Биохимический метод исследования в медицинской генетике. Биохимический метод исследования

Причиной многих врожденных нарушений метаболизма являются различные дефекты ферментов, возникающие вследствие изменяющих их структуру мутаций.Биохимические показатели более точно отражают сущность болезни по сравнению с показателями клиническими, поэтому их значение в диагностике наследственных болезней постоянно возрастает. Использование современных биохимических методов позволяют определять любые метаболиты, специфические для конкретной наследственной болезни.

Предметом современной биохимической диагностики являются специфические метаболиты, энзимопатии, различные белки. Объектами биохимического анализа могут служить моча, пот, плазма и сыворотка крови.

Для биохимической диагностики используются как простые качественные реакции, так и более точные методы. Например, с помощью тонкослойной хроматографии мочи и крови можно диагностировать нарушение обмена аминокислот, олигосахаридов, мукополисахаридов. Газовая хроматография применяется для выявления нарушений обмена органических кислот.

Биохимические методы применяются и для диагностики гетерозиготных состояний у взрослых. Известно, что среди здоровых людей всегда имеется большое число носителей патологического гена. Хотя такие люди внешне здоровы, вероятность появления заболевания у их ребенка всегда существует. В связи с этим, выявление гетерозиготного носительства – важная задача медицинской генетики.

Если в брак вступают гетерозиготные носители какого-либо заболевания, то риск рождения больного ребенка в такой семье составит 25%.Шансы на встречу двух носителей одинакового патологического гена выше, если в брак вступают родственники, т.е. они могут унаследовать один и тот же рецессивный ген от своего общего предка.

Выявление гетерозиготных носителей того или иного заболевания возможно путем использования биохимических тестов, микроскопического исследования клеток крови и тканей, определения; активности фермента, измененного в результате мутации.

Известно, что заболевания, в основе которых лежит нарушение обмена веществ, составляют значительную часть наследственной патологии. Так, гетерозиготные носители фенилкетонурин реагируют на введение фенилаланина более сильным повышением содержания аминокислоты в плазме, чем нормальные гомозиготы.

Биохимический метод широко применяется в медико-генетическом консультировании для определения риска рождения больного ребенка. Успехи в области биохимической генетики способствуют более широкому внедрению диагностики гетерозиготного носительства в практику. Еще недавно можно было диагностировать не более 10-15 гетерозиготных состояний, в настоящее время – более200. Однако следует отметить, что до сих пор имеется немало наследственных заболеваний, для которых методы гетерозиготной диагностики еще не разработаны.

Современные методы изучения генетики человека .

В лабораторной диагностике наследственных болезней наряду с классическими методами широко используются современные, новые методы: цитогенетический, имунногенетический, биохимический, онтогенетический, молекулярно-генетические методы и т.д.

Биохимический метод.

Биохимический метод является основным в диагностике многих моногенных болезней, приводящих к нарушению обмена веществ. Объектами биохимической диагностики являются биологические жидкости: кровь, моча, пот, амниотическая жидкость и т.д. С помощью данного метода можно определить в биологических жидкостях активность ферментов или содержание некоторых продуктов метаболизма.

Практически во всех случаях биохимическая диагностика включает 2 уровня: первичный и уточняющий. Целью первичного уровня диагностики является исключение здоровых индивидов из дальнейшего обследования, для этого используют 2 вида программ диагностики: массовые и селективные. Массовые просеивающие программы применяют для диагностики у новорожденных таких заболеваний как фенилкетонурия, врожденный гипотериоз, муковисцедоз, галактоземия. Например, для диагностики фенилкетонурии кровь новорожденных берут на 3-5 день после рождения. Капли крови помещают на хроматографическую или фильтровальную бумагу и пересылают в лабораторию для определения фенилаланина. Для определения врожденного гипотереоза в крови ребенка на 3 день жизни определяют уровень тироксина. Просеивающая программа массовой диагностики наследственных болезней применяются не только среди новорожденных. Они могут быть организованны для выявления тех болезней которые распространены в каких либо группах населения. Например с США организована просеивающая биохимическая программа по выявлению гетерозиготнвх носителей идиотии Тей-Сакса (она чаще встречается среди евреев-ашкенази). На Кипре и в Италии организовано биохимическое исследование гетерозиготных несителей талассемии.

Селективные диагностические программы предусматривают проверку биохимических аномалий обмена у пациентов с подозрением на генные наследственные болезни.

В селективных программах могут использоваться простые качественные реакции (например, тест с хлоридом железа для выявления фенилкетонурии или тест с динитрофенилгидрозином для выявления кетокислот в моче) или более точные методы. Например, с помощью тонкослойной хроматографии мочи и крови можно диагностировать наследственные нарушения обмена аминокислот и мукополисахаридов. С помощью электрофореза гемоглобинов диагностируется вся группа гемоглобинопатий.

На сегодняшний день в нашей стране внедрена программа обязательного селективного скрининга на определение наследственных болезней обмена веществ. с проведением 14ти тестов анализов мочи и крови: на белок, кетокислоты, цистин и т.д. На втором этапе, применяя методы тонкослойной хроматографии мочи и крови, можно выявить более 140 наследственных болезней обмена веществ, такие как болезни углеводного обмена, лизосомальные болезни накопления, болезни обмена металлов, аминоацидопатии и т.д.

Широкое применение нашел биохимический метод в пренатальной диагностике врожденных пороков развития. Биохимические методы включают определение уровня альфа- фетопротеина, хорионического ганадотропина в сыворотке крови беременной. Эти методы являются просеивающими для выявления врожденных пороков развития. Например, при дефектах невральной трубки повышается уровень альфа-фетопротеина.

