Препараты на основе моноклональных антител. Иммунотерапия: механизм действия и клиническое применение иммунокорригирующих препаратов Препараты содержащие специфические антитела называются

Статья на конкурс «био/мол/текст»: Одну из самых существенных опасностей для здоровья человека представляют бактерии. Но и у бактерий есть противники: вирусы-бактериофаги, которые используют микробную клетку в качестве гостиницы, где всё включено, а покидая пристанище, нередко убивают хозяина. Изобретение метода фагового дисплея позволило использовать свойства бактериофагов в поиске новых антител, которые чрезвычайно востребованы для совершенствования диагностики и терапии многих опасных заболеваний.

Обратите внимание!

Спонсором номинации «Лучшая статья о механизмах старения и долголетия» является фонд «Наука за продление жизни ». Спонсором приза зрительских симпатий выступила фирма Helicon .

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science .

Антитела как лекарства

В фармакологии используются два основных понятия: лекарство и мишень . Мишень - это структура организма, связанная с определенной функцией, нарушение которой приводит к заболеванию. В случае болезни на мишень можно оказать определенное воздействие, которое должно привести к лечебному эффекту. Лекарством называется вещество, специфически взаимодействующее с мишенью и влияющее на состояние клетки, ткани, организма . В качестве мишени может выступать рецептор на поверхности клеточной мембраны, фермент или канал, проводящий в клетку различные соединения. Однако путь к потребителю для любого лекарства долог: после подтверждения его функциональной активности следуют стадии доклинических и клинических испытаний, на которых малые молекулы подстерегает опасность так никогда и не стать лекарством. Под действием ферментных систем пациента они могут стать ядовитыми, или их изомеры окажутся токсичными. Низкомолекулярное вещество может выводиться слишком быстро или, напротив, накапливаться в организме, отравляя его. Поэтому в последние годы всё бóльшую долю на рынке лекарственных средств занимают макромолекулы, и среди них важнейшую роль играют антитела - защитные белки организма (рис. 1).

Рисунок 1. Структура антитела. Антитело состоит из двух тяжелых (HC) и двух легких (LC) аминокислотных цепей, соединенных между собой. Каждая из этих цепей имеет вариабельный домен (V H или V L) , который ответственен за связывание антигена. Вариа бельным он называется именно потому, что эти участки наиболее сильно отличаются у разных антител, то есть представлены множеством вариа нтов. Участок, который отщепляется ферментом папаином , называется Fab-фрагментом.

Когда в кровь попадает антиген - компонент бактерии или вируса, - он моментально оказывается под пристальным вниманием двух основных типов иммунных клеток: Т- и В-лимфоцитов . В-клетки после стимуляции со стороны Т-клеток или при непосредственном контакте с чужеродным агентом синтезируют антитела к нему. Некоторые из активированных В-лимфоцитов - плазматические клетки - специализируются на продукции антител, а остальные становятся клетками памяти , чтобы при встрече с тем же антигеном в будущем дать ему быстрый и эффективный отпор. Синтезированное плазматической клеткой антитело связывается с «чужаком», тем самым обезвреживая его. Происходит это несколькими путями: антитела специфически связываются с токсичными участками антигена, агглютинируют (слипаются) с крупными частицами, которые несут антигены на своей поверхности, или даже напрямую вызывают разрушение бактериальной клетки. Кроме того, «облепленный» антителами антиген становится уязвимым для других компонентов иммунитета - например, для макрофагов или системы комплемента .

От структуры антитéла зависят такие важные свойства, как связывание им антигена, прочность этого связывания и стабильность молекулы. Однако природа создания антител в организме очень сложна, и никто не может гарантировать, что в ответ даже на идентичные антигены образуются одинаковые по структуре антитела. Если же для создания лекарства или диагностического набора используются антитела к одному и тому же антигену, но обладающие разной структурой, то из-за разницы в стабильности и специфичности о стандартизации и воспроизводимости результатов работы можно будет забыть. Это означает, что такие антитела никак не могут стать диагностическими или лекарственными. Отсюда вывод: нужны антитела с идентичной структурой .

Антитела-«клоны» получают при помощи методов клеточной биологии из одной клетки-предшественницы. Такие антитела называются моноклональными . Их использование в качестве терапевтических агентов стало для медицины стратегическим этапом в смене концепции лечения - от неспецифической терапии к направленной. На сегодняшний день моноклональные антитела наиболее активно используются в онкогематологии, лечении опухолей, аутоиммунных заболеваний, а особенно широко - в диагностике .

Получение антител для нужд человека, как правило, начинается с иммунизации животных. Проводится несколько инъекций антигена, и в сыворотке крови накапливаются специфические антитела. Эти антитела, полученные напрямую из сыворотки иммунизированного животного, произведены разными плазматическими клетками, то есть они поликлональны . Для получения совершенно идентичных - моноклональных - антител в семидесятых годах прошлого века учеными Георгом Кёлером и Сéсаром Мильштейном был разработан метод гибридóм . Он основан на слиянии плазматических лимфоцитов (продуцируют антитела, но не живут в культуре) и клеток миеломы (это опухолевые клетки, которые ничего не продуцируют, но зато замечательно культивируются), в результате чего такая гибридная клетка от В-лимфоцита наследует способность выделять нужные исследователям антитела, а от опухолевой - бессмертие (практически бесконечное деление).

Гибридома стала выдающимся достижением, открывшим огромные возможности для исследователей . Однако антитела, которые можно получить с помощью гибридомного метода, всё же нарабатываются животными и не годятся для терапии человека. Поэтому перед исследователями встала задача получения полностью человеческих антител. Для ее решения была разработана группа методов, названная дисплейной . Общим для всех этих методов является то, что они предполагают работу со «сцепкой» нуклеотидной и аминокислотной последовательностей каждого конкретного варианта антитела. Название «дисплейные» происходит от английского display - выставлять напоказ, демонстрировать. Неотъемлемой стадией этих методов является «выставление» на поверхности фаговой частицы фрагментов антител для дальнейшего отбора нужных вариантов антигенами.

Библиотека в пробирке

Метод, который был назван фаговым дисплеем , основан на способности бактериофагов (вирусов, поражающих бактерии) выставлять на своей поверхности случайные пептидные последовательности в составе поверхностных белков . Бактериофаг представляет собой ДНК, окруженную белковой оболочкой - капсидом, - и способен размножаться только внутри клетки-хозяина. Проникая туда, он беззастенчиво пользуется ферментными системами несчастной бактерии, предоставляя ей свою ДНК для синтеза необходимых для его размножения белков . Инфицированная фагом бактериальная клетка послушно воспроизводит всё, что закодировано в геноме вируса, чтобы его потомство собрало свою оболочку из готовых строительных блоков. Если в геном фага-прародителя исследователем внедрена нуклеотидная последовательность, кодирующая нужный пептид, у его потомства на поверхности вирусной частицы появляется несколько копий гибридного капсидного белка, состоящего из собственной полипептидной цепи и фрагмента антитела. Множество бактериофагов, на поверхности которых представлены случайные фрагменты антител, называется фаговой библиотекой (рис. 2).

Рисунок 2. Создание синтетических и природных библиотек антител. За основу библиотеки берутся нуклеотидные последовательности вариабельных доменов антител (иммуноглобулинов, Ig), природные или синтетические. Далее их случайным образом комбинируют, и в результате образуется множество фрагментов антител, на основе которых можно создать фаговую библиотеку .

