Антитела (иммуноглобулины), структура, классы, функции. Понятие о моноклональных антителах

Иммунитет – это способ защиты организма от генетически чужеродных веществ – антигенов экзогенного и эндогенного происхождения, направленный на поддержание и сохранение гомеостаза, структурной и функциональной целостности организма, биологической (антигенной) индивидуальности каждого организма и вида в целом.

Выработка антител по первичному и вторичному иммунному ответу.

Различают два варианта выдачи иммунного ответа в форме биосинтеза антител: первичный ответ - после первой встречи организма с данным антигеном, и вторич­ный ответ - при повторном контакте его с одним и тем же антигеном спустя 2-3 не­дели.

Первичный иммунный ответ. 1) Биосинтез антител начинается не сразу после контакта с антигеном, а после некоторого латентного периода, продолжающегося 3-5 дней. В течение этого периода происходит процесс распознавания антигена и формирования клеток, которые способны синтезировать антитела к нему; 2) ско­рость синтеза антител относительно невелика; 3) титры синтезируемых антител не достигают максимальных значений; 4) первыми синтезируются антитела, относя­щиеся к иммуноглобулинам класса IgМ, затем IgG. Позже всех появляются, да и то не во всех случаях, IgА и IgЕ.

Вторичный иммунный ответ.

1) Латентный период очень непродолжитель­ный, в пределах нескольких часов;

2) кривая, характеризующая скорость накопления антител, идет значительно круче вверх, чем при первичном ответе, и имеет логариф­мический характер;

3) титры антител достигают максимальных значений;

4) синте­зируются сразу антитела, относящиеся к классу IgG.

Вторичный иммунный ответ обусловлен формированием клеток иммунной памяти.

Иммунная память на клеточном уровне - это результат генерации особых антиген- специфических популяций Т- и В-клеток памяти. Она проявляется как в отношении выработки антител, так и в отношении других форм иммунного ответа и может сохраняться долгое время.

Клетки памяти представляют собой ту часть Т- и В-антигенстимулированных лимфоцитов, которые после 2-3 делений переходят в покоящееся состояние и дли­тельное время рециркулируют в организме.

Современные теории, объясняющие происхождение и специфичность антител. Клонально-селективная теория и ее основные предпосылки. Особенности генетического контроля биосинтеза антител.

Антитела являются уникальными сывороточными белками - глобулинами, ко­торые вырабатываются в ответ на поступление в организм антигена и способны с ним специфически взаимодействовать. Совокупность сывороточ­ных белков, обладающих свойствами антител, называют иммуноглобулинами и обозначают символом Ig

Уникальность антител заключается в том, что они способны взаимодействовать только с тем антигеном, который индуцировал их образование.


Антите­ла - это белки, а синтез каждого белка запрограммирован соответствующим геном.

Схе­матически полный ген L-цепи иммуноглобулинов: L (область, коди рующая лидерный пептид, необходимый для секреции иммуноглобулинов из клетки) - интрон - V-ген - интрон -J-ген - интрон - С-ген.

Схе­матически полный ген Н-цепи иммуноглобулинов: L-ген - интрон - V-ген - интрон - D-ген - интрон - J-ген - интрон - С-ген.

Точки объединения зародышевых генов строго не фиксированы. Это увеличива­ет количество возможных вариантов полипептидных цепей, а в том случае, когда они участвуют в формировании активных центров, то и их разнообразия. Кроме то­го, в период созревания В-лимфоцитов в V-генах происходят точечные соматичес­кие мутации, которые окончательно подгоняют структуру активного центра антите­ла к структуре детерминанта антигена. Считается, что общее количество вариантов антител возрастает за счет неточности сплайсинга и соматических мутаций еще в 100 раз и составляет около 2 млрд:

Таким образом, приобретенный иммунитет может быть обеспечен к любому воз­будителю, к любому возможному чужеродному антигену. Решающий вклад в обеспе­чение многообразия иммуноглобулинов (специфичности антител) вносят следую­щие механизмы:

1. наличие множества зародышевых генов иммуноглобулинов;

2. внутригенные рекомбинации, обусловленные экзон-интронной структурой V-, D-,J-, С-генов;

3. ассоциация различных L-цепей с различными Н-цепями;

4. неточность сплайсинга;

соматические мутации V-генов в зрелых В-лимфоцитах.

Антитела или иммуноглобулины – это растворимые гликопротеины человека и теплокровных животных, присутствующие в сыворотке крови (составляют около 30% всех белков сыворотки крови), тканевой и других жидкостях или на мембране некоторых типов клеток (В-лимфоциты) и участвующие в распознавании и нейтрализации чужеродных объектов (антигенов), например, бактерий и вирусов. Иммуноглобулины специфично распознают антигены, связываясь с определённым эпитопом – характерным фрагментом поверхности или линейной аминокислотной последовательностью антигена. Впервые они были обнаружены в 1890 г. Берингом и Китасато. Различают поликлональные (производятся разными клетками) и моноклональные (потомки одной клетки) антитела.

К свойствам антител относят:

  • аффинность – сродство к антигену, сила взаимодействия антитела с антигеном. Определяется через K A или K D . Высокоаффинные антитела имеют K D ≈ 10 9 -10 11 M -1
  • специфичность – взаимодействие антитела с определенным эпитопом антигена
  • бифункциональность – распознавание и связывание антигена, и выполнение эффекторных функций

В связи с этим, антитела, выполняющие антиген-распознающую, антиген-связывающую и ряд эффекторных функций, являются важнейшим фактором специфического гуморального иммунитета (Табл.1).

Табл.1. Классификация антител млекопитающих в зависимости от выполняемых эффекторных функций, строения и аминокислотного состава тяжёлых цепей.

Виды антител и их синтез.

Синтез молекул иммуноглобулинов осуществляется в плазматических клетках. Тяжелые и легкие цепи молекулы синтезируются на разных хромосомах и кодируются разными наборами генов. Динамика выработки антител в ответ на антигенный стимул зависит от того, впервые или повторно организм сталкивается с данным антигеном. При первичном иммунном ответе появлению антител в крови предшествует латентный период продолжительностью 3-4 дня. Первые образующиеся иммуноглобулины принадлежат к lgM. Затем количество антител резко возрастает и происходит переключение синтеза с lgM- на lgG-антитела. Максимум содержания антител в крови приходится на 7-11-е сутки, после чего их количество постепенно снижается. Для вторичного иммунного ответа характерны укороченный латентный период, более быстрое нарастание титров антител и большее их максимальное значение. Характерно образование сразу lgG-антител. Способность к иммунному ответу по вторичному типу сохраняется в течение многих лет и представляет собой проявление иммунологической памяти, примерами которой может служить иммунитет против кори и оспы.

