Методы изучения реологических свойств крови. Что такое реология крови

Кровь представляет собой взвесь (суспензию) клеток, которые находятся в плазме, состоящей из белковых и жировых молекул. К реологическим свойствам относятся вязкость и стабильность суспензии. Они определяют легкость ее движения – текучесть. Для улучшения микроциркуляции применяют инфузионную терапию, препараты, снижающие свертывание и соединение клеток в сгустки.

Читайте в этой статье

Нарушение реологии крови

Свойства крови, которые определяют ее прохождение по кровеносной системе, зависят от таких факторов:

  • соотношения жидкой (плазменной) части и клеток (преимущественно эритроцитов);
  • белкового состава плазмы;
  • формы клеток;
  • скорости движения;
  • температуры.

Нарушения реологии проявляется в виде изменения вязкости и стабильности состояния суспензии. Они бывают местными (при воспалении или венозном застое), а также общими – при шоке или слабости сердечной деятельности. От реологических свойств зависит поступление кислорода, питательных веществ к клеткам.

Вязкость крови

При замедлении кровотока эритроциты располагаются не вдоль сосуда (как в норме), а в разных плоскостях, что снижает текучесть крови. В таком случае сосудам и сердцу требуются повышенные усилия для ее продвижения. Для измерения вязкости определяется такой показатель, как . Он вычисляется делением объема клеток крови на весь объем. При нормальном состоянии вязкости в крови находится 45% клеток и 55% плазмы. Гематокрит здорового человека равен 0,45.

Чем выше этот показатель, тем хуже реологические характеристики крови, так как ее вязкость выше.

На уровень гематокрита может повлиять кровотечение, обезвоживание или, наоборот, избыточное разведение крови (например, при интенсивной инфузионной терапии). Охлаждение повышает гематокрит более чем в 1,5 раза.

Сладж-феномен

Если нарушается суспензионная стабильность, то есть взвешенное состояние эритроцитов, то кровь может разделиться на жидкую часть (плазму) и сгусток из эритроцитов, тромбоцитов и лейкоцитов. Это становится возможным благодаря объединению, прилипанию, склеиванию клеток. Такое явление называется сладжем, что в переводе означает ил или густую грязь. Сладж клеток крови приводит к тяжелому нарушению микроциркуляции.

Причины возникновения феномена разделения (сепарации) крови:

  • недостаточность кровообращения из-за слабости сердца;
  • застой крови в венах;
  • спазм артерий или закупорка их просвета;
  • заболевания крови с избыточным образованием клеток;
  • обезвоживание при рвоте, поносе, приеме мочегонных;
  • воспаление стенки сосуда;
  • аллергические реакции;
  • опухолевые процессы;
  • нарушение клеточного заряда при дисбалансе электролитов;
  • повышенное содержание белка в плазме.

Сладж-феномен приводит к понижению скорости движения крови, вплоть до ее полной остановки. Прямолинейное направление меняется на турбулентное, то есть возникают завихрения потока. Из-за большого количества скоплений кровяных клеток происходит сброс из артериальных в венозные сосуды (открываются шунты), образуются тромбы.

На тканевом уровне нарушаются процессы транспорта кислорода, питательных элементов, замедляются обмен веществ и восстановление клеток при повреждении.

Смотрите на видео о реологии крови и качестве сосудов:

Методы измерения реологии крови

Для исследования вязкости крови используют приборы, которые называются вискозиметрами или реометрами. В настоящее время распространены два типа:

  • ротационные – кровь вращается в центрифуге, ее сдвиговое течение рассчитывается при помощи гемодинамических формул;
  • капиллярные – кровь течет по трубке заданного диаметра под воздействием известной разницы давлений на концах, то есть воспроизводится физиологический режим кровотока.

Ротационные вискозиметры состоят из двух цилиндров разного диаметра, один из которых вложен в другой. Внутренний соединен с динамометром, а внешний вращается. Между ними находится кровь, она начинает перемещаться благодаря своей вязкости. Модификацией ротационного реометра является прибор с цилиндром, который свободно плавает в жидкости (аппарат Захарченко).


Ротационный реометр

Зачем нужно знать о гемодинамике

Так как на состояние кровотока оказывают большое влияние такие механические факторы, как давление в сосудах и скорость перемещения потока, то для их изучения применимы основные законы гемодинамики. С их помощью можно установить связь между основными параметрами кровообращения и свойствами крови.

Движение крови по сосудистой системе осуществляется благодаря разности давлений, она перемещается из зоны высокого к низкому. На этот процесс оказывают влияние вязкость, суспензионная стабильности и сопротивление стенок артерий. Последний показатель самый высокий в артериолах, так как у них наибольшая длина при небольшом диаметре. Основная сила сердечных сокращений тратится именно на продвижение крови в эти сосуды.

Сопротивление артериол в свою очередь сильно зависит от их просвета, на который действуют различные факторы внешней среды и стимулы вегетативной нервной системы. Эти сосуды называют кранами организма человека.

Длина может измениться в период роста, а также при работе скелетной мускулатуры (региональные артерии).

Во всех остальных случаях длина считается постоянным фактором, а просвет сосуда и вязкость крови относятся к переменным значениям, они определяют состояние кровотока.

