое действие при тяжёлых стрептококковых инфекциях.

Он долгое время пребывал в гордом одиночестве, если не считать используемого индейцами Южной и Центральной Америки для лечения малярии хинина - алкалоида хинного дерева. Только спустя четверть века были открыты сульфаниламидные препараты, а в 1940 году Александр Флеминг выделил в чистом виде пенициллин.

В 1937 году в нашей стране был синтезирован сульфидин – соединение, близкое к пронтозилу. Открытие сульфамидных препаратов и применение их в медицинской практике составило известную эпоху в химиотерапии многих инфекционных заболеваний, в том числе сепсиса, менингита, пневмонии, рожистого воспаления, гонореи и некоторых других.

Луи Пастер и С. Джеберт в 1877 году сообщили, что аэробные бактерии подавляют рост Bacillus anthracis.

В конце XIX века В. А. Манассеин (1841-1901) и А. Г. Полотебнов (1838-1908) показали, что грибы из рода Penicillium способны задерживать в условиях in vivo развитие возбудителей ряда кожных заболеваний человека.

И. И. Мечников (1845 - 1916) ещё в 1894 году обратил внимание на возможность использования некоторых сапрофитных бактерий в борьбе с патогенными микроорганизмами.

В 1896 году Р. Гозио из культурной жидкости Penicillium brevicompactum выделил кристаллическое соединение - микофеноловую кислоту, подавляющее рост бактерий сибирской язвы.

Эммирих и Лоу в 1899 году сообщили об антибиотическом веществе, образуемом Pseudomonas pyocyanea, они назвали его пиоцианазой; препарат использовался в качестве лечебного фактора как местный антисептик.

В 1910-1913 годах O. Black и U. Alsberg выделили из гриба рода Penicillium пеницилловую кислоту, обладающую антимикробными свойствами.

В 1929 году А. Флемингом был открыт новый препарат пенициллин , который только в 1940 году удалось выделить в кристаллическом виде.

Открытие Флеминга

В 1922 году после неудачных попыток выделить возбудителя простудных заболеваний Флеминг чисто случайно открыл лизоцим (название придумал профессор Райт) - фермент, убивающий некоторые бактерии и не причиняющий вреда здоровым тканям. К сожалению, перспективы медицинского использования лизоцима оказались довольно ограниченными, поскольку он был достаточно эффективным средством против бактерий, не являющихся возбудителями заболеваний, и совершенно неэффективным против болезнетворных организмов. Это открытие побудило Флеминга заняться поисками других антибактериальных препаратов, которые были бы безвредны для организма человека.

Следующая счастливая случайность - открытие Флемингом пенициллина в 1928 году - явилась результатом стечения ряда обстоятельств, столь невероятных, что в них почти невозможно поверить. В отличие от своих аккуратных коллег, очищавших чашки с бактериальными культурами после окончания работы с ними, Флеминг не выбрасывал культуры по 2-3 недели, пока его лабораторный стол не оказывался загроможденным 40-50 чашками. Тогда он принимался за уборку, просматривал культуры одну за другой, чтобы не пропустить что-нибудь интересное. В одной из чашек он обнаружил плесень, которая, к его удивлению, угнетала высеянную культуру бактерии. Отделив плесень, он установил, что «бульон», на котором разрослась плесень, приобрел выраженную способность подавлять рост микроорганизмов, а также имел бактерицидные и бактериологические свойства.

Неряшливость Флеминга и сделанное им наблюдение явились двумя обстоятельствами в целом ряду случайностей, способствовавших открытию. Плесень, которой оказалась заражена культура, относилась к очень редкому виду. Вероятно, она была занесена из лаборатории, где выращивались образцы плесени, взятые из домов больных, страдающих бронхиальной астмой, с целью изготовления из них десенсибилизирующих экстрактов. Флеминг оставил ставшую впоследствии знаменитой чашку на лабораторном столе и уехал отдыхать. Наступившее в Лондоне похолодание создало благоприятные условия для роста плесени, а последовавшее затем потепление - для бактерий. Как выяснилось позднее, стечению именно этих обстоятельств было обязано знаменитое открытие.

Первоначальные исследования Флеминга дали ряд важных сведений о пенициллине. Он писал, что это «эффективная антибактериальная субстанция..., оказывающая выраженное действие на пиогенные кокки и палочки дифтерийной группы. .. Пенициллин даже в огромных дозах не токсичен для животных... Можно предположить, что он окажется эффективным антисептиком при наружной обработке участков, пораженных чувствительными к пенициллину микробами, или при его введении внутрь». Зная это, Флеминг не сделал тем не менее столь очевидного следующего шага, который 12 лет спустя был предпринят Хоуардом У. Флори и состоял в том, чтобы выяснить, будут ли спасены от летальной инфекции мыши, если лечить их инъекциями пенициллинового бульона. Флеминг назначил его нескольким пациентам для наружного применения. Однако результаты были противоречивыми. Раствор оказался нестабильным и с трудом поддавался очистке, если речь шла о больших его количествах.

Подобно Пастеровскому институту в Париже, отделение вакцинации в больнице Св. Марии, где работал Флеминг, существовало благодаря продаже вакцин. Флеминг обнаружил, что в процессе приготовления вакцин пенициллин помогает предохранить культуры от стафилококка. Это было техническое достижение, и ученый широко пользовался им, еженедельно отдавая распоряжения изготовлять большие партии бульона. Он делился образцами культуры пенициллина с коллегами в других лабораториях, но ни разу не упомянул о пенициллине ни в одной из 27 статей и лекций, опубликованных им в 1930-1940 годы, даже если речь шла о веществах, вызывав ющих гибель бактерий.