Выделение антител и их очистка.

Различают неспецифические и специфические методы выделения антител. К неспецифическим относят методы фракционирования иммунных сывороток, в результате которых получают фракции, обогащенные антитела, чаще всего фракцию lgG-антител. К ним относятся высаливание иммуноглобулинов сульфатом аммония или сернокислым натрием, осаждение иммуноглобулинов спиртом, методы препаративного электрофореза и ионообменной хроматографии и гель-хроматографии. Специфическая очистка основана на выделении антител из комплекса с антигеном и приводит к получению иммуноглобулинов одной специфичности, но гетерогенных по физико-химическим свойствам. Процедура состоит из следующих этапов: получение специфического преципитата (комплекса антиген - антитело) и отмывка его от остальных компонентов сыворотки; диссоциация преципитата; отделение антител от антигена на основе различий в их молекулярной массе, заряде и других физико-химических свойств. Для специфического выделения антител широко используют иммуносорбенты - нерастворимые носители, на которых фиксирован антиген. В этом случае процедура получения иммуноглобулинов значительно упрощается и включает пропускание иммунной сыворотки через колонку с иммуносорбентом, отмывку иммуносорбента от не связавшихся белков сыворотки, элюцию фиксированного на иммуносорбенте антитела при низких значениях рН и удаление диссоциирующего агента путем диализа.

Компания Биалекса производит и продаёт высокочувствительные , для in vitro диагностики и научных исследований. В нашем каталоге, включающем более 300 наименований, Вы найдёте полный ассортимент продуктов по следующим направлениям иммунодиагностики: сердечно-сосудистые заболевания, ветеринария, гормоны, иммунология, инфекционные и вирусные заболевания, свёртывание крови, анемия, фертильность и репродукция.

Рекомендованные пары антител проходят предварительную стадию тестирования с клиническими образцами. Антитела и антигены надёжно работают в целом ряде иммунохимических методов, таких как: прямой и непрямой иммуноанализ (ELISA), иммуноанализ сэндвич-типа, вестерн-блоттинг, иммунопреципитация, иммунохроматография, иммунофлуоресценция и иммуноцитохимическое окрашивание.

Конечным результатом активизации и созревания В-лимфоцитов является образование антител, которые реагируют специфически с эпитопами, идентифицированными первоначально его рецепторами. Плазматические клетки синтезируют и секретируют антитела. Они распространены во всех лимфоидных органах и тканях, а также в основании ворсинок слизистой оболочки кишечника, вокруг кровеносных капилляров, в сальнике и соединительной ткани.

Индуцированные вирусами антитела играют важную роль в профилактике вирусных болезней . В некоторых случаях совершенно очевидно, что болезнь предупреждают нейтрализующие антитела (например, при полиомиелите, ящуре, ньюкаслской болезни, кори, гриппе и др.). Не исключено, что антитела играют важную роль в ограничении распространения вируса из ворот инфекции, но они не всегда могут подавить уже развившуюся системную инфекцию или предотвратить реактивацию латентной инфекции (герпетический везикулярный дерматит, ветряная оспа, герпесвирусные болезни животных).

В синтезе и секреции антител или иммуноглобулинов участвует множество лимфоцитов и плазматических клеток. Считается, что первой клеткой, вовлекаемой в иммунный ответ, является клетка, чувствительная к антигену, распознающая его, или рецепторная, разрушающая антиген и каким-то образом передающая закодированную в нем специфическую информацию эффекторной, то есть другому лимфоциту или плазматической клетке, которые в конечном итоге синтезируют и секретируют антитела. На пути к синтезу антител особенно важны макрофаги, распространенные во всем организме и способные захватывать и перерабатывать антиген. К таким клеткам, прежде всего, относятся моноциты и нейтрофилы. В первые дни после инфицирования, когда антитела еще отсутствуют, борьба организма с вирусной инфекцией ведется с использованием механизмов резистентности. Катаболическая элиминация антигена предшествует иммунной, являющейся результатом соединения антигена с антителами. Индуктивная фаза иммунного ответа - это такой период, когда в сыворотке крови антител не обнаруживается. Однако в это время в лимфоидных тканях можно легко найти одиночные клетки, способные к секреции антител.

Длительность латентного периода значительно зависит от многих факторов: типа вирусной инфекции, антигенности, дозы и пути введения вакцины, от возраста, вида и общего физиологического состояния реципиента. После завершения латентного периода в организме появляются антитела. Часто первые антитела появляются в крови еще до полного устранения антигена из кровотока. Если это происходит, и антиген соединяется с антителом, то комплексы антиген-антитело быстро выводятся из организма еще до появления несколькими днями позже легко определяемых свободных антител. Если антиген попадает в организм впервые, то возникает так называемый первичный иммунный ответ. Антитела в этом случае накапливаются в низкой концентрации и, если антиген не будет введен вновь, появляются ненадолго. В случае, когда антиген вводят повторно, вскоре начинается более быстрое и сильное, чем при первичном ответе, повышение титра антител. Вторичный, или анамнестический, ответ отличается также длительностью сохранения высокого уровня антител. Возникновение гуморального и клеточного иммунитета сопровождается формированием так называемой иммунологической памяти, проявляющейся тем, что повторный контакт со специфическим антигеном вызывает ускоренный и усиленный иммунный ответ. Считают, что такой ответ зависит от наличия «клеток памяти» - особой субпопуляции лимфоцитов, ранее активизированных тем же антигеном. Количество клеток, продуцирующих антитела в селезенке инфицированных или вакцинированных кур, при парамиксовирусной инфекции достигало максимального уровня (0,1 % к количеству спленоцитов) на третий день после заражения или вакцинации.