В современных библиотеках репертуар антител может достигать 10 миллиардов уникальных вариантов . Как же выбрать из этого разнообразия всего несколько молекул, специфичных к одному-единственному антигену? В случае дисплейной библиотеки вирусные частицы работают «библиотекарями», а «читателями» становятся бактериальные клетки. Если бы поиск книг в обычной библиотеке осуществлялся так же, как антител в дисплейной, выглядело бы это весьма необычно. Допустим, перед нами стоит задача выбрать все книги об интересующем нас предмете из библиотеки, в которой находится 10 миллиардов книг: исторические, художественные, сказки, любовные романы в ярких обложках... Для поиска в дисплейной библиотеке не нужно путаться в карточках и заполнять заявку, а нужно всего лишь принести с собой сам этот предмет! И тогда к нему (антигену) тут же начнут подходить библиотекари (фаги) с книгами в руках. Специфичные книги (антитела), которые написаны только о том, что мы принесли с собой, «приклеятся» к антигену намертво, а те, в которых о предмете упоминается вскользь, можно будет без труда унести обратно на полку. После того как с помощью антигена (предмета) были найдены наиболее специфичные молекулы (книги), они передаются бактериям-«читателям». «Читатели» оказываются настолько добросовестными, что не только воспринимают информацию, но и многократно копируют ее. Отбор фагов с фрагментами антител, специфичных к антигену, называется селекцией (рис. 3).

Рисунок 3. Схема селекции. Создание фаговой библиотеки из синтетического или природного источника предполагает образование структур, объединяющих в себе как нуклеотидные, так и аминокислотные последовательности фрагмента антитела (генотип-фенотип-структура ). Затем обеспечивается контакт с антигеном (привязанным к пластику дисплейной библиотеки), который специфически связывается с определенными фрагментами антител, экспонированными на фаговой частице.

Обычно проводится 3–4 раунда селекции, в результате чего отбирается ДНК уже сравнительно небольшого количества фагов, и на ее основе в бактериальных клетках нарабатываются фрагменты антител для дальнейшего анализа. По источнику материала дисплейные библиотеки можно разделить на три группы.

Каждый из перечисленных видов библиотек имеет свои достоинства и недостатки. Например, синтетические библиотеки базируются на небольшом количестве структур вариабельных доменов антител, поэтому работать с ними гораздо проще, чем с природными, которые содержат разнообразные по термодинамическим и экспрессионным характеристикам последовательности. Зато при использовании вариантов из природных библиотек ниже вероятность развития иммунного ответа .

Полученные таким способом молекулы можно подвергнуть изменениям, совершенствуя их свойства. Кроме того, из одного и того же фрагмента антитела можно создать целый ряд терапевтических агентов. В зависимости от цели терапии его можно связать с токсином (например, для борьбы с опухолью), с цитокином (для адресной доставки к больному месту) или с другим фрагментом-помощником, даже с радионуклидом.

Успех современной фармакологии во многом зависит от развития таких областей науки, как молекулярная биология, биоинформатика и генная инженерия. Благодаря этим дисциплинам стало возможным синтезировать нужные последовательности ДНК, комбинировать и изменять их, а также получать животные белки в бактериальных системах. Несомненным достоинством современных технологий является то, что с их помощью можно не только получать аналоги уже существующих антител, но и создавать совершенно новые .

Рано праздновать победу!

Несмотря на все преимущества антител перед малыми молекулами, с их применением возникли проблемы. В 2004 году было обнаружено, что в нескольких случаях прием инфликсимаба (ремикейда, Remicade) - противовоспалительных моноклональных антител - сопровождался развитием у пациентов лимфом. В мае 2006 года в журнале Американской медицинской ассоциации (JAMA ) опубликовали данные, что ремикейд усиливает риск развития рака в три раза . В июне 2008 года FDA сообщило о возможной связи развития лимфом и других видов опухолей у детей и подростков с приемом ремикейда.

Установлено увеличение риска смертельного исхода у онкологических больных при приеме авастина (2,5%) - блокатора фактора роста эндотелия (VEGF) - по сравнению с использованием только химиотерапии (1,7%). Дело в том, что сам по себе Avastin (бевацизумаб) не взаимодействует с раковыми клетками. Он блокирует фактор роста эндотелия (клеток выстилки сосудов), который выделяет опухоль, чтобы создать вокруг себя больше кровеносных сосудов для интенсивного питания. Опухоль выделяет такой же VEGF, как и другие, здоровые части организма, поэтому блокирование роста определенной доли нужных организму сосудов (например, сосудов для питания сердца) оказывается неизбежным. Таким образом, в случае применения авастина повышение смертности пациентов связано не с основным заболеванием, а с сердечной недостаточностью .

Развитие подобных побочных эффектов предсказуемо. Живой организм - очень сложная система, и вмешательство, направленное на одну его часть, влечет за собой изменения в других. Поэтому даже с появлением такого тонкого инструмента, как терапевтические антитела, нельзя говорить об изобретении «идеального лекарства».

Современные протоколы уже основаны на комбинированном подходе к лечению, включая вакцины, химиотерапию и моноклональные антитела. Исследователям еще предстоит разработать такие препараты и схемы терапии, которые обеспечат эффективное и безопасное лечение пациентов.

Рисунки предоставлены российской биофармацевтической компанией «Антерикс».

Литература

  1. Драг-дизайн: как в современном мире создаются новые лекарства ;. J. Mol. Biol. 376 , 1182–1200;
  2. Lee C.V., Liang W.C., Dennis M.S., Eigenbrot C., Sidhu S.S., Fuh G. (2004). High-affinity human antibodies from phage-displayed synthetic Fab libraries with a single framework scaffold . J. Mol. Biol. 340 , 1073–1093;
  3. Lonberg N. (2005). Human antibodies from transgenic animals . Nat. Biotech. 23 , 1117–1125;
  4. Иванов А.А. и Белецкий И.П. (2011). Терапия моноклональными антителами - панацея или паллиатив ? Ремедиум . 3 , 12–16..

Патогенез .

а. Образование иммунных комплексов. Иммунные комплексы, состоящие из лекарственного средства и антитела, неспецифически связываются с мембранами эритроцитов с последующей активацией комплемента. Прямая проба Кумбса с антителами к комплементу обычно положительна, а с антителами к IgG — отрицательна. Антитела к препарату можно обнаружить с помощью инкубации сыворотки больного с нормальными эритроцитами в присутствии комплемента и данного препарата. Большинство случаев лекарственной иммунной гемолитической анемии обусловлены именно этим механизмом. Повторное назначение препарата даже в небольшой дозе вызывает острый внутрисосудистый гемолиз, проявляющийся гемоглобинемией, гемоглобинурией и ОПН .

б. Образование цитотоксических антител. При связывании с эритроцитами препарат становится иммуногенным и стимулирует образование антител, обычно IgG . Положительна лишь прямая проба Кумбса с антителами к иммуноглобулинам. Антитела к препарату определяют следующим образом. После инкубации нормальных эритроцитов с этим препаратом их смешивают с сывороткой больного. При наличии антител к препарату развивается гемолиз. Классическим примером иммунной гемолитической анемии, вызванной цитотоксическими антителами, служит анемия при применении бензилпенициллина. Она возникает редко и только при назначении препарата в высоких дозах (более 10 млн ед/сут в/в ): прямая проба Кумбса с антителами к иммуноглобулинам положительна примерно у 3% больных, гемолиз развивается еще реже. Бензилпенициллин вызывает внесосудистый гемолиз. Появление IgG к бензилпенициллину не связано с аллергией к пенициллинам, обусловленной IgE .

в. Некоторые лекарственные средства, например цефалоспорины, вызывают агрегацию неспецифических IgG и комплемента, хотя это редко сопровождается гемолитической анемией. Прямая проба Кумбса может быть положительной, непрямая проба Кумбса всегда отрицательна.