Таким образом, к моменту получения пенициллина в очищенном виде было известно пять антибиотических средств (микофеноловая кислота, пиоцианаза, актиномицетин, мицетин и тиротрицин). В последующем число антибиотиков быстро росло и к настоящему времени их описано почти 7000 (образуемых лишь микроорганизмами); при этом только около 160 используется в медицинской практике. С получением пенициллина как препарата (1940 год) возникло новое направление в науке – учение об антибиотиках, которое необычайно быстро развивается в последние десятилетия.

В 70-х годах ежегодно описывалось более 300 новых антибиотиков. В 1937 году Вельш описал первый антибиотик стрептомицетного происхождения актимицетин, в 1939 году Красильниковым и Кореняко был получен мицетин и Дюбо – тиротрицин. Впоследующем число антибиотиков росло очень быстрыми темпами.

Нобелевская премия по физиологии и медицине 1945 года была присуждена совместно Флемингу, Чейну и Флори «за открытие пенициллина и его целебного воздействия при различных инфекционных болезнях». В Нобелевской лекции Флеминг отметил, что «феноменальный успех пенициллина привел к интенсивному изучению антибактериальных свойств плесеней и других низших представителей растительного мира. Лишь немногие из них обладают такими свойствами».

В оставшиеся 10 лет жизни ученый был удостоен 25 почетных степеней, 26 медалей, 18 премий, 30 наград и почетного членства в 89 академиях наук и научных обществах.

Побочные действия

Однако антибиотики - это не только панацея от микробов, но и сильные яды. Ведя на уровне микромира между собой смертоносные войны, с их помощью одни микроорганизмы безжалостно расправляются с другими. Человек подметил это свойство антибиотиков и использовал его в своих целях - начал расправляться с микробами их же собственным оружием, создал на основе природных сотни еще более мощных синтетических препаратов. И все же предначертанное антибиотикам самой природой свойство убивать по-прежнему неотъемлемо от них.

Все антибиотики, без исключений, обладают побочными действиями! Это следует уже из самого названия таких веществ. Естественное природное свойство всех антибиотиков убивать микробы и микроорганизмы, к сожалению, невозможно направить на уничтожение только одного вида бактерий или микробов. Уничтожая вредные бактерии и микроорганизмы, любой антибиотик неминуемо оказывает такое же угнетающее воздействие и на все схожие с "врагом" полезные микроорганизмы, которые, как известно, принимают активное участие практически во всех процессах происходящих в нашем организме.



Всемирно известный изобретатель антибиотиков – шотландский ученый Александр Флеминг, которому приписывают открытие пенициллинов из плесневых грибов. Это был новый поворот в развитии медицины. За такое грандиозное открытие изобретатель пенициллина получил даже Нобелевскую премию. Ученый достиг истины исследовательским путем, спас от смерти ни одно поколение людей. Гениальное изобретение антибиотиков позволило истреблять патогенную флору организма без серьезных последствий для здоровья.

Что такое антибиотики

С момента появления первого антибиотика прошло уже много десятилетий, но об этом открытии хорошо знают медицинские работники во всем мире, простые обыватели. Сами по себе антибиотики – это отдельная фармакологическая группы с синтетическими компонентами, цель которых – нарушить целостность мембран патогенных возбудителей, прекратить их дальнейшую активность, незаметно вывести из организма, предотвратить общую интоксикацию. Первые антибиотики и антисептики появились в 40-х годах прошлого века, с того времени их ассортимент значительно пополнился.

Полезные свойства плесени

От повышенной активности болезнетворных бактерий хорошо помогают антибиотики, которые были выработаны из плесневых грибов. Лечебное действие антибактериальных препаратов в организме системное, все это благодаря полезным свойствам плесени. Первооткрывателю Флемингу лабораторным методом удалось выделить пенициллин, польза такого уникального состава представлена ниже:

  • зеленая плесень подавляет бактерии устойчивые к другим лекарственным средствам;
  • польза плесневого грибка очевидна при лечении брюшного тифа;
  • плесень истребляет такие болезненные бактерии, как стафилококки, стрептококки.

Медицина до изобретения пенициллина

В средние века человечество знало о колоссальной пользе плесневого хлеба и отдельного вида грибов. Такие лекарственные компоненты активно использовали для обеззараживания гнойных ран участников боевых действий, исключения заражения крови после оперативного вмешательства. До научного открытия антибиотиков было еще много времени, поэтому положительный аспект пенициллинов медики черпали из окружающей природы, определили путем многочисленных экспериментов. Проверяли эффективность новых средств на раненых бойцах, женщинах в состоянии родильной горячки.

Как лечили инфекционные заболевания

Не зная мир антибиотиков, люди жили по принципу: «Выживает только сильнейший», по принципу естественного отбора. Женщины умирали от сепсиса при родах, а бойцы – от заражения крови и нагноения открытых ран. Найти средство для эффективного очищения ран и исключения инфицирования в то время не могли, поэтому чаще знахари и врачеватели пользовались местными антисептиками. Позже, в 1867 году хирург из Великобритании определил инфекционные причины появления нагноения и пользу карболовой кислоты. Тогда это было основное лечение гнойных ран, без участия антибиотиков.