Приблизительно через два дня после первичного введения антигена появляются IgM-продуцирующие клетки, количество которых достигает максимума к 4-6-му дню. Затем их численность снижается, и появляются IgG-продуцируюшие клетки. Синтез IgG происходит в течение более продолжительного периода, чем IgM. Если антиген вводят второй раз, то через 1-3 дня начинается мощный подъем уровня антител, через некоторое время достигающий максимума. Содержание антител при этом намного (в 10-50 раз) превышает значения, характерные для первичного ответа. Пробудить иммунологическую память можно даже спустя несколько лет после первичной иммунизации, когда показатели иммунологических реакций снижаются до нуля. Однако по мере угасания интенсивности первичного ответа уменьшается и интенсивность вторичного иммунного ответа. Существует физиологический предел, ограничивающий количество возможных повторных анамнестических ответов; организм обычно исчерпывает свой лимит после 3-5 реиммунизаций, если они проведены со сравнительно небольшими интервалами.

Инактивированная полиовирусная вакцина подобно естественному инфицированию вызывала развитие иммунологической памяти без значительной продукции гуморальных антител. Этот эффект находился в прямой зависимости от концентрации вирусного антигена в вакцине. Иммунологическая память дает человеку и животным большие преимущества в борьбе с вирусными инфекциями и лежит в основе иммунитета и вакцинопрофилактики.

Специфичность и память , присущие как гуморальному, так и клеточному иммунному ответу, могут зависеть от вирусного антигена. Так, гликопротеин D-вируса простого герпеса более активно индуцировал вирусспецифическую память, чем гликопротеин-В. В случае Т-зависимых антигенов пролиферация В-клеток и образование антител являются результатом взаимодействия с макрофагами и Т-клетками. При введении Т-независимых антигенов образование антител происходит без участия Т-хелперов. После встречи с антигеном В-клетки дифференцируются либо в зрелые плазматические клетки, которые секретируют иммуноглобулины только одного класса, либо в В-клетки памяти.

Первичный иммунный ответ предполагает обязательное участие макрофагов. При вторичном ответе стадия взаимодействия антигена с макрофагами исключается. Иммунологическая память, по-видимому, связана с долгоживущей, самовоспроизводимой популяцией лимфоцитов.

Говоря о специфичности иммунного ответа , необходимо отметить, что при вторичном иммунном ответе отчетливо проявляются антитела, реагирующие на близкородственные антигены. Чем выше уровень вторичного иммунного ответа и чем теснее родство антигенов, тем выраженнее ответ на родственные антигены. Это явление имеет важное практическое значение в деле вакцинопрофилактики ряда вирусных болезней, характеризующихся антигенной вариабельностью возбудителя.

Согласно существующим представлениям, организм животного способен синтезировать и секретировать >10 7 разнообразных антител . А так как популяция лимфоидных клеток клонирована, и каждый В-лимфоцит синтезирует антитело только одного типа, взаимодействующее с одной антигенной детерминантой, то в организме допускается существование не менее 108 различных клонов В-лимфоцитов.

Антитела


- Что же это за клетки?

- Это лимфоциты.

Если не учитывать эритроциты, которые переносят кислород, то все остальные клетки крови имеют белый цвет . Их называют лейкоцитами, то есть белыми клетка ми. Из всех белых клеток 30 процентов относятся к лимфоцитам. Лимфоцит в переводе на русский язык означает «клетка лимфы».

Во всех тканях нашего тела, помимо крови, циркулирует лимфа. По лимфатическим сосудам она поступает в лимфатические узлы , а оттуда собирается в один большой сосуд - грудной проток, который впадает в кровяное русло около самого сердца. В лимфе нет эритроцитов. Только лимфоциты.

Осмотр


Многие считали, что из лимфоцитов возникают всевозможные другие клетки - соединительнотканные, печеночные, легочные и т. д. «Старая литература, - пишет Гоуэнс, - наполнена противоречивыми доказательствами того, что малые лимфоциты могут превращаться в эритроциты, гранулоциты, моноциты, фибробласты, плазматические клетки и т. д. Один циник как–то заметил, что все клетки, за исключением клеток нервной системы , в то или иное время рассматривались как производные лимфоцитов!»

Второе исследование. Гоуэнс облучает крысу рентгеновскими лучами. Многие системы страдают после облучения, иммунная система тоже. Животное не вырабатывает антител. Облученной крысе введены эритроциты барана, антител нет. Другой облученной крысе эритроциты барана введены вместе с лимфоцитами от здоровой крысы, антитела есть.


В крови плавают десятки тысяч различных антител, но они имеют общий план строения.

- Как устроены молекулы антител? Это, наверное, белки, которые циркулируют в крови.

Да, это самые крупные белковые молекулы кровяной сыворотки - гамма–глобулины. Поскольку все гамма–глобулины - антитела, их теперь называют иммуноглобулинами.

- Сколько же разных иммуноглобулинов плавает в крови?

Много. По приблизительным подсчетам, около десяти тысяч. Около одного процента массы крови приходится на иммуноглобулины. Иначе говоря, в литре крови 10 граммов антител.

- Сколько же это молекул?

- Очень много. Цифра астрономическая. Что–то вроде 5x10 20 (500 000 000 000 000 000 000), и каждая из них может соединиться с каким–то чужеродным веществом и обезвредить его.

Расшифровать устройство молекулы иммуноглобулина удалось благодаря работам двух исследователей - Роднея Портера в Оксфорде и Джералда Эдельмана в Нью–Йорке. Первые результаты были опубликованы в 1959 году. К 1965 году в общих чертах структура молекулы была расшифрована. К 1970–му иммунологи знали не только план строения, но и последовательность укладки «кирпичей» (аминокислот, из которых построена любая белковая молекула). В 1972 году Портер и Эдельман были удостоены Нобелевской премии.



Работа в поте лица


Примерный ход событий таков. В 1958 году Портер обработал выделенный из крови чистый иммуноглобулин папаином. Его получают из растений. Папаин относится к ферментам, разрушающим белки. Он способен разрезать белковые молекулы поперек.

В это же самое время на другом берегу Атлантического океана, как говорят в науке, «одновременно и независимо» Эдельман обработал выделенные из крови молекулы иммуноглобулинов 6–меркаптоэтанолом. Этот химический реагент обладает способностью разрезать молекулы белков вдоль. (Папаин пилит белковые стволы на дрова, а 6–меркаптоэтанол - на доски.)

Здесь следует немного отвлечься от антител, чтобы вспомнить, как вообще построены белки, что лежит в их основе.