г. Образование аутоантител. Лекарственные средства могут стимулировать образование аутоантител к антигенам системы Rh . Вероятно, это происходит за счет угнетения активности T-супрессоров и пролиферации клонов B-лимфоцитов, продуцирующих соответствующие антитела. Прямая проба Кумбса с антителами к иммуноглобулинам положительна. Инкубация сыворотки больного с нормальными эритроцитами в отсутствие лекарственного средства приводит к абсорбции IgG на эритроцитах. Синтез аутоантител к эритроцитам вызывают метилдофа, леводофа и мефенамовая кислота. Прямая проба Кумбса положительна примерно у 15% больных, принимающих метилдофу, однако гемолитическая анемия развивается менее чем у 1% больных. Влияние метилдофы на образование аутоантител к эритроцитам, по-видимому, дозозависимо. Анемия развивается постепенно, в течение нескольких месяцев применения препарата, и обусловлена внесосудистым гемолизом.

2. Лечение. Первый и наиболее важный этап лечения лекарственной иммунной гемолитической анемии — отмена препарата, вызвавшего ее. При гемолизе, вызванном иммунными комплексами, после этого быстро наступает выздоровление. В тяжелых случаях наблюдается ОПН . При гемолизе, вызванном аутоантителами, выздоровление более медленное (обычно несколько недель). Проба Кумбса может оставаться положительной в течение 1—2 лет.

Классификация препаратов, содержащих антитела

    Лечебные сыворотки.

    Иммуноглобулины.

    Гамма-глобулины.

    Препараты плазмы.

Различают два источника получения специфических сывороточ­ных препаратов:

    гипериммунизация животных (гетерологичные сывороточные пре­параты);

    вакцинация доноров (гомологичные препараты).

2.1. Гетерологичные сывороточные препараты.

Для изготовления гетерологичных сывороточных препаратов исполь­зуют в основном крупных животных лошадей. Лошади обладают высокой иммунологической реактивностью, от них в срав­ нительно короткий срок можно получить сыворотку, содержащую анти­тела в высоком титре. Кроме этого, введение лошадиного белка челове­ку дает наименьшее количество побочных реакций. Животные других видов используются редко. Годные к эксплуатации в возрасте от 3 лет и выше животные подвергаются гипериммунизации, т.е. процессу мно­гократного введения возрастающих доз антигена с целью накопления в крови животных максимального количества антител и поддержания его на достаточном уровне в течение возможно более длительного време­ни. В период максимального нарастания титра специфических антител в крови животных осуществляют 2-3 кровопускания с интервалом в 2дня. Кровь берут из расчета 1 литр на 50 кг веса лошади из яремной ве­ны в стерильную бутыль, содержащую антикоагулянт. Полученная от лошадей-продуцентов кровь передается в лабораторию для дальней­шей обработки. Плазма отделяется на сепараторах от форменных эле­ментов и дефибринируется раствором хлористого кальция. Использо­ вание цельной гетерологичной сыворотки сопровождается аллергичес­кими реакциями в форме сывороточной болезни и анафилаксии. Одним из путей уменьшения побочных реакций сывороточных препаратов, а также повышения их эффективности является их очистка и концентра­ция. Сыворотку очищают от альбуминов и некоторых глобулинов, ко­торые не относятся к иммунологически активным фракциям сывороточ­ных белков. Иммунологически активными являются псевдоглобулины с электрофоретической подвижностью между гамма- и бета-глобулина­ми, к этой фракции относятся антитоксические антитела. Также к им­мунологически активным фракциям относятся гамма-глобулины, в эту фракцию входят антибактериальные и антивирусные антитела. Очистка сывороток от балластных белков проводится по методу «Диаферм-3». При использовании этого метода сыворотка очищается путем осажде­ния под влиянием сернокислого аммония и путем пептического переваривания.Помимо метода «Диаферм 3»,разработаны и другие (Ультраферм, Спиртоферм, иммуносорбцииидр.), имеющие ограниченное при­менение

Содержание антитоксина в антитоксических сыворотках выражает­ся в международных единицах (ME), принятых ВОЗ. Например, 1 ME противостолбнячной сыворотки соответствует ее минимальному коли­честву, нейтрализующему 1000 минимальных смертельных доз (DLm) столбнячного токсина для морской свинки массой 350 г. 1 ME противоботулинического антитоксина - наименьшее количество сыворотки, нейтрализующее 10000 DLm ботулинического токсина для мышей мас­сой 20 г. 1 ME противодифтерийной сыворотки соответствует ее мини­мальному количеству, нейтрализующему 100 DLm дифтерийного токси­на для морской свинки массой 250 г.

В препаратах иммуноглобулинов IgG является основным компонен­том (до 97%). lgA, IgM, IgD входят в препарат в очень малых количес­твах. Выпускаются также препараты иммуноглобулинов (IgG), обога­щенные IgM и IgA. Активность препарата иммуноглобулина выражает­ся в титре специфических антител, определяемых одной из серологичес­ких реакций и указывается в наставлении по применению препарата.

Гетерологичные сывороточные препараты применяют для лечения и профилактики инфекционных заболеваний, вызываемых бактериями, их токсинами, вирусами. Своевременное раннее применение сыворотки мо­жет не дать развиться болезни, удлиняется срок инкубации, появивше­еся заболевание имеет более мягкое течение, снижается смертность.

Существенным недостатком использования гетерологичных сыво­роточных препаратов является возникновение сенсибилизации организ­ма к чужеродному белку. Как указывают исследователи, к глобулинам сыворотки лошади в России сенсибилизировано более 10% населения. В связи с этим повторное введение гетерологичных сывороточных пре­паратов может сопровождаться осложнениями в виде различных аллер­гических реакций, самой грозной из которых является анафилактичес­кий шок. Для выявления чувствительности пациента к лошадиному бел­ку ставят внутрикожную пробу с разведенной 1:100 лошадиной сыво­роткой, которую специально изготавливают для этой цели. Перед вве­дением лечебной сыворотки пациенту внутрикожно на сгибательную по­верхность предплечья вводят 0,1 мл разведенной лошадиной сыворотки и наблюдают за реакцией в течение 20 минут.

2.2. Гомологичные сывороточные препараты из крови доно­ров.

Гомологичные сывороточные препараты получают из крови доноров, специально иммунизированных против определенного возбудителя или его токсинов. При введении таких препаратов в организм человека антитела циркулируют в организме несколько дольше, обес­печивая пассивный иммунитет или лечебный эффект в течение 4-5 не­дель. В настоящее время применяют донорские иммуноглобулины нормальные и специфические и донорскую плазму. Выделение иммунологически активных фракций из донорских сывороток производят с использованием спиртового метода осаждения.

Гомологичные иммуноглобулины практичес­ки ареактогенны, поэтому реакции анафилактического типа при повтор­ных введениях гомологичных сывороточных препаратов возникают ред­ко.

2.3.Препараты для бактериальной терапии (эубиотики).

Препараты для бактериальной терапии содержат живые антагонис­тически активные штаммы бактерий - представителей нормальной мик­рофлоры. Примером таких препаратов являются лактобактерин, бифи-думбактерин, колибактерин, бификол, бактисубтил и др. Микроорганизмы, содержа­щиеся в таких препаратах, обладают антагонистическими свойствами по отношению к различным микроорганизмам, прежде всего, к пато­генным кишечным микробам. Подобные препараты получаются путем выращивания соответствующих микроорганизмов или их спор в жид­ких питательных средах с последующим высушиванием под вакуумом из замороженного состояния. Препараты используют для лечения дисбактериоза.

2.4.Препараты лечебных бактериофагов.

Бактериофаги представляют собой вирусы бактерий. Они проника­ют в бактериальную клетку, размножаются в ней и лизируют ее. На этом основано их применение для лечения и профилактики инфекционных за­болеваний. Действие бактериофагов строго специфично и проявляется в отношении определенных видов и типов возбудителя.