Кто изобрел пенициллин

На главный вопрос, кто открыл пенициллин, имеется несколько противоречивых ответов, однако официально считается, что создатель пенициллина – шотландский профессор Александр Флеминг. С детства будущий изобретатель мечтал найти уникально лекарство, поэтому поступил в медицинскую школу на базе госпиталя Святой Марии, которую окончил в 1901 году. Колоссальную роль при открытии пенициллина сыграл Алмрот Райт, изобретатель вакцины против брюшного тифа. С ним Флемингу посчастливилось посотрудничать в 1902 году.

Учился молодой микробиолог в академии Килмарнок, затем переехал в Лондон. Уже в статусе дипломированного ученого Флемминг открыл существование penicillium notatum. Научное открытие было запатентовано, ученый после окончания Второй Мировой войны в 1945 году даже получил Нобелевскую премию. До этого работа Флеминга была не раз отмечена премиями и ценными наградами. Принимать антибиотики в целях эксперимента человек начал в 1932 году, а до этого исследования проводились преимущественно на лабораторных мышах.

Разработки европейских ученых

Основателем бактериологии и иммунологии является французский микробиолог Луи Пастер, который в девятнадцатом веке подробно описал пагубное воздействие почвенных бактерий на возбудителей туберкулеза. Всемирно известный ученый лабораторными методами доказал, что одни микроорганизмы – бактерии могут быть истреблены другими – плесневыми грибами. Начало научных открытий было положено, перспективы открывались грандиозные.

Известный итальянец Бартоломео Гозио в 1896 году в своей лаборатории изобрел микофеноловую кислоту, которую стали называть одним из первых антибиотических средств. Тремя годами позднее немецкие врачи Эммерих и Лов открыли пиоценазу – синтетическое вещество, способное снижать патогенную активность возбудителей дифтерии, тифа и холеры, демонстрировать устойчивую химическую реакцию против жизнедеятельности микробов в питательной среде. Поэтому споры в науке на тему, кто изобрел антибиотики, не стихают и в настоящее время.

Кто изобрел пенициллин в России

Два российских профессора – Полотебнов и Манассеин спорили на тему происхождения плесни. Первый профессор утверждал, что от плесени пошли все микробы, а второй был категорически против. Манассеин стал исследовать зеленую плесень и обнаружил, что вблизи ее локализации полностью отсутствуют колонии патогенной флоры. Второй ученый занялся изучением антибактериальных свойств такого натурального состава. Такая нелепая случайность в перспективе станет истинным спасением для всего человечества.

Русский ученый Иван Мечников изучил действие ацидофильных бактерий с кисломолочными продуктами, которые благотворно воздействуют на системное пищеварение. Зинаида Ермольева вообще стояла у истоков микробиологии, стала основательницей известного антисептика лизоцима, а в истории известна, как «Госпожа пенициллин». Свои открытия Флеминг реализовал в Англии, параллельно над разработкой пенициллина трудились отечественные ученые. Американские ученые тоже не сидели зря.

Изобретатель пенициллина в США

Американский исследователь Зельман Ваксман параллельно занимался разработкой антибиотиков, но на территории США. В 1943 году ему удалось получить эффективный в отношении туберкулеза и чумы синтетический компонент широкого спектра действия под названием стрептомицин. в дальнейшем было налажено его промышленное производство, чтобы с практической позиции уничтожить вредную бактериальную флору.

Хронология открытий

Создание антибиотиков было постепенным, при этом использовался колоссальный опыт поколений, доказанные общенаучные факты. Чтобы антибактериальная терапия в современной медицине получилась настолько успешной, многие ученые «приложили к этому руку». Изобретателем антибиотиков официально считается Александр Флеминг, но помощь пациентам оказали и другие легендарные личности. Вот что необходимо знать:

  • 1896 г - Б. Гозио создал микофеноловую кислоту против сибирской язвы;
  • 1899 г - Р. Эммерих и О. Лоу открыли местный антисептик на основе пиоценазы;
  • 1928 г - А. Флеминг открыл антибиотик;
  • 1939 г - Д. Герхард получил Нобелевскую премию по физиологии и медицине за антибактериальное действие пронтозила;
  • 1939 г - Н. А. Красильников и А. И. Кореняко стали изобретателями антибиотика мицетин, Р. Дюбо открыл тиротрицин;
  • 1940 г - Э. Б. Чейн и Г. Флори доказали существование стабильного экстракта пенициллина;
  • 1942 г - З. Ваксман предложил создание медицинского термин «антибиотик».

История открытия антибиотиков

Стать медиком изобретатель решил по примеру своего старшего брата Томаса, который в Англии получил диплом и работал врачом-офтальмологом. В его жизни случилось много интересных и судьбоносных событий, которые позволили ему сделать это грандиозное открытие, предоставили возможность продуктивно уничтожать патогенную флору, обеспечить гибель целых колоний бактерий.

Исследования Александра Флеминга

Открытию европейских ученых предшествовала необычная история, произошедшая в 1922 году. Простудившись, изобретатель антибиотиков не надел при работе маску и случайно чихнул в чашку Петри. Через некоторое время неожиданно обнаружил, что в месте попадания слюны вредные микробы погибли. Это был существенный шаг в борьбе с болезнетворной инфекций, возможность вылечить опасную болезнь. Результату такого лабораторного исследования был посвящен научный труд.

Следующее судьбоносное совпадение в трудовой деятельности изобретателя произошло шестью годами позднее, когда в 1928 году ученый уехал на месяц отдыхать с семьей, предварительно сделав посевы стафилококка в питательной среде из агар-агара. По возвращению обнаружил, что плесень отгородилась от стафилококков прозрачной жидкостью, нежизнеспособной для бактерий.

