В каком случае иммунитет является активным приобретенным. Врожденный и приобретенный иммунитет

Оглавление темы "Видовой иммунитет. Факторы защиты организма. Фагоцитирующие клетки.":









Приобретённый иммунитет. Естественно приобретённый иммунитет. Инфекционный (нестерильный) иммунитет. Активно приобретённый иммунитет. Пассивно приобретённый иммунитет.

Приобретённый иммунитет формируется в течение жизни индивидуума и не передаётся по наследству; может быть естественным или искусственным.

Естественно приобретённый иммунитет развивается после перенесённого инфекционного заболевания, протекавшего в клинически выраженной форме, либо после скрытых контактов с микробными Аг (так называемая бытовая иммунизация). В зависимости от свойств возбудителя и состояния иммунной системы организма невосприимчивость может быть пожизненной (например, после кори), длительной (после брюшного тифа) или сравнительно кратковременной (после гриппа).

Инфекционный (нестерильный ) иммунитет - особая форма приобретённой невосприимчивости; не является следствием перенесённой инфекции, обусловлен наличием инфекционного агента в организме. Невосприимчивость исчезает сразу после элиминации возбудителя из орга низма (например, туберкулёз; вероятно, малярия).

Искусственно приобретённый иммунитет

Состояние невосприимчивости развивается в результате вакцинации, серопрофилактики (введения сывороток) и других манипуляций.

Активно приобретённый иммунитет развивается после иммунизации ослабленными или убитыми микроорганизмами либо их Аг. В обоих случаях организм активно участвует в созда-нии невосприимчивости, отвечая развитием иммунного ответа и формированием пула клеток памяти. Как правило, активно приобретённая невосприимчивость устанавливается через не- сколько недель после иммунизации, сохраняется годами, десятилетиями или пожизненно; по наследству не передаётся. Вакцино- или иммунопрофилактика - важнейший инструмент в борьбе с инфекционными заболеваниями - преследует создание активно приобретённой невосприимчивости.

Пассивно приобретённый иммунитет достигается введением готовых AT или, реже, сенсибилизированных лимфоцитов. В таких ситуациях иммунная система реагирует пассивно, не участвуя в своевременном развитии соответствующих иммунных реакций. Готовые AT получают иммунизацией животных (лошадей, коров) или людей-доноров. Препараты представлены чужеродным белком, и их введение нередко сопровождается развитием неблагоприятных побочных реакций. По этой причине подобные препараты применяют только с лечебными целями и не используют для плановой иммунопрофилактики. Б целях экстренной профилактики применяют столбнячный антитоксин, антирабический Ig и др. Широкое распространение нашли антитоксины - AT, нейтрализующие токсины микроорганизмов.

Пассивно приобретённая невосприимчивость развивается быстро, обычно через несколько часов после введения препарата; сохраняется недолго и исчезает по мере удаления донорских AT из кровотока.

Состояние невосприимчивости развивается в результате вакцинации, серопрофилактики (введения сывороток) и других манипуляций.

Активно приобретённый иммунитет развивается после иммунизации ослабленными или убитыми микроорганизмами либо их Аг. В обоих случаях организм активно участвует в созда-нии невосприимчивости, отвечая развитием иммунного ответа и формированием пула клеток памяти. Как правило, активно приобретённая невосприимчивость устанавливается через не- сколько недель после иммунизации, сохраняется годами, десятилетиями или пожизненно; по наследству не передаётся.

Пассивно приобретённый иммунитет достигается введением готовых AT или, реже, сенсибилизированных лимфоцитов. В таких ситуациях иммунная система реагирует пассивно, не участвуя в своевременном развитии соответствующих иммунных реакций. Готовые AT получают иммунизацией животных (лошадей, коров) или людей-доноров. Препараты представлены чужеродным белком, и их введение нередко сопровождается развитием неблагоприятных побочных реакций. По этой причине подобные препараты применяют только с лечебными целями и не используют для плановой иммунопрофилактики

Пассивно приобретённая невосприимчивость развивается быстро, обычно через несколько часов после введения препарата; сохраняется недолго и исчезает по мере удаления донорских AT из кровотока.

Лимфоциты

Большая часть лимфоцитов отвечает за специфический приобретённый иммунитет, так как могут распознавать возбудителей инфекции внутри или вне клеток, в тканях или в крови.

Основными типами лимфоцитов являются B-клетки и T-клетки , которые происходят из плюрипотентных гемопоэтических стволовых клеток ; у взрослого человека они образуются в костном мозге, а T-лимфоциты дополнительно проходят часть этапов дифференцировки в тимусе . B-клетки отвечают за гуморальное звено приобретённого иммунитета , то есть вырабатывают антитела , в то время как T-клетки представляют собой основу клеточного звена специфического иммунного ответа.

Существуют разные виды лимфоцитов. В частности, по морфологическим признакам их разделяют на малые лимфоциты и большие гранулярные лимфоциты (БГЛ). По структуре внешних рецепторов среди лимфоцитов выделяют, в частности, B-лимфоциты и T-лимфоциты .