Цитогенетический метод.

Цитогенетический метод, основанный на изучении количества и структуры хромосом в норме и при патологии.

Основными показаниями для цитогенетического исследования являются:

1) пренатальная диагностика пола плода в семьях, отягощенных заболеваниями, сцепленными с Х-хромосомой;

2) недифференцированная олигофрения (слабоумие);

3) привычные выкидыши и мертворождения;

4) множественные врожденные пороки развития у ребенка;

5) бесплодие у мужчин;

6) нарушение менструального цикла (первичная аменорея);

7) пренатальная диагностика при возрасте матери старше 35 лет.

Этот метод стал широко применяться в медицинской практике с 1956 года, когда Тио и Леван определили, что у человека 46 хромосом. Первая классификация хромосом человека, предложенная в Денвере заложила основу для последующих номенклатур хромосом.

Наиболее современной считается Международная система цитогенетической номенклатуры хромосом человека сокращенно ISCN, принятая в Вашингтоне в 1995 году.

Согласно последней номенклатуре в хромосоме длинное плечо обозначают q , а короткое p. В каждом районе хромосомы полосы и сегменты пронумерованы последовательно от центромеры к теломере. Использование метода дифференциального окрашивания хромосом позволяет выделять индивидуальный рисунок каждой хромосомы вследствие того, что в хромосоме участки эу- и гетерохроматина по-разному окрашиваются красителями.

Объектами для цитогенетического исследования служат метафазные хромосомы, которые можно изучать с помощью прямых и непрямых методов.

Прямые – это методы получения препаратов делящихся клеток без культивирования, их используют для изучения клеток костного мозга и клеток опухолей. Непрямые методы – это методы получения препаратов хромосом из культивированных в искусственных питательных средах, например, при культивировании лимфоцитов периферической крови человека.

С помощью непрямых методов возможно проводить: кариотипирование – определение количества и качества хромосом; генетический пол организма; диагностику геномных мутаций и хромосомных аберраций. Например, синдром Дауна (трисомия по 21-й хромосоме), синдром Патау (трисомия по 13-й хромосоме), синдром Эдвардса (трисомия по 18-й хромосоме), синдром «кошачьего крика» (делеция 5-й хромосомы), синдром Вольфа-Хиршхорна (частичная моносомия 4-й хромосомы).

Для изучения половых хромосом, в частности Y-хромосомы, используют специальную окраску акрихиниприт (флюоресцирующая) и исследование проводят в ультрафиолетовом свете. Y-хроматин – это сильно светящаяся точка, обнаруживается в ядрах клеток мужского организма, и число Y-телец соответствует числу Y-хромосом в кариотипе. Окончательный диагноз хромосомной болезни выставляется только после исследования кариотипа.

Чтобы быстро определить изменения числа половых хромосом применяют экспресс-метод определения полового хроматина. Половой хроматин или тельце Барра представляет собой одну из двух X-хромосом, причем в инактивированном виде. Оно выявляется в виде сгустка треугольной или овальной формы около внутренней мембраны ядерной оболочки. В норме половой хроматин обнаруживается только у женщин. При увеличении числа Х-хромосом увеличивается и количество телец Барра. При уменьшении числа Х-хромосом (синдром Шерешевского-Тернера, кариотип 45 ХО) тельце Барра отсутствует. В норме у мужчин половой хроматин не обнаруживается, его наличие может свидетельствовать о синдроме Клайнфельтера (кариотип 47 ХХY).

Цитогенетический метод применяют для пренатальной диагностики наследственных заболеваний. Для этого проводят амниоцентез, получают амниотическую жидкость с клетками кожи плода, затем клеточный материал исследуют для дородовой диагностики хромосомных аберраций и геномных мутаций, а также пола плода. Обнаружение изменение количества и структуры хромосом дает возможность своевременного прерывания беременности с целью предупреждения потомства с грубейшими аномалиями развития.

Иммуногенетический метод.

Этот метод применяется у пациентов при подозрении на имунодефицитные заболевания (например, агаммаглобулинемии – почти полное отсутствие глобулинов в крови), при несовместимости антигенов матери и плода, для определения наследственной предрасположенности к заболеваниям при установлении отцовства.

Для диагностики имуунодефицитных состояний исследуют глобулины, Т и В-лимфоциты, нейтрофилы, макрофаги. Определяются антигены эритроцитов, лейкоцитов и сыворотки крови.

Для пренатальной диагностики можно определять HLA-антигены в лейкоцитах человека. По этим антигенам можно установить адреногенетальный синдром (или врожденная дисфункция коры надпочечников, при которой повышается синтез андрогенов в коре надпочечников). У девочек это проявляется ложным гермафродитизмом, а у мальчиков преждевременным половым созреванием.

Иммуногенетические методы достаточно дорогостоящие, но очень эффективные для определения предрасположенности к наследственным заболеваниям или для прогнозирования здоровья будущих детей.

Онтогенетический метод.

В генетике человека широко распространен онтогенетический метод. Он основан на изучении закономерности проявления какого-либо признака или заболевания в процессе индивидуального развития.

Выделяют несколько периодов развития человека: пренатальный и постнатальный. Большинство признаков формируется во время пренатального периода. После рождения заканчивается формирование коры головного мозга, постепенно формируется психика ребенка, его способность к обучению, происходит становление иммунной системы. В различные периоды развития человека происходит изменение активности генов, при чем может наблюдаться как «включение» и «выключение» генов, так и «усиление» и «ослабление» генов.