Основой строения всех белков служат пептидные цепи. Белок может быть составлен из нескольких цепей, расположенных последовательно или параллельно друг другу. Каждая цепь, как из звеньев, образована из аминокислот. Вот, например, кусочек пептидной цепи инсулина - одного из хорошо изученных белков, при недостатке которого развивается тяжелая болезнь диабет: цистеин-аланин-серин-валин-цистеин. Полипептидные цепи, составленные из разных сочетаний 20 аминокислот, образуют все многообразие белков на нашей планете.

Аминокислоты соединены в цепи пептидов через атомы углерода и азота. Эти связи носят название пептидных. Именно их разрывает папаин. Конечно, не все сразу. В первую очередь в наиболее доступных участках белковой молекулы.

Если пептидные цепи, составляющие молекулу белка, расположены в виде двух нитей параллельно друг другу, то они соединяются между собой через два атома серы. Эти связи называются дисульфидными. Их разрушает 6–меркаптоэтанол. В результате этого белковая молекула, если она составлена из параллельных пептидных цепей, разрезается вдоль.

Итак, Портер рассек молекулу антитела поперек, а Эдельман вдоль.

Молекулярный вес целой молекулы был чуть больше 150 тысяч. После поперечного разрезания возникли три фрагмента с молекулярным весом около 50 тысяч каждый. Портер получил три фрагмента примерно равной величины. Он обозначил их I, II и III. Величина их была почти равна, но свойства…

Фрагменты I и II оказались тождественными друг другу. Каждый из них обладал главным качеством антитела - мог соединяться с антигеном, с той чужеродной субстанцией, против которой направлено данное антитело. Фрагмент III этим качеством не обладал.

Эдельман получил четыре фрагмента, вернее, четыре цепи, так как он разделил белковую молекулу на пептидные цепи. Две цепи, тождественные между собой, имели молекулярный вес примерно 25 тысяч. Он их назвал L–цепи (от слова light - легкий). Две другие, тоже тождественные между собой, имели вес 50 тысяч. Он их назвал Н–цепи (от слова heavy - тяжелый). (Следует заметить, если одна пептидная цепь в два раза тяжелее другой, это значит, что она в два раза длиннее.) Ни одна из этих цепей основным качеством антитела - способностью связывать антиген - не обладала. Однако если воссоединить вновь L–цепь и Н–цепь, то у образовавшейся структуры, представляющей половину молекулы, это качество восстанавливалось.

Вот так перед исследователями возникла задачка на сообразительность.

Дано: если разрезать молекулу поперек, возникает три части. Обозначим молекулярный вес в тысячах внизу символа, а антительную активность - звездочкой вверху символа. Получим формулу строения антитела: АТ 150 = I 50 * + II 50 * + III 50 .

Если разрезать вдоль, возникает четыре части со своей формулой: АТ 150 = 2L 25 +2Н 50 = (L 25 + Н 50) * + (L 25 + Н 50)*.

Требуется: определить пространственную структуру расположения пептидных цепей в молекуле и локализацию активных центров, то есть участков, определяющих главное качество - способность соединяться с антигеном.

Еще упрощаем задачу: из двух длинных и двух коротких цепочек сложить фигуру, которая бы при поперечном разрезе давала три равновеликих фрагмента. Два из них несут специфические антигенсвязывающие участки, составленные из длинной и короткой цепей.

Получится конструкция, похожая на заглавную букву «игрек» латинского шрифта?, что–то вроде нашей мальчишеской рогатки. Места, к которым привязывается резинка, и есть активные центры. Две стороны «рогатины» - это и есть портеровские фрагменты I и II. «Рукоятка» - фрагмент III. Папаин рассекает конструкцию на три фрагмента как раз в месте разветвления.

Две длинные цепи, располагаясь рядом друг с другом, формируют «рукоятку», а в месте разветвления расходятся, образуя внутренние стороны «рогатины». Короткие цепи примыкают к длинным после развилки, формируя наружные стороны «рогатины». Концы ее, состоящие из окончаний обоих типов цепей, определяют специфичность молекулы. В итоге каждое антитело имеет два активных центра. Как двумя руками связывает оно чужеродные антигенные частицы, делая их неактивными, нерастворимыми, неспособными оказывать вредное организму действие.

Такая конструкция построена не только на основе логических рассуждений. Она подтверждена специальными физико–химическими методами. Наконец, ее увидели в электронном микроскопе. Молекула антитела действительно выглядит так:

Молекула антитела


Некоторые молекулы антител соединяются своими «рукоятками» по две. Тогда они называются димерами. Они имеют, таким образом, сразу четыре активных центра для связывания антигена. Так ведут себя иммуноглобулины класса А. Другие молекулы объединяются по пять (пентамеры), образуя картину звезды с десятью активными центрами, смотрящими наружу. Это иммуноглобулины класса М. Но большинство антител относятся к обычному, мономерному («моно» - значит «один») типу. Их называют иммуноглобулинами класса Г.

К 1970 году структура антител была понята не только в общих чертах. Было выяснено, сколько аминокислот в каждой из четырех пептидных цепей.

В основе повышенной чувствительности организма лежат его иммунные реакции на антиген. Обычно такая чувствительность проявляется при повторной встрече организма с аллергеном, не вызывающим у здоровых людей реакции. Однако с первой встречи с аллергеном начинается образование аллергических антител, которые после повторной встречи с тем же аллергеном дают бурную цепную реакцию. Механизм этой реакции недостаточно ясен; одной из главных ее особенностей являются распад тучных клеток и выход из их гранул гистамина. Гистамин вызывает расширение сосудов и отек тканей.

К типичным аллергенам относятся различные виды пыльцы трав и цветов, перья некоторых видов птиц, шерсть домашних животных, различные красители. Аллерген проникает в организм чаще всего через слизистую оболочку дыхательных путей или кожу.

Анафилаксией называют реакцию повышенной чувствительности к повторному введению чужеродного белка. Анафилаксия может проявляться реакцией организма различной степени вплоть до крайне тяжелой- анафилактического шока.