Как B-, так и T-клетки несут на своей поверхности рецепторные молекулы, которые распознают специфические мишени. одна клетка может содержать рецепторы только для одного вида антигенов.

Связь T-клеточного рецептора с молекулами главного комплекса гистосовместимости I и II класса, презентирующей антиген (указан красным)

T-клетки распознают чужеродные («не-свои») мишени, такие как патогенные микроорганизмы, только после того, как антигены (специфические молекулы чужеродного тела) будут обработаны и презентированы в сочетании с собственной («своей») биомолекулой, которая называется молекулой главного комплекса гистосовместимости (англ. main histocompatibility complex , MHC). Среди T-клеток различают ряд подтипов, в частности, Т-киллеры , Т-хелперы и Регуляторные Т-клетки .

T-киллеры распознают только антигены, которые объединены с молекулами МНС I класса, в то время как T-хелперы распознают только антигены, расположенные на поверхности клеток в сочетании с МНС II класса. Это различие в презентации антигена отражает разные роли указанных двух типов T-клеток. Другим, менее распространённым подтипом T-клеток, являются γδ T-клетки , которые распознают неизмененные антигены, не связанные с рецепторами главного комплекса гистосовместимости.

У T-лимфоцитов круг задач весьма широк. Часть из них - регуляция приобретённого иммунитета с помощью специальных белков (в частности, цитокинов ), активация B-лимфоцитов для образования антител, а также регуляция активации фагоцитов для более эффективного разрушения микроорганизмов. Эту задачу выполняет группа T-хелперов. За разрушение собственных клеток организма путём выделения цитотоксичных факторов при непосредственном контакте отвечают T-киллеры, которые действуют специфически.

В отличие от T-клеток, B-клетки не нуждаются в обработке антигена и экспрессии его на поверхности клетки. Их рецепторы к антигену представляют собой фиксированные на поверхности B-клетки антителоподобные белки. Каждая прошедшая дифференцировку линия B-клеток экспрессирует уникальное только для неё антитело, и никакое другое. Таким образом, полный набор антигенных рецепторов всех B-клеток организма представляет все антитела, которые организм может вырабатывать. Функция B-лимфоцитов заключается прежде всего в выработке антител - гуморального субстрата специфического иммунитета -, действие которых направлено прежде всего против внеклеточно расположенных возбудителей.

Кроме того, существуют лимфоциты, неспецифически проявляющие цитотоксичность - естественные киллеры .

T-киллеры напрямую атакуют другие клетки, несущие на своей поверхности чужеродные или аномальные антигены.

Т-киллеры представляют собой подгруппу T-клеток, функцией которых является разрушение собственных клеток организма, инфицированных вирусами или другими патогенными внутриклеточными микроорганизмами, либо клетки, которые повреждены или неверно функционируют (например, опухолевые клетки). Как и B-клетки, каждая конкретная линия T-клеток распознает только один антиген. T-киллеры активируются при соединении своим T-клеточным рецептором (ТКР) со специфическим антигеном в комплексе с рецептором главного комплекса гистосовместимости I класса другой клетки. Распознавание этого комплекса рецептора гистосовместимости с антигеном осуществляется при участии расположенного на поверхности T-клетки вспомогательного рецептора CD8 . После активации T-клетка перемещается по организму в поисках клеток, на которых белок МНС I класса содержит последовательность нужного антигена. При контакте активированного T-киллера с такими клетками он выделяет токсины, образующие отверстия в цитоплазматической мембране клеток-мишеней, в результате ионы, вода и токсин свободно перемещаются в клетку-мишень и из неё: клетка-мишень погибает.Активация T-киллеров жестко управляется и обычно требует очень сильного сигнала активации от комплекса белка гистосовместимости с антигеном, либо дополнительной активации факторами T-хелперов.

Т-хелперы регулируют реакции как врожденного, так и приобретенного иммунитета, и позволяют определять тип ответа, который организм окажет на конкретный чужеродный материал. Эти клетки не проявляют цитотоксичности и не участвуют в уничтожении инфицированных клеток или непосредственно возбудителей. Вместо этого, они управляют иммунным ответом, направляя другие клетки на выполнение этих задач.