В постнатальный период, например, происходит включение генов определяющих развитие вторичных половых признаков, развитие наследственных заболеваний (сахарного диабета, близорукости, миопатии Дюшена и т.д.). В этот же период происходит выключение многих генов. Репрессируются активности генов, связанных с выработкой меланина (в результате происходит поседение волос). Не происходит синтеза эластазы (вследствие чего появляются морщины), подавляется выработка гаммаглобулинов (поэтому повышается восприимчивость к бактериальным инфекциям).

С возрастом может меняться проявление доминирования генов, находящихся в гетерозиготном состоянии, что вызывает изменение внешних признаков, особенно в период полового созревания и беременности.

В старости у человека меняется соотношение женских и мужских половых гормонов. В результате у мужчин меняется тембр голоса, форма тела, происходит отложение жира по женскому типу, меняется психика – мужчины становятся плаксивыми и впечатлительными. У женщин грубеет голос, меняется фигура.

С возрастом рецессивные гены могут оказывать большее влияние на развитие того или иного признака. У гетерозиготного по генотипу человека, например, по фенилкетонурии изменяется психика.

Наряду с «временем действия генов» выделяют и «поле действия генов». В каждой клетке человека, за исключение зрелых половых клеток содержится одинаковый диплоидный набор хромосом и одинаковый набор генов, но в процессе онтогенеза и формирования органов и тканей, одни из генов блокируются, а другие включаются в работу. Так, например, только в клетках щитовидной железы работают гены, отвечающие за синтез гормона тироксина, а в клетках поджелудочной железы – гормона инсулина. В клетках других органов тоже есть такие гены, но они блокированы.

У человека в процессе онтогенеза формируется конституция. Конституционные признаки имеют сложную генетическую основу или могут возникать в результате ранней физической нагрузки. Конституционными признаками называют такие признаки структуры, функции или поведения, которые характерны для процессов роста, созревания и старения.

Медицина стала все больше обращать внимание на конституционные болезни. Оказалось, что люди астенического телосложения более склонны к развитию туберкулеза легких, и, наоборот, у полных людей чаще наблюдается атеросклероз и гипертоническая болезнь.

Молекулярно-генетические методы.

Успехи, достигнутые в последние годы в молекулярной биологии, биохимии, медицинской генетике привели к созданию и внедрению в практическую медицину молекулярно-генетических методов. С помощью этих методов исследуется геном человека и осуществляется диагностика целого ряда наследственных и широко распространенных заболеваний. Методы ДНК-диагностики позволяют осуществлять точную и, что очень важно, доклиническую (до развития симптомов заболевания) диагностику многих заболеваний, проводить пренатальную (дородовую) диагностику наследственных болезней. Молекулярно-генетическая диагностика может быть проведена на самых ранних этапах развития эмбриона и плода независимо от биохимических или клинических проявлений болезни. Это подчас является решающим для решения вопроса о судьбе конкретной беременности.

Молекулярно-генетические методы предназначены для выявления особенностей в структуре ДНК.

У каждого человека во всех соматических клетках структура ДНК совершенно одинакова.

ДНК может быть выделена из любого типа тканей или клеток организма, содержащей ядра. Чаще всего для получения образцов ДНК используют лейкоциты периферической крови и клетки ворсин хориона.

В 70-е годы 20 века вследствие интенсивного развития молекулярной биологии и создании совершенной методической базы генетических исследований возникло направление по определению специфических нуклеотидных последовательностей ДНК и РНК – генное зондирование (гибридизационный анализ). Регистрация последовательностей небольшой длины до 30 пар нуклеотидов осуществляется с помощью синтезированных с радиоактивным мечением участков ДНК, названных зондами. Такие зонды гибридизировались с изучаемыми образцами ДНК. В этом подходе использовались универсальные свойства нуклеиновых кислот образовывать двойные нити, соединяясь между собой за счет комплиментарных нуклеотидов и образуя классические пары: аденин-тимин (АТ) и гуанин-цитозин (ГЦ). Если известна первичная структура нормального и мутантного аллелей искомого гена, то для обнаружения повреждения вводят зонд, который специфически соединяется либо с нормальным, либо с мутантным геном. Патология выявляется путем обнаружения радиоактивных импульсов на рентгеновской пленке. Этот метод широко применяется в практике диагностики наследственных болезней. В настоящее время с его помощью проводится диагностика талассемий, фенилкетонурии, недостаточности альфа-антитрипсина.

Полимеразная цепная реакция.

Полимеразная цепная реакция – это метод, имитирующий естественную репликацию ДНК и позволяющий обнаружить и копировать с помощью термостабильной ДНК-полимеразы определенный фрагмент ДНК. В основе метода лежит многоцикловый процесс, напоминающий естественную репликацию ДНК, при чем каждый цикл состоит из 3-х этапов.

На первом этапе при высокой температуре 70-80 0 С ДНК денатурируется на две отдельные цепи.

На втором этапе к определенному участку каждой цепи ДНК присоединяются праймеры. Праймеры – это последовательности нуклеотидов, специфичные для каждого гена. Они комплементарны известным нуклеотидам. Этот этап протекает при t 37 0 С.

На третьем этапе происходит синтез новых цепей ДНК при участии фермента ДНК-полимеразы, опять при высокой t. Эти этапы повторяются до получения стабильного продукта ПЦР.

Дальнейший продукт ПЦР подвергается электрофорезу и анализу.

ПЦР эффективно используют в дородовой диагностике. Достаточно небольшого количества клеток ворсин хориона или других клеток плода, чтобы исследовать их и дать через два дня заключение о наличии или отсутствии у будущего ребенка мутантного аллеля.

Сегодня молекулярно-генетические методы используются для диагностики более 300 наследственных болезней: гемофилии, гемоглобинопатий, митохондриальных болезней, муковисцедозе и т.д.

