Восприятие звуковых волн человеком. Сколько децибел выдерживает человеческое ухо

Слух человека ​

Слух - способность биологических организмов воспринимать звуки органами слуха; специальная функция слухового аппарата, возбуждаемая звуковыми колебаниями окружающей среды, например, воздуха или воды. Одно из биологических дистантных ощущений, называемое также акустичеcким восприятием. Обеспечивается слуховой сенсорной системой.

Человеческий слух способен слышать звук в пределах от 16 Гц до 22 кГц при передаче колебаний по воздуху, и до 220 кГц при передаче звука по костям черепа. Эти волны имеют важное биологическое значение, например, звуковые волны в диапазоне 300-4000 Гц соответствуют человеческому голосу. Звуки выше 20 000 Гц имеют малое практическое значение, так как быстро тормозятся; колебания ниже 60 Гц воспринимаются благодаря вибрационному чувству. Диапазон частот, которые способен слышать человек, называется слуховым или звуковым диапазоном; более высокие частоты называются ультразвуком, а более низкие - инфразвуком.

Способность различать звуковые частоты сильно зависит от конкретного человека: его возраста, пола, наследственности, подверженности заболеваниям органа слуха, тренированности и усталости слуха. Некоторые люди способны воспринимать звуки относительно высокой частоты - до 22 кГц, а возможно и выше.
У человека, как и у большинства млекопитающих, органом слуха является ухо. У ряда животных слуховая перцепция осуществляется благодаря комбинации различных органов, которые могут значительно отличаться по своему строению от уха млекопитающих. Некоторые животные способны воспринимать акустические колебания, не слышимые человеком (ультра- или инфразвук). Летучие мыши во время полёта используют ультразвук для эхолокации. Собаки способны слышать ультразвук, на чём и основана работа беззвучных свистков. Существуют свидетельства того, что киты и слоны могут использовать инфразвук для общения.
Человек может различать несколько звуков одновременно благодаря тому, что в ушной улитке одновременно может быть несколько стоячих волн.

Механизм работы слуховой системы:

Звуковой сигнал любой природы может быть описан определенным набором физических характеристик:
частота, интенсивность, длительность, временная структура, спектр и др.

Им соответствуют определенные субъективные ощущения, возникающие при восприятии звуков слуховой системой: громкость, высота, тембр, биения, консонансы-диссонансы, маскировка, локализация-стереоэффект и т.п.
Слуховые ощущения связаны с физическими характеристиками неоднозначно и нелинейно, например, громкость зависит от интенсивности звука, от его частоты, от спектра и т.п. Еще в прошлом веке был установлен закон Фехнера, подтвердивший, что эта связь нелинейна: "Ощущения
пропорциональны отношению логарифмов стимула". Например, ощущения изменения громкости в первую очередь связаны с изменением логарифма интенсивности, высоты - с изменением логарифма частоты и т.д.

Всю звуковую информацию, которую человек получает из внешнего мира (она составляет примерно 25% от общей), он распознает с помощью слуховой системы и работы высших отделов мозга, переводит в мир своих ощущений, и принимает решения, как надо на нее реагировать.
Прежде чем приступить к изучению проблемы, как слуховая система воспринимает высоту тона, коротко остановимся на механизме работы слуховой системы.
В этом направлении сейчас получено много новых и очень интересных результатов.
Слуховая система является своеобразным приемником информации и состоит из периферической части и высших отделов слуховой системы. Наиболее изучены процессы преобразования звуковых сигналов в периферической части слухового анализатора.

Периферическая часть

Это акустическая антенна, принимающая, локализующая, фокусирующая и усиливающая звуковой сигнал;
- микрофон;
- частотный и временной анализатор;
- аналого-цифровой преобразователь, преобразующий аналоговый сигнал в двоичные нервные импульсы - электрические разряды.

Общий вид периферической слуховой системы показан на первом рисунке. Обычно периферическую слуховую систему делят на три части: внешнее, среднее, и внутреннее ухо.

Внешнее ухо состоит из ушной раковины и слухового канала, заканчивающегося тонкой мембраной, называемой барабанной перепонкой.
Внешние уши и голова - это компоненты внешней акустической антенны, которая соединяет (согласовывает) барабанную перепонку с внешним звуковым полем.
Основные функции внешних ушей - бинауральное (пространственное) восприятие, локализация звукового источника и усиление звуковой энергии, особенно в области средних и высоких частот.

Слуховой канал представляет собой изогнутую цилиндрическую трубку длиной 22,5 мм, которая имеет первую резонансную частоту порядка 2,6 кГц, поэтому в этой области частот он существенно усиливает звуковой сигнал, и именно здесь находится область максимальной чувствительности слуха.