T-хелперы экспрессируют T-клеточные рецепторы (ТКР), которые распознают антигены, связанные с молекулами МНС II класса. Комплекс молекулы МНС с антигеном также распознается корецептором клеток-хелперов CD4 , который привлекает внутриклеточные молекулы T-клетки (например, Lck ), ответственные за активацию T-клетки. T-хелперы обладают меньшим чувствительностью к комплексу молекулы главного комплекса гистосовместимости и антигена, чем T-киллеры, то есть для активации T-хелпера требуется связывание гораздо большего количества его рецепторов (около 200-300) с МНС и антигена, в то время как T-киллеры могут быть активированы после связывания с одним таким комплексом. Активация T-хелпера также требует более продолжительного контакта с антиген-презентирующей клеткой. Активация неактивного T-хелпера приводит к высвобождению им цитокинов , которые оказывают влияние на активность многих видов клеток. Цитокиновые сигналы, создаваемые T-хелперами, усиливают бактерицидную функцию макрофагов и активность T-киллеров. Кроме того, активация T-хелперов вызывает изменения в экспрессии молекул на поверхности T-клетки, в частности лиганда CD40 (также известного под обозначением CD154 ), что создает дополнительные стимулирующие сигналы, обычно требуемые для активации вырабатывающих антитела B-клеток.

    Грунт як середовище існування мікроорганізмів. Роль мікроорганізмів у процесах грунтоутворення та живлення рослин.

Винятково важливе значення для процесів грунтоутворення мають мікроорганізми. їм належить основна роль у глибокому і повному руйнуванні органічних речовин, деяких первинних і вторинних мінералів. Кожному типові грунтів, кожній грунтовій відмінності властивий свій специфічний профільний розподіл мікроорганізмів. При цьому чисельність мікроорганізмів, їх видовий склад відображають важливі властивості грунту. Основна маса мікроорганізмів зосереджена у межах верхніх 20 см товщі грунту. Біомаса грибів і бактерій в орному шарі грунту складає до 5 т/га.

Мікроорганізми беруть активну участь у процесі гумусоутворення, який за своєю природою біохімічний. Великий вплив мають мікроорганізми на склад грунтового повітря, на цикли перетворення азотовмісних сполук. Одна з важливих ланок у циклах перетворення азоту – фіксація його грунтовими мікроорганізмами. Бобові культури за допомогою бульбочкових бактерій фіксують і накопичують у грунтах від 60 до 300 кг азоту на гектар у рік.

кількість мікробів у грунтах величезна – від 200 млн. мікробів у 1 г глинистого грунту до п"яти і більше мільярдів у 1 г чорнозему. Грунт – основне джерело, звідки мікроорганізми надходять у зовнішнє середовище – повітря й воду.

Мікрофлора грунту дуже різноманітна. У її складі нітрифікуючі, азотфіксуючі, денітрифікуючі бактерії, сірко- і залізобактерії, целю-лозорозкладачі, різні пігментні бактерії, мікоплазми, актиноміцети, гриби, водорості, найпростіші тощо. Кількісний і якісний склад мікрофлори різних грунтів змінюється залежно від хімічного складу грунту, його фізичних властивостей, реакції середовища, вмісту в ньому повітря, вологи й поживних речовин.

Серед різноманітної мікрофлори в грунті є і патогенні бактерії, проте грунт у цілому – несприятливе середовище для життя більшості патогенних бактерій, вірусів, грибів і найпростіших. У грунті водночас з мінералізацією органічних речовин відбуваються процеси бактеріального самоочищення – відмирання не характерних для грунту сапрофітних і патогенних бактерій.

Значна роль мікроорганізмів і в руйнуванні та новоутворенні мінералів. Вона пов"язана, в першу чергу, з мікробними циклами калію, заліза, алюмінію, фосфору та сірки. Руйнування та синтез мінералів забезпечують залучення елементів у біологічний кругообіг та його взаємодію з великим геологічним кругообігом речовин.

У процесах мікробного руйнування мінералів беруть участь в основному гриби, та, в меншій мірі, актиноміцети й інші бактерії. В основі деструкції мінералів лежать такі механізми:

1) розчинення сильними кислотами, що утворюються при нітрифікації, при окисненні сірки;

2) дія органічних кислот – продуктів бродіння і неповного окиснення вуглеводів грибами;

3) взаємодія з позаклітинними амінокислотами, що виділяються більшістю мікроорганізмів;

4) руйнування продуктами мікробіологічної трансформації рослинних решток – поліфенолами, поліуронідами, танінами, флавоноїдами;

5) руйнування продуктами мікробного біосинтезу, наприклад, поліцукрами.

Найвищою мінералодеструктивною здатністю володіє мікрофлора грунтів підзолистого типу.

Мікроорганізми беруть участь не лише в розсіюванні елементів, що містяться в мінералах, а й у мінералоутворенні. Зокрема, мікроорганізми утворюють боксити (гідроксид алюмінію), відкладаючи алюміній по периферії клітин, а також при руйнуванні алюмосилікатів. Окрім алюмінію, у грунтах відбувається новоутворення сульфідних, карбонатних, фосфатних, залізистих і силікатних мінералів.

Карбонатні мінерали в едафотопах – продукти біогенного походження. Кальцити утворюються при осадженні кальцію вуглекислотою, що виділяється при диханні, бродінні та неповному окиснювальному розкладі органічних сполук.

Кремнієві мінерали нерідко утворюються при життєдіяльності діатомових водоростей.