Для получения препаратов бактериофагов используют производствен­ные штаммы фагов и соответствующие культуры бактерий. Выращен­ную в реакторах с жидкой питательной средой бактериальную культу­ру заражают маточной взвесью фага. При репродукции фаги лизируют бактерии и выходят в питательную среду, такой состав получил название фаголизата. Питательную сре­ду пропускают через бактериальные фильтры для освобождения от ос­татков бактериальных клеток (фильтрат фаголизата). Фильтрат с бак­териофагами консервируют и контролируют на стерильность, безвредность и активность. Готовый препарат, представляющий собой прозрач­ную жидкость желтого цвета, расфасовывают во флаконы. Наряду с жидким выпускают сухие таблетированные фаги с кислотоустойчивым покрытием, свечи с фагами.

Фаги применяют с лечебной и профилактической целью. В нашей стране выпускаются препараты сальмонеллезного, дизентерийного, ко-ли-протейного, стафилококкового, пиофага и др. В зависимости от за­болевания фаги применяют местно в виде орошений, полосканий, при­мочек, тампонирования, для введения в полость ран, брюшную, плев­ральную и др. полости, перорально, а также подкожно, внутрикожно и внутримышечно.

2.5 Препараты цитокинов.

Цитокины – это вещества, продуцируемые различными клетками организма и оказывающие неспецифическое иммуностимулирующее действие. Цитокины очень многочисленны и разнообразны, они отличаются механизмами действия, при этом они нормализуют гуморальные и клеточные факторы неспецифической резистентности и влияют на разные стадии и звенья иммунитета. Цитокины могут использоваться в качестве адъювантов в вакцинах и могут быть использованы как самостоятельные препараты.

Неуклонно увеличивается число хронических воспалительных, аллергических, аутоиммунных, эндокринных, онкологических и др. заболеваний. Данные эпидемиологических и статистических исследований последних лет свидетельствуют о значительном ухудшении здоровья нации. Опыт мировой практики по иммунопрофилактике показывает, что эта категория лиц в первую очередь нуждается в вакцинации против инфекционных заболеваний. Есть данные, что с клинической точки зрения вакцинация лиц с различными нарушениями в состоянии здоровья безопасна, однако напряженность иммунного ответа у них ниже, чем у практически здоровых лиц. Для стимулирования формирования поствакцинального иммунитета у таких пациентов назначают различные иммуномодулирующие препараты.

Следует отметить, что наибольший опыт в этой области имеют российские исследователи, которые показали, что при правильном подборе иммуномодулирующего препарата и схемы его введения можно получить быстрый и полноценный иммунный ответ на вакцинацию у лиц, страдающих различной патологией.

Одной из главных целей при назначении иммуномодулирующего препарата при проведении профилактической вакцинации у лиц с различными нарушениями в состоянии здоровья является не только профилактика инфекционного заболевания, но и достижение положительной динамики в течении основного заболевания. При этом врачу необходимо сделать правильный выбор иммунокорригирующего препарата с учетом не только нозологической формы заболевания, но и исходных показателей иммунного статуса.

Иммунная система человека выполняет важную функцию по сохранению постоянства внутренней среды организма, осуществляемую путем распознавания и элиминации из организма чужеродных веществ антигенной природы, как эндогенно возникающих (клетки, измененные вирусами, ксенобиотиками, злокачественные клетки и т. д.), так и экзогенно проникающих (прежде всего микробы). Эта функция иммунной системы осуществляется с помощью факторов врожденного и приобретенного (или адаптивного) иммуннитета. К первым относятся нейтрофилы, моноциты, макрофаги, дендритные клетки, NK- и NKТ-лимфоциты; ко вторым — Т- и В-клетки, которые ответственны за клеточный и гуморальный ответ соответственно. При нарушении количества и функциональной активности клеток иммунной системы развиваются иммунологические нарушения: иммунодефициты, аллергические, аутоиммунные и пролиферативные процессы.

Современная патология характеризуется наличием двух взаимосвязанных и взаимообусловленных процессов, а именно: ростом числа хронических инфекционных заболеваний, вызываемых условно-патогенными или оппортунистическими микробами и снижением иммунологической реактивности населения, наблюдаемым практически во всех развитых странах.

Очевидно, что справиться с ростом инфекционной заболеваемости с помощью одних только антибиотиков практически невозможно. Антибиотик подавляет размножение возбудителя заболевания, но конечная его элиминация из организма является результатом деятельности факторов иммунитета. Более того, длительное неконтролируемое применение антибиотиков снижает иммунологическую реактивность организма. Поэтому на фоне подавленной иммунореактивности эффективность действия антибиотиков, а также противогрибковых, противовирусных и других химиотерапевтических средств снижается.

В связи с этим в настоящее время резко возрос интерес врачей к препаратам, действующим на иммунную систему организма. Рынок предлагает большое количество лекарственных средств, пищевых добавок и просто пищевых продуктов, действующих на иммунитет. Практикующему врачу зачастую трудно разобраться в этом громадном потоке информации и предложений и выбрать нужное средство. Кроме того, в настоящее время имеется большая путаница в определениях, что такое иммунокорректор, иммуномодулятор, иммуностимулятор.

Назначение с лечебной или профилактической целью при заболеваниях, связанных с нарушениями иммунитета, препаратов химической или биологической природы, обладающих иммунотропной активностью (лечебный эффект связан с их преимущественным или селективным действием на иммунную систему человека), называется иммунотерапией, а сами препараты могут быть разделены на четыре большие группы:

    Иммуномодуляторы;

    Иммунокорректоры;

    Иммуностимуляторы;

    Иммунодепрессанты.

Иммуномодуляторы — лекарственные средства, обладающие иммунотропной активностью, которые в терапевтических дозах восстанавливают функции иммунной системы (эффективную иммунную защиту).

Иммунокорректоры — средства и воздействия (в том числе и лекарственные), обладающие иммунотропностью, которые нормализуют конкретное нарушенное то или иное звено иммунной системы (компоненты или субкомпоненты Т-клеточного иммунитета, В-клеточного иммунитета, фагоцитоза, комплемента). Таким образом, иммунокорректоры — это иммуномодуляторы «точечного» действия.

Иммуностимуляторы — средства, усиливающие иммунный ответ (лекарственные препараты, пищевые добавки, адъюванты и другие агенты биологической или химической природы, стимулирующие иммунные процессы).

Иммунодепрессанты — средства, подавляющие иммунный ответ (лекарственные препараты, обладающие иммунотропностью или неспецифическим действием, и другие различные агенты биологической или химической природы, угнетающие иммунные процессы).

Для того чтобы тот или иной лекарственный препарат мог быть отнесен к группе иммуномодуляторов, должна быть доказана его способность изменять иммунологическую реактивность организма в зависимости от ее исходного состояния, т. е. способность повышать или понижать соответственно пониженные или повышенные показатели иммунитета. Для этого исследуемый препарат должен пройти доклинические испытания, проведенные в соответствии с Методическими рекомендациями, утвержденными Фармакологическим государственным комитетом при Минздраве РФ от 10.12.1998. В результате этих испытаний должно быть доказано его иммуномодулирующее влияние на компоненты иммунной системы: фагоцитоз, систему комплемента, гуморальный иммунитет, клеточный иммунитет, систему цитокинов. Далее исследуемый препарат должен пройти клинические испытания в соответствии с правилами GCP, в результате которых на основании двойного слепого рандомизированного исследования будет доказана его клиническая и иммунологическая эффективность. В конечном итоге препарат регистрируется ФГК Минздрава России как иммуномодулятор и выдается разрешение на его широкое медицинское применение и промышленное производство.