Барабанная перепонка - тонкая пленка толщиной 74 мкм, имеет вид конуса, обращенного острием в сторону среднего уха.
На низких частотах она движется как поршень, на более высоких - на ней образуется сложная система узловых линий, что также имеет значение для усиления звука.

Среднее ухо - заполненная воздухом полость, соединенная с носоглоткой евстахиевой трубой для выравнивания атмосферного давления.
При изменении атмосферного давления воздух может входить или выходить из среднего уха, поэтому барабанная перепонка не реагирует на медленные изменения статического давления - спуск-подъем и т.п. В среднем ухе находятся три маленькие слуховые косточки:
молоточек, наковальня и стремечко.
Молоточек прикреплен к барабанной перепонке одним концом, вторым он соприкасается с наковальней, которая при помощи маленькой связки соединена со стремечком. Основание стремечка соединено с овальным окном во внутреннее ухо.

Среднее ухо выполняет следующие функции:
согласование импеданса воздушной среды с жидкой средой улитки внутреннего уха; защита от громких звуков (акустический рефлекс); усиление (рычаговый механизм), за счет которого звуковое давление передаваемое во внутреннее ухо, усиливается почти на 38 дБ по сравнению с тем, которое попадает на барабанную перепонку.

Внутреннее ухо находится в лабиринте каналов в височной кости, и включает в себя орган равновесия (вестибулярный аппарат) и улитку.

Улитка (cochlea) играет основную роль в слуховом восприятии. Она представляет собой трубку переменного сечения, свернутую три раза подобно хвосту змеи. В развернутом состоянии она имеет длину 3,5 см. Внутри улитка имеет чрезвычайно сложную структуру. По всей длине она разделена двумя мембранами на три полости: лестница преддверия, срединная полость и барабанная лестница.

Преобразование механических колебаний мембраны в дискретные электрические импульсы нервных волокон происходят в органе Корти. Когда базилярная мембрана вибрирует, реснички на волосковых клетках изгибаются, и это генерирует электрический потенциал, что вызывает поток электрических нервных импульсов, несущих всю необходимую информацию о поступившем звуковом сигнале в мозг для дальнейшей переработки и реагирования.

Высшие отделы слуховой системы (включая слуховые зоны коры), можно рассматривать как логический процессор, который выделяет (декодирует) полезные звуковые сигналы на фоне шумов, группирует их по определенным признакам, сравнивает с имеющимися в памяти образами, определяет их информационную ценность и принимает решение об ответных действиях.

ЭНЦИКЛОПЕДИЯ МЕДИЦИНЫ

ФИЗИОЛОГИЯ

Как ухо воспринимает звуки

Ухо - это орган, преобразующий звуковые волны в нервные импульсы, которые способен воспринимать мозг. Взаимодействуя друг с другом, элементы внутреннего уха дают

нам возможность различать звуки.

Анатомически делится на три части:

□ Наружное ухо - предназначено для направления звуковых волн во внутренние структуры уха. Оно состоит из ушной раковины, представляющей собой эластичный хрящ, покрытый кожей с подкожной клетчаткой, соединенный с кожей черепа и с наружным слуховым проходом - слуховой трубкой, покрытой ушной серой. Эта трубка заканчивается барабанной перепонкой.

□ Среднее ухо - полость, внутри которой находятся мелкие слуховые косточки (молоточек, наковальня, стремя) и сухожилия двух небольших мышц. Расположение стремени позволяет ему ударять по овальному окну, которое является входом в улитку.

□ Внутреннее ухо состоит:

■ из полукружных каналов костного лабиринта и преддверия лабиринта, которые являются частью вестибулярного аппарата;

■ из улитки - собственно органа слуха. Улитка внутреннего уха очень напоминает раковину живой улитки. В поперечном

сечении можно увидеть, что она состоит из трех продольных частей: барабанной лестницы, вестибулярной лестницы и канала улитки. Все три структуры заполнены жидкостью. В канале улитки находится спиральный кортиев орган. Он состоит из 23 500 чувствительных, снабженных волосками клеток, которые фактически улавливают звуковые волны и дальше через слуховой нерв передают их в головной мозг.

Анатомия уха

Наружное ухо

Состоит из ушной раковины и наружного слухового прохода.

Среднее ухо

Содержит три мелкие косточки: молоточек, наковальню и стремя.

Внутреннее ухо

Содержит полукружные каналы костного лабиринта, преддверие лабиринта и улитку.