Получение активного действующего вещества и клинические исследования

Учитывая опыт и достижения изобретателя антибиотиков, ученые микробиологии Говард Флори и Эрнст Чейн в Оксфорде решили пойти дальше и занялись получением пригодного к массовому использованию препарата. Лабораторные исследования проводились на протяжении 2 лет, в результате чего было определено чистое действующее вещество. Испытывал его в обществе ученых сам изобретатель антибиотиков.

При помощи такой инновации Флори и Чейн вылечили несколько осложненных случаев прогрессирующего сепсиса и пневмонии. В дальнейшем разработанные в лабораторных условиях пенициллины начали успешно лечить такие страшные диагнозы, как остеомиелит, газовая гангрена, родильная горячка, стафилококковая септицемия, сифилис, сифилис, другие инвазивные инфекции.

В каком году изобрели пенициллин

Официальная дата общенародного признания антибиотика – 1928 год. Однако такого рода синтетические вещества были выявлены и раньше – на внутреннем уровне. Изобретатель антибиотиков – Александр Флеминг, но за это почетное звание могли посоперничать европейские, отечественные ученые. Шотландцу удалось прославить свое имя в истории, благодаря этому научному открытию.

Запуск в массовое производство

Поскольку открытие было официально признано в период Второй Мировой войны, очень сложно было наладить производство. Однако все понимали, что с его участием можно спасти миллионы жизней. Поэтому в 1943 году в условиях боевых действий серийным выпуском антибиотических средств занялась ведущая американская компания. Таким способом удалось не только сократить показатели смертности, но и увеличить продолжительность жизни мирного населения.

Применение в годы второй мировой войны

Такое научное открытие было особенно уместно в период боевых действий, поскольку люди тысячами умирали от гнойных ран и масштабного заражения крови. Это были первые эксперименты на людях, которые давали устойчивый терапевтический эффект. После окончания войны производство таких антибиотиков не просто продолжилось, но и в разы повысилось по объемам.

Значение изобретения антибиотиков

Современное общество по сей день должно быть благодарно, что ученые своего времени сумели придумать эффективные против инфекций антибиотики и воплотили свои разработки в жизнь. Таким фармакологическим назначением могут смело воспользоваться взрослые и дети, вылечить ряд опасных заболеваний, избежать потенциальных осложнений, летального исхода. Изобретатель антибиотиков не забыт в нынешнее время.

Положительные моменты

Благодаря антибиотическим средствам, смерть от пневмонии и родовой горячки стала редкостью. Кроме того, наблюдается положительная динамика при таких опасных заболеваниях, как брюшной тиф, туберкулез. С помощью уже современных антибиотиков можно истребить патогенную флору организма, вылечить опасные диагнозы еще на ранней стадии инфицирования, исключить глобальное заражение крови. Заметно снизился и показатель детском смертности, женщины при родах умирают гораздо реже, чем в средние века.

Отрицательные аспекты

Изобретатель антибиотиков тогда не знал, что со временем патогенные микроорганизмы адаптируются в антибиотической среде и перестанут погибать под воздействием пенициллина. Кроме того, не существует лекарство от всех возбудителей, изобретатель такой разработки еще не появился, хотя современные ученые к этому стремятся годами, десятилетиями.

Генные мутации и проблема резистентности бактерий

Патогенные микроорганизмы по своей природе оказались так называемыми «изобретателями», поскольку под воздействием антибиотических препаратов широкого спектра действия способны постепенно мутировать, приобретая повышенную устойчивость к синтетическим веществам. Вопрос резистентности бактерий для современной фармакологии стоит особенно остро.

Видео

Внимание! Иформация представленная в статье носит ознакомительный характер. Материалы статьи не призывают к самостоятельному лечению. Только квалифицированный врач может поставить диагноз и дать рекомендации по лечению исходя из индивидуальных особенностей конкретного пациента.

Нашли в тексте ошибку? Выделите её, нажмите Ctrl + Enter и мы всё исправим!

До начала 20-го века лечение инфекций основывалось главным образом на фольклоре, стереотипах и суевериях. История открытия антибиотиков в этом плане очень любопытно. Смеси с антимикробными свойствами, которые использовались при лечении инфекций, были описаны более 2000 лет назад. Многие древние культуры, включая древних египтян и древних греков, использовали специально отобранные плесень, растительные материалы и экстракты для лечения инфекций.

Использование их в современной медицине началось с открытия синтетических антибиотиков, полученных из красителей. Обычно с упоминания этого факта и начинается любая история открытия антибиотиков.

Первые исследования

Синтетическая антибактериальная химиотерапия как наука и разработка антибактериальных препаратов началась в Германии с исследований, проведенных Полом Эрлихом в конце 1880-х годов. Эрлих отметил, что некоторые красители будут окрашивать человеческие, животные или бактериальные клетки, тогда как другие - нет. Затем он предложил идею создания химических веществ, которые будут действовать как селективный препарат, который будет связывать и убивать бактерии, не нанося вреда человеческому организму. После скрининга сотен красителей против различных организмов в 1907 году он обнаружил лекарственно полезное вещество, первый синтетический антибактериальный препарат, который теперь называется арсфенамином. Другую информацию об истории открытия антибиотиков вы получите далее в статье.