Оценка показателей

Основными характеристиками гемодинамики в организме являются:

  • Ударный объем – это количество крови, которое поступает в сосуды при сокращении сердца, его норма 70 мл.
  • Фракция выброса – отношение систолического выброса в мл к остаточному объему крови в конце диастолы. Она составляет около 60%, если снижается до 45, то это признак систолической дисфункции (сердечной недостаточности). При падении ниже 40% состояние оценивается как критическое.
  • Артериальное давление – систолическое от 100 до 140, диастолическое от 60 до 90 мм рт. ст. Все показатели ниже этого диапазона являются признаком гипотонии, а более высокие свидетельствуют об артериальной гипертензии.
  • Общее периферическое сопротивление рассчитывается как отношение среднего артериального давления (диастолический показатель и треть от пульсового) к выбросу крови за минуту. Измеряется в дин х с х см-5, составляет от 700 до 1500 единиц в норме.

Для оценки реологических показателей определяют:

  • Содержание эритроцитов. В норме 3,9 — 5,3 млн/мкл, оно понижено при анемии, опухолях. Высокие показатели бывают при лейкозах, хроническом дефиците кислорода, сгущении крови.
  • Гематокрит. У здоровых людей находится в пределах от 0,4 до 0,5. Повышен при , нарушениях дыхания, опухолях или кистах почек, обезвоживании. Снижается при анемии, избыточном вливании жидкостей.
  • Вязкость. Нормой считается около 23 мПа×с. Увеличивается при атеросклерозе, сахарном диабете, болезнях дыхательной, пищеварительной систем, патологии почек, печени, приеме мочегонных, алкоголя. Снижается при анемии, интенсивном поступлении жидкости.

Препараты, улучшающие реологию крови

Для облегчения движения крови при повышенной вязкости используют:

  • Гемодилюцию – разведение крови при помощи переливания плазмозаменителей (Реополиглюкин, Гелофузин, Волювен, Рефортан, Стабизол, Полиглюкин);
  • антикоагулянтную терапию – , Фраксипарин, Фрагмин, Фенилин, Синкумар, Вессел Дуэ Ф, Цибор, Пентасан;
  • антиагреганты – Плавикс, Ипатон, Кардиомагнил, Аспирин, Курантил, Иломедин, Брилинта.

Помимо препаратов применяется плазмаферез для удаления избытка белка из плазмы и улучшения суспензионной стабильности эритроцитов, а также или ультрафиолетовым светом.

Реологические и гемодинамические свойства крови определяют доставку кислорода и питательных веществ к тканям. Первые зависят от соотношения количества клеток крови и объема жидкой части, а также стабильности клеточной взвеси в плазме. Показателями реологии крови является вязкость, гематокрит, содержание эритроцитов.

Гемодинамические параметры кровотока определяются при измерении давления, сердечного выброса и периферического сопротивления. Нарушения скорости потока крови приводит к замедлению обмена веществ в тканях. Для улучшения текучести используют медикаменты – плазмозаменители, антикоагулянты, антиагреганты.

Читайте также

Если заметить первые признаки тромба, можно предотвратить катастрофу. Какие симптомы, если тромб в руке, ноге, голове, сердце? Какие признаки образования, оторвавшегося? Что представляет собой тромб и какие вещества участвуют в его формировании?

  • Довольно часто используется Никотиновая кислота, для чего ее назначают в кардиологии - для улучшения обмена веществ, при атеросклерозе и т.д. Применение таблеток возможно даже в косметологии от облысения. Показания включают и проблемы с работой ЖКТ. Хоть и редко, но иногда вводится внутримышечно.
  • Церебральный атеросклероз сосудов головного мозга угрожает жизни пациентов. Под его воздействием человек меняется даже по характеру. Что делать?
  • Сравнительно недавно начало применяться лазерное облучение крови ВЛОК. Процедура сравнительно безопасна. Аппараты с иглой напоминают по принципу действия обычные капельницы. Внутривенное облучение имеет противопоказания, например, кровотечения и диабет.
  • Довольно важный показатель крови - гематокрит, норма которого отличается у детей и взрослых, у женщин в обычном состоянии и при беременности, а также у мужчин. Как берут анализ? Что нужно знать?
  • Реология крови (от греческого слова rheos – течение, поток) – текучесть крови, определяемая совокупностью функционального состояния форменных элементов крови (подвижность, деформируемость, агрегационная активность эритроцитов, лейкоцитов и тромбоцитов), вязкости крови (концентрация белков и липидов), осмолярности крови (концентрация глюкозы). Ключевая роль в формировании реологических параметров крови принадлежит форменным элементам крови, прежде всего эритроцитам, которые составляют 98% от общего объема форменных элементов крови. .

    Прогрессирование любого заболевания сопровождается функуционально-структурными изменениями тех или иных форменных элементов крови. Особый интерес вызывают изменения эритроцитов, мембраны которых являются моделью молекулярной организации плазматических мембран. От структурной организации мембран красных кровяных клеток во многом зависят их агрегационная активность и деформируемость, являющиеся важнейшими компонентами в микроцеркуляции. Вязкость крови является одной из интегральных характеристик микроциркуляции, существенно влияющих на гемодинамические параметры. Долевое участие вязкости крови в механизмах регуляции артериального давления и органной перфузии отражается законом Пуазейля: МОоргана= (Рарт – Рвен)/ Rлок , где Rлок= 8Lh / pr4, L – длина сосуда, h - вязкость крови, r – диаметр сосуда. (Рис.1).