< Наружная, видимая часть уха называется ушной раковиной. Она служит для передачи звуковых волн в слуховой канал, а оттуда в среднее и внутреннее ухо.

А Наружное, среднее и внутреннее ухо играют важную роль в проведении и передаче звука из внешней среды в головной мозг.

Что такое звукГ

Звук распространяется в атмосфере, перемещаясь из области высокого давления в область низкого.

Звуковая волна

с большей частотой (голубая) соответствует высокому звуку. Зеленым обозначен низкий звук.

Большинство звуков, которые мы слышим, представляют собой комбинацию звуковых волн различной частоты и амплитуды.

Звук - это вид энергии; звуковая энергия передается в атмосфере в виде колебаний молекул воздуха. При отсутствии молекулярной среды (воздушной или какой-либо иной) звук не может распространяться.

ДВИЖЕНИЕ МОЛЕКУЛ В атмосфере, в которой распространяется звук, имеются области высокого давления, в которых молекулы воздуха располагаются ближе друг к другу. Они чередуются с областями низкого давления, где молекулы воздуха находятся на большем расстоянии друг от друга.

Некоторые молекулы при столкновении с соседними передают им свою энергию. Создается волна, которая может распространяться на большие расстояния.

Таким образом происходит передача звуковой энергии.

Когда волны высокого и низкого давления распределяются равномерно, считается, что тон чистый. Такую звуковую волну создает камертон.

Звуковые волны, возникающие при воспроизведении речи, распределяются неравномерно и являются комбинированными.

ВЫСОТА И АМПЛИТУДА Высота звука определяется частотой колебания звуковой волны. Она измеряется в герцах (Гц).Чем больше частота, тем выше звук. Громкость звука определяется амплитудой колебаний звуковой волны. Человеческое ухо воспринимает звуки, частота которых находится в диапазоне от 20 до 20 ООО Гц.

< Полный диапазон слышимости человека составляет от 20 до 20 ООО Гц. Человеческое ухо может дифференцировать примерно 400 ООО различных звуков.

Эти две волы иие-ют од>*«коеую часто- 1 ту, но разную a^vviy-ду (вогна голубого цвета соответствует более громкому звуку).

Человек воспринимает звук посредством уха (рис.).

Снаружи расположена раковина внешнего уха , переходящая в слуховой канал диаметром D 1 = 5 мм и длиной 3 см .

Далее расположена барабанная перепонка, которая вибрирует под действием звуковой волны (резонирует). Перепонка присоединена к костям среднего уха , передающим вибрацию другой перепонке и далее во внутреннее ухо.

Внутреннее ухо имеет вид закрученной трубки ("улитки") с жидкостью. Диаметр этой трубки D 2 = 0,2 мм длина 3 – 4 см длинной.

Поскольку колебания воздуха в звуковой волне слабые, чтобы непосредственно возбудить жидкость в улитке, то система среднего и внутренне уха совместно с их перепонками играют роль гидравлического усилителя. Площадь барабанной перепонки внутреннего уха меньше площади перепонки среднего уха. Давление, оказываемое звуком на перепонки, обратно пропорционально площади:

.

Поэтому давление на внутреннее существенно ухо возрастает:

.

Во внутреннем ухе по всей его длине натянута ещё одна мембрана (продольная), жёсткая в начале уха и мягкая в конце. Каждый участок этой продольной мембраны может колебаться с собственной частотой. В жёстком участке возбуждаются колебания высокой частоты, а в мягком – низкой. Вдоль этой мембраны расположен преддверноулитковый нерв, который воспринимают колебания и передаёт их в мозг.

Самая низкая частота колебаний источника звука 16-20 Гц воспринимается ухом как низкий басовый звук. Область наибольшей чувствительности слуха захватывает часть среднечастотного и часть высокочастотного поддиапазонов и соответствует интервалу частот от 500 Гц до 4-5 кГц . Человеческий голос и звуки, издаваемые большинством важных нам процессов в природе, имеют частоту в этом же интервале. При этом звуки частотой от 2 кГц до 5 кГц улавливаются ухом как звон или свист. Иначе говоря, самая важная информация передаётся на звуковых частотах приблизительно вплоть до 4-5 кГц .

Подсознательно человек разделяет звуки на "положительные", "отрицательные" и "нейтральные".