У ризосфері (зола ґрунту довкола коренів, збагачена мікробами). У її складі переважно леспорогносні бактерії Psendomonas Herlicola, Pcendomonas flurecenc, інколи спороносні – Bacillus mesentericus, Bacillus megaterum, мікробактерії, азотобактерії та ін. Значну кількість мікроорганізмів ризосфери становлять також гриби, зокрема представники родів Penicillium Trichoderma. В ризосфері зустрічаються також дріжджі, водорості та інші мікроорганізми.

Відомо, що коренева система і надземні органи рослин виділяють різні речовини, тобто здійснюють так званий процес екзоосну. У кореневих виділеннях виявлено органічні кислоти (яблучну, винну, лимонну, щавелеву та ін.), цукри, амінокислоти, фізіологічно активні речовини (вітаміни, алкаоїди, ростові речовини та ін.). У зв’язку з цим на коренях рослин розмножується численна сапрофітна мікрофлора, яка живиться цими поживними речовинами. Рослини, у свою чергу, дістають від мікроорганізмів продукти мінералізації органічних речовин. Встановлено також, що ризосферні мікроорганізми можуть також виробляти тіамін, цінокобалін, рибофлавін, пиридоксин, патотенову кислоту та інші речовини. Рослини самостійно синтезують вітаміни та інші речовини, проте іноді відчувають в них нестачу і можуть засвоювати їх з ґрунту.

Особливо тісні взаємозв’язки склалися між рослинами і грибами, яке дістало назву – мікориза. Проявляється в поєднанні кінцевих розгалужень з гіорами грибі. При утворені мікоризи гіори гриба розміщуються на поверхні або проникають у клітину екзодерми кореня. Мікориза має важливе значення в живленні рослин. Є ряд рослин, які не можуть нормально розвиватись без співжиття з рибами (сосна, ялина, модрина, дуб та ін.), а орхідеї і монтропа є облігатними мікотрофними рослинами.

Фізіологічні взаємовідносини компонентів мікоризи вивчено недостатньо. Вважають, що мікоризний гриб збільшує робочу поверхню рослин, завдяки чому коренева система краще поглинає з ґрунту воду та мінеральні речовини.

40. Що таке антропонозні та зоонозні інфекції? Порівняйте їх.

Сапронозы (сапронозные инфекции ) (греч. sapros - гнилой, греч. nósos - болезнь) - группа инфекционных заболеваний, для возбудителей которых главным естественным местом обитания являются абиотические (неживые) объекты окружающей среды. Этим данная группа отличается от прочих заразных болезней, для возбудителей которых главным естественным местом обитания служит заражённый организм человека (антропонозы) или животного (зоонозы).

Источником возбудителей инфекции при антропонозах являются только люди - больные или носители возбудителей инфекции (или инвазии ); при некоторых антропонозах (например, при кори , ветряной оспе ) источником возбудителей инфекции является только больной человек.

Профилактика зоонозов проводится с учетом эпидемической роли животных - источников инфекции , а также особенности путей передачи возбудителей. Например, при зоонозах, связанных с домашними животными, необходим ветеринарно-санитарный надзор и защита людей от заражения при уходе за животными. При зоонозах связанных с дикими животными, необходимо наблюдение за их численностью (например, численностью грызунов ), в некоторых случаях (при борьбе с чумой , туляремией ) уничтожение грызунов (дератизация). Кроме того, проводится защита людей от нападения кровососущих насекомых и клещей (например, применение репеллентов, защитных сеток, защитной одежды), а также иммунизация отдельных групп людей по эпидемическим показаниям.

Зооантропонозы , или антропозоонозы , - заболевания, передающиеся от животного человеку или наоборот при естественном контакте. Главным образом данные болезни обнаруживаются у животных, однако могут развиваться и у человека (например, лептоспироз, сибирская язва и бешенство).

41 Охарактеризуйте фактори неспецифічної резистентності організму, їх функції та роль в нормі та при патології.

неспецифическая резистентность организма, в отличие от иммунитета, направлена на уничтожение любого чужеродного агента. К неспецифической резистентности относятся фагоцитоз и пиноцитоз, система комплемента, естественная цитотоксичность, действие интерферонов лизоцима, β-лизинов и других гуморальных факторов защиты.

Фагоцитоз. Это поглощение чужеродных частиц или клеток и их дальнейшее уничтожение. стадии фагоцитоза: 1) приближение фагоцита к фагоцитируемому объекту, или лиганду; 2) контакт лиганда с мембраной фагоцита; 3) поглощение лиганда; 4) переваривание или уничтожение фагоцитированного объекта. Всем фагоцитам присуща амебовидная подвижность. Сцепление с субстратом, к которому движется лейкоцит, носит название адгезии. Только фиксированные, или адгезированные, лейкоциты способны к фагоцитозу.