    Большое количество клинических работ, посвященных гемореологии крови при сахарном диабете (СД) и метаболическом синдроме (МС), выявили снижение параметров, характеризующих деформируемость эритроцитов. У больных СД пониженная способность эритроцитов к деформации и их повышенная вязкость являются следствием увеличения количества гликозированного гемоглобина (HbА1с). Высказано предположение, что связанное с этим затруднение кровообращения в капиллярах и изменение давления в них стимулирует утолщение базальной мембраны, ведет к снижению коэффициента доставки кислорода к тканям, т.е. аномальные эритроциты играют триггерную роль в развитие диабетической ангиопатии..

    Нормальный эритроцит в обычных условиях имеет двояковогнутую форму диска, за счет чего площадь его поверхности больше на 20% в сравнении с сферой того же объема. Нормальные эритроциты способны значительно деформироваться при прохождении через капилляры, при этом не меняя своего объема и площади поверхности, что поддерживает процессы диффузии газов на высоком уровне на протяжении всего микроциркуляторного русла различных органов. Показано, что при высокой деформируемости эритроцитов происходит максимальный перенос кислорода в клетки, а при ухудшении деформируемости (повышение жесткости) – поступление кислорода в клетки резко снижается, тканевое рО2 падает.

    Деформируемость является важнейшим свойством эритроцитов, обусловливающим их способность выполнять транспортную функцию. Это способность эритроцитов изменять свою форму при постоянном объеме и площади поверхности позволяет им приспосабливаться к условиям кровотока в системе микроциркуляции. Деформируемость эритроцитов обусловлена такими факторами, как внутренняя вязкость (концентрация внутриклеточного гемоглобина), клеточная геометрия (поддержание формы двояковогнутого диска, объем, отношение поверхности к объему) и свойствами мембраны, которые обеспечивают форму и эластичность эритроцитов.
    Деформируемость во многом зависит от степени сжимаемости липидного бислоя и постоянством его взаимосвязи с белковыми структурами клеточной мембраны.

    Эластические и вязкостные свойства мембраны эритроцитов определяются состоянием и взаимодействием белков цитоскелета, интегральных белков, оптимальным содержанием АТФ, ионов Са++, Mg++ и концентрацией гемоглобина, которые обуславливают внутреннюю текучесть эритроцита. К факторам повышающим жесткость мембран эритроцитов относятся: образование стойких соединений гемоглобина с глюкозой, повышение концентрации в них холестерина и увеличение концентрации свободного Са++ и АТФ в эритроците.

    Нарушение деформируемости эритроцитов имеют место при изменении липидного спектра мембран и, прежде всего, при нарушении соотношения холестерин/фосфолипиды, а также при наличие продуктов повреждения мембраны в результате перекисного окисления липидов (ПОЛ). Продукты ПОЛ оказывают дестабилизирующее воздействие на структурно – функциональное состояние эритроцитов и способствуют их модификации.
    Деформируемость эритроцитов снижается в связи с абсорбцией на поверхности эритроцитарных мембран белков плазмы, прежде всего, фибриногена. Это включает в себя изменения мембран самих эритроцитов, снижение поверхностного заряда эритроцитарной мембраны, изменение формы эритроцитов и изменений со стороны плазмы (концентрация белков, липидного спектра, уровня общего холестерина, фибриногена, гепарина). Повышенная агрегация эритроцитов приводит к нарушению транскаппилярного обмена, выбросу БАВ, стимулирует адгезию и агрегацию тромбоцитов.

    Ухудшение деформируемости эритроцитов сопровождает активацию процессов ПОЛ и снижение концентрации компонентов антиоксидантной системы при различных стрессорных ситуациях или заболеваниях, в частности при СД и сердечно-сосудистых.
    Актвация свободнорадикальных процессов обуславливает нарушения гемореологических свойств, реализуемые через повреждения циркулирующих эритроцитов (окисление мембранных липидов, повышение жесткости билипидного слоя, гликозилирование и агрегация белков мембраны), оказывая опосредованное влияние на другие показатели кислородотранспортной функции крови и транспорт кислорода в ткани. Значительная и продолжающаяся активация ПОЛ в сыворотке привод к снижению деформируемости эритроцитов и увеличению их арегации. Таким образом эритроциты одни из первых реагируют на активацию ПОЛ вначале увеличением деформируемости эритроцитов, а затем по мере накопления продуктов ПОЛ и истощения антиоксидантной защиты к увеличению жесткости мембран эритроцитов, их агрегационной активности и, соответственно, к изменениям вязкости крови.

    Кислородосвязывающие свойства крови играют важную роль в физиологических механизмах поддержания равновесия между процессами свободнорадикального окисления и антиоксидантной защиты в организме. Указанные свойства крови определяют характер и величину диффузии кислорода к тканям в зависимости от потребности в нем и эффективности его использования, вносит вклад в прооксидантно-антиоксидантноне состояние, проявляя в различных ситуациях либо антиоксиданьные либо прооксидантные качества.

    Таким образом, деформируемость эритроцитов является не только определяющим фактором транспорта кислорода к периферическим тканям и обеспечения их потребности в нем, но и механизмом оказывающим влияние на эффективность функционирования антиоксидантной защиты и, в конечном итоге, всей организации поддержания прооксидантно-антиоксидантного равновесия всего организма.

    При инсулинорезистентности (ИР) отмечено увеличение количества зритроцитов в периферической крови. При этом происходит повышенная агрегация эритроцитов за счет увеличения количества макромолекул адгезии и отмечается снижение деформируемости эритроцитов, несмотря на то, что инсулин в физиологических концентрациях значительно улучшает реологические свойства крови.

    В настоящее время широкое распространение получила теория, рассматривающая мембранные нарушения как ведущие причины органного проявления различных заболевания, в частности в патогенез артериальной гипертензии при МС.