К отрицательным относятся звуки, которые прежде были не знакомы, странные и необъяснимые. Они вызывают страх и беспокойство. К ним также относятся низкочастотные звуки, например, низкий барабанный стук или вой волка, т. к. возбуждают страх. Кроме того, страх и ужас возбуждают неслышимые низкочастотные звук (инфразвук). Примеры :

    В 30-е годы 20 века в одном из лондонских театров в качестве сценического эффекта применили громадную органную трубу. От инфразвука этой трубы всё здание задрожало, а в людях поселился ужас.

    Сотрудники национальной лаборатории физики в Англии провели эксперимент, добавив к звучанию обычных акустических инструментов классической музыки сверхнизкие (инфразвуковые) частоты. Слушатели почувствовали упадок настроения и испытали чувство страха.

    На кафедре акустики МГУ проводились исследования влияние рока и поп музыки не человеческий организм. Оказалось, что частота основного ритма композиции «Дип Пёпл» вызывает неконтролируемое возбуждение, потерю контроля над собой, агрессивность к окружающим или негативные эмоции к себе. Композиция «The Beatles», на первый взгляд благозвучная, оказалась вредной и даже опасной, т. к. имеет основной ритм около 6,4 Гц. Эта частота резонирует с частотами грудной клетки, брюшной полости и близка к собственной частоте головного мозга (7 Гц.). Поэтому при прослушивании этой композиции ткани живота и груди начинают болеть и постепенно разрушаться.

    Инфразвук вызывает в организме человека колебания различных систем, в частности, сердечно-сосудистой. Это оказывает неблагоприятное воздействие и может привести, например, к гипертонической болезни. Колебания на частоте 12 Гц могут, если их интенсивность превысит критический порог, вызвать гибель высших организмов, в т. ч. людей. Эта и другие инфразвуковые частоты присутствуют в производственных шумах, шумах автострад и др. источников.

Замечание : У животных резонанс музыкальных частот и собственных может привести к распаду функции мозга. При звучании "металлического рока" коровы перестают давать молоко, а вот свиньи, наоборот, обожают металлический рок.

Положительными являются звуки ручья, прилива моря или пения птиц; они вызывают успокоение.

Кроме того, и рок не всегда плох. Например, музыка типа «кантри», исполняемая на банджо, помогает выздоравливать, хотя плохо влияет на здоровье в самом начальном этапе заболевания.

К положительным звукам относятся классические мелодии. Например, американские учёные помещали грудных недоношенных младенцев в боксы для прослушивания музыки Баха, Моцарта, и дети быстро поправлялись, набирали вес.

Благоприятно влияет на здоровье человека колокольный звон.

Любой эффект звука усиливается в полумраке и темноте, поскольку уменьшается доля информации, поступающей с помощь зрения

        Поглощение звука в воздухе и ограждающими поверхностями

Поглощение звука в воздухе

В каждый момент времени в любой точке помещения интенсивность звука равна сумме интенсивности прямого звука, непосредственно исходящего от источника, и интенсивности звука, отражённого от ограждающих поверхностей помещения:

При распространении звука в атмосферном воздухе и в любой другой среде возникают потери интенсивности. Эти потери обусловлены поглощением звуковой энергии в воздухе и ограждающими поверхностями. Рассмотрим поглощение звука с помощью волновой теории .

Поглощение звука – это явление необратимого превращения энергии звуковой волны в другой вид энергии, прежде всего в энергию теплового движения частиц среды . Поглощение звука происходит и в воздухе, и при отражении звука от ограждающих поверхностей.

Поглощение звука в воздухе сопровождается уменьшением звукового давления. Пусть звук распространяется вдоль направления r от источника. Тогда в зависимости от расстояния r относительно источника звука амплитуда звукового давления убывает по экспоненциальному закону :

, (63)

где p 0 – начальное звуковое давление при r = 0

,

 – коэффициент поглощения звука. Формула (63) выражает закон поглощения звука .

Физический смысл коэффициента состоит в том, что коэффициент поглощения численно равен величине, обратной расстоянию, на котором звуковое давление уменьшается в e = 2,71 раз:

Единица измерения в СИ:

.

Поскольку сила звука (интенсивность) пропорциональная квадрату звукового давления, то этот же закон поглощения звука можно записать в виде:

, (63*)

где I 0 – сила звука (интенсивность) вблизи источника звука, т. е. при r = 0 :

.

Графики зависимости p зв (r ) и I (r ) представлены на рис. 16.

Из формулы (63*) следует, что для уровня силы звука справедливо уравнение:

.

. (64)

Следовательно, единица измерения коэффициента поглощения в СИ: непер на метр

,

кроме того, можно вычислять в белах на метр (Б/м ) или децибелах на метр (дБ/м ).