Союз немца и японца

Эпоха антибактериального лечения началась с открытия синтетических антибиотиков, полученных из мышьяка, Альфредом Бертхаймом и Эрлихом в 1907 году. Эрлих и Бертхайм экспериментировали с различными химическими веществами, полученными из красителей, для лечения трипаносомоза у мышей и инфекции спирохеты у кроликов. В то время как их ранние соединения были слишком токсичными, Эрлих и Сахачиро Хата, японский бактериолог, работающий с первым в поисках лекарства для лечения сифилиса, достигли успеха в своей 606-й попытке из целой серии сложных экспериментов.

Признание и коммерческий успех

В 1910 году Эрлих и Хата объявили о своем открытии, которое они назвали лекарством «606», на Конгрессе по внутренней медицине в Висбадене. Компания Hoechst начала продавать этот комплекс к концу 1910 года под названием салварсан. Этот препарат теперь известен как арсфенамин. Препарат использовался для лечения сифилиса в первой половине 20-го века. В 1908 году Эрлих получил Нобелевскую премию по физиологии и медицине за свой вклад в иммунологию. Хата был номинирован на Нобелевскую премию по химии в 1911 году и на Нобелевскую премию по физиологии и медицине в 1912 и 1913 годах.

Новая эпоха в истории медицины

Первый сульфонамид и первый системно активный антибактериальный препарат "пронтосил" был разработан исследовательской группой во главе с Герхардом Домагком в 1932 или 1933 году в лабораториях Bayer конгломерата IG Farben в Германии, за что Домагк получил Нобелевскую премию 1939 года по физиологии и медицине. Сульфаниламид (активный компонент "Пронтозила") не был патентоспособным, поскольку он уже использовался в красящей промышленности в течение нескольких лет. "Пронтозил" имел относительно широкий эффект против грамположительных кокков, но не против энтеробактерий. Его успех в лечении обычно был финансово стимулирован организмом человека и его иммунитетом. Открытие и развитие этого препарата сульфонамида ознаменовало эпоху антибактериальных препаратов.

Открытие антибиотика пенициллина

История пенициллина следует за рядом наблюдений и открытий очевидных доказательств антибиотической активности в плесени, предшествовавших синтезу химического пенициллина в 1928 году. В древних обществах есть примеры использования древесных форм плесени для лечения инфекций. Однако неизвестно, были ли эти формы плесени видами пенициллина. Шотландский врач Александр Флеминг был первым, кто предположил, что плесень Penicillium должна выделять антибактериальное вещество, которое он назвал пенициллином в 1928 году. Пенициллин был первым современным антибиотиком.

Дальнейшее изучение плесени

Но информация об истории открытия антибиотиков не ограничивается 20-ми годами прошлого века. В течение следующих двенадцати лет Флеминг выращивал, распределялся и изучал интересную плесень, которая была признана редким видом Penicillium notatum (теперь Penicillium chrysogenum). Многие более поздние ученые были вовлечены в стабилизацию и массовое производство пенициллина и в поисках более продуктивных штаммов Penicillium. Список этих ученых включает Эрнста Чейна, Говарда Флори, Нормана Хитли и Эдварда Абрахама. Вскоре после открытия пенициллина ученые обнаружили, что некоторые болезнетворные патогены проявляют антибиотическую резистентность к пенициллину. Исследования, направленные на развитие более эффективных штаммов и изучение причин и механизмов устойчивости к антибиотикам, продолжаются и сегодня.

Мудрость древних

Многие древние культуры, в том числе в Египте, Греции и Индии, самостоятельно обнаружили полезные свойства грибов и растений при лечении инфекции. Эти процедуры часто срабатывали, потому что многие организмы, включая многие виды плесени, естественно продуцируют антибиотические вещества. Однако древние знахари не могли точно идентифицировать или изолировать активные компоненты этих организмов. В Шри-Ланке во втором веке до н. э. солдаты в армии царя Дутугемуну (161-137 до н. э.) проверяли, чтобы на протяжении долгого времени в их очагах хранились масляные пирожные (традиционная ланкийская сладость), прежде чем приступать к военным кампаниям, чтобы приготовить прикорм из заплесневелых лепешек для лечения ран.

В Польше 17-го века влажный хлеб смешивали с паутиной (которая часто содержала споры грибов) для лечения ран. Техника была упомянута Генриком Сиенкевичем в его книге 1884 года «С огнем и мечом». В Англии в 1640 году идея использования плесени в качестве формы лечения была зафиксирована аптекарями, такими как Джон Паркинсон, герцог короля, который выступал за использование плесени в своей книге по фармакологии. Открытие антибиотиков, созданных на основе плесени, перевернет мир.

Новое время

Современная история исследований пенициллина начинается всерьез в 1870-х годах в Соединенном Королевстве. Сэр Джон Скотт Бурдон-Сандерсон, который отправился в больницу Св. Марии (1852-1858), а затем работал там в качестве лектора (1854-1862), заметил, что культуральная жидкость, покрытая плесенью, препятствует росту и размножению бактерий. Обнаружение Бурдона-Сандерсона побудило Джозефа Листера, английского хирурга и отца современной антисептики, обнаружить в 1871 году, что образцы мочи, зараженные плесенью, производят тот же эффект. Листер также описал антибактериальное действие на ткань человека вида плесени, который он назвал Penicillium glaucum. Строго говоря, 1871 год можно назвать датой открытия антибиотиков. Но только формально. Настоящие пригодные для постоянного использования и производства антибиотики будут произведены значительно позже.