Экспериментально анафилактический шок легко продемонстрировать на морских свинках, очень чувствительных к чужеродным белкам. Если морской свинке подкожно ввести небольшую дозу (0,01 - 0,001 мл) чужеродного белка, например лошадиной сыворотки, то свинка легко переносит это без всяких видимых последствий. К 8 - 12-му дню у морской свинки развивается состояние сенсибилизации по отношению к введенному белку. Если в период сенсибилизации морской свинке ввести в кровь тот же белок, развивается анафилактический шок. Для развития анафилаксии необходимо введение в кровь большой дозы этого же антигена. Это так называемая разрешающая инъекция. А. М. Безредка ярко описал картину анафилактического шока у морской свинки: "Как только кончено пробное вспрыскивание, сенсибилизированная морская свинка начинает волноваться. Она начинает царапать мордочку. Ее волнение растет с минуты на минуту. Вдруг она начинает вращаться вокруг своей оси. Эти вращательные движения прерываются судорожными вздрагиваниями, все более частыми и сильными. В определенный момент - 3 - 4 мин спустя после вспрыскивания - судорожные движения становятся реже. Животное кажется истощенным... Ложится на бок. Сфинктеры мочевого пузыря и заднего прохода расслабляются; происходит выделение мочи и кала. Дыхание, очень короткое и прерывистое сначала, становится все медленнее. К концу короткого промежутка, редко превышающего 5 - 6 мин, животное умирает от удушья".

Если анафилаксия проявляется в слабой форме, то обычно наблюдаются зуд, учащенное дыхание, сердцебиение, понижение артериального давления и понос.

В отдельных случаях животные при анафилактическом шоке выживают. В дальнейшем они на некоторое время становятся нечувствительными к данному аллергену. Наступает так называемая десенсибилизация. Десенсибилизацию можно вызвать искусственно, вводя перед инъекцией разрешающей дозы небольшую дозу аллергена.

Анафилаксию разной степени тяжести можно наблюдать у людей, например при повторном введении различных лечебных сывороток-противостолбнячной, противодифтерийной и др. Описаны случаи анафилактического шока при повторном введении антибиотиков, анестетиков или витаминов. Для предупреждения анафилактических реакций в практике используют метод десенсибилизации, предложенный А. М. Безредкой: за 2 - 4 ч перед введением необходимого количества сыворотки вводят небольшую ее дозу (0,5 - 1 мл). Этот метод обычно делает введение сыворотки безопасным. Однако у особо чувствительных людей даже применение этого метода не всегда предупреждает развитие анафилаксии.

К анафилаксии относится сывороточная болезнь, развивающаяся у некоторых людей через 8 - 14 сут после введения лечебных сывороток. Она характеризуется появлением зуда, сыпи, повышением температуры, отеком лица. Обычно через несколько дней наступает выздоровление.

Развитие сывороточной болезни можно ослабить или иногда предупредить, если вводить сыворотку не сразу, а постепенно возрастающими дозами. Хорошо очищенная сыворотка реже вызывает сывороточную болезнь.

К аллергическим реакциям относят повышенную чувствительность к аллергенам бактериальной природы. Это реакции гиперчувствительности замедленного типа. Возникновение реакции такого типа связано с предшествующей сенсибилизацией организма микробным аллергеном, вирусом, токсином. В ответ на эти аллергены могут развиваться реакции клеточного иммунитета без образования гуморальных антител. Этим объясняется то, что при реакции замедленного типа обычно отмечаются значительные местные повреждения тканей.

Аллергические реакции играют важную роль в патогенезе многих заболеваний, особенно туберкулеза, скарлатины, ревматизма. Так, например, при туберкулезе организм больного постоянно сенсибилизирован по отношению к туберкулезному токсину - туберкулину. Организм здорового человека не реагирует на внутрикожное введение туберкулина или отвечает легкой воспалительной реакцией. Введение же туберкулина больным туберкулезом вызывает бурную кожную воспалительную реакцию. Эта проба используется с диагностической целью.

Аллергические проявления часто определяют характер течения болезни. Разрешающими факторами могут быть самые разнообразные воздействия, иногда даже случайные. Так, например, обострение ревматизма может начаться после гриппа, ангины, охлаждения или перегревания, а также после введения лечебной сыворотки (например, противостолбнячной). Обострение хронически текущего туберкулезного процесса иногда происходит после различных воздействий, изменяющих реактивность организма и играющих роль разрешающих факторов.

Лекарственная аллергия развивается вследствие повышенной чувствительности некоторых лиц к определенным лекарственным препаратам или в результате сенсибилизации этими препаратами. Роль антигена в таких случаях может выполнять как сам препарат, например некоторые антибиотики, так и продукты, образующиеся в результате взаимодействия данного препарата с белками организма. Чаще всего аллергические реакции вызывают антибиотики, но эти реакции могут быть обусловлены и другими лекарственными средствами , даже амидопирином.

Клинические проявления аллергических реакций на лекарственные препараты разнообразны-от крапивницы или приступа бронхиальной астмы до анафилактического шока. В связи с этим для предупреждения аллергических реакций лекарственные препараты следует применять только при определенных показаниях по правильным схемам и после выяснения переносимости их данным больным.

Подобно лекарственным аллергиям, могут развиваться аллергии в ответ на раздражение некоторыми химическими веществами, например лаками, красителями, клеями. В таких случаях чаще всего приходится встречаться с аллергическими поражениями кожи-дерматитами.

К аллергии относится и идиосинкразия - сверхчувствительность к некоторым пищевым продуктам, лекарственным препаратам, вдыхаемой пыльце цветов, косметическим средствам и т. п.

Антитела выполняют две функции: антиген -связывающую и эффекторную (вызывают тот или иной иммунный ответ, например, запускают классическую схему активации комплемента).

Антитела синтезируются плазматическими клетками, которыми становятся некоторые В-лимфоциты, в ответ на присутствие антигенов. Для каждого антигена формируются соответствующие ему специализировавшиеся плазматические клетки, вырабатывающие специфичные для этого антигена антитела. Антитела распознают антигены, связываясь с определённым эпитопом - характерным фрагментом поверхности или линейной аминокислотной цепи антигена.

Антитела состоят из двух лёгких и двух тяжёлых цепей. У млекопитающих выделяют пять классов антител (иммуноглобулинов) - IgG, IgA, IgM, IgD, IgE, различающихся между собой по строению и аминокислотному составу тяжёлых цепей и по выполняемым эффекторным функциям.