Замечание : Поглощение звука можно характеризовать коэффициентом потерь , который равен

, (65)

где – длина звуковой волны, произведение  логарифмический коэффициент затухания звука. Величину, равную обратной величине коэффициента потерь

,

называют добротностью .

Полной теории поглощении звука в воздухе (атмосфере) пока нет. Многочисленные эмпирические оценки дают разные значения коэффициента поглощения.

Первая (классическая) теория поглощения звука была создана Стоксом и основана на учёте влияния вязкости (внутреннего трения между слоями среды) и теплопроводности (выравнивания температуры между слоями среды). Упрощенная формула Стокса имеет вид:

, (66)

где вязкость воздуха, коэффициент Пуассона, 0 плотность воздуха при 0 0 С, скорость звука в воздухе. Для обычных условий эта формула примет вид:

. (66*)

Однако формула Стокса (63) или (63*) справедлива лишь для одноатомных газов, атомы которых имеют три поступательные степени свободы, т. е. при =1,67 .

Для газов из 2, 3 или многоатомных молекул значение существенно больше, т. к. звук возбуждает вращательные и колебательные степени свободы молекул. Для таких газов (в т. ч. для воздуха) более точной является формула

, (67)

где T н = 273,15 К – абсолютная температура таяния льда ("тройная точка"), p н = 1,013 . 10 5 Па – нормальное атмосферное давление, T и p – реальные (измеряемые) температура и атмосферное давление воздуха, =1,33 для двухатомных газов, =1,33 для трёх- и многоатомных газов.

Поглощение звука ограждающими поверхносятми

Поглощение звука ограждающими поверхностями происходит при отражении от них звука. При этом часть энергии звуковой волны отражается и обуславливает возникновения стоячих звуковых волн, а другая энергии преобразуется в энергию теплового движения частиц преграды. Эти процессы характеризуют коэффициентом отражения и коэффициентом поглощения ограждающей конструкции.

Коэффициент отражения звука от преграды – это безразмерная величина, равная отношению части энергии волны W отр , отражённой от преграды, ко всей энергии волны W пад , падающей на преграду

.

Поглощение звука преградой характеризуют коэффициентом поглощения безразмерной величиной, равной отношению части энергии волны W погл , поглощённой преградой (и перешедшей во внутреннюю энергию вещества преграды), ко всей энергии волны W пад , падающей на преграду

.

Средний коэффициент поглощения звука всеми ограждающими поверхностями равен

,

, (68*)

где i коэффициент поглощения звука материалом i -й преграды, S i – площадь i -й преграды, S – общая площадь преград, n - количество разных преград.

Из этого выражения можно сделать вывод, что средний коэффициент поглощения соответствует единому материалу, которым можно было бы покрыть все поверхности преград помещения с сохранением общего звукопоглощения (А ), равного

. (69)

Физический смысл общего звукопоглощения (А) : оно численно равно коэффициенту поглощения звука открытым проёмом площадью 1 м 2 .

.

Единица измерения звукопоглощения называется сэбин :

.

Тематики аудио стоит рассказать о человеческом слухе несколько подробнее. Насколько субъективно наше восприятие? Можно ли протестировать свой слух? Сегодня вы узнаете самый простой способ выяснить, полностью ли ваш слух соответствует табличным значениям.

Известно, что среднестатистический человек способен воспринимать органами слуха акустические волны в диапазоне от 16 до 20 000 Гц (в зависимости от источника - 16 000 Гц). Этот диапазон и называется слышимым диапазоном.

20 Гц Гул, который только ощущается, но не слышится. Воспроизводится преимущественно топовыми аудиосистемами, так что в случае тишины виновата именно она
30 Гц Если не слышно, вероятнее всего, снова проблемы воспроизведения
40 Гц В бюджетных и среднеценовых колонках будет слышно. Но очень тихо
50 Гц Гул электрического тока. Должно быть слышно
60 Гц Слышимая (как и все до 100 Гц, скорее осязаемая за счёт переотражения от слухового канала) даже через самые дешёвые наушники и колонки
100 Гц Конец нижних частот. Начало диапазона прямой слышимости
200 Гц Средние частоты
500 Гц
1 кГц
2 кГц
5 кГц Начало диапазона высоких частот
10 кГц Если эта частота не слышна, вероятны серьёзные проблемы со слухом. Необходима консультация врача
12 кГц Неспособность слышать эту частоту может говорить о начальной стадии тугоухости
15 кГц Звук, который не способна слышать часть людей после 60 лет
16 кГц В отличие от предыдущей, эту частоту не слышат почти все люди после 60 лет
17 кГц Частота является проблемной для многих уже в среднем возрасте
18 кГц Проблемы со слышимостью этой частоты - начало возрастных изменений слуха. Теперь ты взрослый. :)
19 кГц Предельная частота среднестатистического слуха
20 кГц Эту частоту слышат только дети. Правда

»
Этого теста достаточно для приблизительной оценки, но если вы не слышите звуки выше 15 кГц, то стоит обратиться к врачу.