Кроме того ДНК-технологии находят свое применение для расшифровки генома человека, в судебной медицине, для определения отцовства и степени родства, для анализа клеток красного мозга донора и реципиента при трансплантации органов.

С помощью биохимических методов изучают наследственные заболевания, обусловленные генными мутациями, и полиформизм по нормальным первичным продуктам генов. Впервые эти методы генетики человека стали применять в начале ХХ в. В последнее время их широко используют в поиске новых форм мутантных аллелей. С их помощью описано более 1000 врожденных болезней обмена веществ. Для многих из них выявлен дефект первичного генного продукта.

Биохимическую диагностику наследственных нарушений обмена проводят в 2 этапа. На первом этапе отбирают предположительные случаи заболеваний, на втором – более сложными и точными методами уточняют диагноз заболевания. Применение биохимических исследований для диагностики заболеваний в пренатальном периоде или непосредственно после рождения позволяет своевременно выявить патологию и начать специфические медицинские мероприятия.

Транскрипционые факторы - белки, взаимодействующие с определёнными регуляторными сайтами и ускоряющие или замедляющие процесс транскрипции. Соотношение информативной и неинформативной частей в транскриптонах эукариотов составляет в среднем 1:9 (у прокариотов 9:1).Соседние транскриптоны могут быть отделены друг от друга нетранскрибируемыми участками ДНК. Разделение ДНК на множество транскриптонов позволяет осуществлять с разной активностью индивидуальное считывание (транскрипцию) разных генов.

В каждом транскриптоне транскрибируется только одна из двух цепей ДНК, которая называется матричной, вторая, комплементарная ей цепь, называется кодирующей. Синтез цепи РНК идёт от 5"- к З"-концу, при этом матричная цепь ДНК всегда антипараллельна синтезируемой нуклеиновой кислоте

Посттранскрипционные модификации первичноготранскриптатРНК (процессинг тРНК)

ПервичныйтранскрипттРНК содержит около 100 нуклеотидов, а после процессинга - 70-90 нуклеотидньгх остатков. Посттранскрипционные модификации первичныхтранскриптовтРНК происходят при участии РНК-аз (рибонуклеаз). Так, формирование 3"-конца тРНК катализирует РНК-аза, представляющая собой 3"-экзонуклеазу, "отрезающую" по одному нук-леотиду, пока не достигнет последовательности -ССА, одинаковой для всех тРНК. Для некоторых тРНК формирование последовательности -ССА на 3"-конце (акцепторный конец) происходит в результате последовательного присоединения этих трёх нуклеотидов. Пре-тРНК содержит всего один интрон, состоящий из 14-16 нуклеотидов. Удаление интрона и сплайсинг приводят к формированию структуры, называемой "антикодон", - триплета нуклеотидов, обеспечивающего взаимодействие тРНК с комплементарным кодоном мРНК в ходе синтеза белков

Посттранскрипционные модификации (процессинг) первичноготранскриптарРНК. Формирование рибосом

В клетках человека содержится около сотни копий гена рРНК, локализованных группами на пяти хромосомах. Гены рРНК транскрибируются РНК-полимеразой I с образованием идентичныхтранскриптов. Первичныетранскрипты имеют длину около 13 000 нуклеотид-ных остатков (45S рРНК). Прежде чем покинуть ядро в составе рибосомной частицы, молекула 45 S рРНК подвергается процессин-гу, в результате образуется 28S рРНК (около 5000 нуклеотидов), 18S рРНК (около 2000 нуклеотидов) и 5,88 рРНК (около 160 нуклеотидов), которые являются компонентами рибосом (рис. 4-35). Остальная часть транскрипта разрушается в ядре.

Генеалогический метод генетики человека. Основные правила составления и последующего анализа родословных схем (на примере собственной семейной родословной схеме). Значение метода в изучении закономерностей наследования признаков.

Методы генетики человека

Для генетических исследований человек является неудобным объектом, так как у человека: невозможно экспериментальное скрещивание; большое количество хромосом; поздно наступает половая зрелость; малое число потомков в каждой семье; невозможно уравнивание условий жизни для потомства.

В генетике человека используется ряд методов исследования.

Генеалогический метод

Использование этого метода возможно в том случае, когда известны прямые родственники - предки обладателя наследственного признака (пробанда) по материнской и отцовской линиям в ряду поколений или потомки пробанда также в нескольких поколениях. При составлении родословных в генетике используется определенная система обозначений. После составления родословной проводится ее анализ с целью установления характера наследования изучаемого признака.

Условные обозначения, принятые при составлении родословных:

1 - мужчина; 2 - женщина; 3 - пол не выяснен; 4 - обладатель изучаемого признака; 5 - гетерозиготный носитель изучаемого рецессивного гена; 6 - брак; 7 - брак мужчины с двумя женщинами; 8 - родственный брак; 9 - родители, дети и порядок их рождения; 10 - дизиготные близнецы; 11 - монозиготные близнецы.

Благодаря генеалогическому методу были определены типы наследования многих признаков у человека. Так, по аутосомно-доминантному типу наследуются полидактилия (увеличенное количество пальцев), возможность свертывать язык в трубочку, брахидактилия (короткопалость, обусловленная отсутствием двух фаланг на пальцах), веснушки, раннее облысение, сросшиеся пальцы, заячья губа, волчья пасть, катаракта глаз, хрупкость костей и многие другие. Альбинизм, рыжие волосы, подверженность полиомиелиту, сахарный диабет, врожденная глухота и другие признаки наследуются как аутосомно-рецессивные.