Фагоцит может улавливать отдаленные сигналы (хемотаксис ) и мигрировать в их направлении (хемокинез). их действие проявляется лишь в присутствии особых соединений - хемоаттрактантов. К хемоаттрактантам относят продукты распада соединительной ткани, иммуноглобулинов, фрагменты активных компонентов комплемента, некоторые факторы свертывания крови и фибринолиза, простагландины, лейкотриены, лимфокины и монокины. Чем выше концентрация хемоаттрактанта, тем большее число фагоцитов устремляется в зону повреждения и тем с большей скоростью они движутся. Для взаимодействия с хемоаттрактантом у фагоцита имеются специфические гликопротеиновые образования - рецепторы; их число на одном нейтрофиле достигает 2 103-2 105. Двигаясь таким образом, лейкоцит проходит через эндотелий капилляра; прилипая к сосудистой стенке, он выпускает псевдоподию, которая пронизывает стенку сосуда. В этот выступ постепенно «переливается» тело лейкоцита. После этого лейкоцит отделяется от стенки сосуда и может передвигаться в тканях. Как только лиганд взаимодействует с рецептором, наступает конформация последнего и сигнал передается на фермент, связанный с рецептором в единый комплекс, благодаря чему осуществляется поглощение фагоцитируемого объекта. Лиганд оказывается заключенным в мембрану фагоцита. Образующаяся при этом фагосома передвигается к центру клетки, где сливается с лизосомами, в результате чего появляется фаголизосома. При образовании фаголизосомы происходит резкое усиление окислительных процессов внутри нее, в результате чего наступает гибель бактерий.

Система комплемента. Комплемент - ферментная система, состоящая более чем из 20 белков, играющая важную роль в осуществлении защитных реакций, течении воспаления и разрушения (лизиса) мембран бактерий и различных клеток. При активации системы комплемента усиливается разрушение чужеродных и старых клеток, активируются фагоцитоз и течение иммунных реакций, повышается проницаемость сосудистой стенки, ускоряется свертывание крови, что в конечном итоге приводит к более быстрой ликвидации патологического процесса.

Система интерферона (ифн) - важнейший фактор неспецифической резистентности организма человека . Следует отметить, что открытие интерферона (ифн ) А. Айзексом и Ж. Линденманном (1957) было плодом блестящей случайности, по своей значимости сравнимой с открытием пенициллинов Флемингом: изучая интерференцию вирусов, авторы обратили внимание на то, что некоторые клетки становились резистентными к повторному заражению вирусами. В настоящее время ИФН относят к классу индуцируемых белков клеток позвоночных.

Приобретенный иммунитет у человека формируется в течение жизни, по наследству он не передается.

Естественный иммунитет. Активный иммунитет формируется после перенесенного заболевания (его назы­вают постинфекционным). В большинстве случаев он длительно сохраняется: после кори, ветряной оспы, чумы и др. Однако после некоторых заболеваний длительность иммунитета невелика и не превышает одного года (грипп, дизентерия и др.). Иногда естественный активный иммуни­тет развивается без видимого заболевания. Он формирует­ся в результате скрытой (латентной) инфекции или много­кратного инфицирования небольшими дозами возбудителя, не вызывающими явно выраженного заболевания (дроб­ная, бытовая иммунизация).

Рис. 59 Формирование иммунитета

Пассивный иммунитет-это иммунитет новорож­денных (плацентарный), приобретенный ими через плацен­ту в период внутриутробного развития. Новорожденные могут также получить иммунитет с молоком матери. Этот вид иммунитета непродолжителен и к 6-8 мес, как правило, исчезает. Однако значение естественного пассив­ного иммунитета велико-он обеспечивает невосприимчи­вость грудных детей к инфекционным заболеваниям.

Искусственный иммунитет. Активный иммунитет человек приобретает в результате иммунизации (приви­вок). Этот вид иммунитета развивается после введения в организм бактерий, их ядов, вирусов, ослабленных или убитых разными способами (прививки против коклюша, дифтерии, оспы).

При этом в организме происходит активная перестрой­ка, направленная на образование веществ, губительно действующих на возбудителя и его токсины (антитела).

Рис.60 Вакцинация

Рис.61 Принцип вакцинации.

Происходит также изменение свойств клеток, уничтожа­ющих микроорганизмы и продукты их жизнедеятельно­сти. Развитие активного иммунитета происходит постепен­но в течение 3-4 нед. и сохраняется он сравнительно длительное время - от 1 года до 3-5 лет.

Пассивный иммунитет создают введением в орга­низм готовых антител. Этот вид иммунитета возникает сразу после введения антител (сывороток и иммуноглобу­линов), но сохраняется всего 15-20 дней, после чего антитела разрушаются и выводятся из организма.



Понятие «местный иммунитет» было введено А. М. Безредкой. Он считал, что отдельные клетки и ткани организма обладают определенной восприимчиво­стью. Иммунизируя их, создают как бы барьер для проникновения возбудителей инфекции. В настоящее вре­мя доказано единство местного и общего иммунитета. Но значение невосприимчивости отдельных тканей и органов к микроорганизмам несомненно.