Обратите внимание, что проблема слышимости низких частот, скорее всего, связана с .

Чаще всего надпись на коробке в стиле «Воспроизводимый диапазон: 1–25 000 Гц» - это даже не маркетинг, а откровенная ложь со стороны производителя.

К сожалению, компании обязаны сертифицировать не все аудиосистемы, поэтому доказать, что это враньё, практически невозможно. Колонки или наушники, может быть, и воспроизводят граничные частоты… Вопрос в том, как и на какой громкости.

Проблемы со спектром выше 15 кГц - вполне обычное возрастное явление, с которым пользователи, скорее всего, столкнутся. А вот 20 кГц (те самые, за которые так борются аудиофилы) обычно слышат только дети до 8–10 лет.

Достаточно последовательно прослушать все файлы. Для более подробного исследования можно воспроизводить семплы, начиная с минимальной громкости, постепенно увеличивая её. Это позволит получить более корректный результат в том случае, если слух уже немного испорчен (напомним, что для восприятия некоторых частот необходимо превышение определённого порогового значения, которое как бы открывает, помогает слуховому аппарату слышать её).

А вы слышите весь частотный диапазон, который способен ?

Человек каждую секунду своей жизни окружен всевозможными звуками. Слух является неотъемлемой частью полноценного восприятия картины мира. Звучит все. Но не все слышит человек. Однако звуки, которые неспособен уловить человеческий слух, тем не менее, влияют на его организм. Это влияние сказывается на нашем самочувствие и здоровье в целом.

ЧТО ТАКОЕ КИМАТИКА
Последние исследования физиков говорят о том, что абсолютно все в нашем мире имеет волновую природу, вплоть до человеческих мыслей и чувств. Как все мы знаем, звук- это тоже волна. Из этого следует, что человек воспринимает информацию от любого объекта, зачастую, неосознанно.
Существует такая наука как киматика, она изучает формообразующие свойства волн. Основоположником ее является швейцарский доктор медицины Ганс Йенни. Он провел серию удивительных опытов, создав видимую среду звука. На металлические пластины, прикрепленные к прибору, способному производить тысячи частот, ученый помещал песок, пластмассу, смолу, глину, пыль, воду и иные жидкости. При создании и изменении частот, вещества складывались в удивительные и разнообразные симметричные узоры. Чем выше была частота вибраций, тем сложнее становились формы. А некоторые из них походили на традиционные мандалы (сакральное схематическое изображение, используемое в буддийских и индуистских религиозных и эзотерических практиках). Эти эксперименты доказали, что звук обладает способностью творить форму. Киматика доказала, что вибрация организует материю. Следовательно, гармоничные звуки создают порядок из хаоса.

С течением времени, ученые стали понимать, что различные частоты имеют определенное влияние на организм человека. Как благотворное, так и, наоборот, – губительное.

КАКИЕ ЧАСТОТЫ ВОСПРИНИМАЕТ ЧЕЛОВЕК
Звуковые частоты, воспринимаемые ухом человека, лежат в диапазоне от 16 до 20000 Гц. Менее 20 Гц – это инфразвук, который человеческое ухо не воспринимает. Инфразвук содержится в шуме атмосферы, леса и моря. Источником инфразвуковых колебаний являются грозовые разряды, а также взрывы и орудийные выстрелы. В земной коре наблюдаются сотрясения и вибрации инфразвуковых частот от самых разнообразных источников, в том числе от взрывов обвалов и транспортных возбудителей. Для инфразвука характерно малое поглощение в различных средах, благодаря этому инфразвуковые волны в воздухе, воде и в земной коре могут распространяться на очень далёкие расстояния. Распространение инфразвука на большие расстояния в море даёт возможность предсказания цунами. Звуки взрывов, содержащие большое количество инфразвуковых частот, применяются для исследования верхних слоев атмосферы, свойств водной среды.
Частоты более 20 000Гц зовутся ультразвуком. В природе ультразвук встречается в качестве компонента многих естественных шумов: в шуме ветра, водопада, дождя, морской гальки, перекатываемой прибоем. Многие млекопитающие, например кошки и собаки, обладают способностью восприятия ультразвука частотой до 100 кГц, а локационные способности летучих мышей, ночных насекомых и морских животных всем хорошо известны.
Не стоит забывать, что способность воспринимать звуковые колебания у всех разных людей разная. На нее влияют и наследственность, и тренированность, и возраст, и, даже, пол.