В 1874 году валлийский врач Уильям Робертс, который позже придумал термин «фермент», заметил, что бактериальное загрязнение обычно отсутствует в лабораторных культурах Penicillium glaucum. Джон Тиндалл продолжил работу Бурдона-Сандерсона и продемонстрировал Королевскому обществу в 1875 году антибактериальное действие гриба Penicillium. К этому времени было показано, что Bacillus anthracis вызывает сибирскую язву, что было первой демонстрацией того, что конкретная бактерия вызвала специфическое заболевание. В 1877 году французские биологи Луис Пастер и Жюль Франсуа Жуберт отметили, что культуры бацилл сибирской язвы, когда они загрязнены плесенью, могут быть успешно уничтожены. Некоторые ссылки говорят о том, что Пастер идентифицировал штамм используемой им плесени как пенициллиум нотатум. Тем не менее книга «Охотники за микробами» 1926 года Пола де Крюифа описывает этот инцидент как загрязнение другими бактериями, а не плесенью. В 1887 году Гарре получил аналогичные результаты. В 1895 году Винченцо Тиберио, итальянский врач из Неаполитанского университета, опубликовал исследование о плесени в водохранилище в Арцано, которая проявляла антибактериальные свойства. Все это нужно знать, поскольку в любом учебнике фармакологии история открытия антибиотиков занимает особое место.

Два года спустя Эрнест Дюшенн в «Школе дю Сант Милитейер» в Лионе самостоятельно открыл целебные свойства плексигласовой плесени Penicillium, успешно вылечив зараженных морских свинок от брюшного тифа. Он опубликовал диссертацию в 1897 году, но она была проигнорирована Институтом Пастера. Дюшенн сам использовал открытие, сделанное ранее арабскими кочевниками, которые использовали споры плесени для лечения язв у лошадей. Дюшенн не утверждал, что плесень содержит какое-либо антибактериальное вещество, только то, что плесень каким-то образом защищает животных. Пенициллин, выделенный Флемингом, не излечивает брюшного тифа, и поэтому остается неизвестным, какое вещество может быть ответственным за излечение морских свинок Дюшенна.

Другие наблюдения за плесенью

История открытия антибиотиков этим не ограничивается. В Бельгии в 1920 году Андре Грация и Сара Дат наблюдали грибковое заражение в одной из своих культур Staphylococcus aureus, которая препятствовала росту бактерий. Они идентифицировали гриб как вид пенициллиума и представили свои наблюдения в виде лабораторного протокола, которому было уделено мало внимания. Костариканский ученый-исследователь Пикадо Твайт также отметил антибиотический эффект Penicillium в 1923 году. В истории фармакологии открытие антибиотиков сыграло огромную роль.

Великий прорыв

В 1928 году шотландский биолог Александр Флеминг заметил ореол ингибирования роста бактерий на культуре палочек Staphylococcus. Он пришел к выводу, что плесень выпускает вещество, которое ингибирует рост бактерий. Он выращивал чистую культуру плесени и впоследствии синтезировал то, что позже назвал «пенициллин». В течение следующих двенадцати лет Флеминг выращивал и селекционировал оригинальный штамм плесени, которая в конечном итоге была идентифицирована как пенициллийный нотаум (сегодня - как Penicillium chrysogenum). Ему не удалось создать стабильную форму для массового производства. Тем не менее открытие антибиотиков Флемингом положило начало новой эпохи в истории медицины.

Продолжение великого дела

Сесил Джордж Пейн, патологоанатом в Королевском лазарете в Шеффилде, попытался лечить сикоз (извержения в фолликуле) пенициллином, но его эксперимент не увенчался успехом, вероятно, потому, что препарат не проникал достаточно глубоко. Перейдя к лечению офтальмии новорожденных, гонококковой инфекции у младенцев, он добился первого удачного исцеления 25 ноября 1930 года. Он вылечил четырех пациентов (одного взрослого и трех младенцев) от глазных инфекций, хотя пятому пациенту не повезло.

В Оксфорде Говард Уолтер Флори организовал большую и очень опытную группу по биохимическим исследованиям, среди которых были Эрнст Борис Цейн и Норман Хитли, чтобы провести клинические испытания и произвести стабильный пенициллин в необходимом количестве. В 1940 году Цейн и Эдвард Абрахам сообщили о первом признаке устойчивости антибиотиков к пенициллину, штамму E.coli, который продуцировал фермент пенициллиназы, способный разрушать пенициллин и полностью отрицать его антибактериальное действие.

Промышленное производство

Между 1941 и 1943 годами Мойер, Когхилл и Рапер в Северной региональной исследовательской лаборатории Министерства сельского хозяйства США (ПМР) в Пеории, штат Иллинойс, США, разработали методы промышленного производства пенициллина и выделенных высокоурожайных штаммов В декабре 1942 года жертвы пожара в Кокоанутовой роще в Бостоне стали первыми пациентами с ожогами, которые успешно лечились пенициллином. Одновременное исследование Яспера Х. Кейна и других ученых Pfizer в Бруклине разработало практический метод глубокой ферментации для производства больших количеств пенициллина фармацевтического класса.

Открытие антибиотиков в России произошло как раз после завоза пенициллина в СССР в конце 1930-х годов, когда их исследованием занималась Ермольева. Роль России в этой истории хоть и несколько вторична, но также важна. Не зря ведь, когда говорят про открытие антибиотиков, Флеминг, Чейн, Флори, Ермольева - главные фамилии, упоминаемые историками медицины.