Помимо указанного выше разделения иммунитета по происхождению, различают формы иммунитета, направ­ленные на разные антигены.

Антимикробный иммунитет развивается при заболева­ниях, обусловленных различными микроорганизмами или при введении корпускулярных вакцин (из живых ослаблен­ных или убитых микроорганизмов.

Невосприимчивость человека к инфекционным заболе­ваниям обусловлена совместным действием неспецифиче­ских и специфических факторов защиты.

Неспецифическими называют врожденные свой­ства организма, которые способствуют уничтожению са­мых различных микроорганизмов на поверхности тела человека и в полостях его организма.

Развитие специфических факторов защиты происходит после соприкосновения организма с возбудителями или токсинами; действие этих факторов направленно только против этих возбудителей или их токсинов.

Неспецифические факторы защиты организма .

Существуют механические, химические и биологические факторы, предохраняющие организм от вредных воздействий различных микроорганизмов.

Кожа. Неповрежденная кожа является барьером для проникновения микроорганизмов. При этом имеет значение механические факторы: отторжение эпителия и выделения сальных и потовых желез, которые способствуют удалению микроорганизмов с кожи.

Роль химических факторов защиты также выполняют выделения желез кожи (сальных и потовых). Они содержат жирные и молочные кислоты, обладающие бактерицидным (убивающим бактерии) действием.

Рис.63 Функция мерцательного эпителия

Физиологической функцией мерцательного эпителия является очищение.

A.Соединительнаяткань
B.Базальнаямембрана
C.Поврежденныйучастокэпителия
D. Окружающая среда

Биологические факторы защиты обусловлены губительным воздействием нормальной микрофлоры кожи на патогенные микроорганизмы.

Слизистые оболочки разных органов являются одним из барьеров на пути проникновения микроорганизмов. В дыхательных путях механическая защита осуществляется с помощью мерцательного эпителия. Движение ресничек эпителия верхних дыхательных путей постоянно передвигает пленку слизи вместе с различными микроорганизмами по направлению к естественным отверстиям: ротовой полости и носовым ходам. Такое же воздействие на бактерии оказывают волоски носовых ходов. Кашель и чихание способствуют удалению микроорганизмов, предотвращают их аспирацию (вдыхание).

В слезах, слюне, материнском молоке и других жидкостях организма содержится лизоцим. Он оказывает губительное (химическое) действие на микроорганизмы. Также влияет на микроорганизмы кислая среда желудочного содержимого.

Нормальная микрофлора слизистых оболочек, как фактор биологической защиты, является антагонистом патогенных микроорганизмов.

Воспаление - реакция макроорганизма на чужеродные частицы, проникающие в его внутреннюю среду. Одной из причин воспаления является внедрение в организм возбу­дителей инфекции. Развитие воспаления приводит к унич­тожению микроорганизмов или освобождению от них.

Воспаление характеризуется нарушением циркуляции крови и лимфы в очаге поражения. Оно сопровождается повышением температуры, отеком, краснотой и болевыми ощущениями.

Иммунитет – способ защиты организма от живых тел и веществ, несущих в себе признаки генетически чужеродной информации.

Организм человека и животных весьма точно дифференцирует «свое» и «чужое», обеспечивая таким образом, защиту от внедрения не только патогенных микробов, но и чужеродных веществ. Поступление в организм веществ с признаками чужеродной информации грозит нарушением структурного и химического состава этого организма. Количественное и качественное постоянство внутренней среды организма называется гомеостазом. Гомеостаз обеспечивает процессы саморегулирования во всех живых системах. Иммунитет – одно из проявлений гомеостаза. В этой связи можно утверждать, что иммунитет является свойством всего живого – человека, животных, растений, бактерий.

Система органов и клеток, осуществляющая реагирование против чужеродных субстанций, получила название иммунной системы. Клетки иммунной системы постоянно циркулируют по всему телу через кровоток. Иммунная система обладает способностью вырабатывать сугубо специфические молекулы антител, различные по своей специфике в отношении каждого антигена.

Классификация иммунитета по происхождению.

Различают иммунитет врожденный и приобретенный.

Врожденный иммунитет (естественный, видовой, наследственный, генетический) – это невосприимчивость к инфекционным агентам, передающаяся по наследству. Этот вид иммунитета свойственен животным определенного вида к определенному возбудителю и передается из поколения в поколение. Например, лошади не болеют ящуром, крупный рогатый скот – сапом, собаки – чумой свиней. Различают врожденный иммунитет индивидуальный и видовой:

Индивидуальный врожденный иммунитет наблюдается у отдельных особей вида, хотя, как правило, остальные особи этого вида чувствительны к этому заболеванию.

Видовой иммунитет наблюдается у всех особей данного вида. Различают видовой иммунитет абсолютный и относительный. Абсолютным называется такой вид иммунитета, когда заболевание у определенного вида животных невозможно вызвать ни при каких условиях. Относительным видовой иммунитет считается, если возможно его нарушение при определенных условиях (переохлаждении, перегревание, возрастные изменения).