ЧТО ТАКОЕ ШУМ
Шум – громкие звуки, слившиеся в нестройное звучание.
Уровень шума измеряется в единицах, выражающих степень звукового давления, – децибелах. Уровень шума в 20-30 децибелов (ДБ) практически безвреден для человека, это естественный шумовой фон. Например, человеческий шёпот – это шум силой примерно 20 дБ. Негромкая же человеческая речь (30 – 40 дБ) оказывает влияние на сон спящего человека, мозг которого, реагируя на звук такой интенсивности, начинает генерировать сновидения. Разговор на повышенных тонах (50 – 60 дБ) снижает не только внимание и реакцию человека, но и ухудшает зрение. Вечеринки и дискотеки (80 дБ) вызывают изменения кровотока в кожных покровах, возбуждает нервную систему.
80 ДБ это и есть допустимая граница терпимого шумового воздействия на организм человека. Звук в 130 децибелов уже вызовет болевые ощущения, а 150 станет для него непереносимым. В средние века даже существовала казнь “под колоколом”. Во времена Ивана Четвертого Грозного она являлась способом медленного убийства приговоренного с помощью колокольного звона. Гул этого звона мучил и медленно убивал осужденного. Очень высок уровень и промышленных шумов. На многих работах и шумных производствах он достигает 90-110 децибелов и более.

В настоящее время ученые во многих странах мира ведут исследования с целью выяснения влияния шума на здоровье человека.

Как выяснилось, абсолютная тишина также неблагоприятно влияет на состояние человека. Например, сотрудники одного конструкторского бюро, имевшего прекрасную звукоизоляцию, через неделю стали жаловаться на невозможность работы в условиях гнетущей тишины. Они стали нервничать и терять работоспособность. Еще одним открытием стало то, что звуки определенной силы стимулируют процесс мышления, в особенности процесс счета.
Постоянное воздействие сильного шума может не только отрицательно повлиять на слух, но и вызвать другие вредные последствия – звон в ушах, головокружение, головную боль, повышение усталости. Чересчур шумная современная музыка, кстати, также притупляет слух, вызывает нервные заболевания.

КАК ЗВУКИ ВЛИЯЮТ НА СОСТОЯНИЕ ЧЕЛОВЕКА. ВРЕД
Как показали исследования, звуки не слышимые человеком также могут оказать вредное воздействие на его здоровье. Так, инфразвуки особо сильно влияют на психическое состояние человека: поражаются все виды интеллектуальной деятельности, падает настроение, порой человек ощущает себя растерянно, испытывает тревогу, испуг, страх, а при высокой интенсивности – чувство слабости, как после сильного нервного потрясения. Люди, подвергшиеся воздействию инфразвука, испытывают примерно те же ощущения, что и при посещении мест, где происходили встречи с призраками. Попадая в резонанс с биоритмами человека, инфразвук особо высокой интенсивности может вызвать мгновенную смерть. Инфразвук действует не только на уши, но и на весь организм. Начинают колебаться внутренние органы – желудок, сердце, легкие и так далее. При этом неизбежны их повреждения. Инфразвук даже не очень большой силы способен нарушать работу нашего мозга, вызвать обмороки и привести к временной слепоте. В начале 1950-х годов французский исследователь В. Гавро, изучавший влияние инфразвука на организм человека, установил, что при колебаниях порядка 6 Гц у добровольцев, участвовавших в опытах, возникает ощущение усталости, потом беспокойства, переходящего в безотчетный ужас. Гавро вспоминал, как пришлось прекратить опыты с одним из генераторов. Участникам эксперимента стало настолько плохо, что даже спустя несколько часов обычный низкий звук воспринимался ими болезненно. Был и такой случай, когда у всех, кто находился в лаборатории, задрожали предметы, находящиеся в карманах: ручки, записные книжки, ключи. Так показал свою силу инфразвук с частотой 16 герц.

Инфразвуки слабой мощности, но длительные по своему звучанию наносят не меньший урон человеческому здоровью.