В дело включились химики

Дороти Ходжкин определила правильную химическую структуру пенициллина с использованием рентгеновской кристаллографии в Оксфорде в 1945 году. В 1952 году в Кундле, Тироль, Австрия, Ханс Маргрейтер и Эрнст Брандл из Университета Биохимии (теперь Сандоз) разработали первый кислотостойкий пенициллин для перорального введения, пенициллин В. Американский химик Джон С. Шихан из Массачусетского технологического института (Массачусетский технологический институт) впоследствии завершил первый химический синтез пенициллина в 1957 году. Читатель, должно быть, уже понял, что период открытия антибиотиков в микробиологии длился едва ли не половину прошлого века. В 1959 году в Соединенном Королевстве был введен полусинтетический β-лактамный метициллин второго поколения, предназначенный для борьбы с резистентными к первому поколению пенициллиназами, в 1959 году. Вероятно, в настоящее время существуют устойчивые к метициллину формы стафилококов. Стоит отметить, что среди открытий 20 века антибиотики занимают очень почетное место.

Бактерии-антибиотики

Наблюдения за ростом некоторых микроорганизмов, ингибирующих рост других бактерий, отмечались с конца 19 века. Эти наблюдения за синтезом антибиотиков между микроорганизмами привели к открытию природных антибактериальных средств. Луи Пастер заметил: «Если бы мы могли вмешаться в антагонизм, наблюдаемый между некоторыми бактериями, это принесло бы, возможно, самые большие надежды на терапию». Это был своего рода поворотный момент в истории открытия антибиотиков.

Еще немного о 19 веке

В 1874 году врач сэр Уильям Робертс отметил, что культуры плесени Penicillium glaucum, которые используются при изготовлении некоторых видов голубого сыра, не проявляют бактериального загрязнения. В 1876 году физик Джон Тиндаль также внес свой вклад в эту область. Пастер провел исследование, в котором показано, что Bacillus anthracis не будет расти в присутствии связанной плесени Penicillium notatum.

В 1895 году итальянский врач Винченцо Тиберио опубликовал статью о антибактериальной силе некоторых экстрактов плесени.

В 1897 году докторант Эрнест Дюшен написал работу «Вклад в выведение микроорганизмов: антагонизм, антагонистическое мышление и патогены». Это была первая известная научная работа по рассмотрению терапевтических возможностей плесени в результате их антимикробной активности. В своем труде Дюшен предложил, чтобы бактерии и плесени участвовали в вечной битве за выживание. Дюшесен заметил, что E. coli была удалена с помощью Penicillium glaucum, когда они оба выросли в одной и той же культуре. Он также заметил, что, когда он инокулировал лабораторных животных смертельными дозами тифозных бацилл вместе с Penicillium glaucum, животные не умерли от брюшного тифа. К сожалению, военная служба Дюшенна после получения степени не позволила ему провести дальнейшие исследования. Дюшен умер от туберкулеза - болезни, которую теперь лечат антибиотиками.

И только Флеминг спустя более чем 30 лет предположил, что плесень должна выделять антибактериальное вещество, которое он назвал пенициллином в 1928 году. Дуэт, определивший историю открытия антибиотиков - Флеминг/Ваксман. Флеминг считал, что его антибактериальные свойства можно использовать для химиотерапии. Первоначально он характеризовал некоторые из его биологических свойств и пытался использовать сырой препарат для лечения некоторых инфекций, но не смог продолжить свое развитие без помощи подготовленных химиков. Никто не играл во всей этой эпопее такой решающей роли, как научный дуэт Флеминг/Ваксман, история открытия антибиотиков их не забудет.

Но в этой эпопее были и другие важные имена. Как уже упоминалось ранее, химикам удалось очистить пенициллин только в 1942 году, но до 1945 года он не стал широко доступным за пределами союзных военных. Позже Норман Хитли разработал технику обратной экстракции для эффективной очистки пенициллина навалом. Химическая структура пенициллина была впервые предложена Абрахамом в 1942 году, а затем позже подтверждена Дороти Кроуфут Ходжкин в 1945. Очищенный пенициллин проявлял сильную антибактериальную активность против широкого спектра бактерий и имел низкую токсичность у людей. Кроме того, его активность не ингибировалась биологическими компонентами, такими как гной, в отличие от синтетических сульфонамидов. Развитие потенциала пенициллина привело к возобновлению интереса к поиску антибиотических соединений с аналогичной эффективностью и безопасностью. Цейн и Флори разделили Нобелевскую премию 1945 года в области медицины с Флемингом, открывшим эту чудо-плесень. Открытие антибиотиков Ермольевой было ожидаемо проигнорировано западным научным сообществом.

Другие антибиотики на основе плесени

Флори приписывал Рене Дюбо новаторский подход к преднамеренному и систематическому поиску антибактериальных соединений, что привело к открытию грамицидина и возродило исследования Флори в области свойств пенициллина. В 1939 году, с началом Второй мировой войны, Дюбо сообщил об открытии первого естественно полученного антибиотика, тиротрицина. Это был один из первых коммерческих антибиотиков, который был очень эффективным при лечении ран и язв во время Второй мировой войны. Однако грамицидин не мог использоваться системно из-за токсичности. Тироцидин также оказался слишком токсичным для системного использования. Результаты исследований, полученные в этот период, не были разделены между осью и союзными державами во время Второй мировой войны и пользовались ограниченным спросом в мире во время «холодной войны». Презентация открытия антибиотиков происходила в основном в развитых странах Запада.