Целый ряд признаков наследуется сцепленно с полом: Х-сцепленное наследование - гемофилия, дальтонизм; Y-сцепленное - гипертрихоз края ушной раковины, перепончатость пальцев ног. Имеется ряд генов, локализованных в гомологичных участках Х- и Y-хромосом, например общая цветовая слепота.

метод анализа родословных, является наиболее фундаментальным и универсальным методом изучения наследственности и изменчивости человека. Он заключается в изучении какого-либо нормального или чаще патологического признака в поколениях людей, которые находятся друг с другом в родственных отношениях. Генеалогический метод опирается на генеалогию – учение о родословных. Сутью генеалогического метода является составление и анализ родословных. Генеалогический метод соответствует основному методу генетики - гибридологическому методу, который был впервые разработан Г. Менделем. Но в отличие от него исследователи не подбирают родительские пары для целенаправленного скрещивания, а лишь детально анализируют результаты процесса естественной репродукции людей. Анализу по изучаемому признаку подвергается одна или несколько десятков семей с многочисленными родственниками разных поколений. Использование большого количества семей отчасти компенсирует низкую плодовитость человека и увеличивает число изучаемых потомков.


Похожая информация.


Биохимический метод считают основным способом качественной диагностики разнообразных заболеваний. Проанализируем особенности данной диагностики, области применения.

Объекты диагностирования

В настоящее время биохимический метод диагностики связан с изучением пота, мочи, иных биологических жидкостей. С его помощью можно выявить активность ферментов, выяснить количественное содержание продуктов метаболизма в разных биологических жидкостях.

Биохимический метод позволяет определять нарушения, возникающие в обмене веществ, обусловленные наследственными факторами.

История открытия

В начале двадцатого века английский врач А. Гаррод занимался изучением алкаптонурии. Ему удалось установить, что по отсутствию некоторых ферментов можно установить нарушения в обмене веществ, а также определить врожденный метаболизм.

Разные наследственные болезни обусловливаются различными мутациями в генах, приводящими к изменению скорость синтеза белковых молекул, изменению их структуры. В результате таких изменений наблюдается нарушение липидного, белкового, углеводного обмена.

Биохимический метод позволяет анализировать химический состав тканей и материалов.

В случае патологии могут возникать изменения концентрации, а также появляться какие-то дополнительные компоненты. Данный метод дает возможность определять ферменты, изучать гормональный баланс.

Классификация

Биохимический метод подразделяют на качественный и количественный варианты. Для качественного определения применяют свойства, которые характерны для применяемого вещества, могут проявляться при химических реакциях: нагревании, добавлении некоторых реагентов.

Количественный биохимический метод предполагает первоначальное обнаружение вещества, затем его количественное вычисление.

Медиаторы, гормоны, содержащиеся в человеческом организме в небольшом количестве, выявляют с помощью тест-объектов.

Биохимический метод исследования постоянно совершенствуется, что дает возможность получать результат максимальной точности о процессах обмена веществ, происходящих в клетках и органах. В настоящее время такие методики диагностики объединяют с иными способами исследования, например, гистологическими, иммунными, цитологическими анализами.

Чтобы использовать сложные методики, применяют специализированное оборудование.

Биохимические методы анализа дают возможность разрабатывать и применять быстрый и упрощенный метод, позволяющий за считаные минуты определить оценку конкретных биохимических показателей.

В настоящее время аналитические лаборатории располагают современным оборудованием, автоматическими приборами и системами, позволяющими с максимальной точностью выявить необходимый показатель.

Способы проведения

Биохимический метод исследования позволяет определять различными способами какое-либо вещество в биологических жидкостях. К примеру, можно выявить такой показатель, как холестеринэстеразу, используя современное оборудование. При выборе конкретной методики учитывают характер анализируемых биологических жидкостей.

Биохимический метод изучения применяют для выявления конкретного вещества в однократном варианте, а также для изучения динамики изменений. Данный показатель анализируют при определенной нагрузке, временном показателе, в процессе приема некоторых химических препаратов.

Специфика метода

Биохимический метод генетики гарантирует быстрое выполнение анализа биологического материала. Он подходит для многократного применения, дает возможность анализировать хромосомные структуры, выявлять их кариотип. Благодаря такой методике специалисты выявляют моногенные и наследственные заболевания, связанные с полиморфизмами и мутациями генов, а также их структур.

Современные биохимические методы применяют для нахождения новых форм мутантных аллелей в ДНК. Благодаря этой методике выявили тысячу заболеваний, связанных с обменными процессами. Многие из них являются проблемами, связанными с дефектами ферментов, а также с изменениями структурных белков.

Для диагностики нарушений в обмене веществ используют две стадии. Сначала производят отбор возможных случаев болезни. Затем уточняют первоначальный диагноз, вооружившись сложными и точными методиками и оборудованием.

Например, в пренатальный период осуществляют у новорожденных детей с помощью биохимического метода анализа диагностику наследственных болезней. Это дает возможность обнаруживать патологические изменения своевременно и незамедлительно начинать лечение.

Виды биохимического анализа

Как подразделяется биохимический метод? Определение различных химических веществ осуществляется различными способами. Суть методики заключается в выявлении определенных биохимических продуктов. Причина в том, что происходит изменение действия разных аллелей. Принцип определения заключается в выявлении измененных нуклеиновых кислот и белков с помощью гель-электрофореза вместе с иными методиками: авторадиографией, блот-гибридизацией.

Биохимический анализ дает возможность выявлять гетерозиготные носители разных заболеваний. Из-за мутационных процессов, происходящих в организме человека, появляются хромосомные перестройки, негативно влияющие на здоровье человека.

Кроме того, современные биохимические методики диагностики дают возможность определять разные полиморфизмы, а также вызывают мутации различных генов.