    Эти изменения происходят и в различных типах клеток крови: эритроцитах, тромбоцитах, лимфоцитах. .

    Внутриклеточное перераспределение кальция в тромбоцитах и эритроцитах влечет за собой повреждение микротубол, активацию контрактильной системы, реакцию высвобождения биологически активных веществ (БАВ) из тромбоцитов, запуская их адгезию, агрегацию, локальную и системную вазокнстрикцию (тромбоксан А2).

    У больных АГ, изменения эластических свойств эритроцитарных мембран сопровождается снижением их поверхностного заряда с последующим образованием эритроцитарных агрегатов. Максимальная скорость спонтанной агрегации с образованием стойких эритроцитарных агрегатов отмечена у больных АГ III степени с осложненным течением заболевания. Спонтанная агрегация эритроцитов усиливает выделение внутриэритроцитарного АДФ с последующим гемолизом, что вызывает сопряженную тромбоцитарную агрегацию. Гемолиз эритроцитов в системе микроциркуляции может быть так же связан с нарушением деформируемости эритроцитов, как лимитирующего фактора продолжительности их жизни.

    Особенно существенные изменения формы эритроцитов наблюдаются в микроциркуляторном русле, некоторые капилляры которого имеют диаметр менее 2 мкм. Прижизненная микроскопия крови (прим. нативной крови) показывает, что эритроциты, движущиеся в капилляре, подвергаются значительной деформации, приобретая при этом различные формы..

    У больных АГ сочетающейся с СД было выявлено увеличение количества аномальных форм эритроцитов: эхиноцитов, стомацитов, сфероцитов и старых эритроцитов в сосудистом русле.

    Большой вклад в гемореологию вносят лейкоциты. В связи с их низкой способностью к деформации, лейкоциты могут депонироваться на уровне микроциркуляторного русла и значимо влиять на ОПСС.

    Тромбоциты занимают важное место в клеточно – гуморальном взаимодействии систем гемостаза. Данные литературы свидетельствуют о нарушении функциональной активности тромбоцитов уже на ранней стадии АГ, что проявляется повышением их агрегационной активности, повышением чувствительности к индукторам агрегации.

    Исследователями отмечено качественное изменение тромбоцитов у больных АГ под действием увеличения свободного кальция в плазме крови, что коррелирует с величиной систолического и диастолического АД. Электронно – микроскопическое исследование тромбоцитов больных АГ выявило наличие различных морфологических форм тромбоцитов, вызванных их повышенной активацией. Наиболее характерны такие изменения формы как псевдоподиальный и гиалиновый тип. Отмечена высокая корреляционная связь между увеличением количества тромбоцитов с их измененной формой и частотой тромботических осложнений. У больных МС с АГ выявляется увеличение циркулирующих в крови тромбоцитарных агрегатов. .

    Дислипидемия вносит существенный вклад в функциональную гиперактивность тромбоцитов. Увеличение содержания ОХС, ЛПНП и ЛПОНП при гиперхолестеринемии вызывают патологическое усиление выделения тромбоксана А2 с повышением агрегабельности тромбоцитов. Это связано с наличием на поверхности тромбоцитов рецепторов липопротеинов апо – В и апо – Е. С другой стороны ЛПВП снижают продукцию тромбоксана, ингибируя агрегацию тромбоцитов, за счет связывания со специфическими рецепторами.

    Артериальная гипертензия при МС детерминирована множеством взаимодействующих метаболических, нейрогуморальных, гемодинамических факторов и функциональным состоянием форменных элементов крови. Нормализация уровней АД возможно обусловлена суммарными положительными сдвигами в показателях биохимических и реологических параметров крови.

    Гемодинамическую основу АГ при МС составляют нарушение соотношения между сердечным выбросом и ОПСС. Сначала возникают функциональные изменения сосудов, связанные с изменениями реологии крови, трансмурального давления и вазоконстрикторными реакциями в ответ на нейрогуморальную стимуляцию, затем формируются морфологические изменения сосудов микроциркуляции лежащие в основе их ремоделирования. При повышении АД снижается дилатационный резерв артериол, поэтому при увеличении вязкости крови ОПСС изменяются в большей степени, чем в физиологических условиях. Если резерв дилатации сосудистого русла исчерпан, то реологические параметры приобретают особое значение, поскольку высокая вязкость крови и сниженная деформируемость эритроцитов способствуют росту ОПСС, препятствуя оптимальной доставке кислорода к тканям.

    Таким образом, при МС в результате гликирования белков, в частности эритроцитов, что документируется высоким содержанием HbAc1, имеют место нарушения реологических параметров крови: снижение эластичности и подвижности эритроцитов, повышение агрегационной активности тромбоцитов и вязкости крови, за счет гипергликемии и дислипидемии. Измененные реологические свойства крови способствуют росту общего периферического сопротивления на уровне микроциркуляции и в сочетании с симпатикотонией, имеющей место при МС, лежат в основе генеза АГ. Фармакологическая (бигуаниды, фибраты, статины, селективные бета-блокаторы) коррекция гликимического и липидного профилей крови, способствуют нормализации АД. Объективным критерием эффективности проводимой терапии при МС и СД является динамика HbAc1, снижение которого на 1% сопровождается статистически достоверным уменьшением риска развития сосудистых осложнений (ИМ, мозговой инсульт и др.) на 20% и более.