Только тот препарат, который прошел доклинические и клинические испытания по описанным выше правилам, отвечает требованиям, предъявляемым к иммуномодулирующим препаратам.

При анализе фармакологического действия иммуномодуляторов необходимо учитывать удивительную особенность функционирования иммунной системы, которая «работает» по типу сообщающихся сосудов, т. е. наличие груза на одной «чаше» приводит в движение всю систему. В связи с этим, вне зависимости от исходной направленности, под влиянием иммуномодулятора в конечном счете в той или иной степени изменяется функциональная активность всей иммунной системы в целом. Иммуномодулятор может оказывать избирательное влияние на соответствующий компонент иммунитета, но конечный эффект его воздействия на иммунную систему всегда будет многогранным. Например, вещество X индуцирует образование только одного интерлейкина-2 (ИЛ-2). Но этот цитокин усиливает пролиферацию Т-, В- и NK-клеток, повышает функциональную активность макрофагов, NK-клеток, цитотоксических лимфоцитов (ЦТЛ) и т. д. ИЛ-2 не является исключением в этом плане. Все цитокины — главные регуляторы иммунитета, опосредующие действие на иммунную систему как специфических, так и неспецифических стимулов, оказывают множественное и разнообразное действие на иммунную систему. В настоящее время не выявлено цитокинов со строго специфической активностью. Такие особенности функционирования иммунной системы делают практически невозможным существование иммуномодулятора с абсолютно селективным конечным влиянием на иммунитет. Это положение позволяет нам сформулировать следующий принцип.

Любой иммуномодулятор, избирательно действующий на соответствующий компонент иммунитета (фагоцитоз, клеточный или гуморальный иммунитет), будет в той или иной степени оказывать воздействие и на все другие компоненты иммунной системы.

Существуют три основные группы заболеваний иммунной системы: иммунодефициты, аллергические и аутоиммунные процессы. Рассмотрим, при каких заболеваниях целесообразно применение иммуномодуляторов.

Аллергические заболевания. При аллергических заболеваниях использование иммуномодуляторов целесообразно в тех случаях, когда эти заболевания осложнены какими-либо проявлениями вторичной иммунной недостаточности: например, атопический дерматит с пиодермией, бронхиальная астма с явлениями хронического гнойно-обструктивного бронхита, рецидивирующей герпетической или цитомегаловирусной инфекции и т. д. В этих случаях эффект иммуномодуляторов направлен на ликвидацию у больного с аллергическим процессом инфекционного очага. В ряде случаев это может существенно улучшить клиническую картину основного заболевания. Например, применение иммуномодулируюшей терапии у больных бронхиальной астмой может удлинять продолжительность ремиссии до одного года. Однако во всех этих случаях иммуномодулируюшая терапия не направлена на основную причину заболевания, т. е. не является этиотропной. Как известно, при аллергических заболеваниях происходит активация Тh2-клеток и повышена продукция цитокинов ИЛ-4, ИЛ-5, ИЛ-13. ИЛ-5 способствует созреванию эозинофилов и их активации. ИЛ-4 и ИЛ-13 индуцируют В-клетки к синтезу иммуноглобулина IgE. Следовательно, с иммунологических позиций, повышенная активность Тh2-клеток является основным звеном в патогенезе аллергических реакций. Отсюда становится очевидным, что одним из направлений в иммуномодулирующей терапии этих процессов является применение препаратов, снижающих активность Тh2-клеток и повышающих активность Тh1-клеток, т. е. иммуномодуляторов.

Аутоиммунные заболевания. При аутоиммунных заболеваниях в настоящее время довольно широко применяются иммунотропные препараты, относящиеся к группе иммунодепрессантов, действие которых направлено на подавление аутоиммунного воспалительного процесса. Их применение, как правило, дает быстрый и хороший клинический эффект. Тем не менее, такое лечение, вероятно, нельзя считать этиотропным, так как оно направлено на патогенез, а не на причину заболевания. Так, применение гормональных препаратов при рассеянном склерозе, являющемся Thl-опосредованным заболеванием, дает хороший клинический эффект, но не удлиняет продолжительность ремиссии — важного показателя эффективности терапии. В основе этиопатогенеза многих аутоиммунных заболеваний, как и при аллергических процессах, лежит дисбаланс Th1/Th2. При рассеянном склерозе, ревматоидном артрите, аутоиммунных тиреоидитах наблюдается повышенная активность Тh1-клеток, при системной красной волчанке, аутоиммунных васкулитах, некоторых видах анемий — Th2-клеток. Основанием для применения иммуномодуляторов при аутоиммунных процессах, как и при аллергии, являются инфекционные процессы, осложняющие течение основного заболевания.

Иммунодефициты. Повышенная инфекционная заболеваемость служит главным проявлением как первичных, так и вторичных иммунодефицитов. Возникает вопрос: целесообразно ли применение иммуномодулирующих препаратов при первичных иммунодефицитах, в основе которых лежит генетический дефект. Естественно, с помощью этих препаратов исправить генетический дефект невозможно. Но антиинфекционная защита является многокомпонентной, и можно ожидать, что при некотором повышении с помощью иммуномодуляторов функциональной активности нормально работающего компонента иммунной системы будет скомпенсирована, хотя бы частично, «плохая работа» дефектного компонента. Существенное улучшение клинического состояния и показателей иммунного статуса наблюдается у больных с пониженным уровнем всех классов иммуноглобулинов (общая вариабельная иммунологическая недостаточность) при их лечении иммуномодулирующими препаратами, активирующими фагоцитоз, в частности, Полиоксидонием. Хорошо продуманное применение иммуномодулирующей терапии у больных с некоторыми формами первичных иммунодефицитов может дать хороший клинический результат.

Главной мишенью применения иммуномодулирующих препаратов являются вторичные иммунодефициты, которые характеризуются частыми, рецидивирующими, трудно поддающимися лечению инфекционно-воспалительными процессами всех локализаций и любой этиологии. В основе любого хронического инфекционно-воспалительного процесса лежат те или иные изменения в иммунной системе, которые и служат одной из причин существования этого процесса. Исследование параметров иммунной системы может не всегда выявить эти изменения, поэтому при наличии в организме хронического инфекционно-воспалительного процесса можно назначать больному иммуномодулирующие препараты даже в том случае, если иммунодиагностическое исследование не выявит существенных отклонений в иммунном статусе. Как правило, при этих процессах в зависимости от вида возбудителя врач назначает антибиотики, противогрибковые, противовирусные средства или другие химиотерапевтические препараты. Мы считаем, что во всех случаях, когда врач назначает противомикробные средства при явлениях вторичной иммунологической недостаточности, следует назначать и иммуномодулирующую терапию. При лечении процессов иммуномодуляторы применяют в основном в комплексном лечении совместно с этиотропными химиотерапевтическими средствами.

Таким образом, основным критерием для назначения иммуномодулятора служит клиническая картина заболевания, проявляющаяся наличием хронического инфекционно-воспалительного процесса, трудно поддающегося адекватному антиинфекционному лечению.

Возникает вопрос: как применять иммуномодуляторы в комплексном лечении хронических инфекций. Мы считаем, что иммуномодуляторы следует назначать не после и не перед приемом антибиотиков или противовирусных препаратов, а одновременно с ними. В этом случае по возбудителю будет нанесен двойной удар: антибиотик или другое химиотерапевтическое средство снижает функциональную активность микроба, а иммуномодулятор повышает функциональную активность клеток иммунной системы, за счет чего достигается более эффективная элиминация возбудителя из организма. Следует избегать «модного» утверждения о негативном влиянии антибиотиков на иммунную систему. В настоящее время на вооружении у врачей имеется ряд антибиотиков, не оказывающих ингибирующего действия на иммунитет. При прочих равных условиях врач должен отдавать предпочтение последним. Отдельным является вопрос о применении иммуномодуляторов при острых бактериальных и вирусных инфекциях.