По мнению ученых, именно инфразвуками, неслышно проникающими сквозь самые толстые стены, обусловлены многие нервные болезни жителей мегаполисов. Некоторые объясняют феномен Бермудского треугольника именно инфразвуком, который генерируется большими волнами: люди начинают сильно паниковать, становятся неуравновешенными (могут поубивать друг друга).
Ультразвуки тоже занимают заметное место в гамме производственных шумов, и они не менее опасны, чем вышеперечисленные частотности. Механизмы их действия на живые организмы крайне многообразны. Особенно сильно их отрицательному воздействию подвержены клетки нервной системы: изменения происходят не только в органах слуха, но и на клеточном уровне, где ультразвук вызывает кавитацию – образование полостей в клеточных жидкостях, что приводит к гибели клеток. Ультразвук угнетает иммунную систему, приводит человека в пассивное состояние. При фокусировке звукового пучка можно поразить жизненно важные центры головного мозга и буквально распилить череп пополам. Применив внезапный импульс, можно остановить сердце. Частоты свыше 100 кГц имеют уже тепловые и механические эффекты воздействия, вызывая головную боль, конвульсии, расстройства зрения и дыхания, потерю сознания.

КАК ЗВУКИ ВЛИЯЮТ НА СОСТОЯНИЕ ЧЕЛОВЕКА. ПОЛЬЗА

Однако стоит отметить, что из этого частотного диапазона человек сумел извлечь для своего здоровья и пользу. Созданы медицинские аппараты, умеющие проводить ультразвуковой микро-массаж, улучшающий кровообращение, что способствует, к примеру, ускорению регенерации тканей организма после различных поражений. Есть также медицинские установки, которые под действие ультразвука разрушают бактерии и вирусы, такие как стрептококки и вирус полиомиелита.
Конечно, есть и звуки не только губительные, но и полезные для здоровья человека. Так, кошачье мурлыканье улучшает работу сердечно-сосудистой системы и нормализует артериальное давление, улучшает сон. Успокаивающим эффектом обладает классическая музыка. Кроме того, она еще и замедляет частоту сердечных сокращений. Ещё более благотворным влиянием обладают звуки природы. Они находятся в таком частотном диапазоне, который наиболее соответствует человеческой природе. Человек как бы вибрирует с природой на одной частоте. Так, пение птиц бодрит, поднимает настроение, а шум дождя успокаивает, расслабляет. Просыпаться под щебетание птиц намного легче, как, впрочем, и засыпать под шум дождя.

ЧТО ТАКОЕ ШЕСТЬ ЧАСТОТ СОЛЬФЕДЖИО
Существует также шесть «частот Сольфеджио», их еще называют «частоты Вознесения». Музыка Частот Вознесения была заново открыта Доктором Джозефом Пулео, который изучал древние манускрипты Григорианских монахов и обнаружил, что их Песнопения являлись могущественными целителями именно благодаря специальной аранжировке шести тонов сольфеджио. Эти уникальные звуковые частоты были составной частью музыкальной школы античности, их использовали древние египтяне и греки, а затем были переняты христианством во времена папы Григория Великого в начале 7 века н.э. и стали базовыми тонами древних григорианских песнопений. Ближе всего по звучанию они к тибетским поющим чашам. Каждый тон имеет электромагнитную волну и частоту, которая соответствует определенной чакре.
1. Корневая чакра / 396 Гц / нота До / Освобождение вины и страха; превращение горя в радость. Интересно, что в начале 20 в. величайший гений Никола Тесла высказался: «Если бы вы только знали великолепие 3, 6 и 9, то у вас был бы ключ ко Вселенной».
2. Сакральная чакра / 417 Гц / нота Ре / Отмена ситуаций и содействие изменению
3. Чакра солнечного сплетения / 528Гц / Ми /Преобразование и Чудеса. Оказалось, что та же частота используется для исправления повреждений ДНК современными биохимиками-генетиками
4. Сердечная чакра / 639 Гц / нота Фа / Единение; отношения, связывающие с духовной семьей
5. Горловая чакра / 741 Гц /нота Соль / Выражение; Решения
6. Чакра третьего глаза / 852 Гц /нота Ля / Пробуждение Интуиции; Возвращение к духовному порядку

С новыми открытиями в науке разворачивается картина возможностей частот Сольфеджио по управлению всеми процессами в нашем организме и в нашем сознании.

Мир звуков кажется нам таким близким и понятным, но при этом имеет множество загадок и тайн. С каждым днем увеличивается количество техногенных, искусственных звуков и они оказывают влияние на психику и здоровье человека. Естественно, полностью избежать всего того многообразия частот, негативно влияющих на человеческое физическое и ментальное состояние мы не в силах. Но в рамках существующих возможностей, ограждать себя от деструктивных волн и занимать свой слух благоприятными звуками, все таки, является нашей непосредственной задачей.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .



gastroguru © 2017