Например, Мечникову удалось вызвать столбняк у лягушки (весьма устойчивой к столбнячному токсину), при перегревании ее в термостате. Врожденной резистентностью в основном обладают взрослые животные, у новорожденных животных видовая устойчивость часто отсутствует. Важно заметить, что естественная устойчивость это не только видовой признак. Среди восприимчивых к определенным видам микроорганизмов существуют породы, популяции и линии животных, отличающихся высокой устойчивостью к данному возбудителю. Так, при высокой чувствительности овец к возбудителю сибирской язвы, алжирские овцы отличаются высокой к ней устойчивостью.

Приобретенный иммунитет (специфический) – это устойчивость организма к определенному возбудителю, вырабатываемый в течение жизни организма и не передающийся по наследству.

Естественно приобретенный иммунитет делят на активный и пассивный:

Активный (постинфекционный) иммунитет проявляется после естественного переболевания животного. Активный иммунитет может сохраняться до 1…2 лет, а в некоторых случаях и пожизненно (чума собак, оспа овец). Но в некоторых случаях образование иммунного ответа возможно и при отсутствии у животного клинических признаков заболевания. Это происходит в том случае, когда в организм животного возбудитель попадает в небольших дозах, недостаточных для возникновения заболевания. При систематическом попадании таких доз возбудителя происходит скрытая иммунизация макроорганизма, которая у животных, достигших определенного возраста, создает активный иммунитет к определенному возбудителю. Такое явление называется иммунизирующая субинфекция. Т. о. иммунизирующая субинфекция – это процесс образования активного иммунитета вследствие иммунизации организма малыми дозами возбудителя, не способными вызвать заболевание, в течение длительного времени.

Естественно приобретенный пассивный иммунитет – это иммунитет новорожденных, приобретенный ими за счет поступления материнских антител через плаценту (трансплацентарный) или после рождения через кишечник с молозивом (колостральный). У птиц трансовариальный (через лецитиновую фракцию желтка). Пассивный иммунитет обеспечивает состояние невосприимчивости от нескольких недель до нескольких месяцев.

Искусственно приобретенный иммунитет, в свою очередь также подразделяют на активный и пассивный. Активный (поствакцинальный) иммунитет возникает в результате иммунизации животных вакцинами. Вакцинный иммунитет в организме развивается через 7…14 суток после вакцинации и сохраняется от нескольких месяцев до 1 года и более. Пассивный иммунитет создается при введении в организм иммунной сыворотки, содержащей специфические антитела против определенного возбудителя болезни. Пассивный иммунитет можно создать и при введении сывороток крови животных-реконвалесцентов. Пассивный иммунитет, как правило, длится не более 15 суток.

Иммунитет также принято классифицировать по направленности действия защитных сил на микроорганизмы и их продукты жизнедеятельности:

Антибактериальный иммунитет. Защитные механизмы направлены против патогенного микроба, в результате предотвращается размножение и распространение микроорганизма в организме животного.

Противовирусный иммунитет. Обусловлен выработкой организмом противовирусных антител и механизмами клеточной защиты.

Антитоксический иммунитет. Бактерии не разрушаются, но организм больного животного вырабатывает антитела, способные эффективно нейтрализовать токсины.

Если после перенесенного заболевания организм освобождается о возбудителя, приобретая при этом состояние невосприимчивости, то такой иммунитет называют стерильным. Если организм не освобождается от возбудителя, то такой иммунитет называют нестерильным. Как правило, состояние невосприимчивости сохраняется до тех пор, пока возбудитель заболевания находится в организме. При удалении патогена исчезает и

Что такое иммунитет человека, знают не только медики, но и все люди мира. А вот вопросом: какой бывает иммунитет – обычный человек интересуется мало, не подозревая, что виды иммунитета бывают разные, и от типа иммунной системы может зависеть здоровье не только человека, но и его последующих поколений.

Виды иммунной системы по природе и способу происхождения

Иммунитет человека - это многоступенчатая субстанция из многочисленных клеток, которые, как и все живое, каким-то образом рождаются. В зависимости от способа происхождения, подразделяется на: врожденный и приобретенный иммунитет. И, зная способы их зарождения, можно изначально предопределить, как работает иммунитет, и какие действия предпринять, чтобы ему помочь.

Приобретенный

Рождение приобретенного вида происходит после встречи человека с каким-либо заболеванием, потому еще называется специфическим.

Так зарождается приобретенный специфический иммунитет человека. При повторной встречи антигены не успевают нанести урон организму, так как в организме уже существуют специфические клетки, готовые дать микробу ответ.

Основные заболевания приобретенного вида:

  • ветреная оспа (ветрянка);
  • эпидемический паротит, в народе именуемый – свинка или заушница;
  • скарлатина;
  • краснуха;
  • инфекционный мононуклеоз;
  • желтуха (вирусный гепатит);
  • корь.