История названия

Термин «антибиотик», означающий «против жизни», был введен французским бактериологом Жаном Полем Вилькемином как описательное название свойства, проявляемого этими ранними антибактериальными препаратами. Антибиотик был впервые описан в 1877 году, когда Луи Пастер и Роберт Кох наблюдали, как бактерия-палочка умирает под действием Bacillus anthracis. Эти препараты позднее были переименованы в антибиотики Сельманом Ваксманом, американским микробиологом, в 1942 году. Эту дату стоит включить в список годов открытия антибиотиков.

Термин «антибиотик» впервые был использован в 1942 году Сельманом Ваксманом и его сотрудниками в журнальных статьях для описания любого вещества, продуцируемого микроорганизмом, который является антагонистическим для роста других микроорганизмов. Это определение исключало вещества, которые убивают бактерии, но которые не продуцируются микроорганизмами (такие как желудочные соки и перекись водорода). Он также исключил синтетические антибактериальные соединения, такие как сульфонамиды. При использовании в настоящее время термин «антибиотик» применяется к любому лекарству, которое убивает бактерии или ингибирует их рост, независимо от того, производится ли этот препарат микроорганизмом или нет.

Этимология

Термин «антибиотик» происходит от приставки «анти» и греческого слова βιωτικός (biōtikos), «пригодный для жизни, живой», который исходит из βίωσις (biōsis), «образ жизни», а также корня βίος (bios) «жизнь». Термин «антибактериальный» происходит от греческого ἀντί (анти), «против» + βακτήριον (baktērion), уменьшительного от βακτηρία (baktēria), «тростник», поскольку первые обнаруженные бактерии были стержнеобразными по своей форме.

Альтернативы антибиотикам

Увеличение числа бактериальных штаммов, которые устойчивы к традиционным антибактериальным терапиям вместе с уменьшением количества новых антибиотиков, которые в настоящее время разрабатываются в в качестве лекарств, побудило развитие стратегий лечения бактериальных заболеваний, являющихся альтернативой традиционным антибактериальным препаратам. Для борьбы с этой проблемой также исследуются неспецифические подходы (то есть продукты, отличные от классических антибактериальных средств), которые нацелены на бактерии или подходы, которые нацелены на хозяина, включая фаговую терапию и вакцины.

Вакцины

Вакцины полагаются на иммунную модуляцию или аугментацию. Вакцинация либо возбуждает, либо усиливает иммунитет человека для предотвращения инфекции, приводя к активации макрофагов, производству антител, воспалению и другим классическим иммунным реакциям. Антибактериальные вакцины ответственны за резкое сокращение глобальных бактериальных заболеваний. Вакцины, полученные из аттенюированных целых клеток или лизатов, были заменены в основном менее реакционноспособными, бесклеточными вакцинами, состоящими из очищенных компонентов, включая капсульные полисахариды и их конъюгаты, белковыми носителями, а также инактивированными токсинами (токсоидами) и белками.

Фаготерапия

Фаготерапия - еще один метод лечения устойчивых к антибиотикам штаммов бактерий. Фаготерапия заражает патогенные бактерии собственными вирусами. Бактериофаги чрезвычайно специфичны для определенных бактерий, поэтому они не вредят организму-хозяину и микрофлоре кишечника в отличие от антибиотиков. Бактериофаги, также известные как фаги, заражают и могут убивать бактерии и влиять на рост бактерий прежде всего в течение литических циклов. Фаги вставляют свою ДНК в бактерию, где ее транскрибируют и используют для создания новых фагов, после чего клетка будет лизироваться, высвобождая новый фаг, способный заражать и уничтожать другие бактерии одного и того же штамма. Высокая специфичность фага защищает «хорошие» бактерии от разрушения.

Однако существуют и некоторые недостатки в использовании бактериофагов. Бактериофаги могут содержать факторы вирулентности или токсичные гены в своих геномах. Кроме того, пероральное и внутривенное введение фагов для уничтожения бактериальных инфекций представляет собой гораздо более высокий риск безопасности, чем местное применение, и есть дополнительная проблема неопределенного иммунного ответа на эти крупные антигенные коктейли. Существуют значительные регуляторные препятствия, которые необходимо преодолеть для таких рискованных методов лечения. Использование бактериофагов в качестве замены противомикробных препаратов остается привлекательным вариантом, несмотря на многочисленные проблемы.

Роль растений

Растения являются важным источником противомикробных соединений, а традиционные целители уже давно используют их для профилактики или лечения инфекционных заболеваний. Недавно появился новый интерес к использованию натуральных продуктов для идентификации новых антибиотиков (определяемых как натуральные продукты с антибиотической активностью) и их применения при открытии антибактериальных препаратов в эпоху геномики. Фитохимические вещества являются активным биологическим компонентом растений, а некоторые фитохимические вещества, включая дубильные вещества, алкалоиды, терпеноиды и флавоноиды, обладают противомикробной активностью. Некоторые антиоксидантные пищевые добавки также содержат фитохимические вещества (полифенолы), такие как экстракт виноградных косточек, и демонстрируют антибактериальные свойства in vitro.

Фитохимические вещества способны ингибировать синтез пептидогликана, повреждать структуры микробных мембран, изменять гидрофобность поверхности бактериальных мембран, а также модулировать чувствительность кворума. С ростом резистентности к антибиотикам в последние годы изучается потенциал новых антимикробных препаратов, полученных из растений. Тем не менее можно сказать, что долгий период открытия антибиотиков подошел к концу.



gastroguru © 2017