Среди распространенных методов современной биохимии выделим центрифугирование, диализ и хроматографию.

Оптические методы исследования

Абсорбционная спектроскопия основывается на принципе определения поглощенного света, который проходит через раствор анализируемого вещества в результате абсорбции.

Для измерения спектров применяют специальные спектральные аппараты. В них помещают пробу анализируемого препарата между фотоэлементом и источником света. У каждого биологического вещества есть определенный свет поглощения.

Для проведения аналитических исследований применяют длину волны, которая соответствует максимуму поглощения анализируемого вещества.

Фотоэлектроколориметрия представляет собой определение окрашенными растворами видимого фрагмента спектра.

Спектрофотомерия, востребованная в современном анализе, представляет собой определение пропускания (поглощения) прозрачными жидкостями видимой, ультрафиолетовой и инфракрасной зон спектра.

Среди основных приборов, применяемых для измерения, выделим спектрофотометры и фотоэлектроколориметры. Эти технические приспособления позволяют проводить точные измерения в огромном диапазоне длин волн, начиная с ультрафиолета, заканчивая инфракрасной зоной спектра.

Электрофорез в современной медицине

Данное явление предполагает перемещение в электрическом поле заряженных частиц. Их поведение можно описать тремя базовыми характеристиками: скоростью движения частицы, электрофоретической подвижностью, электрокинетическим потенциалом.

Среди многочисленных методов, которые применяют для проведения аналитических исследований, именно электрофорез позволяет разделять смеси веществ на отдельные фракции, осуществлять их количественное и качественное определение. Например, подобной методикой можно провести разделение белка сыворотки крови на альбумин и четыре фракции глобулинов. Такая задача часто решается в клинической биохимии, поскольку от соотношения фракций зависит определение патологических процессов, протекающих в организме больного.

В настоящее время проводят свободный (фронтальный) электрофорез, связанный с жидкой средой, а также зональный вариант в поддерживающих средах. Ими могут выступать пористые инертные синтетические либо натуральные материалы: крахмал, ацетилцеллюлоза, бумага, синтетический полиакриламидный гель.

Задача такой среды заключается в стабилизации жидкости, снижении диффузии, создании дополнительного механизма разделения.

В последнее время стали использовать разделение по молекулярному весу совместно с электрофоретической подвижностью.

Разновидность современного анализа

Диск-электрофорез является высокоразрешающей разновидностью данного метода. Суть его заключается в том, что сначала движение молекул производится через крупнопористый концентрирующий гель, где осуществляется разделение смеси посредством движения между разными сортами ионов. Разрешающая способность метода достигается путем концентрации перед разложением пробы в небольшой стартовой зоне, разделяя при этом вещества, которые незначительно отличаются между собой по свойствам.

Хроматографические методы базируются на динамическом делении смеси биологических веществ. Суть их в том, что поток подвижной фазы, которая содержит анализируемое вещество, проходит через стационарную фазу, что сопровождается взаимодействием с компонентами образца. Фазы для данного анализа подбирают так, чтобы отличались коэффициенты распределения у компонентов смеси.

В зависимости от агрегатного состояния подвижной фазы существует подразделение хроматографических методов на жидкостный и газообразный виды. С учетом геометрической формы стационарной фазы выделяют плоскостную и колоночную хроматографию.

По механизму разделения биологических препаратов в настоящее время выделяют адсорбционную хроматографию, базирующуюся на разной адсорбционной способности компонентов разделяемой жидкости на границе раздела двух фаз.

Распределительная, или адсорбционная хроматография, базируется на разной способности поглощать объемом жидкой фазы компонентов анализируемой смеси.

Заключение

Биохимический анализ необходим для ранней диагностики серьезных заболеваний. Например, при аффинной хроматографии можно выделить определенный компонент из любой биологической смеси.

Подобная методика применяется для очистки антител и антигенов, рецепторов, ферментов, гормонов. Особая роль в биохимии принадлежит центрифугированию. Исследование и разделение веществ на основе данного метода базируется на различной скорости седиментации (оседания) в центробежном поле частичек, которые имеют различную плотность, размеры, форму. При правильном подборе скорости проведения центрифугирования можно осаждать митохондрии, рибосомы, лизосомы.

Радиоизотопные методы базируются на возможности нестабильных изотопов испускать электромагнитное излучение либо частицы, фиксируемые специальными электронными приборами.

Среди явных преимуществ всех современных методов, применяемых в медицине, выделим возможность анализировать метаболические превращения, выявлять возраст биологических препаратов. Такие исследования помогают своевременно лечить пациентов.

Для генетических исследований человек является неудобным объектом, так как у человека: невозможно экспериментальное скрещивание; большое количество хромосом; поздно наступает половая зрелость; малое число потомков в каждой семье; невозможно уравнивание условий жизни для потомства.

В генетике человека используется ряд методов исследования.

Генеалогический метод

Использование этого метода возможно в том случае, когда известны прямые родственники — предки обладателя наследственного признака (пробанда ) по материнской и отцовской линиям в ряду поколений или потомки пробанда также в нескольких поколениях. При составлении родословных в генетике используется определенная система обозначений. После составления родословной проводится ее анализ с целью установления характера наследования изучаемого признака.

Условные обозначения, принятые при составлении родословных:
1 — мужчина; 2 — женщина; 3 — пол не выяснен; 4 — обладатель изучаемого признака; 5 — гетерозиготный носитель изучаемого рецессивного гена; 6 — брак; 7 — брак мужчины с двумя женщинами; 8 — родственный брак; 9 — родители, дети и порядок их рождения; 10 — дизиготные близнецы; 11 — монозиготные близнецы.