Антитела приобретенного не передаются по наследству детям, в отличии от другого типа иммунной системы по происхождению.

Врожденный

Врожденный иммунитет присутствует в организме человека с первых секунд жизни и поэтому еще называется естественным, наследственным и конституционным. Естественная невосприимчивость организма к какой-либо инфекции закладывается природой еще на генетическом уровне, передаваясь от поколения к поколению. В этом природном свойстве прослеживается и отрицательное качество врожденной иммунной системы: если в семье наблюдается аллергическая или онкологическая предрасположенность, то этот генетический дефект также предается в наследство.

Отличия врожденного и приобретенного видов иммунной системы:

  • врожденным видом распознаются лишь точно определенные антигены, а не весь спектр возможных вирусов, массовое опознание бактерий входит в функции приобретенного;
  • в момент внедрения вируса врожденный иммунитет готов к работе, в отличии от приобретенного иммунитета, антитела которого появляются лишь спустя 4-5 дней;
  • врожденный вид справляется с бактериями своими силами, в то время, как приобретенный требует помощи у наследственных антител.

Наследственный иммунитет с годами не меняется, в отличии от приобретенного, который на протяжении всей жизни продолжает формироваться в зависимости от новообразования антител.

Искусственный и естественный виды приобретенного иммунитета

Специфический тип иммунной системы может приобретаться естественным путем или искусственно: через внедрение в тело человека ослабленных или же вовсе мертвых микробов. Цель введения чужеродных антиген проста: насильственно заставить иммунную систему выработать специфические антитела для противостояния данного микроба. Искусственный иммунитет, также, как и естественный, может выражаться в пассивной и активной форме.

Чем естественный иммунитет отличается от искусственного:

  • искусственный иммунитет начинает свое существование после вмешательства докторов, а естественный приобретенный иммунитет своему рождению обязан вирусу, который самостоятельно попадает в организм.
  • Естественный активный иммунитет – антитоксический и антимикробный – вырабатывается организмом после какого-либо заболевания, а искусственный активный иммунитет формируется после ввода в организм вакцины.
  • Искусственный пассивный иммунитет возникает с помощью вводимой сыворотки, а естественный пассивный иммунитет – трансовариальный, плацентарный и колостральный – происходит при передаче антител детям от родительницы.

Приобретенный активный иммунитет более устойчивый в сравнении с пассивным: антитела, выработанные самим организмом, могут держать оборону от вирусов всю жизнь, а антитела, созданные пассивной иммунизацией – несколько месяцев.

Виды иммунной системы по локализации действия на организм

Структура иммунной системы подразделяется на общий и местный иммунитет, функции которых взаимосвязаны. Если общий вид обеспечивает защиту от инородных антигенов внутренней среды, то местный является «входными вратами» общего, вставая на защиту слизистых и кожных покровов.

Механизмы иммунитета местной защиты:

  • Физические факторы врожденного иммунитета: «реснички» внутренней поверхности носовых пазух, гортани, миндалин и бронхов, на которых скапливаются микробы, и со слизью при чихании и кашле выходят наружу.
  • Химические факторы: при контакте бактерии со слизистой образуются специфические антитела – иммуноглобулины: IgA, IgG, способные нейтрализовать инородные микроорганизмы.

Резервные силы общего вида вступают на арену борьбы с антигенами лишь, если микробам удается преодолеть первый местный барьер. Основная задача местного типа – обеспечить локальную защиту в пределах слизистой и ткани. Защитные функции зависят от количества скопления лимфоидной ткани (B – лимфоциты), которая также несет ответственность за деятельность различных ответов организма.

Виды иммунитета по типу иммунного ответа:

  • гуморальный – защита организма во внеклеточном пространстве преимущественно антителами, созданными B – лимфоцитами;
  • клеточный (тканевый) ответ задействует клетки-эффекторы: T – лимфоциты и макрофаги – клетки, поглощающие чужеродные микроорганизмы;
  • фагоцитарный – работа фагоцитов (постоянных или появляющихся после возникновения микроба).

Эти иммунные ответы являются также механизмами инфекционного иммунитета.

Виды иммунной системы по направленности их действия

В зависимости от направленности на присутствующих в организме антиген, могут формироваться инфекционный (антимикробный) и неинфекционный виды иммунной системы, строение которых наглядно покажет таблица.

Инфекционный иммунитет

Неинфекционный иммунитет

Инфекционный иммунитет в зависимости от длительности иммунологической памяти его видов может отличаться и быть:

  • нестерильный – память имеет транзисторный характер, и исчезает сразу после избавления антигена;
  • стерильный – специфические антитела сохраняются даже после удаления возбудителя.

Стерильный адаптивный иммунитет по сроку сохранения памяти может быть кратковременным (3-4 недели), долгосрочным (2-3 десятилетия) и пожизненным, когда антитела охраняют все виды и формы иммунитета на протяжении жизни человека.



gastroguru © 2017