Как правило, их назначение не рекомендуется при острых процессах, поскольку это может утяжелить их течение. Например, при вирусной инфекции активация ЦТЛ может вызвать фатальный исход за счет массивного разрушения тканей, инфицированных вирусом. Это, вероятно, нужно иметь в виду при назначении химических препаратов, а также препаратов бактериального происхождения, являющихся мощными индукторами провоспалительных цитокинов. Применение иммуномодуляторов при острых инфекционных процессах, особенно бронхолегочного аппарата, может быть оправдано у иммунологически компрометированных людей, например у лиц, относящихся к группе часто и длительно болеющих. Иммуномодуляторы в этих случаях применяются с целью предупреждения развития постинфекционных осложнений. Наличие у Полиоксидония детоксицирующих и антиоксидантных свойств делает возможным его применение при острых инфекционных заболеваниях. Клиническая практика показывает эффективность и безопасность его применения при острых инфекциях. Мы полагаем, что не только Полиоксидоний, но и другие иммуномодуляторы с антиоксидантными и детоксицируюшими свойствами могут применяться при острых инфекционных процессах у иммунологически компрометированных лиц.

Нередко возникает вопрос, можно ли проводить иммуномодуляцию в виде монотерапии. Р.?В.?Петровым было впервые сформулировано понятие «иммунореабилитация», под которым понимается комплекс медикаментозных и немедикаментозных лечебных мероприятий, направленных на восстановление функциональной активности иммунной системы и здоровья человека. Мы полагаем, что при иммунореабилитационных мероприятиях иммуномодуляторы могут применяться в виде монотерапии и в комплексе с различными общеукрепляющими средствами. Это оправдано:

    У людей с неполным выздоровлением (наличие бронхита, ларингита, трахеита и др.) после перенесенного острого инфекционного заболевания;

    У часто и длительно болеющих людей перед началом осенне-зимнего сезона, особенно в экологически неблагоприятных регионах;

    У онкологических больных для улучшения качества жизни.

В заключение можно сформулировать некоторые общие принципы применения иммуномодуляторов у больных с недостаточностью антиинфекционной защиты:

    Иммуномодуляторы назначают в комплексной терапии одновременно с антибиотиками, противогрибковыми, противопротозойными или противовирусными средствами.

    Целесообразно раннее назначение иммуномодуляторов с первого дня применения химиотерапевтического этиотропного средства.

    Иммуномодуляторы, действующие на фагоцитарное звено иммунитета, можно назначать больным как с выявленными, так и с невыделенными нарушениями иммунного статуса, т. е. основанием для назначения препарата является наличие клинических маркеров иммунодефицита.

    При наличии в данном лечебно-профилактическом учреждении соответствующей материально-технической базы применение иммуномодуляторов целесообразно проводить на фоне иммунологического мониторинга. Этот мониторинг следует проводить вне зависимости от выявленных или не выявленных исходных изменений в иммунной системе.

    Иммуномодуляторы можно применять в виде монотерапии при проведении иммунореабилитационных мероприятий, в частности, при неполном выздоровлении после перенесенного острого инфекционного заболевания.

    Снижение какого-либо параметра иммунитета, выявленное при иммунодиагностическом исследовании у практически здорового человека, не обязательно является основанием для назначения ему иммуномодулирующей терапии.

Применение иммуномодуляторов в клинической практике

В последние годы с успехом используется Рибомунил — рибосомальный иммуномодулятор бактериального происхождения. Клиническая эффективность Рибомунила обусловлена комплексным иммуномодулирующим эффектом. В состав Рибомунила входят рибосомальные фракции Streptococcus pneumoniae, S. pyogenes, Haemophilus influenzae, Klebsiella pneumoniae, а также протеогликаны клеточной стенки K. pneumoniae. Проведенный анализ эффективности включения Рибомунила в комплекс реабилитационных мероприятий у часто болеющих детей свидетельствует о том, что темпы их оздоровления достоверно опережали аналогичные показатели группы сравнения . Было установлено, что эффект рибосомальной иммунизации проявлялся уже в первые три месяца терапии и в дальнейшем сохранялся на протяжении еще 18 месяцев.

При этом частота острых респираторных инфекций в период мониторинга в целом уменьшалась на 43,3-53,8%. Следует особо подчеркнуть, что, благодаря снижению респираторной заболеваемости, было существенно сокращено число временных медотводов от вакцинации в декретируемые сроки. В наблюдаемых организованных детских коллективах это позволило добиться регламентируемого уровня охвата прививками. Кроме этого, было установлено, что применение Рибомунила не только предупреждает развитие респираторных инфекций, но и существенно влияет на эффективность проводимой вакцинации. Было отмечено, что существенное повышение профилактической эффективности вакцинации против гриппа у часто болеющих детей может быть достигнуто, если прививать их на фоне приема Рибомунила. Аналогичные результаты были получены В.?Ф.?Учайкиным с соавт. (2000) при вакцинации против гриппа у детей с различными нарушениями здоровья . Авторами показано, что у детей, привитых против гриппа и получавших одновременно Рибомунил, суммарная заболеваемость гриппом и другими ОРВИ была в 2,5 раза ниже, чем в группе, где использовалась только активная специфическая иммунизация.

В настоящее время имеются положительные результаты использования в качестве средства иммунореабилитации такого препарата, как Имунофан. Выбор препарата обусловлен тем, что Имунофан практически не влияет на продукцию реагиновых антител класса IgE и тем самым не усиливает реакции гиперчувствительности немедленного типа. Более того, у лиц с исходно высоким уровнем антител этого класса (бронхиальная астма, атопический дерматит, поллиноз, отек Квинке) применение Имунофана приводило к снижению концентрации IgE с уменьшением выраженности клинических проявлений заболеваний . Инструкция к препарату Имунофан, утвержденная Фармакологическим комитетом Министерства здравоохранения России, регламентирует применение препарата в схеме вакцинопрофилактики.

Т.?П.?Марковой и Д.?Г.?Чувировым (ГОУ Институт повышения квалификации «Медбиоэкстрем» Минздрава России, Москва) применяли Имунофан при ревакцинации против дифтерии 60 длительно и часто болеющих детей, имеющих титр специфических антител 1:20-1:40 перед проведением II и IV ревакцинации АДС-М . Было установлено, что сочетанное применение Имунофана при ревакцинации АДС-М не приводит к увеличению поствакцинальных реакций и в 1,7-1,8 раза повышает эффективность вакцинации, эффект которой сохраняется в течение года.

Также был изучен эффект от применения Миелопида и Полиоксидония (сочетанное применении Полиоксидония в дозе 3-6 мг или Миелопида в дозе 3 мг интраназально в течение 5 дней от дня вакцинации или внутримышечно в день вакцинации) при ревакцинации против дифтерии 90 детей, не имевших защитного титра антител против дифтерии, перед проведением II и IV ревакцинации. Возраст детей — от 6 до 14 лет . Средний геометрический титр антител у детей, получавших Полиоксидоний или Миелопид интраназально одновременно с ревакцинацией, в различные сроки обследования был выше, чем в контрольной группе, ревакцинированной обычным способом (через 45 дней; 6 месяцев; 1 год), разница была статистически достоверна. При этом в контрольной группе 5 (14%) детей через 45 дней и 11 (31,8%) детей через 1 год после ревакцинации не имели защитного титра антител, что не отмечалось у детей, получавших иммунокорректоры.