История изучения

Самое первое антитело было обнаружено Берингом и Китазато в 1890 году, однако в то время о природе обнаруженного столбнячного антитоксина, кроме его специфичности и его присутствия в сыворотке иммунного животного, ничего определенного сказать было нельзя. Только с 1937 года - исследований Тиселиуса и Кабата, началось изучение молекулярной природы антител. Авторы использовали метод электрофореза белков и продемонстрировали увеличение гамма-глобулиновой фракции сыворотки крови иммунизированных животных. Адсорбция сыворотки антигеном, который был взят для иммунизации, снижала количество белка в данной фракции до уровня интактных животных.

Строение антител

Антитела являются относительно крупными (~150 кДа - IgG) гликопротеинами, имеющими сложное строение. Состоят из двух идентичных тяжелых цепей (H-цепи, в свою очередь состоящие из V H , C Н 1, шарнира, C H 2- и C H 3-доменов) и из двух идентичных лёгких цепей (L-цепей, состоящих из V L - и C L - доменов). К тяжелым цепям ковалентно присоединены олигосахариды. При помощи протеазы папаина антитела можно расщепить на два Fab (англ. fragment antigen binding - антиген-связывающий фрагмент) и один (англ. fragment crystallizable - фрагмент, способный к кристаллизации). В зависимости от класса и исполняемых функций антитела могут существовать как в мономерной форме (IgG, IgD, IgE, сывороточный IgA), так и в олигомерной форме (димер-секреторный IgA, пентамер - IgM). Всего различают пять типов тяжелых цепей (α-, γ-, δ-, ε- и μ-цепи) и два типа легких цепей (κ-цепь и λ-цепь).

Классификация по тяжелым цепям

Различают пять классов (изотипов ) иммуноглобулинов, различающихся:

  • последовательностью аминокислот
  • молекулярной массой
  • зарядом

Класс IgG классифицируют на четыре подкласса (IgG1, IgG2, IgG3, IgG4), класс IgA - на два подкласса (IgA1, IgA2). Все классы и подклассы составляют девять изотипов, которые присутствуют в норме у всех индивидов. Каждый изотип определяется последовательностью аминокислот константной области тяжелой цепи.

Функции антител

Иммуноглобулины всех изотипов бифункциональны. Это означает, что иммуноглобулин любого типа

  • распознает и связывает антиген, а затем
  • усиливает уничтожение и/или удаление иммунных комплексов, сформированных в результате активации эффекторных механизмов.

Одна область молекулы антител (Fab) определяет её антигенную специфичность, а другая (Fc) осуществляет эффекторные функции: связывание с рецепторами, которые экспрессированы на клетках организма (например, фагоцитах); связывание с первым компонентом (C1q) системы комплемента для инициации классического пути каскада комплемента.

Специфичность антител

Имеет в виду то, что каждый лимфоцит синтезирует антитела только одной определенной специфичности. И эти антитела располагаются на поверхности этого лимфоцита в качестве рецепторов.

Как показывают опыты, все поверхностные иммуноглобулины клетки имеют одинаковый идиотип: когда растворимый антиген, похожий на полимеризованный флагеллин, связывается со специфической клеткой, то все иммуноглобулины клеточной поверхности связываются с данным антигеном и они имеют одинаковую специфичность то есть одинаковый идиотип.

Антиген связывается с рецепторами, затем избирательно активирует клетку с образованием большого количества антител. И так как клетка синтезирует антитела только одной специфичности, то эта специфичность должна совпадать со специфичностью начального поверхностного рецептора.

Специфичность взаимодействия антител с антигенами не абсолютна, они могут в разной степени перекрестно реагировать с другими антигенами. Антисыворотка, полученная к одному антигену, может реагировать с родственным антигеном, несущим одну или несколько одинаковых или похожих детерминант. Поэтому каждое антитело может реагировать не только с антигеном, который вызвал его образование, но и с другими, иногда совершенно неродственными молекулами. Специфичность антител определяется аминокислотной последовательностью их вариабельных областей.

Клонально-селекционная теория :

  1. Антитела и лимфоциты с нужной специфичностью уже существуют в организме до первого контакта с антигеном.
  2. Лимфоциты, которые участвуют в иммунном ответе, имеют антигенспецифические рецепторы на поверхности своей мембраны. У B-лимфоцитов рецепторы- молекулы той же специфичности, что и антитела, которые лимфоциты впоследствии продуцируют и секретируют.
  3. Любой лимфоцит несет на своей поверхности рецепторы только одной специфичности.
  4. Лимфоциты, имеющие антиген, проходят стадию пролиферации и формируют большой клон плазматических клеток. Плазматические клетки синтезируют антитела только той специфичности, на которую был запрограммирован лимфоцит-предшественник. Сигналами к пролиферации служат цитокины, которые выделяются другими клетками. Лимфоциты могут сами выделять цитокины.

Вариабельность антител

Антитела являются чрезвычайно вариабельными (в организме одного человека может существовать до 10 8 вариантов антител). Все разнообразие антител проистекает из вариабельности как тяжёлых цепей, так и лёгких цепей. У антител, вырабатываемых тем или иным организмом в ответ на те или иные антигены, выделяют:

  • Изотипическая вариабельность - проявляется в наличии классов антител (изотипов), различающихся по строению тяжёлых цепей и олигомерностью, вырабатываемых всеми организмами данного вида;
  • Аллотипическая вариабельность - проявляется на индивидуальном уровне в пределах данного вида в виде вариабельности аллелей иммуноглобулинов - является генетически детерминированным отличием данного организма от другого;
  • Идиотипическая вариабельность - проявляется в различии аминокислотного состава антиген-связывающего участка. Это касается вариабельных и гипервариабельных доменов тяжёлой и лёгкой цепей, непосредственно контактирующих с антигеном.

Контроль пролиферации

Наиболее эффективный контролирующий механизм заключается в том, что продукт реакции одновременно служит её ингибитором. Этот тип отрицательной обратной связи имеет место при образовании антител. Действие антител нельзя объяснить просто нейтрализацией антигена, потому что целые молекулы IgG подавляют синтез антител намного эффективнее, чем F(ab")2 -фрагменты. Предполагают, что блокада продуктивной фазы T-зависимого B-клеточного ответа возникает в результате образования перекрестных связей между антигеном, IgG и Fc - рецепторами на поверхности B-клеток. Инъекция IgM усиливает иммунный ответ. Так как антитела именно этого изотипа появляются первыми после введения антигена, то на ранней стадии иммунного ответа им приписывается усиливающая роль.