Благодаря генеалогическому методу были определены типы наследования многих признаков у человека. Так, по аутосомно-доминантному типу наследуются полидактилия (увеличенное количество пальцев), возможность свертывать язык в трубочку, брахидактилия (короткопалость, обусловленная отсутствием двух фаланг на пальцах), веснушки, раннее облысение, сросшиеся пальцы, заячья губа, волчья пасть, катаракта глаз, хрупкость костей и многие другие. Альбинизм, рыжие волосы, подверженность полиомиелиту, сахарный диабет, врожденная глухота и другие признаки наследуются как аутосомно-рецессивные.

Доминантный признак — способность свертывать язык в трубочку (1) и его рецессивный аллель — отсутствие этой способности (2).
3 — родословная по полидактилии (аутосомно-доминантное наследование).

Целый ряд признаков наследуется сцепленно с полом: Х -сцепленное наследование — гемофилия, дальтонизм; Y -сцепленное — гипертрихоз края ушной раковины, перепончатость пальцев ног. Имеется ряд генов, локализованных в гомологичных участках Х - и Y -хромосом, например общая цветовая слепота.

Использование генеалогического метода показало, что при родственном браке, по сравнению с неродственным, значительно возрастает вероятность появления уродств, мертворождений, ранней смертности в потомстве. В родственных браках рецессивные гены чаще переходят в гомозиготное состояние, в результате развиваются те или иные аномалии. Примером этого является наследование гемофилии в царских домах Европы.

— гемофилик; — женщина-носитель.

Близнецовый метод

1 — монозиготные близ-нецы; 2 — дизигот-ные близ-нецы.

Близнецами называют одновременно родившихся детей. Они бывают монозиготными (однояйцевыми) и дизиготными (разнояйцевыми).

Монозиготные близнецы развиваются из одной зиготы (1), которая на стадии дробления разделилась на две (или более) части. Поэтому такие близнецы генетически идентичны и всегда одного пола. Монозиготные близнецы характеризуются большой степенью сходства (конкордантностью ) по многим признакам.

Дизиготные близнецы развиваются из двух или более одновременно овулировавших и оплодотворенных разными сперматозоидами яйцеклеток (2). Поэтому они имеют различные генотипы и могут быть как одного, так и разного пола. В отличие от монозиготных, дизиготные близнецы характеризуются дискордантностью — несходством по многим признакам. Данные о конкордантности близнецов по некоторым признакам приведены в таблице.

Признаки Конкордантность, %
Монозиготные близнецы Дизиготные близнецы
Нормальные
Группа крови (АВ0) 100 46
Цвет глаз 99,5 28
Цвет волос 97 23
Патологические
Косолапость 32 3
«Заячья губа» 33 5
Бронхиальная астма 19 4,8
Корь 98 94
Туберкулез 37 15
Эпилепсия 67 3
Шизофрения 70 13

Как видно из таблицы, степень конкордантности монозиготных близнецов по всем приведенным признакам значительно выше, чем у дизиготных, однако она не является абсолютной. Как правило, дискордантность монозиготных близнецов возникает в результате нарушений внутриутробного развития одного из них или под влиянием внешней среды, если она была разной.

Благодаря близнецовому методу, была выяснена наследственная предрасположенность человека к ряду заболеваний: шизофрении, эпилепсии, сахарному диабету и другим.

Наблюдения за монозиготными близнецами дают материал для выяснения роли наследственности и среды в развитии признаков. Причем под внешней средой понимают не только физические факторы среды, но и социальные условия.

Цитогенетический метод

Основан на изучении хромосом человека в норме и при патологии. В норме кариотип человека включает 46 хромосом — 22 пары аутосом и две половые хромосомы. Использование данного метода позволило выявить группу болезней, связанных либо с изменением числа хромосом, либо с изменениями их структуры. Такие болезни получили название хромосомных .

Материалом для кариотипического анализа чаще всего являются лимфоциты крови. Кровь берется у взрослых из вены, у новорожденных — из пальца, мочки уха или пятки. Лимфоциты культивируются в особой питательной среде, в состав которой, в частности, добавлены вещества, «заставляющие» лимфоциты интенсивно делиться митозом. Через некоторое время в культуру клеток добавляют колхицин. Колхицин останавливает митоз на уровне метафазы. Именно во время метафазы хромосомы являются наиболее конденсированными. Далее клетки переносятся на предметные стекла, сушатся и окрашиваются различными красителями. Окраска может быть а) рутинной (хромосомы окрашиваются равномерно), б) дифференциальной (хромосомы приобретают поперечную исчерченность, причем каждая хромосома имеет индивидуальный рисунок). Рутинная окраска позволяет выявить геномные мутации, определить групповую принадлежность хромосомы, узнать, в какой группе изменилось число хромосом. Дифференциальная окраска позволяет выявить хромосомные мутации, определить хромосому до номера, выяснить вид хромосомной мутации.

В тех случаях, когда необходимо провести кариотипический анализ плода, для культивирования берутся клетки амниотической (околоплодной) жидкости — смесь фибробластоподобных и эпителиальных клеток.

К числу хромосомных заболеваний относятся: синдром Клайнфельтера, синдром Тернера-Шерешевского, синдром Дауна, синдром Патау, синдром Эдвардса и другие.

Больные с синдромом Клайнфельтера (47, ХХY ) всегда мужчины. Они характеризуются недоразвитием половых желез, дегенерацией семенных канальцев, часто умственной отсталостью, высоким ростом (за счет непропорционально длинных ног).