При сочетанном интраназальном или внутримышечном применении Миелопида или Полиоксидония также наблюдали увеличение показателей макрофагального звена (фагоцитоз, хемилюминесценция), абсолютного количества CD3+, CD4+ — Т-клеток, сывороточных иммуноглобулинов IgG, IgA по сравнению с контрольной группой. Аналогичные данные были получены авторами и при ревакцинации на фоне применения Миелопида и Полиоксидония гепатита В, кори, краснухи, эпидемического паротита часто болеющих детей .

С.?М.?Харит (Научно-исследовательский институт детских инфекций МЗиСР РФ), Е.?П.?Начаровой, С.?В.?Петленко (Военно-медицинская академия им. С.?М.?Кирова, Санкт-Петербург) было оценено влияние препарата Тимоген на эффективность и безопасность вакцинации против кори и паротита . Дети первой группы (16 человек) за 10 дней до вакцинации ежедневно в течение 5 дней получали интраназально синтетический пептидный иммуномодулятор Тимоген (0,025% раствор глутамил-триптофана в 0,9% NaCI в форме дозированного спрея) в дозе 25 мкг 1 раз в сутки. Применение препарата завершалось за 5 дней до проведения прививок.

У детей второй группы (16 детей) по той же схеме в качестве плацебо использовали спрей с физиологическим раствором, не содержащий действующего вещества. Наблюдение в динамике поствакцинального периода показало, что в группе получавших плацебо у двоих детей (14,3%) имели место нормальные вакцинальные реакции с 6-го по 9-й день в виде гиперемии зева, ринита, субфебрильной температуры 37,2-37,5 °С.?Один ребенок (7,1%) из этой группы заболел ОРЗ на 17-й день после иммунизации. В группе привитых с предварительным использованием Тимогена у всех детей отмечалось бессимптомное течение поствакцинального периода и ни один ребенок не заболел в течение месяца после прививки. Ни у одного ребенка не было выявлено необычных, патологических реакций на прививку.

Изучение титров антител в зависимости от их уровня показало, что предварительное использование Тимогена приводило к тому, что уже на 14-й день у 100% обследованных определялся защитный титр противокоревых антител, в то время как в группе плацебо у 35,7% лиц специфические антитела не определялись. При этом у 87,5% детей первой группы титры специфических антител были выше, чем при применении плацебо. Динамика противопаротитных антител была сходной.

Полученные результаты позволили авторам сделать вывод, что дивакцина является низкореактогенным препаратом, а назначение Тимогена до иммунизации способствует более «гладкому» течению поствакциального периода и оказывает выраженное стимулирующее влияние на интенсивность специфического антителообразования, способствуя формированию защитных титров антител у всех привитых уже к 14-му дню и преобладанию высоких титров антител у 80-100% привитых на 30-й день после ревакцинации.

Интересные данные были получены при применении у часто болеющих детей до вакцинации против кори и эпидемического паротита топического бактериального лизата ИРС 19 и препарата Виферон. Использование ИРС 19 в предвакцинальном периоде способствовало уменьшению степени антигенной нагрузки, подготовки детей к вакцинации, к снижению интеркуррентных заболеваний и уменьшению нежелательных реакций в поствакцинальном периоде, созданию специфического иммунитета на высоком протективном уровне. Вакцинация на фоне Виферона позволяла избежать наслоения интеркуррентных заболеваний и также уменьшить число нежелательных поствакцинальных реакций, способствовала быстрому формированию и более медленному снижению уровня антител к вирусу кори и эпидемического паротита .

Применение иммунокорригирующих препаратов у пациентов с нарушенным состоянием здоровья до вакцинации и в течение поствакцинального периода способствует снижению наслоения интеркуррентных заболеваний, обеспечивают «гладкое» течение поствакцинального периода, способствует быстрой и интенсивной выработке специфических антител, что в конечном итоге приводит к повышению охвата прививками в декретированные сроки и улучшению качества здоровья детей.

Литература

    Хаитов Р.?М., Пинегин Б.?В. Иммуномодуляторы: механизм действия и клиническое применение // Иммунология. 2003. № 4, с. 196-203.

    Хаитов Р.?М., Пинегин Б.?В. Современные иммуномодуляторы: основные принципы их применение // Иммунология. 2000. № 5, с. 4-7.

    Хаитов Р.?М., Пинегин Б.?В. Иммуномодуляторы и некоторые аспекты их клинического применения // Клин. мед. 1996. Т. 74. № 8, с. 7-12.

    Машковский М.?Д. Препараты, коррегирующие процессы иммунитета (иммуномодуляторы, иммунокорректоры) В кн.: Машковский М.?Д.?Лекарственные средства: (пособие для врачей). М., 1993. Ч. 2. С. 192-209.

    Коровина Н.?А. с соавт. Иммунокоррегирующая терапия часто и длительно болеющих детей: Руководство для врачей. М., 1998.

    Петрова Т.?И., Сахарова А.?С. Краткий справочник иммунолога: Методические рекомендации. Чебоксары, 2002.

    Костинов М.?П. Основы вакцинопрофилактики у детей с хронической патологией. М., 2002. 318 с.

    Коровина Н.?А., Заплатников А.?Л., Чебуркин А.?В., Захарова И.?Н. Часто и длительно болеющие дети: современные возможности иммунореабилитации. М.: Контимед, 2001; 68.

    Заплатников А.?Л. Клинико-патогенетическое обоснование иммунотерапии и иммунопрофилактики вирусных и бактериальных заболеваний у детей. Автореф. дисс... докт. мед. наук. М., 2003.

    Опыт применения Рибомунила в Российской педиатрической практике. Сборник научных трудов. Под ред. Н.?А.?Коровиной. М., 2002.

    Michel F.?B. Ribomunil. Chester: Adis International Limited, 1996.

    Маркова Т.?П., Чувиров Д.?Г. Клинико-иммунологическое обследование и отбор пациентов с дисфункциями иммунной системы для проведения форсифицированной вакцинации, определение уровня специфических антител. Аллергия, астма и клиническая иммунология. М., 2003, т. 7, № 9, с. 84-86.

    Маркова Т.?П., Харьянова М.?Е. Форсификация поствакцинального иммунитета у длительно и часто болеющих детей // Аллергия, астма и клиническая иммунология, 2001, № 1.

    Харит С.?М., Начарова Е.?П., Петленко С.?В. Применение тимогена для повышения эффективности иммунизации против кори и паротита у детей, проживающих в экологически неблагоприятных регионах //Эпидемиология и вакцинопрофилактика, 2005, № 2, с. 15-21.

    Лебедев В.?В., Данилина А.?В., Сгибова И.?В. и др. Фармакологическая иммунореабилитация в системе специфической иммунопрофилактики и вакцинотерапии: современные подходы и перспективы развития // Int J Immunorehabilitation, 2000; 2 (1): 48-53.

    Иллек Я.?Ю., Зайцева Г.?А., Леушина Н.?П. и др. Имунофан в комплексном лечении детей с аллергическим диатезом // Педиатрия, 1999; 4: 71-3.

    Костинов М.?П. Иммунокоррекция вакцинального процесса у лиц с нарушенным состоянием здоровья. М., 2006, 172 с.

В. П. Афиногенова
И. В. Лукачев
М. П. Костинов , доктор медицинских наук, профессор

ГУ НИИ вакцин и сывороток им. И. И. Мечникова РАМН , Москва

Антибиотики с иммуносупрессорной активностью

Препараты глюкокортикоидов

Цитостатические средства

Классификация иммуносупрессорных средств.

Иммуносупрессорные средства.

Иммунотропные средства

А. Иммуносупрессорные средства – средства, подавляющие иммунный ответ организма.

Б. Иммуностимулирующие средства – применяются при иммунодифицитных состояниях организма, хронических вялотекущих инфекциях.