    Фрагмент статьи А.М. Шилов, А.Ш. Авшалумов, Е.Н. Синицина, В.Б. Марковский, Полещук О.И. ММА им. И.М.Сеченова

    Реологические свойства крови (определяющие ее текучесть) могут существенно меняться в различных участках кровеносного русла, на что оказывают значительное влияние гидродинамические факторы и геометрия сосудистого русла.

    Текучесть крови определяется в основном динамической вязкостью крови. Плазма крови обладает большей вязкостью, чем вода (примерно в 1,8 раза), из-за содержания в ней белков, главным образом глобулина и фибриногена. Вязкость цельной крови примерно в 3 раза больше, чем плазмы, и возрастает по мере увеличения количества эритроцитов. При этом в некоторых случаях вязкость крови с меньшим гематокритом может превысить вязкость крови с большим гематокритом, но с меньшим содержанием в ней белков (Din- tenfass L., 1962).

    Поток крови неоднороден и состоит из слоев эритроцитов, лейкоцитов, тромбоцитов, белковых молекул, а также молекул воды, электролитов и др. Трение между отдельными слоями различно, что предопределяет различную вязкость крови при изменении ее состава. Кровь характеризуется большей вязкостью при малых скоростях движения, низком давлении, а также в условиях гипотермии. Вязкость крови снижается с уменьшением диаметра сосудов, однако в капиллярах она возрастает. Тем не менее эритроцит деформируется и в физиологических условиях легко проходит через капилляр, даже если его диаметр превышает диаметр капилляра. При этом, действуя как поршень, эритроцит способствует обновлению жидкости и других диффундирующих веществ, находящихся вдоль стенок капилляров. Вязкость в капиллярах возрастает при прохождении по ним как гранулоцитов, жесткость и диаметр которых больше, чем у эритроцитов (Adel R.

    Et al., 1970), так и более ригидных и вязких макрофагов (Roser В., Din- tenfass L., 1966).

    При снижении скорости кровотока в системе микроциркуляции на уровне венул и мелких вен происходит образование эрит-

    I И M III I . 11 111 Мл.1 ІОН l|поверхностных контакти) и иоарагта ние вязкости крови. В физиологических условиях агрегаты легко распадаются при увеличении скорости кровотока. Снижение скорости кровотока в системе микроциркуляции при шоке более выражено, продолжительно и образование эритроцитарных агрегатов приобретает генерализованный характер, чему способствует также изменение свойств эритроцитов (объема, формы, внутренней среды, метаболизма) и окружающей их среды (Селезнев С. А., Вашетина С. М., Мазуркевич Г. С., 1976). Агрегация эритроцитов может способствовать развитию диссеминированного внутрисосудистого свертывания крови, но может являться и следствием его.

    Нарушения реологических свойств крови у пострадавших с шоком (травматическим, геморрагическим, септическим и кар- диогенным) характеризуются фазностью развития: первоначальное увеличение вязкости крови по мере развития шока сменяется ее снижением. Выраженное уменьшение вязкости крови свидетельствует о глубоких и стойких нарушениях в микроциркуля- торном русле (стаз и секвестрация крови, развитие плазмотока) и наиболее характерно для терминальных состояний, рефрактерных к реанимационным мероприятиям (Радзивил Г. Г., Минс- кер Г. Д., 1985).

    Еще по теме ПОКАЗАТЕЛИ, ХАРАКТЕРИЗУЮЩИЕ РЕОЛОГИЧЕСКИЕ СВОЙСТВА КРОВИ:

    1. ИЗМЕНЕНИЯ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ КРОВИ И НЕКОТОРЫХ ПОКАЗАТЕЛЕЙ ОБМЕНА ВЕЩЕСТВ ПРИ АНАФИЛАКСИИ
    2. ОРГАНИЗАЦИЯ ПОМОЩИ НОВОРОЖДЕННЫМ В РОССИЙСКОЙ ФЕДЕРАЦИИ. Показатели, характеризующие работу неонатологической службы
    3. Текущие изменения морфологического и биохимического состава крови. Референтные величины (показатели нормы) морфологического и биохимического состава крови (табл. 7.5-7.12)
    4. Особенности показателей периферической крови у недоношенных детей
    5. ГЛАВА2 Возрастные особенности показателей периферическом крови у здоровых детей
    6. Показатели текущего и срочного функционального состояния сердечнососудистой системы. Базовые гемодинамические показатели

    Кровь - особая жидкая ткань организма, в которой форменные элементы свободно взвешены в жидкой среде. Кровь как ткань, обладает следующими особенностями: 1) все её составные части образуются за пределами сосудистого русла; 2) межклеточное вещество ткани является жидким; 3) основная часть крови находится в постоянном движении. Основными функциями крови являются транспортная, защитная и регуляторная. Все три функции крови связаны между собой и неотделимы друг от друга. Жидкая часть крови - плазма - имеет связь со всеми органами и тканями и отражает происходящие в них биохимические и биофизические процессы. Количество крови у человека в нормальных условиях составляет от 1/13 до 1/20 части от общей массы (3-5 л.). Цвет крови зависит от содержания в ней оксигемоглобина: артериальная кровь ярко-красная (богата оксигемоглобином), а венозная темно-красная (бедная оксигемоглобином). Вязкость крови в среднем в 5 раз превышает вязкость воды. Поверхностное натяжение меньше натяжения воды. В составе крови 80% - воды, 1% - неорганические вещества (натрий, хлор, кальций), 19% - органические вещества. Плазма крови содержит 90% воды, удельный вес ее составляет 1030, ниже, чем у крови (1056-1060). Кровь как коллоидная система обладает коллоидно­осмотическим давлением, т. е. способна удерживать определенное количество воды. Это давление определяется дисперсностью белков, концентрацией соли и другими примесями. Нормальное коллоидно-осмотическое давление составляет около 30 мм. вод. ст. (2940 Па). Форменными элементами крови являются эритроциты, лейкоциты и тромбоциты. В среднем 45% крови составляют форменные элементы, а 55% плазма. Форменные элементы крови представляют собой гетероморфную систему, состоящую из различно дифференцированных в структурно-функциональном отношении элементов. Объединяют их общность гистогенеза и совместное пребывание в периферической крови.