Синдром Тернера-Шерешевского (45, Х0 ) наблюдается у женщин. Он проявляется в замедлении полового созревания, недоразвитии половых желез, аменорее (отсутствии менструаций), бесплодии. Женщины с синдромом Тернера-Шерешевского имеют малый рост, тело диспропорционально — более развита верхняя часть тела, плечи широкие, таз узкий — нижние конечности укорочены, шея короткая со складками, «монголоидный» разрез глаз и ряд других признаков.

Синдром Дауна — одна из самых часто встречающихся хромосомных болезней. Она развивается в результате трисомии по 21 хромосоме (47; 21, 21, 21). Болезнь легко диагностируется, так как имеет ряд характерных признаков: укороченные конечности, маленький череп, плоское, широкое переносье, узкие глазные щели с косым разрезом, наличие складки верхнего века, психическая отсталость. Часто наблюдаются и нарушения строения внутренних органов.

Хромосомные болезни возникают и в результате изменения самих хромосом. Так, делеция р -плеча аутосомы №5 приводит к развитию синдрома «крик кошки». У детей с этим синдромом нарушается строение гортани, и они в раннем детстве имеют своеобразный «мяукающий» тембр голоса. Кроме того, наблюдается отсталость психомоторного развития и слабоумие.

Чаще всего хромосомные болезни являются результатом мутаций, произошедших в половых клетках одного из родителей.

Биохимический метод

Позволяет обнаружить нарушения в обмене веществ, вызванные изменением генов и, как следствие, изменением активности различных ферментов. Наследственные болезни обмена веществ подразделяются на болезни углеводного обмена (сахарный диабет), обмена аминокислот, липидов, минералов и др.

Фенилкетонурия относится к болезням аминокислотного обмена. Блокируется превращение незаменимой аминокислоты фенилаланин в тирозин, при этом фенилаланин превращается в фенилпировиноградную кислоту, которая выводится с мочой. Заболевание приводит к быстрому развитию слабоумия у детей. Ранняя диагностика и диета позволяют приостановить развитие заболевания.

Популяционно-статистический метод

Это метод изучения распространения наследственных признаков (наследственных заболеваний) в популяциях. Существенным моментом при использовании этого метода является статистическая обработка получаемых данных. Под популяцией понимают совокупность особей одного вида, длительное время обитающих на определенной территории, свободно скрещивающихся друг с другом, имеющих общее происхождение, определенную генетическую структуру и в той или иной степени изолированных от других таких совокупностей особей данного вида. Популяция является не только формой существования вида, но и единицей эволюции, поскольку в основе микроэволюционных процессов, завершающихся образованием вида, лежат генетические преобразования в популяциях.

Изучением генетической структуры популяций занимается особый раздел генетики — популяционная генетика . У человека выделяют три типа популяций: 1) панмиктические, 2) демы, 3) изоляты, которые отличаются друг от друга численностью, частотой внутригрупповых браков, долей иммигрантов, приростом населения. Население крупного города соответствует панмиктической популяции. В генетическую характеристику любой популяции входят следующие показатели: 1) генофонд (совокупность генотипов всех особей популяции), 2) частоты генов, 3) частоты генотипов, 4) частоты фенотипов, система браков, 5) факторы, изменяющие частоты генов.

Для выяснения частот встречаемости тех или иных генов и генотипов используется закон Харди-Вайнберга .

Закон Харди-Вайнберга

В идеальной популяции из поколения в поколение сохраняется строго определенное соотношение частот доминантных и рецессивных генов (1), а также соотношение частот генотипических классов особей (2).

p + q = 1, (1)
р 2 + 2pq + q 2 = 1, (2)

где p — частота встречаемости доминантного гена А ; q — частота встречаемости рецессивного гена а ; р 2 — частота встречаемости гомозигот по доминанте АА ; 2pq — частота встречаемости гетерозигот Аа ; q 2 — частота встречаемости гомозигот по рецессиву аа .

Идеальной популяцией является достаточно большая, панмиктическая (панмиксия — свободное скрещивание) популяция, в которой отсутствуют мутационный процесс, естественный отбор и другие факторы, нарушающие равновесие генов. Понятно, что идеальных популяций в природе не существует, в реальных популяциях закон Харди-Вайнберга используется с поправками.

Закон Харди-Вайнберга, в частности, используется для примерного подсчета носителей рецессивных генов наследственных заболеваний. Например, известно, что в данной популяции фенилкетонурия встречается с частотой 1:10000. Фенилкетонурия наследуется по аутосомно-рецессивному типу, следовательно, больные фенилкетонурией имеют генотип аа , то есть q 2 = 0,0001. Отсюда: q = 0,01; p = 1 - 0,01 = 0,99. Носители рецессивного гена имеют генотип Аа , то есть являются гетерозиготами. Частота встречаемости гетерозигот (2pq ) составляет 2 · 0,99 · 0,01 ≈ 0,02. Вывод: в данной популяции около 2% населения — носители гена фенилкетонурии. Заодно можно подсчитать частоту встречаемости гомозигот по доминанте (АА ): p 2 = 0,992, чуть меньше 98%.

Изменение равновесия генотипов и аллелей в панмиктической популяции происходит под влиянием постоянно действующих факторов, к которым относятся: мутационный процесс, популяционные волны, изоляция, естественный отбор, дрейф генов, эмиграция, иммиграция, инбридинг. Именно благодаря этим явлениям возникает элементарное эволюционное явление — изменение генетического состава популяции, являющееся начальным этапом процесса видообразования.

Генетика человека — одна из наиболее интенсивно развивающихся отраслей науки. Она является теоретической основой медицины, раскрывает биологические основы наследственных заболеваний. Знание генетической природы заболеваний позволяет вовремя поставить точный диагноз и осуществить нужное лечение.

    Перейти к лекции №21 «Изменчивость»



gastroguru © 2017