Что это за плазматические клетки, вырабатывающие антитела, и можно ли плазматическую клетку считать самой главной клеткой иммунной системы?

Что это за плазматические клетки, вырабатывающие антитела? О них уже знали во времена Мечникова или это более позднее открытие?

Антитела


Конечно, более позднее. Это достижения новой иммунологии. Шведская исследовательница Астрид Фагреус в 1948 году предположила, что антитела вырабатываются плазматическими клетками. Окончательно это было доказано известным американским иммунологом Альбертом Кунсом всего 20 лет назад, в 1956 году.

- Нет, нельзя. Главные клетки распознаны еще позже.

- Что же это за клетки?

- Это лимфоциты.

Если не учитывать эритроциты, которые переносят кислород, то все остальные клетки крови имеют белый цвет. Их называют лейкоцитами, то есть белыми клетка ми. Из всех белых клеток 30 процентов относятся к лимфоцитам. Лимфоцит в переводе на русский язык означает «клетка лимфы».

Во всех тканях нашего тела, помимо крови, циркулирует лимфа. По лимфатическим сосудам она поступает в лимфатические узлы, а оттуда собирается в один большой сосуд - грудной проток, который впадает в кровяное русло около самого сердца. В лимфе нет эритроцитов. Только лимфоциты.

Ровно триста лет назад, знаменитый голландец Антони Левенгук создал свой «микроскоп». Первыми объектами его наблюдений были капля дождевой воды и капля крови. Он открыл красные кровяные шарики - эритроциты, которые составляют основную массу клеток крови. Не прошло и сотни лет после этого, как были обнаружены белые клетки крови. Их почти в тысячу раз меньше, чем эритроцитов, но все равно очень много. В грамме крови содержится 4-5 миллиардов эритроцитов и 6-8 миллионов лейкоцитов.

Лейкоциты делятся на две главные группы. Клетки первой группы составляют около 2 / 3 и характеризуются тем, что имеют не круглые, а сегментированные ядра. У клеток второй группы абсолютно круглые ядра, которые занимают большую часть клетки. Первые являются собственно лейкоцитами, а вторые получили название лимфоцитов.

В конце прошлого столетия Мечников обнаружил, что лейкоциты защищают организм, пожирая чужеродные частицы. В отличие от больших тканевых фагоцитов - макрофагов, он назвал их малыми фагоцитами - микрофагами. А вот чем занимаются лимфоциты, стало известно всего 15 лет назад.

Как легко мы перелистываем историю! Триста лет назад открыты первые клетки крови - красные, двести лет назад - лейкоциты, сто лет назад - лимфоциты. Упорный труд, поиски, изобретательность, споры, десять поколений исследователей! А у нас полстраницы печатного текста.

Осмотр


Два миллиона лимфоцитов в каждом грамме крови. Чем они заняты? Этот вопрос задавали себе сотни исследователей. Профессор Джеймс Гоуэнс из Оксфорда, сделавший больше всех других, чтобы обнаружить функции этих клеток, приводит слова известного патолога Арнольда Рича: «Лимфоциты - это флегматичные наблюдатели бурной активности фагоцитов». Таким было одно из распространенных воззрений. Действительно, очень маленькие клетки, 6-8 микрон в диаметре, чуть больше собственного ядра (почти одно ядро!), которые не обладают активной подвижностью, но почти всегда скапливаются вокруг воспалительного очага, в котором работают фагоциты, пожирая все инородное или отмирающее.

Было и другое мнение. Лимфоцитам приписывали функцию питания других клеток. Их даже называли трофоцитами - питающими клетками.

Многие считали, что из лимфоцитов возникают всевозможные другие клетки - соединительнотканные, печеночные, легочные и т. д. «Старая литература, - пишет Гоуэнс, - наполнена противоречивыми доказательствами того, что малые лимфоциты могут превращаться в эритроциты, гранулоциты, моноциты, фибробласты, плазматические клетки и т. д. Один циник как–то заметил, что все клетки, за исключением клеток нервной системы, в то или иное время рассматривались как производные лимфоцитов!»

Лимфоцит действительно таинственная клетка, коль скоро ему удалось сохранить свою тайну перед прозорливостью науки вплоть до 60–х годов XX столетия! В начале 69–х годов появились бесспорные доказательства того, что все специфические реакции иммунитета - выработку антител, отторжение пересаженных тканей или органов, противовирусную защиту - осуществляют лимфоциты.

Разберем это на примере исследований Джеймса Гоуэнса. В те годы у него в Оксфордском университете была малюсенькая лаборатория. В одной из комнаток со старинными полупрозрачными окнами стоял в центре на столе сконструированный им самим станок. Главная часть станка - цилиндр из плексигласа. В цилиндре хитроумно закреплена крыса. На шее у крысы разрез. Через разрез внутрь тела уходит тоненькая прозрачная трубочка. Из трубочки все время капают маленькие белые капли.

Доктор Гоуэнс ввел трубку в главный лимфатический сосуд - в грудной проток - и выкачивает лимфу. Он оставляет крысу без лимфоцитов. После этого он иммунизирует ее чужеродными клетками - эритроцитами барана. Должны выработаться антитела против бараньих эритроцитов. Он исследует кровь крысы раз, другой, третий… Антител нет! Тогда он берет другую безлимфоцитную крысу и возвращает ей в кровь ее лимфоциты. Иммунизирует и обнаруживает нормальное количество антител.

Значит, без лимфоцитов антитела вырабатываться не могут.

Второе исследование. Гоуэнс облучает крысу рентгеновскими лучами. Многие системы страдают после облучения, иммунная система тоже. Животное не вырабатывает антител. Облученной крысе введены эритроциты барана, антител нет. Другой облученной крысе эритроциты барана введены вместе с лимфоцитами от здоровой крысы, антитела есть.

Значит, с лимфоцитами можно передать в другой организм способность вырабатывать антитела. С лимфоцитами переносится и память об антигене. Если эти клетки взять от животного, которого уже иммунизировали эритроцитами барана раньше, то в облученном животном они обеспечат выработку большего количества антител. Так, как если бы мы его иммунизировали повторно.