    Плазма крови - жидкая часть крови, в которой взвешены форменные элементы. Процентное содержание плазмы в крови составляет 52-60%. Микроскопически представляет собой однородную прозрачную несколько желтоватую жидкость, собирающуюся в верхней части сосуда с кровью после осаждения форменных элементов. Гистологически плазма является межклеточным веществом жидкой ткани крови.

    Плазма крови состоит из воды, в которой растворены вещества - белки (7-8% от массы плазмы) и другие органические и минеральные соединения. Основными белками плазмы являются альбумины - 4-5%, глобулины - 3% и фибриноген - 0,2-0,4%. В плазме крови растворены также питательные вещества (в частности, глюкоза и липиды), гормоны, витамины, ферменты и промежуточные и конечные продукты обмена веществ. В среднем 1 литр плазмы человека содержит 900-910 г воды, 65-85 г белка и 20 г низкомолекулярных соединений. Плотность плазмы составляет от 1,025 до 1,029, pH - 7,34-7,43.

    Реологические свойства крови.

    Кровь - суспензия клеток и частиц, взвешенный в коллоидах плазмы. Это типично неньютоновская жидкость, вязкость которой, в отличие от ньютоновской, в различных частях системы кровообращения различается в сотни раз, в зависимости от изменения скорости кровотока. Для вязкостных свойств крови имеет значение белковый состав плазмы. Так, альбумины снижают вязкость и способность клеток агрегации, тогда как глобулины действуют противоположно. Особенно активен в повышении вязкости и наклонности клеток к агрегации фибриноген, уровень которого меняется при любых стрессовых состояниях. Гиперлипидемия и гиперхолестеринемия также способствует нарушению реологических свойств крови. Гематокрит - один из важных показателей, связанных с вязкостью крови. Чем выше гематокрит, тем больше вязкость крови и хуже ее реологические свойства. Геморрагия, гемодилюция и, наоборот, плазмопотеря и дегидратация значительно отражаются на реологических свойствах крови. Поэтому, например, управляемая гемодилюция является важным средством профилактики реологических расстройств при оперативных вмешательствах. При гипотермии вязкость крови возрастает в 1,5 раза по сравнению с таковой при 37 град.С, но, если снизить гематокрит с 40% до 20%, то при таком перепаде температур вязкость не изменится. Гиперкапния повышает вязкость крови, поэтому она в венозной крови меньше, чем в артериальной. При снижении рН крови на 0,5 (при высоком гематокрите) вязкость крови увеличивается втрое.

    РАССТРОЙСТВА РЕОЛОГИЧЕСКИХ СВОЙСТВ КРОВИ.