1. Цитостатические средства:

Алкилирующие средства: циклофосфамид;

Антиметаболиты: азатиоприн

2. Препараты глюкокортикоидов:

Преднизалон, дексаметазон

3. Антибиотики с иммуносупрессорной активностью:

Циклоспорин

4. Препараты антител:

Препараты поликлональных антител: антитимоцитарный иммуноглобулин

(Тимоглобулин);

Препараты моноклональных антител: к рецепторам иньерлейкина – 2: даклизумаб

Цитостатики оказывают выраженное иммуносупрессивное действие, связанное с угнетением влияния на деление лимфоцитов.

Алкилирующие соединения (Циклофосфамид) - получили свое название в связи со способностью ими образовывать ковалентные связи своих алкильных радикалов с гетероциклическими атомами пуринов и пиримидинов и, особенно азотом гуанина в положении 7. Алкилирование молекул ДНК, образование сшивок и разрывов приводит к нарушениям их матричных функций в процессе репликации и транскрипции и в конечном итоге, к митотическим блокам и гибели опухолевых клеток. Все алкилирующие средства являются циклонеспецифичными, т.е способны повреждать опухолевые клетки в различные фазы их жизненного цикла. Особенно выраженным повреждающим действием они обладают по отношению к быстро делящимся клеткам.

Антиметаболиты (Азатиоприн) - вещества, имеющие структурные сходства с природными продуктами обмена веществ (метаболитами), но не идентичные им. Механизм их действия можно представить следующим образом: видоизмененные молекулы пуринов, пиримидинов,фолиевой кислоты вступают в конкуренцию с нормальными метаболитами, замещают их в биохимических реакциях, но выполнять их функции не могут.процессы синтеза РНК и ДНК бокируются.в отличие от алкилирующих они действуют только на делящиеся раковые агенты, т.е являются циклоспецифическими препаратами.

Циклоспорин - антибиотик, продуцируемый грибами.подавляет продукцию интерлейкина- 2, что приводит к угнетению дифференцировки и пролиферации Т- лимфоцитов. Препарт показан для предупреждения отторжения при аллогенной трансплантации.

Тимоглобулин - представляет собой препарат антител кролика к тимоцитам человека. Показан для профилактики и лечения реакций отторжения при трансплантации органов, для лечения апластической анемии.


Даклизумаб – препарт моноклональных антител к рецепторам интерлейкина – 2. подавляет ИЛ-2 - зависимую пролифирацию Т-лимфоцитов, угнетает синтез антител и иммунный ответ на антигены.

Классификация иммунных препаратов (Нестерова И.В. и соавт., 2002)

А. Тимические факторы :

1. Гормоноподобные тимические факторы: биологические (тактивин, тималин, тимоптин, вилозен, тимактид); синтетические (имунофан, тимоген, тимомодулин, тимостимулин, бестим, тимопентин ТР-5).

2. Синтетические тимомиметики: имидазольные соединения (левамизол, метронидазол, дибазол); инозины: инозин (гроприносин), инозиплекс, метилинозинмонофосфат, датиокарб (имутиол), диуцифон.

Б. Препараты, восстанавливающие гуморальный иммунитет :

1. Иммуноглобулины для пассивной заместительной иммунотерапии: иммуноглобулины для внутривенного введения (сандоглобулин, интраглобин, октагам, эндобулин, иммуноглобулин G, вигам, биовен, пентаглобин, цитотект, гепатект); иммуноглобулины для местного применения (комплексный иммуноглобулиновый препарат – КИП, чигаин); иммуноглобулины для внутримышечного использования.

2. Препараты, модулирующие гуморальный иммунитет: ко­стно-мозговой иммунорегулятор биологического происхождения – миелопид (МП), в том числе синтетические гексапептиды, составляющие МП (-1, -2, -3); синтетические препараты с поливалентным действием (полиоксидоний, мурамилдипептиды, ликопид, ромуртид); препарат дрожжевой РНК – нуклеинат натрия; препарат ДНК – деринат; низкоиммуногенные вакцины бактериального происхождения, повышающие специфический иммунитет: бронхомунал, ИРС-19, солкотриховак, бронховаксом, имудон, солкоуровак; рибосомального происхождения – рибомунил.

В. Препараты, восстанавливающие систему нейтрофильных гранулоцитов и моноцитов-макрофагов:

1. Рекомбинантные колониестимулирующие факторы: лейкомакс, нейпоген, граноцит.

2. Синтетические препараты: левамизол, диуцифон, ликопид, полиоксидоний, метилурацил, пентоксил.

3. Интерфероны: человеческие и рекомбинантные.

4. Цитокиновый коктейль: лейкинферон.

5. Соли металлов: карбонат лития с фолатами.

6. Препараты микробного, дрожжевого и грибкового происхождения: микробного – пирогенал, продигиозан, вакцина БЦЖ, пицибанил; низкоиммуногенные вакцины – бронхомунал, бронховаксом, солкотриховак, солкоуровак, имудон, ИРС-19, паспат, биостин; рибосомальные вакцины – рибомунил; дрожжевого и грибкового происхождения – нуклеинат натрия, крестин, лентинан, биоторин.

Г. Интерфероны (ИФН) :

1. Получаемые из человеческой крови (природные): ИФН-альфа – лейкоцитарные (вэллферон, эгиферон, человеческий лейкоцитарный интерферон); ИФН-бета – фибробластный (ферон, человеческий фибробластный ИФН); ИФН-гамма (человеческий иммунный ИФН, ИФН-?).

2. Получаемые с использованием биотехнологических генно-инженерных методов (рекомбинантные): ИФН-альфа (реаферон, реальдирон, виферон, роферон, интрон А, инрек); ИФН-бета (берофор, бетаферон); ИФН-гамма (гамма-ферон).

Д. Синтетические препараты с поливалентными эффектами :

1. Производное полиэтиленпиперазина – полиоксидоний.

2. Производное мурамилдипептидов – ликопид.

3. Производные имидазола – левамизол, дибазол, метронидазол и т. д.

Е. Препараты нуклеиновых кислот естественного и синтетического происхождения :

1. Нативная ДНК из молок осетровых рыб – деринат.

2. Дрожжевого происхождения – нуклеинат натрия.

3. Пиримидиновые производные – пентоксил, метилурацил.

4. Синтетические двухцепочечные полинуклеотиды (искусственно синтезированные РНК): полирибоадениловая кислота (поли а); полирибоуридиловая кислота (поли у); полирибоцитидиловая кислота (поли ц); полирибоинозиновая кислота (поли и); полудан (полирибоадениловая кислота, поли а); полигуацил (полирибоцитидиловая кислота, поли ц), полирибогуаниловая (поли г) кислота.

Ж. Цитокины :

1. Интерлейкины рекомбинантные: ИЛ-1 (беталейкин), ИЛ-2 (ронколейкин), ИЛ-8, ФНО.

2. Колониестимулирующие факторы (КСФ): гранулоцитарные (Г-КСФ) – нейпоген, граноцит; гранулоцитарно-макрофагальный (ГМ-КСФ) – лейкомакс.

З. Средства антицитокиновой терапии :

1. Моноклональные антитела против цитокинов и их рецепторов (ИЛ-1, ИЛ-2, ИЛ-6, ФНО).

2. Фармакокоррекция гиперпродукции ФНО: ингибиторы транскрипции (пентоксифиллин); ингибиторы трансляции (глюкокортикоиды); препарат, укорачивающий период полужизни ФНО (талидамид); ингибиторы активатора фактора транскрипции ФНО (антиоксиданты); ингибиторы синтеза ФНО (простаноиды, аденозин); ингибиторы процессинга ФНО (металлопротеазы).



gastroguru © 2017