Третье исследование касается механизма отторжения пересаженных чужеродных тканей. К началу 60–х годов было хорошо известно, что первая пересадка кожи иммунизирует организм и повторный лоскут отторгается вдвое быстрее первого. Но почему? Думали, что это работа антител. Однако сыворотка крови от такого животного, содержащая антитела, если ее ввести другому животному, не ускоряет отторжения пересаженной кожи. А вот лимфоциты ускоряют. Причем точно в два раза.

Значит, это лимфоциты занимаются отторжением пересаженных чужеродных тканей! Без помощи антител. Сами, своими «руками». Такие лимфоциты, которые после первого контакта с чужеродным антигеном специально нацелены против него, стали называть сенсибилизированными лимфоцитами. Они да антитела - вот два главных типа оружия иммунитета.

Иммуно глобулины представляют собой белки гамма глобулиновой структуры. Молекулы иммуноглобулинов состоят из 2 цепочек: 2Н (2 «тяжелые» цепочки) и 2L (две «легкие» цепочки). В свою очередь тяжелые цепи клоноспецифичны и обозначаются буквами греческого алфавита d, m, a, ol, с, легкие цепи обозначаются буквами к и 1.
В иммуноглобулинах выделяются области с постоянной последовательностью образования аминогексина. К ним относятся постоянные области (sH и sL), гипервариабельные части, шарнирные области.

Существует 5 классов иммуноглобулинов: А, М, G, D, Е.
Иммуноглобулины являются синтезируемыми антителами плазматических клеток.
Иммунный ответ (прил. 1) представляет собой серию молекулярных и клеточных реакций. В гуморальном ответе происходит взаимодействие 3 видов клеток: макрофагов, Т- и В-лейкоцитов.
При фагоцитозе макрофаги фагоцитируют антиген и представляют его пептидные фрагменты на своей клеточной мембране Т-хелперам. Это вызывает активацию В-лимфоцитов, превращающихся в плазматические клетки, которые начинают вырабатывать специфические к антигену антитела.

Иммуноглобулин A (JgA) составляет 10% от числа сывороточных иммуноглобулинов.
Они обнаруживаются в экстра-васкулярных секретах (слюна, слезы, грудное молоко, секрет бронхиальных желез и кишечника, выделения из влагалища и предстательной железы).
Иммуноглобулин М (JgM) представляет собой высокомолекулярное соединение, состоящее из 5 структурных молекул, которые располагаются радиально. Своими Fc -фрагментами они направлены в центр круга, а ^-фрагментами наружу.
Иммуноглобулины класса JgM являются антигенами, появляющимися сразу после инфицирования или иммунизации, а также антителами к иммуноглобулину G при ревматоидных факторах и Холодовыми агглютининами.

Иммуноглобулины G составляют 75% всех сывороточных иммуноглобулинов. Основной их функцией является фиксация комплемента, иммунная защита в период новорожденности. Они нейтрализуют токсины бактерий, связывают частицы. По выполняемым функциям различают иммуноглобулины JgG, JgG2, JgG3, JgG4.
Иммуноглобулин D находится в сыворотке в небольших количествах. Принято считать, что он способен связывать антигены.
Иммуноглобулин Е содержится в небольших количествах, он фиксируется на базофилах и тучных клетках.
С его помощью высвобождается гистамин и гистаминоподобные вещества с развитием аллергических реакций.
Регуляция созревания и функциональная активность клеток иммунной системы происходит под влиянием белковых гормонов и трофических факторов, объединенных названием «цитокины».

К ним относятся:
- интерлейкины;
- интерфероны;
- хемокины;
- лимфопоэтины;
- факторы некроза опухолей.

Воздействие цитокинов на клетки иммунной системы обеспечивается рецепторами, которые располагаются на поверхностных мембранах клеток-мишеней.
Для цитокинов характерна высокая биологическая активность при низком содержании в сыворотке (до 10-9-10-15 г/м). Цитокины быстро подвергаются распаду, от 1 до нескольких десятков минут, и обладают высокой биологической активностью.
Различают цитокины противовоспалительные и иммунного воспаления. К ним относятся гамма-интерферон, интерлейкин-1, -5.

Подавляют противовоспалительные реакции цитокины типа интерлейкина-4, -10, -13.
Помимо этого, цитокины способны оказывать влияние на тонус сосудов, процессы сна и бодрствования, процессы обучения и памяти, регулируют терморегуляцию организма.
Лимфоциты, помимо цитокинов, могут способствовать продукции гормонов, таких как АКТЫ, эндофинов, гормонов пептидной природы, холцистокининов и др.

Гуморальный иммунитет обеспечивается при взаимодействии основных типов клеток - макрофагов, Т- и В-лимфоцитов. Антиген фагоцитируется макрофагами и после внутриклеточных преобразований представляет его пептидные фрагменты Т-хелперам, которые вызывают В-лимфоциты. В-лимфоциты которые превращаются в бластные клетки, а затем в плазматические, синтезирующие по отношению к специфическому антигену антитела.

Для активации Т-хелперов, некоторые способствуют формированию гуморального и клеточного иммунитета, необходимо воздействие интерлейкина-1, выделяемого макрофагами при встрече с антигеном интерлейки на-2.
Для активации В-лимфоцитов необходимо воздействие лимфокинов, вырабатываемых Т-хелперами (интерлейкины-4, -5, -6).
Плазматические клетки синтезируют иммуноглобулины А, М, G, D, F.
Таким образом, схема иммунного ответа представляет собой взаимодействие антигена с клетками иммунной системы.
Антиген обычно взаимодействует с макрофагами, которые он подает Т- и В-лимфоцитам, выполняя функцию антигенподающей клетки. В-лимфоциты обеспечивают клеточный ответ.

Регуляция механизма иммунного ответа находится под многоступенчатым контролем. Уровни регуляции работы иммунной системы могут быть генетическими, клеточными и медиаторными.
Генетический уровень регуляции обеспечивается через Т-клетки, при этом активируются гены иммуноглобулинов, которые определяются многообразием специфических антител; и гены, определяющие высоту иммунного ответа.
Клеточный уровень обеспечивают Т-помощники (хелперы), которые стимулируют В-лимфоциты на образование антител.
При медиаторном типе регуляции включаются медиаторы костно-мозгового происхождения, которые обеспечивают созревание Т- и В-лимфоцитов.



gastroguru © 2017