    Основной феномен реологических расстройств крови - агрегация эритроцитов, совпадающая с повышением вязкости. Чем медленнее поток крови, тем более вероятно развитие этого феномена. Так называемые ложные агрегаты ("монетные столбики") носят физиологический характер и распадаются на здоровые клетки при изменении условий. Истинные агрегаты, возникающие при патологии, не распадаются, порождая явление сладжа (в переводе с английского как "отстой"). Клетки в агрегатах покрываются белковой пленкой, склеивающей их в глыбки неправильной формы. Главным фактором, вызывающим агрегацию и сладж, является нарушение гемодинамики - замедление кровотока, встречающееся при всех критических состояниях - травматическом шоке, геморрагии, клинической смерти, кардиогенном шоке и т.д. Очень часто гемодинамические расстройства сочетаются и с гиперглобулинемией при таких тяжелых состояниях, как перитонит, острая кишечная непроходимость, острый панкреатит, синдром длительного сдавления, ожоги. Усиливают агрегацию состояние жировой, амниотической и воздушной эмболии, повреждение эритроцитов при искусственном кровообращении, гемолиз, септический шок и т.д., то есть все критические состояния. Можно сказать, что основной причиной нарушения кровотока в капилляроне является изменение реологических свойств крови, которые в свою очередь зависят главным образом от скорости кровотока. Поэтому нарушения кровотока при всех критических состояниях проходит 4 этапа. 1 этап - спазм сосудов-сопротивлений и изменение реологических свойств крови. Стрессовые факторы (гипоксия, страх, боль, травма и т.д.) ведут к гиперкатехоламинемии, вызывающей первичный спазм артериол для централизации кровотока при кровопотере или снижении сердечного выброса любой этиологии (инфаркт миокарда, гиповолемия при перитоните, острой кишечной непроходимости, ожогах и т.д.). Сужение артериол сокращает скорость кровотока в капилляроне, что меняет реологические свойства крови и ведет к агрегации клеток сладжу. С этого начинается 2 этап нарушения микроциркуляции, на котором возникают следующие явления: а) возникает ишемия тканей, что ведет к увеличению концентрации кислых метаболитов, активных полипептидов. Однако явление сладжа характерно тем, что происходит расслоение потоков и вытекающая из капиллярона плазма может уносить в общую циркуляцию кислые метаболиты и агрессивные метаболиты. Таким образом функциональная способность органа, где нарушалась микроциркуляция, резко снижается. б) на агрегатах эритроцитов оседает фибрин, вследствие чего возникают условия для развития ДВС-синдрома. в) агрегаты эритроцитов, обволакиваемые веществами плазмы, скапливаются в капилляроне и выключаются из кровотока - возникает секвестрация крови. Секвестрация отличается от депонирования тем, что в "депо" физико-химические свойства не нарушены и выброшенная из депо кровь включается в кровоток вполне физиологически пригодной. Секвестрированная кровь же должна пройти легочной фильтр, прежде чем снова будет соответствовать физиологическим параметрам. Если кровь секвестрируется в большом количестве капилляронов, то соответственно уменьшается ее объем. Поэтому гиповолемия возникает при любом критическом состоянии, даже при тех, которые не сопровождаются первичной крово- или плазмопотерей. II этап реологических расстройств - генерализованное поражение системы микроциркуляции. Раньше других органов страдают печень, почки, гипофиз. Мозг и миокард страдают в последнюю очередь. После того, как секвестрация крови уже снизила минутный объем крови, гиповолемия с помощью дополнительного артериолоспазма, направленного на централизацию кровотока, включают в патологический процесс новые системы микроциркуляции - объем секвестрированной крови растет, вследствие чего ОЦК падает. III этап - тотальное поражение кровообращения, нарушение метаболизма, расстройство деятельности метаболических систем. Подводя итог вышеизложенному, можно выделить при всяком нарушении кровотока 4 этапа: нарушение реологических свойств крови, секвестрация крови, гиповолемия, генерализованное поражение микроциркуляции и метаболизма. Причем в танатогенезе терминального состояния не имеет существенного значения, что же было первичным: уменьшение ОЦК вследствие кровопотери или уменьшение сердечного выброса из-за правожелудочковой недостаточности (острый инфаркт миокарда). при возникновении вышеописанного порочного круга результат гемодинамических нарушений оказывается в принципе одинаковым. Простейшими критериями расстройств микроциркуляции могут служить: уменьшение диуреза до 0,5 мл/мин и менее, разница между накожной и ректальной температурой более 4 град. С, наличие метаболического ацидоза и снижение артерио-венозного различия кислорода - признак того, что последний не поглощается тканями.

    Заключение

    Сердечная мышца, как и всякая другая мышца, обладает рядом физиологических свойств: возбудимостью, проводимостью, сократимостью, рефрактерностью и автоматией.

    Кровь - суспензия клеток и частиц, взвешенный в коллоидах плазмы. Это типично неньютоновская жидкость, вязкость которой, в отличие от ньютоновской, в различных частях системы кровообращения различается в сотни раз, в зависимости от изменения скорости кровотока.

    Для вязкостных свойств крови имеет значение белковый состав плазмы. Так, альбумины снижают вязкость и способность клеток агрегации, тогда как глобулины действуют противоположно. Особенно активен в повышении вязкости и наклонности клеток к агрегации фибриноген, уровень которого меняется при любых стрессовых состояниях. Гиперлипидемия и гиперхолестеринемия также способствует нарушению реологических свойств крови.

    Список литературы:

    1) С.А. Георгиева и др. Физиология. - М.: Медицина, 1981г.

    2) Е.Б. Бабский, Г.И. Косицкий, А.Б. Коган и др. Физиология человека. – М.: Медицина, 1984 г.

    3) Ю.А. Ермолаев Возрастная физиология. – М.: Высш. Шк., 1985 г.

    4) С.Е. Советов, Б.И. Волков и др. Школьная гигиена. – М.: Просвещение, 1967 г.

    5) «Неотложная медицинская помощь», под ред. Дж. Э. Тинтиналли, Рл. Кроума, Э. Руиза, Перевод с английского д-ра мед. наук В.И.Кандрора, д. м. н. М.В.Неверовой, д-ра мед. наук А.В.Сучкова, к. м. н. А.В.Низового, Ю.Л.Амченкова; под ред. Д.м.н. В.Т. Ивашкина, Д.М.Н. П.Г. Брюсова; Москва «Медицина» 2001

    6) Интенсивная терапия. Реанимация. Первая помощь: Учебное пособие / Под ред. В.Д. Малышева. - М.: Медицина.- 2000.- 464 с.: ил.- Учеб. лит. Для слушателей системы последипломного образования.- ISBN 5-225-04560-Х

    Гемореология - наука, изучающая поведение крови при течении (в по­токе), то есть свойства потока крови и ее компонентов, а также реологию структур клеточной мембраны форменных элементов крови, прежде всœего эритроцитов.

    Реологические свойства крови определяются вязкостью цельной крови и ее плазмы, способностью эритроцитов к агрегации и деформации их мембран.

    Кровь представляет собой негомогенную вязкую жидкость. Ее негомогенность обусловлена суспензированными в ней клетками, обладающими определœенными способностями к деформации и агрегации.

    В нормальных физиологических условиях в ламинарном кровотоке жидкость движется слоями, параллельными стенке сосуда. Вязкость крови, как и любой жидкости, определяется феноменом трения между сосœедними слоями, в результате которого слои, находящиеся возле сосудистой стенки, движутся мед­леннее, чем таковые в центре кровотока. Это приводит к формированию параболического профиля скорости, неодинакового при систоле и диастоле сердца.

    В связи с указанным, величина внутреннего трения или свойство жидкости оказывать сопротивление при перемещении слоев принято называть вязкостью . Единица измерения вязкости - пуаз.

    Из этого определœения строго следует, что чем больше вязкость, тем больше должна быть сила напряжения, необходимая для создания коэффи­циента трения или движения потока.

    В простых жидкостях, чем больше сила, приложенная к ним, тем больше скорость, то есть сила напряжения пропорциональна коэффициенту трения, а вязкость жидкости остается величиной постоянной.

    Основными факторами , которые определяют вязкость цельной крови являются:

    1) агрегация и деформируемость эритроцитов; 2) величина гематокрита - повышение показателя гематокрита͵ как правило, сопровождается увеличением вязкости крови; 3) концентрация фибриногена, растворимых комплексов фибринмономера и продуктов деградации фибри­на/фибриногена - повышение их содержания в крови увеличивает ее вяз­кость; 4) соотношение альбумин/фибриноген и соотношение альбу­мин/глобулин - снижение данных соотношений сопровождается повышением вязкости крови; 5) содержание циркулирующих иммунных комплек­сов - при повышении их уровня в крови вязкость возрастает; 6) геометрия сосудистого русла.

    При этом кровь не имеет фиксированной вязкости, поскольку является «неньютоновской» (несжимаемой) жидкостью, что определяется её негомогенностью за счет суспензирования в ней форменных элементов, которые изменяют картину течения жидкой фазы (плазмы) крови, искривляя и запу­тывая линии тока. Вместе с тем, при низких значениях коэффициента тре­ния форменные элементы крови образуют агрегаты («монетные столби­ки») и, напротив, при высоких значениях коэффициента трения - де­формируются в потоке. Интересно отметить также еще одну особенность распределœения клеточных элементов в потоке. Указанный выше градиент скорости в ламинарном потоке крови (формирующий параболический про­филь) создает градиент давления: в центральных слоях потока оно ниже, чем в периферических, что обусловливает тенденцию к перемещению клеток к центру.

    Агрегация эритроцитов - способность эритроцитов создавать в цель­ной крови «монетные столбики» и их трехмерные конгломераты. Агрегация эритроцитов зависит от условий кровотока, состояния и состава крови и плазмы и непосредственно от самих эритроцитов.

    Движущаяся кровь содержит как одиночные эритроциты, так и агрегаты. Среди агрегатов имеются отдельные цепочки эритроцитов («монетные стол­бики») и цепочки в виде выростов. С ускорением скорости потока крови раз­мер агрегатов уменьшается.

    Для агрегации эритроцитов необходим фибриноген или другой высокомолекулярный белок или полисахарид, адсорбция которых на мем­бране этих клеток приводит к образованию мостиков между эритроцитами. В «монетных столбиках» эритроциты располагаются параллельно друг другу на постоянном межклеточном расстоянии (25 нм для фибриногена). Умень­шению этого расстояния препятствует сила электростатического отталкива­ния, возникающая при взаимодействии одноименных зарядов мембраны эритроцитов. Увеличению расстояния препятствуют мостики - молекулы фибриногена. Прочность образовавшихся агрегатов прямо пропорциональна концентрации фибриногена или высокомолекулярного агреганта.

    Агрегация эритроцитов обратима: агрегаты клеток способны деформироваться и разрушаться при достижении определœенной величины сдвига. При выраженных нарушениях нередко развивается сладж - генерализован­ное нарушение микроциркуляции, вызванное патологической агрегацией эритроцитов, как правило, сочетающейся с повышением гидродинамиче­ской прочности эритроцитарных агрегатов.

    Агрегация эритроцитов, в основном, зависит от следующих факторов:

    1)ионного состава среды: при повышении общего осмотического давления плазмы эритроциты сморщиваются и утрачивают способность к агрегации;

    2)поверхностно-активных веществ, изменяющих поверхностный заряд, и их влияние может быть различным; 3) концентрации фибриногена и иммуноглобулинов; 4) контакта с инородными поверхностями, как правило, сопровождается нарушением нормальной агрегации эритроцитов.

    Суммарный объем эритроцитов примерно в 50 раз превышает объем лейкоцитов и тромбоцитов, в связи с чем реологическое поведение крови в крупных сосудах определяет их концентрация и структурно-функциональные свой­ства. К ним относятся следующие: эритроциты должны значительно деформи­роваться, чтобы не быть разрушенными при высоких скоростях кровотока в аорте и магистральных артериях, а также при преодолении капиллярного рус­ла, так как диаметр эритроцитов больше, чем капилляра. Решающее значение при этом имеют физические свойства мембраны эритроцитов, то есть ее спо­собности к деформации.

    Деформируемость эритроцитов - это способность эритроцитов деформироваться в сдвиговом потоке, при прохождения через капилляры и поры, способность к плотной упаковке.

    Основными факторами , от которых зависит деформируемость эритроцитов, являются: 1) осмотическое давление окружающей среды (плазмы крови); 2) соотношение внутриклеточного кальция и магния, концен­трация АТФ; 3) продолжительность и интенсивность приложенных к эритроциту внешних воздействий (механических и химических), меняющих липидный состав мембраны или нарушающих структуру спектриновой сети; 4) состояние цитоскелœета эритроцита͵ в состав которого входит спектрин; 5) вязкость внутриклеточного содержимого эритроцитов в зависимости от концентрации и свойств гемоглобина.



    gastroguru © 2017